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Lp REGULARIZATION FOR ENSEMBLE KALMAN INVERSION*

YOONSANG LEET

Abstract. Ensemble Kalman inversion (EKI) is a derivative-free optimization method that
lies between the deterministic and the probabilistic approaches for inverse problems. EKI iterates
the Kalman update of ensemble-based Kalman filters, whose ensemble converges to a minimizer
of an objective function. EKI regularizes ill-posed problems by restricting the ensemble to the
linear span of the initial ensemble, or by iterating regularization with early stopping. Another
regularization approach for EKI, Tikhonov EKI, penalizes the objective function using the I3 penalty
term, preventing overfitting in the standard EKI. This paper proposes a strategy to implement [,,,0 <
p < 1, regularization for EKI to recover sparse structures in the solution. The strategy transforms a I,
problem into a lg problem, which is then solved by Tikhonov EKI. The transformation is explicit, and
thus the proposed approach has a computational cost comparable to Tikhonov EKI. We validate the
proposed approach’s effectiveness and robustness through a suite of numerical experiments, including
compressive sensing and subsurface flow inverse problems.

Key words. inverse problems, ensemble Kalman inversion, regularization, sparsity
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1. Introduction. A wide range of problems in science and engineering are for-
mulated as inverse problems. Inverse problems aim to estimate a quantity of interest
from noisy, imperfect observation or measurement data, such as state variables or
a set of parameters that constitute a forward model. Examples include deblurring
and denoising in image processing [15], recovery of permeability in subsurface flow
using pressure fields [27], and training a neural network in machine learning [16, 23]
to name a few. In this paper, we consider the inverse problem of finding u € R from
measurement data y € R”™ where v and y are related as follows

(1.1) y = G(u) +n.

Here G : RV — R™ is a forward model that can be nonlinear and computationally
expensive to solve, for example, solving a PDE problem. The last term 7 is a mea-
surement error. The measurement error is unknown in general, but we assume that
it is drawn from a known probability distribution, a Gaussian distribution with mean
zero and a known covariance I'. By assuming that the forward model G and the
observation covariance I' are known, the unknown variable u is estimated by solving
an optimization problem

1
(1.2) argmin Ly — G(u)|.
u€RN
where || - || is the norm induced from the inner product using the inverse of the

covariance matrix T, that is ||a||# = (a,I'"'a) for the standard inner product (,) in
R™.

Ensemble Kalman inversion (EKI), pioneered in the oil industry [27] and math-
ematically formulated in an application-neutral setting in [20], is a derivative-free
method that lies between the deterministic and the probabilistic approaches for in-
verse problems. EKI’s key feature is an iterative application of the Kalman update
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2 YOONSANG LEE

of the ensemble-based Kalman filters [1, 13]. Ensemble-based Kalman filters are well
known for their success in numerical weather prediction, stringent inverse problems
involving high-dimensional systems. EKI iterates the ensemble-based Kalman update
in which the ensemble mean converges to the solution of the optimization problem
(1.2). EKI can be thought of as a least-squares method in which the derivatives are
approximated from an empirical correlation of an ensemble [6], not from a variational
approach. Thus, EKI is highly parallelizable without calculating the derivatives re-
lated to the forward or the adjoint problem used in the gradient-based methods.

Inverse problems are often ill-posed, which suffer from non-uniqueness of the
solution and lack stability. Also, in the context of regression, the solution can show
overfitting. A common strategy to overcome ill-posed problems is regularizing the
solution of the optimization problem [3]. That is, a special structure of the solution
from prior information, such as sparsity, is imposed to address ill-posedness. The
standard EKI [20] implements regularization by restricting the ensemble to the linear
span of the initial ensemble reflecting prior information. The ensemble-based Kalman
update is known for that the ensemble remains in the linear span of the initial ensemble
[25, 20]. Thus, the EKI ensemble always stays in the linear span of the initial ensemble,
which regularizes the solution. Although this approach shows robust results in certain
applications, numerical evidence demonstrates that overfitting may still occur [20]. As
an effort to address the overfitting of the standard EKI, an iterative regularization
method has been proposed in [21], which approximates the regularizing Levenberg-
Marquardt scheme [18]. As another regularization approach using a penalty term to
the objective function, a recent work called Tikhonov EKI (TEKI) [9] implements the
Tikhonov regularization (which imposes a I penalty term to the objective function)
using an augmented measurement model that adds artificial measurements to the
original measurement. TEKI’s implementation is a straightforward modification of
the standard EKI method with a marginal increase in the computational cost.

The regularization methods for EKI mentioned above address several issues of
ill-posed problems, including overfitting. However, it is still an open problem to
implement other types of regularizers, such as [; or total variation (TV) regularization.
This paper aims to implement {,,,0 < p < 1, regularization to recover sparse structures
in the solution of inverse problems. In other words, we propose a highly-parallelizable
derivative-free method that solves the following I, regularized optimization problem

DA 1
(1.3) argmin = [|ullh + o |ly — G(u)[|z,
ueX 2 2

where ||u||, is the [, norm of u, i.e., Ziv |u;|P, and X is a regularization coefficient.
The proposed method’s key idea is a transformation of variables that converts
the [, regularization problem to the Tikhonov regularization problem. Therefore, a
local minimizer of the original [, problem can be found by a local minimizer of the [,
problem that is solved using the idea of Tikhonov EKI. As this transformation is ex-
plicit and easy to calculate, the proposed method’s overall computational complexity
remains comparable to the complexity of Tikhonov EKI. In general, a transformed
optimization problem can lead to additional difficulties, such as change of convexity,
increased nonlinearity, additional/missing local minima of the original problem, etc.
[14]. We show that the transformation does not add or remove local minimizers in
the transformed formulation. A work imposing sparsity in EKI has been reported
recently [31]. The idea of this work is to use thresholding and a I constraint to
impose sparsity in the inverse problem solution. The [; constraint is further relaxed
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Lp REGULARIZATION FOR ENSEMBLE KALMAN INVERSION 3

by splitting the solution into positive and negative parts. The split converts the [y
problem to a quadratic problem, while it still has a non-negativity constraint. On
the other hand, our method does not require additional constraints by reformulating
the optimization problem and works as a solver for the [, regularized optimization
problem (1.3).

This paper is structured as follows. Section 2 reviews the standard EKI and
Tikhonov EKI. In section 3, we describe a transformation that converts the [, reg-
ularization problem (1.3), 0 < p < 1, to the Tikhonov (that is, lo) regularization
problem, and provide the complete description of the [, regularized EKI algorithm.
We also discuss implementation and computation issues. Section 4 is devoted to the
validation of the effectiveness and robustness of regularized EKI through a suite of
numerical tests. The tests include a scalar toy problem with an analytic solution, a
compressive sensing problem to benchmark with a convex [; minimization method,
and a PDE-constrained nonlinear inverse problem from subsurface flow. We conclude
this paper in section 5, discussing the proposed method’s limitations and future work.

2. Ensemble Kalman inversion. The [, regularized EKI uses a change of
variables to transform a [, problem into a I problem, which is then solved by the
standard EKI using an augmented measurement model. This section reviews the
standard EKI and the application of the augmented measurement model in Tikhonov
EKI to implement ls regularization. The review is intended to be concise, delivering
the minimal ideas for the [, regularized EKI. Detailed descriptions of the standard
EKI and the Tikhonov EKI methods can be found in [20] and [9], respectively.

2.1. Standard ensemble Kalman inversion. EKI incorporates an artificial
dynamics, which corresponds to the application of the forward model to each ensemble
member. This application moves each ensemble member to the measurement space,
which is then updated using the ensemble Kalman update formula. The ensemble
updated by EKI stays in the linear span of the initial ensemble [20, 25]. Therefore, by
choosing an initial ensemble appropriately for prior information, EKI is regularized
as the ensemble is restricted to the linear span of the initial ensemble. Under a
continuous-time limit, when the operator G is linear, it is proved in [30] that EKI
estimate converges to the solution of the following optimization problem

o1
21) argmin § Jy - G 2.
u€ERN

In this paper, we consider the discrete-time EKI in [20], which is described below.
Algorithm: standard EKI
Assumption: an initial ensemble of size K, {uék)}le from prior information, is given.
Forn=1,2,...,
1. Prediction step using the artificial dynamics:
(a) Apply the forward model G to each ensemble member

(2.2) g = a@)

(b) From the set of the predictions {gr(lk)}szl, calculate the mean and co-
variances

1 K
7. = E (k)
(23) gn - Kk_lgn 9
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(2.4) =
. ) K
99 — (k) _ 5 (k) _ 5

K
1
where W, is the mean of {ugtk)}, ie., Z ulk),

2. Analysis step:

(a) Update each ensemble member uglk) using the Kalman update

(2.5) uff) =B 4 cuo(Cge + 1) (y®) — gy,

where y,(ﬁzl = y+C7(l]i)1 is a perturbed measurement using Gaussian noise

C,(fgl with mean zero and covariance I'.
(b) Compute the mean of the ensemble as an estimate for the solution

1 K
m N E (k)
(26) Un4+1 = K — Uy,

Remark 2.1. The term C*9(C99 +T)~! in (2.5) is from the Kalman gain matrix.
The standard EKI uses an extended space, (u,G(u)) € RN*™ and then use the
Kalman update for the extended space variable. However, as we need to update only
u while G(u) is subordinate to u, we have the update formula (2.5).

2.2. Tikhonov ensemble Kalman inversion. EKI is regularized through the
initial ensemble reflecting prior information. However, there are several numerical
evidence showing that EKI regularized only through an ensemble may have overfit-
ting [20]. Among other approaches to regularize EKI, Tikhonov EKI [9] uses the
idea of an augmented measurement to implement [s regularization, which is a simple
modification of the standard EKI. For the original measurement y, the augmented
measurement model extends y by adding the zero vector in RY, which yields an
augmented measurement vector z € RN

(2.7) augmented measurement vector: z = (y,0).

The forward model is also augmented to account for the augmented measurement
vector, which adds the identity measurement

(2.8) augmented forward model: F(u) = (G(u),u).

Using the augmented measurement vector and the model, Tikhonov EKI has the
following inverse problem of estimating u from z

(2.9) z=F(u)+¢.

Here ¢ is a m + N-dimensional measurement error for the augmented measurement
model, which is Gaussian with mean zero and covariance

r o
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Lp REGULARIZATION FOR ENSEMBLE KALMAN INVERSION 5

for the N x N identity matrix In.

The mechanism enabling the l5 regularization in Tikhonov EKI is the incorpora-
tion of the l; penalty term as a part of the augmented measurement model. From the
orthogonality between different components in R+ we have

1 1 1
2.11) Sllz = F@lls = 5ly = Gt + 50— uli,,
2.11

1 A
Slly = G + Sl

Therefore, the standard EKI algorithm applied to the augmented measurement min-
imizes 1|z — F(u)||%, which equivalently minimizes the I, regularized problem.

3. [l,-regularization for EKI. This section describes a transformation that
converts a [,,0 < p < 1, regularization problem to a l» regularization problem. I,-
regularized EKI ({,EKI), which we completely describe in subsection 3.2, utilizes this
transformation and solves the transformed I regularization problem using the idea of
Tikhonov EKI [9], the augmented measurement model.

3.1. Transformation of [, regularization into /; regularization. For 0 <
p < 1, we define a function ¢ : R — R given by

(3.1) Y(z) = sgn(z)|z|?, =z eR.

Here sgn(x) is the sign function of z, which has 1 for z > 0, 0 for x = 0, and -1 for
x < 0. It is straightforward to check that v is bijective and has an inverse £ : R — R
defined as

(3.2) &(z) = sgn(x)|x\%, xR

For u in RN, we define a nonlinear map ¥ : RN — RY, which applies 1 to each
component of u = (uy, ug, ..., un),

(3.3) U(u) = (¥(u1), ¥(u2), ... Y (un)).
As v has an inverse, the map ¥ also has an inverse, say =
(3.4) E(u) = 7 (u) = (E(wr), &(u2), .., E(un)).

For v = ¥(u), it can be checked that for each i = 1,2,..., N,
|Ui|2 = |1/J(uz)\2 = |u;l?,

and thus we have the following norm relation

(3.5) [vl13 = ful?.

This relation shows that the map v = ¥(u) converts the ,-regularized optimization
problem in u (1.3) to a ly regularized problem in v,

A 1 ~
(3.6) argmin 2 ol}3 + 5 lly - G,
vERN

where G is the pullback of G by =

[}
Il
Q
(]
[1]

(3.7)
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A transformation between [; and [y regularization terms has already been used
to solve an inverse problem in the Bayesian framework [32]. In the context of the
randomize-then-optimize framework [2], the method in [32] draws a sample from a
Gaussian distribution, which is then transformed to a Laplace distribution. As this
method needs to match the corresponding densities of the variables (the original and
the transformed variables) as random variables, the transformation involves calcula-
tions related to cumulative distribution functions. For the scalar case, v € R, the
transformation from Iy to 1, denoted as gl, is given by

(3.8) gl(v) = —sgn(v) log (1 —9 ‘qb(v) - ;D .

where ¢(u) is the cumulative distribution function of the standard Gaussian distribu-
tion. Figure 1 shows the two transformations £ (3.2) and gl (3.8); the former is based
on the norm relation (3.5) and the latter is based on matching densities as random
variables. We note that the transformation £ has a region around 0 flatter than the

Fig. 1: & transformation matching the norm relation (3.5), gi: transformation from
Gaussian to Laplace distributions.

transformation gl, but £ diverts quickly as v moves further away from 0. From this
comparison, we expect that the flattened region of & plays another role in imposing
sparsity by trapping the ensemble to the flattened area.

In general, a reformulation of an optimization problem using a transformation has
the following potential issues [14]: i) the degree of nonlinearity may be significantly
increased, ii) the desired minimum may be inadvertently excluded, or iii) an additional
local minimum can be included. In [10], for a non-convex problem, it is shown that
TEKI converges to an approximate local minimum if the gradient and Hessian of the
objective function are bounded. It is straightforward to check that the transformed
objective function has bounded gradient and Hessian if 0 < p < 1 regardless of
the convexity of the problem. Therefore, if we can show that the original and the
transformed problems have the same number of local minima, then it is guaranteed
to find a local minimum of the original problem by finding a local minimum of the
transformed problem using TEKI. We want to note the importance of the sign function
in defining ¢ and £. The sign function is not necessary to satisfy the norm relation
(3.5), but it is essential to make the transformation ¥ and its inverse = bijective.
Without being bijective, the transformed Iy problem can have more or less local
minima than the original problem.

This manuscript is for review purposes only.
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Lp REGULARIZATION FOR ENSEMBLE KALMAN INVERSION 7

The following theorem shows that the transformation does not add or remove
local minima.

THEOREM 3.1. For an objective function J(u) : RY — R, if u* is a local mini-
mizer of J(u), ¥(u*) is also a local minimizer of J(v) = J o Z(v). Similarly, if v* is
a local minimizer of J(v), then Z(v*) is also a local minimizer of J(u) = J o ¥(u).

Proof. From the definition (3.3) and (3.4), ¥ and = are continuous and bijective.
Thus for v € RY, both ¥ and Z map a neighborhood of u € R to neighborhoods of

U(u) and E(u), respectively. As u* is a local minimizer, there exists a neighborhood
N of u* such that

(3.9) Jw*) < J(w) for all w e N.

Let v = ¥(u*) and M := ¥(N) that is a neighborhood of v. For any w € M,
E(w) € N and thus we have

(3.10) J(v) = J(Ew)) = J(u) < J(Ew)) = J(w),

which shows that v is a local minimizer of J. The other direction is proved similarly
by changing the roles of ¥ and = and of J and J. 0

We note that an insolated local minimizer can replace the local minimizer in the
theorem. If there is a unique global minimizer of the [, regularization problem (1.3),
the theorem guarantees that we can find it by finding the global minimizer of the lo
regularized problem (3.6).

COROLLARY 3.2. For 0 < p < 1, if the l, regularized optimization (1.3) has
a unique global minimizer, say u', the ly reqularized optimization (3.6) also has a
unique global minimizer. By finding the minimizer ut of (3.6), say v, u' is given by

(3.11) ul = Z(v').

3.2. Algorithm. l,-regularized EKI (I,EKI) solves the transformed [y regular-
ization problem using the standard EKI with the augmented measurement model. For
the current study’s completeness to implement [,EKI, this subsection describes the
complete [, EKI algorithm and discuss issues related to implementation. Note that
the Tikhonov EKI (TEKI) part in [,EKI is slightly modified to reflect the setting
assumed in this paper. The general TEKI algorithm and its variants can be found in

We assume that the forward model G and the measurement error covariance I'
are known, and measurement y € R™ is given (and thus z = (y,0) is also given).
We also fix the regularization coefficient A and p. Under this assumption, [,EKI uses
the following iterative procedure to update the ensemble until the ensemble mean

1 X

v = Ve Z o) converges.
k=1

Algorithm: [,-regularized EKI
Assumption: an initial ensemble of size K, {v(()k)}le, is given.
Forn=1,2,..,

1. Prediction step using the forward model:

(a) Apply the augmented forward model F' to each ensemble member

(3.12) 7 i= Ful) = (Gol), o)
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b) From the set of the predictions ék) K calculate the mean and co-
k=1

variances
1 K
7 k
(3.13) f.= % § fiR)
k=1
1 K
uf _ = E (k) _ (k)
CTL 7K _(vn U)®(f fn)?
(3.14) =t

K
1
where 7,, is the ensemble mean of {v,(lk)}, ie., 74 ; vnk).

2. Analysis step:

(a) Update each ensemble member v%k) using the Kalman update

(3.15) v = o® Lol + 3y W, - r ),

k k) . . . .
where z,(l le = Z+C7(1 +)1 is a perturbed measurement using Gaussian noise

C’r(fk)l with mean zero and covariance X.
(b) For the ensemble mean ,,, the [, EKI estimate, uy,, for the minimizer of

the [, regularization is given by
(3.16) u=Z(vy).

Remark 3.3. In EKI and TEKI, the covariance of Cr(ji)l can be set to zero so that
all ensemble member uses the same measurement z without perturbations. In our
study, we focus on the perturbed measurement using the covariance matrix I'.

Remark 3.4. The above algorithm is equivalent to TEKI, except that the forward
model G is replaced with the pullback of G by the transformation =. In comparison
with TEKI, the additional computational cost for {,EKI is to calculate the Transfor-
mation Z(v). In comparison with the standard EKI, the additional cost of [,EKI, in
addition to the cost related to the transformation, is the matrix inversion (C99 +3)~!
in the augmented measurement space R™+V instead of a matrix inversion in the
original measurement space R™. As the covariance matrices are symmetric positive
definite, the matrix inversion can be done efficiently.

Remark 3.5. In [,EKI, it is also possible to consider estimating u by transforming
each ensemble member and take average of the transformed members, that is,

1
— = (k)
(3.17) u = E E(v,)

instead of (3.16). If the ensemble spread is large, these two approaches will make a
difference. In our numerical tests in the next section, we do not incorporate covari-
ance inflation. Thus the ensemble spread becomes relatively small when the estimate
converges, and thus (3.16) and (3.17) are not significantly different. In this study, we
use (3.16) to measure the performance of [, EKI.
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In recovering sparsity using the [, penalty term, if the penalty term’s convexity is
not necessary, it is preferred to use a small p < 1 as a smaller p imposes stronger spar-
sity. The optimization problem (1.3) can be interpreted as a constrained optimization
problem that minimizes the [, term of u with a constraint related to the data. That
is, the solution to the optimization problem is an intersection point of an [, ball and
an affine subspace [12]. For p < 1, the intersection point is expected to take place
on the axes and thus lead to a sparse solution. In particular, it can be checked that
a small p < 1 has a high chance to have the intersection point at the axes, which
can impose stronger sparsity than a larger p. The transformation in [,EKI works
for any positive p, but the transformation can lead to an overflow for a small p; the
function £ depends on an exponent 1% that becomes large for a small p. Therefore,
there is a limit for the smallest p. In our numerical experiments in the next section,
the smallest p is 0.7 in the compressive sensing test.

There is a variant of [,EKI worth further consideration. In [30], a continuous-
time limit of EKI has been proposed, which rescales I' — h~'T using h > 0 so
that the matrix inversion (C99 + h~'T')~! is approximated by hI'"! as a limit of
h — 0. In many applications, the measurement error covariance is assumed to be
diagonal. That is, the measurement error corresponding to different components are
uncorrelated. Thus the inversion I'"! becomes a cheap calculation in the continuous-
time limit. The continuous-time limit is then discretized in time using an explicit time
integration method with a finite time step. The latter is called ‘learning rate’ in the
machine learning community, and it is known that an adaptive time-stepping to solve
an optimization often shows improved results [11, 28]. The current study focuses on
the discrete-time update described in (2.5) and we leave adaptive time-stepping for
future work.

4. Numerical tests. We apply [,-regularized EKI (1,EKI) to a suite of inverse
problems to check its performance in regularizing EKI and recovering sparse structures
of solutions. The tests include: i) a scalar toy model where an analytic solution is
available, ii) a compressive sensing problem to recover a sparse signal from random
measurements of the signal, iii) an inverse problem in subsurface flow; estimation of
permeability from measurements of hydraulic pressure field whose forward model is
described by a 2D elliptic partial differential equation [8, 27]. In all tests, we run
I,EKI for various values of p < 1, and compare with the result of Tikhonov EKI. We
analyze the results to check how effectively [, EKI implements I, regularization and
recover sparse solutions. When available, we also compare [,EKI with a [; convex
minimization method. As quantitative measures for the estimation performance, we
calculate the l; error of the [,EKI estimates and the data misfit ||y — G(u)||2.

Several parameters are to be determined in [,EKI to achieve robust estimation
results, regularization coefficient A, regularization power p, ensemble size, and its
initialization. In this study, to focus on implementing [, regularization for EKI with-
out the effect of any particular strategy to choose the regularization coefficient, we
find the coefficient by hand-tuning so that {,EKI achieves the best result for a given
p. In particular, we test A that corresponds to a x 10° where a € {1,2,...,9} and
b € {—2,—1,...,3} and select the result with the smallest /1 error. We leave the
[, EKI performance investigation using other methods to choose A, for example, cross-
validation, as future work. In choosing the regularization power p, we also use a
hand-tuning process. We gradually decrease p from 1 until [,EKI diverges. Once we
find the lower bound for p, we tune A to obtain the best result for the lower bound p.

This manuscript is for review purposes only.
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Ensemble initialization plays a role in regularizing EKI, restricting the estimate
to the linear span of the initial ensemble. In our experiments, instead of tuning the
initial ensemble for improved results, we initialize the ensemble using a Gaussian
distribution with mean zero and a constant diagonal covariance matrix (the variance
will be specified later for each test). As this initialization does not utilize any prior
information, a sparse structure in the solution, we regularize the solution mainly
through the [, penalty term. For each test, we run 100 trials of [, EKI through 100
realizations of the initial ensemble distribution and use the estimate averaged over
the trials along with its standard deviation to measure the performance difference.
We note that we tune A for one trial and use the same A for the other trials.

Regarding the ensemble size, for the scalar toy and the compressive sensing prob-
lems, we test ensemble sizes larger than the dimension of u, the unknown variable
of interest. The purpose of a large ensemble size is to minimize the sampling er-
ror while we focus on the regularization effect of {,EKI. To show the applicability of
[,EKI for high-dimensional problems, we also test a small ensemble size using the idea
of multiple batches used in [29]. The multiple batch approach runs several batches
where small magnitude components are removed after each batch. After removing
small magnitude components from the previous batch, the ensemble is used for the
next batch. The multiple batch approach enables a small ensemble size, 50 ensemble
members, for the compressive sensing and the 2D elliptic inversion problems where
the dimensions of u are 200 and 400, respectively.

In ensemble-based Kalman filters, covariance inflation is an essential tool to sta-
bilize and improve the performance of the filters. In a connection with the inflation,
an adaptive time-stepping has been investigated to improve the performance of EKI.
Although the adaptive time-stepping can be incorporated in [,EKI for performance
improvements, we use the discrete version [,EKI described in subsection 3.2 focus-
ing on the effect of different types of regularization on inversion. We will report a
thorough investigation along the line of adaptive time-stepping in another place.

4.1. A scalar toy problem. The first numerical test is a scalar problem for
u € R with an analytic solution. As this is a scalar problem, there is no effect
of regularization from ensemble initialization, and we can see the effect from the [,
penalty term. The scalar optimization problem we consider here is the minimization
of an objective function J(u) = +[u|? + (1 — u)?

1 1
(4.1) argmin J(u) = argmin — |u|? + = (1 — u)?.
ueR uer 4 2

This setup is equivalent to solving the optimization problem (1.3) using I, regular-
ization with A = 1/2, where y = 1, G(u) = u, and 7 is Gaussian with mean zero and
variance 1. Using the transformation v = W(u) = 1 (u) = sgn(u)|u|? defined in (3.1),
1,EKI minimizes a transformed objective function J(v) = |v|? + 1 (1 —sgn(v)[v[>/?)?

. 1 1
(4.2) argmin J(v) = argmin —|v|? + = (1 — sgn(v)|v|*/?)?,
vER vER 4 2

which is an I, regularization of 1 (1 — sgn(v)\v\%)Q.
For p = 1, the first row of Figure 2 shows the objective functions of [, (4.1) and
the transformed lp (4.2) formulations. Each objective function has a unique global

3 V3

minimum without other local minima. The minimizers are ; and 5> for [; and

la, respectively. We can check that the transformation does not add/remove local
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Fig. 2: Objective functions of (4.1) and (4.2) for p = 1 (first row) and p = 0.5 (second
row).

minimizers, but the convexity of the objective function changes. The transformed
objective function J has an inflection point at w = 0, which is also a stationary
point. Note that the original function has no other stationary points than the global
minimizer.

When p = 0.5, a potential issue of the transformation can be seen explicitly. The
original objective and the transformed objective functions are shown in the second
row of Figure 2. Due to the regularization term with p = 0.5, the objective functions
are non-convex and have a local minimizer at v = v = 0 in addition to the global
minimizers. In the transformed formulation (bottom right of Figure 2), the objective
function flattens around v = 0, which shows a potential issue of trapping ensemble
members around v = 0. Numerical experiments show that if the ensemble is initialized
with a small variance, the ensemble is trapped around v = 0. On the other hand, if the
ensemble is initialized with a sufficiently large variance (so that some of the ensemble
members are initialized out of the well around v = 0), [,EKI shows convergence to
the true minimizer, v = 0.9304 (or v = 0.8656) even when it is initialized around 0.

We use 100 different realizations for the ensemble initialization and each trial
uses 50 ensemble members. The estimates at each iteration, which is averaged over
different trials, are shown in Figure 3. For p = 1 (first row) and p = 0.5 (second row),
the left and right columns show the results when the ensemble is initialized with mean
1 and 0, respectively. When p = 1 and initialized around 1, the ensemble estimate
quickly converges to the true value 0.75 as the objective function is convex, and the
initial guess is close to the true value. When p = 0.5, as the objective function is
non-convex due to the regularization term, the convergence is slower than the p = 1
case. When the ensemble is initialized around 0 for p = 0.5, a local minimizer, the
ensemble needs to be initialized with a large variance. Using variance 1, which is 10
times larger than 0.1, the variance for the ensemble initialization around 1, I,EKI
converges to the true value. The performance difference between different trials is

This manuscript is for review purposes only.



120
421
422
423
424
125
126
427
428
429
430
131

433
134
135
436
437
438
139
140
441
442
443
444
145
146

12 YOONSANG LEE

p=1, initial mean 1 p=1, initial mean 0

1.0 0.8

0.9 - 0.6
3 3
= 084 = 044
g S

0.7 0.2

0.6 T T — T T — T 0.0 — T T — T T T

0 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50
iteration iteration
Lo p=0.5, initial mean 1 p=0.5, initial mean 0
0.8

0.8 | 0.6 4
o o
E] 2
2 0.6 g 0.4+

0.2 -
0.4 4
T T — T T — T 0.0 T T T — T T T
0 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50
iteration iteration

Fig. 3: Time series of {,EKI estimate, £(v,), which is averaged over 100 different
trials.

marginal. The standard deviations of the estimate after 50 iterations are 6.62 x 1073
(p = 1 initialized with 1), 7.95 x 1072 (p = 1 initialized with 0), 8.79 x 1073 (p = 0.5
initialized with 1), and 1.14 x 1072 (p = 0.5 initialized with 0). As a reference, the
estimate using the transformation (3.8) based on matching the densities of random
variables converges to 0.71.

4.2. Compressive sensing. The second test is a compressive sensing problem.
The true signal u is a vector in R2%°, which is sparse with only four randomly selected
non-zero components (their magnitudes are also randomly chosen from the standard
normal distribution.) The forward model G : R?%® — R is a random Gaussian
matrix of size 20 x 200, which yields a measurement vector in R2°. The measurement
y is obtained by applying the forward model to the true signal v polluted by Gaussian
noise with mean zero and variance 0.01

(4.3) y=Gu+mn GeR* 20 » < N(0,0.01).

As the forward model is linear, several robust methods can solve the sparse recovery
problem, including the /; convex minimization method [4]. This test aims to compare
the performance of I,EKI for various p values, rather than to advocate the use of
[,EKI over other standard methods. As the forward model is linear and cheap to
calculate, the standard methods are preferred over [,EKI for this test.

We first use a large ensemble size, 2000 ensemble members, to run [,EKI. The
ensemble is initialized by drawing samples from a Gaussian distribution with mean
zero and a diagonal covariance (which yields variance 0.1 for each component). For
p =1 and 0.7, the tuned regularization coefficients, A, are 100 and 300. When p = 2,
which corresponds to TEKI, the best result can be obtained using A ranging from
10 to 200; we use the result of A = 50 to compare with the other cases. For p = 1,
we also compare the result of the convex [; minimization method using the interior
point method using the Karush-Kuhn-Tucker condition [5] implemented in the Python
library CVXOPT [26].
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Fig. 4: Compressive sensing. Reconstruction of sparse signal using {,EKI for p=2, 1,
and 0.7. Ensemble size is 2000. The bottom right plot is the reconstruction using the
convex 1 minimization method. For the true signal, only the nonzero components
are marked.

Figure 4 shows the [,EKI estimates after 20 iterations averaged over 100 trials
for p = 2 (top left), p = 1 (top right), and p = 0.7 (bottom left), along with the
estimate by the convex optimization (bottom right). As it is well known in compressive
sensing, lo regularization fails to capture the true signal’s sparse structure. As p
decreases to 1, I, EKI develops sparsity in the estimate, comparable to the estimate
of the convex /1 minimization method. The slightly weak magnitudes of the three
most significant components by [,EKI improve as p decreases to 0.7. When p = 0.7,
[,EKI captures the correct magnitudes at the cost of losing the smallest magnitude
component. The smallest magnitude component can be captured if the regularization
coefficient )\ decreases to 20 (see the left plot of Figure 5 for the {,EKI estimate with
A = 20). However, this estimate also has several artificial non-zero components, which
increases the 1 error by about 15%. We note that the smallest magnitude component
is challenging to capture; the magnitude is comparable to the measurement error
0.1 = v/0.01. When the measurement error variance decreases by a factor of 10,
[,EKI with p = 0.7 captures the smallest magnitude component with less significant
artificial non-zero components (the right plot of Figure 5).

Another cost of using p < 1 to impose stronger sparsity than p = 1 is a slow
convergence rate of [,EKI. The time series of the /; estimation error and the data
misfit of [,EKI averaged over 100 trials are shown in Figure 6 alongside those of the
convex optimization method. The results show that p = 0.7 converges slower than
p = 1 (see Table 1 for the numerical values of the error and the misfit). Although
there is a slowdown in convergence, it is worth noting that [,EKI with p = 0.7
converges in a reasonably short time, 15 iterations, to achieve the best result. [, EKI
with p = 2 converges fast with the smallest data misfit. In this case, by combining
many columns of G, [,EKI makes a good approximation to the measurement error,
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Fig. 5: [,EKI estimates capturing the smallest magnitude component. Left: uses a
smaller A = 20. Right: uses a smaller measurement error variance 1073.

Method [ error | data misfit
p = 2, ens size 2000 14.0802 0.0515
p =1, ens size 2000 0.7848 0.8018
p = 0.7, ens size 2000 0.2773 1.2737

p =1, ens size 50 1.6408 1.4095
p = 0.7, ens size 50 0.6027 1.8958
l1 convex minimization | 0.5623 0.9030

Table 1: Compressive sensing. [,EKI estimate l; error and data misfit for p = 2,1
and 0.7.

which yields a data misfit smaller than the actual norm of the measurement error
0.6014. In comparison, the other methods have misfits larger than the measurement
norm. However, the l5 regularization is not strong enough to impose sparsity in the
estimate and yields the largest estimation error, which is 20 times larger than the case
of p = 1. Note that the convex optimization method has the fastest convergence rate;
it converges within three iterations and captures the four nonzero components with
slightly smaller magnitudes than p = 0.7 for the three most significant components.

The ensemble size 2000 is larger than the dimension of the unknown vector u,
200. A large ensemble size can be impractical for a high-dimensional unknown vector.
To see the applicability of [,EKI using a small ensemble size, we use 50 ensemble
members and two batches following the multiple batch approach [29]. The first batch
runs 10 iterations, and all components whose magnitudes are less than 0.1 (the square
root of the observation variance) are removed. The problem’s size the second batch
solves ranges from 30-45 (depending on a realization of the initial ensemble), which
is then solved for another 10 iterations. The estimates using 50 ensemble members
for p =1 and p = 0.7 after two batch runs (i.e., 20 iterations) are shown in Figure 7.
Compared with the large ensemble size case, the small ensemble size run also captures
the most significant components at the cost of fluctuating components larger than the
large ensemble size test. We note that the estimates are averaged over 100 trials, and
thus there are components whose magnitudes are less than the threshold value 0.1
used in the multiple batch run.

As a measure to check the performance difference for different trials, Figure 8
shows the standard deviations of [,EKI estimates for p = 1 and 0.7 after 20 iterations.
The first row shows the results using 2000 ensemble members, while the second row
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Fig. 7: Compressive sensing. Reconstruction of sparse signal using [,EKI for p=1
and 0.7. Ensemble size is 50. For the true signal, only the nonzero components are
marked.

shows the ones using 50 ensemble members. The standard deviations of the large
ensemble size are smaller than those of the small ensemble size case as the large
ensemble size has a smaller sampling error. In all cases, the standard deviations are
smaller than 6% of the magnitude of the most significant components. In terms of p,
the standard deviations of p = 0.7 are smaller than those of p = 1.

4.3. 2D elliptic problem. Next, we consider an inverse problem where the
forward model is given by an elliptic partial differential equation. The model is
related to subsurface flow described by Darcy flow in the two-dimensional unit square
(0,1)? C R?

(4.4) ~ V- (k(2)Vp(2)) = f(z), @ =(21,22) € (0,1).

The scalar field k(z) > « > 0 is the permeability, and another field p(x) is the
piezometric head or the pressure field of the flow. For a known source term f(z), the
inverse problem estimates the permeability from measurements of the pressure field
p. This model is a standard model for an inverse problem in oil reservoir simulations
and has been actively used to measure EKI’s performance and its variants, including
TEKI [20, 9].

We follow the same setting used in TEKI [9] for the boundary conditions and the
source term. The boundary conditions consist of Dirichlet and Neumann boundary
conditions

Ip

op op
p(gjh O) 007 8961 ( 71'2) 07 al‘l (07 1’2) 5005 8332 (‘rlv ) 07
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Fig. 8: Compressive sensing. Standard deviation of the estimates using 100 trials.

and the source term is piecewise constant

fla,me) =4 137 if § <ap <3,
274 if 2 <y < 1.

7

Sl

A physical motivation of the above configuration can be found in [8]. We use 15 x 15
regularly spaced points in (0,1)? to measure the pressure field with a small measure-
ment error variance 107%. For a given k, the forward model is solved by a FEM
method using the second-order polynomial basis on a 60 x 60 uniform mesh.

In addition to the standard setup, we impose a sparse structure in the permeabil-
ity. We assume that the log permeability, log k, can be represented by 400 components
in the cosine basis ¢;; = cos(imx1) cos(jmzs),4,j =0,1,...,19,

19

(4.5) logk(z) = Y uijéi;(x),

i,j=0

where only six of {u,;;} are nonzero. That is, we assume that the discrete cosine
transform of log k is sparse with only 6 nonzero components out of 400 components.
Thus, the problem we consider here can be formulated as an inverse problem to re-
cover u = {u;;} € R (which has only six nonzero components) from a measurement
y € R??5, the measurement of p at 15 x 15 regularly spaced points. In terms of spar-
sity reconstruction, the current setup is similar to the previous compressive sensing
problem, but the main difference lies in the forward model. In this test, the forward
model is nonlinear and computationally expensive to solve, where the forward model
in the compressive sensing test was linear using a random measurement matrix.

For this test, we run [,EKI using only a small ensemble size due to the high
computational cost of running the forward model. As in the previous test, we use the
multiple batch approach. First, the [,EKI ensemble of size 50 is initialized around
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p | 1 error | data misfit
2 | 21.3389 4.1227
1 0.1553 0.5707
0.8 | 0.0719 0.5682

Table 2: 2D elliptic problem. I, EKI estimate I; error and data misfit for p = 2,1 and
0.8.

zero with Gaussian perturbations of variance 0.1. After the first five iterations, all
components whose magnitudes less than 5 x 1073 are removed at each iteration. The
threshold value is slightly smaller than the smallest magnitude component of the true
signal. Over 100 different trials, the average number of nonzero components after 30
iterations is 18 that is smaller than the ensemble size.

The true value of u used in this test and its corresponding log permeability, log k,
are shown in the first row of Figure 9 (u is represented as a one-dimensional vector
by concatenating the row vectors of {w;;}). The {,EKI estimates for p = 2,1, and 0.8
are shown in the second to the fourth rows of Figure 9. Here p = 0.8 was the smallest
value we can use for [,EKI due to the numerical overflow in the exponentiation of
log k. A smaller p can be used with a smaller variance for ensemble initialization, but
the gain is marginal. The results of [, EKI are similar to the compressive sensing case.
p = 0.8 has the best performance recovering the four most significant components of
u. p = 1 has slightly weak magnitudes missing the correct magnitudes of the two most
significant components (corresponding to one-dimensional indices 141 and 364). Both
cases converge within 20 iterations to yield the best result (see Figure 10 and Table 2
for the time series and numerical values of the [; error and data misfit). When p = 2,
[,EKI performs the worst; it has the largest I; error and data misfit. We note that
p = 2 uses the result after running 50 iterations at which the estimate converges.

The performance difference between different trials is not significant. The stan-
dard deviations of the [,EKI estimates using 100 trials are shown in Figure 11. The
standard deviations for nonzero components are larger than the other components,
but the largest standard deviation is less than 3% of the magnitude of the true signal.
As in the compressive sensing test, the deviations are slightly smaller for p < 1 than

p=1.

5. Discussions and conclusions. We have proposed a strategy to implement
lp,0 < p < 1, regularization in ensemble Kalman inversion (EKI) to recover sparse
structures in the solution of an inverse problem. The [)-regularized ensemble Kalman
inversion (I,EKI) proposed here uses a transformation to convert the [, regularization
problem to the Iy regularization problem, which is then solved by the standard EKI
with an augmented measurement model used in Tikhonov EKI. We showed a one-
to-one correspondence between the local minima of the original and the transformed
formulations. Thus a local minimum of the original problem can be obtained by
finding a local minimum of the transformed problem. As other iterative methods for
non-convex problems, initialization plays a vital role in the proposed method’s per-
formance. The effectiveness and robustness of regularized EKI are validated through
a suite of numerical tests, showing robust results in recovering sparse solutions using
p< 1

In implementing [, regularization for EKI, there is a limit on p < 1 due to an
overflow. One definitive source of the overflow is the transformation £ that involves
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Fig. 9: 2D elliptic problem. Left column: the true v and I, EKI estimates for p = 2,1,
and 0.8. Right column: log k of the true and [, EKI estimates. All plots have the same
grey scale. p =1 and 0.8 use the results after 20 iterations while p = 2 uses the result
after 50 iterations. For the true signal, only the nonzero components are marked.
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Fig. 11: 2D elliptic problem. Standard deviation of the estimates using 100 trials.

% as an exponent. For a small p < 1, the transformation & can diverge, and thus EKI

suffers from instability. One possible workaround is to impose the I, penalty term
directly in the fidelity term instead of transforming it to the 5 regularization using &.
The penalty term incorporated in the fidelity term can be achieved by an extended
measurement framework similar to Tikhonov EKI but with a nonlinear measurement
operator. Also, in the ensemble filters, the filter estimate can diverge to machine
infinity under a stringent filter setup, which is called ‘catastrophic filter divergence’
[19, 17]. It is shown in [22] that one of the mechanisms for the filter instability is
related to the measurement operator. As [, regularization in EKI is implemented
through an extended measurement operator, it is natural to investigate a connection
between the catastrophic filter divergence and the instability in [,EKI for p < 1. In
particular, it is worth considering several methods that prevent the catastrophic filter
divergence, including adaptive inflation [33, 24], for stabilizing [, EKI. The effect of
the above-mentioned approaches in stabilizing [, EKI for p < 1 is under investigation
and will be reported in another place.

For successful applications of {,EKI for high-dimensional inverse problems, it
is essential to maintain a small ensemble size for efficiency. In the current study,
we considered the multiple batch approach. The approach removes non-significant
components after each batch, and thus the problem size (i.e., the dimension of the
unknown signal) decreases over different batch runs. This approach enabled 1,EKI
to use only 50 ensemble members to solve 200 and 400-dimensional inverse problems.
Other techniques, such as variance inflation and localization, improve the performance
of the standard EKI using a small ensemble size [30]. It would be natural to investigate
if these techniques can be extended to [, EKI to decrease the sampling error of I, EKI.

In the current study, we have left several variants of [,EKI for future work.
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Weighted [; has been shown to recover sparse solutions using fewer measurements
than the standard [y [7]. It is straightforward to implement weighted Iy (and fur-
ther weighted [, for p < 1) in [,EKI by replacing the identity matrix in (2.10) with
another type of covariance matrix corresponding to the desired weights. We plan to
study several weighting strategies to improve the performance of [,EKI. As another
variant ofl, EKI, we plan to investigate the adaptive time-stepping under the contin-
uous limit. The time step for solving the continuous limit equation, which is called
‘learning rate’ in the machine learning community, is known to affect an optimization
solver [11]. The standard ensemble Kaman inversion has been applied to machine
learning tasks, such as discovering the vector fields defining a differential equation,
using time series data [23] and sparse learning using thresholding [31]. We plan to
investigate the effect of an adaptive time-stepping for performance improvements and
compare with the sparsity EKI method using thresholding in dimension reduction in
machine learning.
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