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Abstract. Ensemble Kalman inversion (EKI) is a derivative-free optimization method that3
lies between the deterministic and the probabilistic approaches for inverse problems. EKI iterates4
the Kalman update of ensemble-based Kalman filters, whose ensemble converges to a minimizer5
of an objective function. EKI regularizes ill-posed problems by restricting the ensemble to the6
linear span of the initial ensemble, or by iterating regularization with early stopping. Another7
regularization approach for EKI, Tikhonov EKI, penalizes the objective function using the l2 penalty8
term, preventing overfitting in the standard EKI. This paper proposes a strategy to implement lp, 0 <9
p  1, regularization for EKI to recover sparse structures in the solution. The strategy transforms a lp10
problem into a l2 problem, which is then solved by Tikhonov EKI. The transformation is explicit, and11
thus the proposed approach has a computational cost comparable to Tikhonov EKI. We validate the12
proposed approach’s e↵ectiveness and robustness through a suite of numerical experiments, including13
compressive sensing and subsurface flow inverse problems.14
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1. Introduction. A wide range of problems in science and engineering are for-17

mulated as inverse problems. Inverse problems aim to estimate a quantity of interest18

from noisy, imperfect observation or measurement data, such as state variables or19

a set of parameters that constitute a forward model. Examples include deblurring20

and denoising in image processing [15], recovery of permeability in subsurface flow21

using pressure fields [27], and training a neural network in machine learning [16, 23]22

to name a few. In this paper, we consider the inverse problem of finding u 2 RN from23

measurement data y 2 Rm where u and y are related as follows24

(1.1) y = G(u) + ⌘.25

Here G : RN ! Rm is a forward model that can be nonlinear and computationally26

expensive to solve, for example, solving a PDE problem. The last term ⌘ is a mea-27

surement error. The measurement error is unknown in general, but we assume that28

it is drawn from a known probability distribution, a Gaussian distribution with mean29

zero and a known covariance �. By assuming that the forward model G and the30

observation covariance � are known, the unknown variable u is estimated by solving31

an optimization problem32

(1.2) argmin
u2RN

1

2
ky �G(u)k2�,33

where k · k� is the norm induced from the inner product using the inverse of the34

covariance matrix �, that is kak2� = ha,��1ai for the standard inner product h, i in35

Rm.36

Ensemble Kalman inversion (EKI), pioneered in the oil industry [27] and math-37

ematically formulated in an application-neutral setting in [20], is a derivative-free38

method that lies between the deterministic and the probabilistic approaches for in-39

verse problems. EKI’s key feature is an iterative application of the Kalman update40
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of the ensemble-based Kalman filters [1, 13]. Ensemble-based Kalman filters are well41

known for their success in numerical weather prediction, stringent inverse problems42

involving high-dimensional systems. EKI iterates the ensemble-based Kalman update43

in which the ensemble mean converges to the solution of the optimization problem44

(1.2). EKI can be thought of as a least-squares method in which the derivatives are45

approximated from an empirical correlation of an ensemble [6], not from a variational46

approach. Thus, EKI is highly parallelizable without calculating the derivatives re-47

lated to the forward or the adjoint problem used in the gradient-based methods.48

Inverse problems are often ill-posed, which su↵er from non-uniqueness of the49

solution and lack stability. Also, in the context of regression, the solution can show50

overfitting. A common strategy to overcome ill-posed problems is regularizing the51

solution of the optimization problem [3]. That is, a special structure of the solution52

from prior information, such as sparsity, is imposed to address ill-posedness. The53

standard EKI [20] implements regularization by restricting the ensemble to the linear54

span of the initial ensemble reflecting prior information. The ensemble-based Kalman55

update is known for that the ensemble remains in the linear span of the initial ensemble56

[25, 20]. Thus, the EKI ensemble always stays in the linear span of the initial ensemble,57

which regularizes the solution. Although this approach shows robust results in certain58

applications, numerical evidence demonstrates that overfitting may still occur [20]. As59

an e↵ort to address the overfitting of the standard EKI, an iterative regularization60

method has been proposed in [21], which approximates the regularizing Levenberg-61

Marquardt scheme [18]. As another regularization approach using a penalty term to62

the objective function, a recent work called Tikhonov EKI (TEKI) [9] implements the63

Tikhonov regularization (which imposes a l2 penalty term to the objective function)64

using an augmented measurement model that adds artificial measurements to the65

original measurement. TEKI’s implementation is a straightforward modification of66

the standard EKI method with a marginal increase in the computational cost.67

The regularization methods for EKI mentioned above address several issues of68

ill-posed problems, including overfitting. However, it is still an open problem to69

implement other types of regularizers, such as l1 or total variation (TV) regularization.70

This paper aims to implement lp, 0 < p  1, regularization to recover sparse structures71

in the solution of inverse problems. In other words, we propose a highly-parallelizable72

derivative-free method that solves the following lp regularized optimization problem73

(1.3) argmin
u2X

�

2
kukpp +

1

2
ky �G(u)k2�,74

where kukp is the lp norm of u, i.e.,
PN

i |ui|p, and � is a regularization coe�cient.75

The proposed method’s key idea is a transformation of variables that converts76

the lp regularization problem to the Tikhonov regularization problem. Therefore, a77

local minimizer of the original lp problem can be found by a local minimizer of the l278

problem that is solved using the idea of Tikhonov EKI. As this transformation is ex-79

plicit and easy to calculate, the proposed method’s overall computational complexity80

remains comparable to the complexity of Tikhonov EKI. In general, a transformed81

optimization problem can lead to additional di�culties, such as change of convexity,82

increased nonlinearity, additional/missing local minima of the original problem, etc.83

[14]. We show that the transformation does not add or remove local minimizers in84

the transformed formulation. A work imposing sparsity in EKI has been reported85

recently [31]. The idea of this work is to use thresholding and a l1 constraint to86

impose sparsity in the inverse problem solution. The l1 constraint is further relaxed87
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by splitting the solution into positive and negative parts. The split converts the l188

problem to a quadratic problem, while it still has a non-negativity constraint. On89

the other hand, our method does not require additional constraints by reformulating90

the optimization problem and works as a solver for the lp regularized optimization91

problem (1.3).92

This paper is structured as follows. Section 2 reviews the standard EKI and93

Tikhonov EKI. In section 3, we describe a transformation that converts the lp reg-94

ularization problem (1.3), 0 < p  1, to the Tikhonov (that is, l2) regularization95

problem, and provide the complete description of the lp regularized EKI algorithm.96

We also discuss implementation and computation issues. Section 4 is devoted to the97

validation of the e↵ectiveness and robustness of regularized EKI through a suite of98

numerical tests. The tests include a scalar toy problem with an analytic solution, a99

compressive sensing problem to benchmark with a convex l1 minimization method,100

and a PDE-constrained nonlinear inverse problem from subsurface flow. We conclude101

this paper in section 5, discussing the proposed method’s limitations and future work.102

2. Ensemble Kalman inversion. The lp regularized EKI uses a change of103

variables to transform a lp problem into a l2 problem, which is then solved by the104

standard EKI using an augmented measurement model. This section reviews the105

standard EKI and the application of the augmented measurement model in Tikhonov106

EKI to implement l2 regularization. The review is intended to be concise, delivering107

the minimal ideas for the lp regularized EKI. Detailed descriptions of the standard108

EKI and the Tikhonov EKI methods can be found in [20] and [9], respectively.109

2.1. Standard ensemble Kalman inversion. EKI incorporates an artificial110

dynamics, which corresponds to the application of the forward model to each ensemble111

member. This application moves each ensemble member to the measurement space,112

which is then updated using the ensemble Kalman update formula. The ensemble113

updated by EKI stays in the linear span of the initial ensemble [20, 25]. Therefore, by114

choosing an initial ensemble appropriately for prior information, EKI is regularized115

as the ensemble is restricted to the linear span of the initial ensemble. Under a116

continuous-time limit, when the operator G is linear, it is proved in [30] that EKI117

estimate converges to the solution of the following optimization problem118

(2.1) argmin
u2RN

1

2
ky �G(u)k2�.119

In this paper, we consider the discrete-time EKI in [20], which is described below.120

Algorithm: standard EKI121

Assumption: an initial ensemble of size K, {u(k)
0 }Kk=1 from prior information, is given.122

For n = 1, 2, ...,123

1. Prediction step using the artificial dynamics:124

(a) Apply the forward model G to each ensemble member125

(2.2) g(k)n := G(u(k)
n�1)126

(b) From the set of the predictions {g(k)n }Kk=1, calculate the mean and co-127

variances128

(2.3) gn =
1

K

KX

k=1

g(k)n ,129
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130

Cug
n =

1

K

KX

k=1

(u(k)
n � un)⌦ (g(k)n � gn),

Cgg
n =

1

K

KX

k=1

(g(k)n � gn)⌦ (g(k)n � gn),

(2.4)131

where un is the mean of {u(k)
n }, i.e., 1

K

KX

k=1

u(k)
n .132

2. Analysis step:133

(a) Update each ensemble member u(k)
n using the Kalman update134

(2.5) u(k)
n+1 = u(k)

n + Cug
n (Cgg

n + �)�1(y(k)n � g(k)n ),135

where y(k)n+1 = y+⇣(k)n+1 is a perturbed measurement using Gaussian noise136

⇣(k)n+1 with mean zero and covariance �.137

(b) Compute the mean of the ensemble as an estimate for the solution138

(2.6) un+1 =
1

K

KX

k=1

u(k)
n139

Remark 2.1. The term Cug
n (Cgg

n +�)�1 in (2.5) is from the Kalman gain matrix.140

The standard EKI uses an extended space, (u,G(u)) 2 RN+m, and then use the141

Kalman update for the extended space variable. However, as we need to update only142

u while G(u) is subordinate to u, we have the update formula (2.5).143

2.2. Tikhonov ensemble Kalman inversion. EKI is regularized through the144

initial ensemble reflecting prior information. However, there are several numerical145

evidence showing that EKI regularized only through an ensemble may have overfit-146

ting [20]. Among other approaches to regularize EKI, Tikhonov EKI [9] uses the147

idea of an augmented measurement to implement l2 regularization, which is a simple148

modification of the standard EKI. For the original measurement y, the augmented149

measurement model extends y by adding the zero vector in RN , which yields an150

augmented measurement vector z 2 Rm+N151

(2.7) augmented measurement vector: z = (y, 0).152

The forward model is also augmented to account for the augmented measurement153

vector, which adds the identity measurement154

(2.8) augmented forward model: F (u) = (G(u), u).155

Using the augmented measurement vector and the model, Tikhonov EKI has the156

following inverse problem of estimating u from z157

(2.9) z = F (u) + ⇣.158

Here ⇣ is a m + N -dimensional measurement error for the augmented measurement159

model, which is Gaussian with mean zero and covariance160

(2.10) ⌃ =

✓
� 0
0 1

�IN

◆
,161
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for the N ⇥N identity matrix IN .162

The mechanism enabling the l2 regularization in Tikhonov EKI is the incorpora-163

tion of the l2 penalty term as a part of the augmented measurement model. From the164

orthogonality between di↵erent components in Rm+N , we have165

1

2
kz � F (u)k2⌃ =

1

2
ky �G(u)k2� +

1

2
k0� uk21

� IN

=
1

2
ky �G(u)k2� +

�

2
kuk22.

(2.11)166

Therefore, the standard EKI algorithm applied to the augmented measurement min-167

imizes 1
2kz � F (u)k2⌃, which equivalently minimizes the l2 regularized problem.168

3. lp-regularization for EKI. This section describes a transformation that169

converts a lp, 0 < p  1, regularization problem to a l2 regularization problem. lp-170

regularized EKI (lpEKI), which we completely describe in subsection 3.2, utilizes this171

transformation and solves the transformed l2 regularization problem using the idea of172

Tikhonov EKI [9], the augmented measurement model.173

3.1. Transformation of lp regularization into l2 regularization. For 0 <174

p  1, we define a function  : R ! R given by175

(3.1)  (x) = sgn(x)|x|
p
2 , x 2 R.176

Here sgn(x) is the sign function of x, which has 1 for x > 0, 0 for x = 0, and -1 for177

x < 0. It is straightforward to check that  is bijective and has an inverse ⇠ : R ! R178

defined as179

(3.2) ⇠(x) = sgn(x)|x|
2
p , x 2 R.180

For u in RN , we define a nonlinear map  : RN ! RN , which applies  to each181

component of u = (u1, u2, ..., uN ),182

(3.3)  (u) = ( (u1), (u2), ..., (uN )).183

As  has an inverse, the map  also has an inverse, say ⌅184

(3.4) ⌅(u) =  �1(u) = (⇠(u1), ⇠(u2), ..., ⇠(uN )).185

For v =  (u), it can be checked that for each i = 1, 2, ..., N ,186

|vi|2 = | (ui)|2 = |ui|p,187

and thus we have the following norm relation188

(3.5) kvk22 = kukpp.189

This relation shows that the map v =  (u) converts the lp-regularized optimization190

problem in u (1.3) to a l2 regularized problem in v,191

(3.6) argmin
v2RN

�

2
kvk22 +

1

2
ky � G̃(v)k2�,192

where G̃ is the pullback of G by ⌅193

(3.7) G̃ = G � ⌅.194
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A transformation between l1 and l2 regularization terms has already been used195

to solve an inverse problem in the Bayesian framework [32]. In the context of the196

randomize-then-optimize framework [2], the method in [32] draws a sample from a197

Gaussian distribution, which is then transformed to a Laplace distribution. As this198

method needs to match the corresponding densities of the variables (the original and199

the transformed variables) as random variables, the transformation involves calcula-200

tions related to cumulative distribution functions. For the scalar case, v 2 R, the201

transformation from l2 to l1, denoted as gl, is given by202

(3.8) gl(v) = � sgn(v) log

✓
1� 2

�����(v)�
1

2

����

◆
.203

where �(u) is the cumulative distribution function of the standard Gaussian distribu-204

tion. Figure 1 shows the two transformations ⇠ (3.2) and gl (3.8); the former is based205

on the norm relation (3.5) and the latter is based on matching densities as random206

variables. We note that the transformation ⇠ has a region around 0 flatter than the

Fig. 1: ⇠: transformation matching the norm relation (3.5), gl: transformation from
Gaussian to Laplace distributions.

207
transformation gl, but ⇠ diverts quickly as v moves further away from 0. From this208

comparison, we expect that the flattened region of ⇠ plays another role in imposing209

sparsity by trapping the ensemble to the flattened area.210

In general, a reformulation of an optimization problem using a transformation has211

the following potential issues [14]: i) the degree of nonlinearity may be significantly212

increased, ii) the desired minimum may be inadvertently excluded, or iii) an additional213

local minimum can be included. In [10], for a non-convex problem, it is shown that214

TEKI converges to an approximate local minimum if the gradient and Hessian of the215

objective function are bounded. It is straightforward to check that the transformed216

objective function has bounded gradient and Hessian if 0 < p  1 regardless of217

the convexity of the problem. Therefore, if we can show that the original and the218

transformed problems have the same number of local minima, then it is guaranteed219

to find a local minimum of the original problem by finding a local minimum of the220

transformed problem using TEKI. We want to note the importance of the sign function221

in defining  and ⇠. The sign function is not necessary to satisfy the norm relation222

(3.5), but it is essential to make the transformation  and its inverse ⌅ bijective.223

Without being bijective, the transformed l2 problem can have more or less local224

minima than the original problem.225
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The following theorem shows that the transformation does not add or remove226

local minima.227

Theorem 3.1. For an objective function J(u) : RN ! R, if u⇤ is a local mini-228

mizer of J(u),  (u⇤) is also a local minimizer of J̃(v) = J � ⌅(v). Similarly, if v⇤ is229

a local minimizer of J̃(v), then ⌅(v⇤) is also a local minimizer of J(u) = J̃ � (u).230

Proof. From the definition (3.3) and (3.4),  and ⌅ are continuous and bijective.231

Thus for u 2 RN , both  and ⌅ map a neighborhood of u 2 RN to neighborhoods of232

 (u) and ⌅(u), respectively. As u⇤ is a local minimizer, there exists a neighborhood233

N of u⇤ such that234

(3.9) J(u⇤)  J(w) for all w 2 N .235

Let v =  (u⇤) and M :=  (N ) that is a neighborhood of v. For any w 2 M,236

⌅(w) 2 N and thus we have237

(3.10) J̃(v) = J(⌅(v)) = J(u)  J(⌅(w)) = J̃(w),238

which shows that v is a local minimizer of J̃ . The other direction is proved similarly239

by changing the roles of  and ⌅ and of J and J̃ .240

We note that an insolated local minimizer can replace the local minimizer in the241

theorem. If there is a unique global minimizer of the lp regularization problem (1.3),242

the theorem guarantees that we can find it by finding the global minimizer of the l2243

regularized problem (3.6).244

Corollary 3.2. For 0 < p  1, if the lp regularized optimization (1.3) has245

a unique global minimizer, say u†, the l2 regularized optimization (3.6) also has a246

unique global minimizer. By finding the minimizer u† of (3.6), say v†, u† is given by247

(3.11) u† = ⌅(v†).248

3.2. Algorithm. lp-regularized EKI (lpEKI) solves the transformed l2 regular-249

ization problem using the standard EKI with the augmented measurement model. For250

the current study’s completeness to implement lpEKI, this subsection describes the251

complete lpEKI algorithm and discuss issues related to implementation. Note that252

the Tikhonov EKI (TEKI) part in lpEKI is slightly modified to reflect the setting253

assumed in this paper. The general TEKI algorithm and its variants can be found in254

[9].255

We assume that the forward model G and the measurement error covariance �256

are known, and measurement y 2 Rm is given (and thus z = (y, 0) is also given).257

We also fix the regularization coe�cient � and p. Under this assumption, lpEKI uses258

the following iterative procedure to update the ensemble until the ensemble mean259

v =
1

K

KX

k=1

v(k) converges.260

Algorithm: lp-regularized EKI261

Assumption: an initial ensemble of size K, {v(k)0 }Kk=1, is given.262

For n = 1, 2, ...,263

1. Prediction step using the forward model:264

(a) Apply the augmented forward model F to each ensemble member265

(3.12) f (k)
n := F (v(k)n ) = (G̃(v(k)n ), v(k)n )266
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(b) From the set of the predictions {f (k)
n }Kk=1, calculate the mean and co-267

variances268

(3.13) fn =
1

K

KX

k=1

f (k)
n ,269

270

Cvf
n =

1

K

KX

k=1

(v(k)n � vn)⌦ (f (k)
n � fn),

Cff
n =

1

K

KX

k=1

(f (k)
n � fn)⌦ (f (k)

n � fn)

(3.14)271

where vn is the ensemble mean of {v(k)n }, i.e., 1

K

KX

k=1

v(k)n .272

2. Analysis step:273

(a) Update each ensemble member v(k)n using the Kalman update274

(3.15) v(k)n+1 = v(k)n + Cvf
n (Cff

n + ⌃)�1(z(k)n+1 � f (k)
n ),275

where z(k)n+1 = z+⇣(k)n+1 is a perturbed measurement using Gaussian noise276

⇣(k)n+1 with mean zero and covariance ⌃.277

(b) For the ensemble mean vn, the lpEKI estimate, un, for the minimizer of278

the lp regularization is given by279

(3.16) u = ⌅(vn).280

Remark 3.3. In EKI and TEKI, the covariance of ⇣(k)n+1 can be set to zero so that281

all ensemble member uses the same measurement z without perturbations. In our282

study, we focus on the perturbed measurement using the covariance matrix �.283

Remark 3.4. The above algorithm is equivalent to TEKI, except that the forward284

model G is replaced with the pullback of G by the transformation ⌅. In comparison285

with TEKI, the additional computational cost for lpEKI is to calculate the Transfor-286

mation ⌅(v). In comparison with the standard EKI, the additional cost of lpEKI, in287

addition to the cost related to the transformation, is the matrix inversion (Cgg
n +⌃)�1288

in the augmented measurement space Rm+N instead of a matrix inversion in the289

original measurement space Rm. As the covariance matrices are symmetric positive290

definite, the matrix inversion can be done e�ciently.291

Remark 3.5. In lpEKI, it is also possible to consider estimating u by transforming292

each ensemble member and take average of the transformed members, that is,293

(3.17) u =
1

K

KX

k=1

⌅(v(k)n )294

instead of (3.16). If the ensemble spread is large, these two approaches will make a295

di↵erence. In our numerical tests in the next section, we do not incorporate covari-296

ance inflation. Thus the ensemble spread becomes relatively small when the estimate297

converges, and thus (3.16) and (3.17) are not significantly di↵erent. In this study, we298

use (3.16) to measure the performance of lpEKI.299
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In recovering sparsity using the lp penalty term, if the penalty term’s convexity is300

not necessary, it is preferred to use a small p < 1 as a smaller p imposes stronger spar-301

sity. The optimization problem (1.3) can be interpreted as a constrained optimization302

problem that minimizes the lp term of u with a constraint related to the data. That303

is, the solution to the optimization problem is an intersection point of an lp ball and304

an a�ne subspace [12]. For p  1, the intersection point is expected to take place305

on the axes and thus lead to a sparse solution. In particular, it can be checked that306

a small p < 1 has a high chance to have the intersection point at the axes, which307

can impose stronger sparsity than a larger p. The transformation in lpEKI works308

for any positive p, but the transformation can lead to an overflow for a small p; the309

function ⇠ depends on an exponent 2
p that becomes large for a small p. Therefore,310

there is a limit for the smallest p. In our numerical experiments in the next section,311

the smallest p is 0.7 in the compressive sensing test.312

There is a variant of lpEKI worth further consideration. In [30], a continuous-313

time limit of EKI has been proposed, which rescales � ! h�1� using h > 0 so314

that the matrix inversion (Cgg
n + h�1�)�1 is approximated by h��1 as a limit of315

h ! 0. In many applications, the measurement error covariance is assumed to be316

diagonal. That is, the measurement error corresponding to di↵erent components are317

uncorrelated. Thus the inversion ��1 becomes a cheap calculation in the continuous-318

time limit. The continuous-time limit is then discretized in time using an explicit time319

integration method with a finite time step. The latter is called ‘learning rate’ in the320

machine learning community, and it is known that an adaptive time-stepping to solve321

an optimization often shows improved results [11, 28]. The current study focuses on322

the discrete-time update described in (2.5) and we leave adaptive time-stepping for323

future work.324

4. Numerical tests. We apply lp-regularized EKI (lpEKI) to a suite of inverse325

problems to check its performance in regularizing EKI and recovering sparse structures326

of solutions. The tests include: i) a scalar toy model where an analytic solution is327

available, ii) a compressive sensing problem to recover a sparse signal from random328

measurements of the signal, iii) an inverse problem in subsurface flow; estimation of329

permeability from measurements of hydraulic pressure field whose forward model is330

described by a 2D elliptic partial di↵erential equation [8, 27]. In all tests, we run331

lpEKI for various values of p  1, and compare with the result of Tikhonov EKI. We332

analyze the results to check how e↵ectively lpEKI implements lp regularization and333

recover sparse solutions. When available, we also compare lpEKI with a l1 convex334

minimization method. As quantitative measures for the estimation performance, we335

calculate the l1 error of the lpEKI estimates and the data misfit ky �G(u)k2.336

Several parameters are to be determined in lpEKI to achieve robust estimation337

results, regularization coe�cient �, regularization power p, ensemble size, and its338

initialization. In this study, to focus on implementing lp regularization for EKI with-339

out the e↵ect of any particular strategy to choose the regularization coe�cient, we340

find the coe�cient by hand-tuning so that lpEKI achieves the best result for a given341

p. In particular, we test � that corresponds to a ⇥ 10b where a 2 {1, 2, ..., 9} and342

b 2 {�2,�1, ..., 3} and select the result with the smallest l1 error. We leave the343

lpEKI performance investigation using other methods to choose �, for example, cross-344

validation, as future work. In choosing the regularization power p, we also use a345

hand-tuning process. We gradually decrease p from 1 until lpEKI diverges. Once we346

find the lower bound for p, we tune � to obtain the best result for the lower bound p.347

348
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Ensemble initialization plays a role in regularizing EKI, restricting the estimate349

to the linear span of the initial ensemble. In our experiments, instead of tuning the350

initial ensemble for improved results, we initialize the ensemble using a Gaussian351

distribution with mean zero and a constant diagonal covariance matrix (the variance352

will be specified later for each test). As this initialization does not utilize any prior353

information, a sparse structure in the solution, we regularize the solution mainly354

through the lp penalty term. For each test, we run 100 trials of lpEKI through 100355

realizations of the initial ensemble distribution and use the estimate averaged over356

the trials along with its standard deviation to measure the performance di↵erence.357

We note that we tune � for one trial and use the same � for the other trials.358

Regarding the ensemble size, for the scalar toy and the compressive sensing prob-359

lems, we test ensemble sizes larger than the dimension of u, the unknown variable360

of interest. The purpose of a large ensemble size is to minimize the sampling er-361

ror while we focus on the regularization e↵ect of lpEKI. To show the applicability of362

lpEKI for high-dimensional problems, we also test a small ensemble size using the idea363

of multiple batches used in [29]. The multiple batch approach runs several batches364

where small magnitude components are removed after each batch. After removing365

small magnitude components from the previous batch, the ensemble is used for the366

next batch. The multiple batch approach enables a small ensemble size, 50 ensemble367

members, for the compressive sensing and the 2D elliptic inversion problems where368

the dimensions of u are 200 and 400, respectively.369

In ensemble-based Kalman filters, covariance inflation is an essential tool to sta-370

bilize and improve the performance of the filters. In a connection with the inflation,371

an adaptive time-stepping has been investigated to improve the performance of EKI.372

Although the adaptive time-stepping can be incorporated in lpEKI for performance373

improvements, we use the discrete version lpEKI described in subsection 3.2 focus-374

ing on the e↵ect of di↵erent types of regularization on inversion. We will report a375

thorough investigation along the line of adaptive time-stepping in another place.376

4.1. A scalar toy problem. The first numerical test is a scalar problem for377

u 2 R with an analytic solution. As this is a scalar problem, there is no e↵ect378

of regularization from ensemble initialization, and we can see the e↵ect from the lp379

penalty term. The scalar optimization problem we consider here is the minimization380

of an objective function J(u) = 1
4 |u|

p + 1
2 (1� u)2381

(4.1) argmin
u2R

J(u) = argmin
u2R

1

4
|u|p + 1

2
(1� u)2.382

This setup is equivalent to solving the optimization problem (1.3) using lp regular-383

ization with � = 1/2, where y = 1, G(u) = u, and ⌘ is Gaussian with mean zero and384

variance 1. Using the transformation v =  (u) =  (u) = sgn(u)|u| p2 defined in (3.1),385

lpEKI minimizes a transformed objective function J̃(v) = 1
4 |v|

2+ 1
2 (1� sgn(v)|v|2/p)2386

(4.2) argmin
v2R

J̃(v) = argmin
v2R

1

4
|v|2 + 1

2
(1� sgn(v)|v|2/p)2,387

which is an l2 regularization of 1
2 (1� sgn(v)|v|

2
p )2.388

For p = 1, the first row of Figure 2 shows the objective functions of lp (4.1) and389

the transformed l2 (4.2) formulations. Each objective function has a unique global390

minimum without other local minima. The minimizers are 3
4 and

p
3
2 for l1 and391

l2, respectively. We can check that the transformation does not add/remove local392
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Fig. 2: Objective functions of (4.1) and (4.2) for p = 1 (first row) and p = 0.5 (second
row).

minimizers, but the convexity of the objective function changes. The transformed393

objective function J̃ has an inflection point at u = 0, which is also a stationary394

point. Note that the original function has no other stationary points than the global395

minimizer.396

When p = 0.5, a potential issue of the transformation can be seen explicitly. The397

original objective and the transformed objective functions are shown in the second398

row of Figure 2. Due to the regularization term with p = 0.5, the objective functions399

are non-convex and have a local minimizer at u = v = 0 in addition to the global400

minimizers. In the transformed formulation (bottom right of Figure 2), the objective401

function flattens around v = 0, which shows a potential issue of trapping ensemble402

members around v = 0. Numerical experiments show that if the ensemble is initialized403

with a small variance, the ensemble is trapped around v = 0. On the other hand, if the404

ensemble is initialized with a su�ciently large variance (so that some of the ensemble405

members are initialized out of the well around v = 0), lpEKI shows convergence to406

the true minimizer, v = 0.9304 (or u = 0.8656) even when it is initialized around 0.407

We use 100 di↵erent realizations for the ensemble initialization and each trial408

uses 50 ensemble members. The estimates at each iteration, which is averaged over409

di↵erent trials, are shown in Figure 3. For p = 1 (first row) and p = 0.5 (second row),410

the left and right columns show the results when the ensemble is initialized with mean411

1 and 0, respectively. When p = 1 and initialized around 1, the ensemble estimate412

quickly converges to the true value 0.75 as the objective function is convex, and the413

initial guess is close to the true value. When p = 0.5, as the objective function is414

non-convex due to the regularization term, the convergence is slower than the p = 1415

case. When the ensemble is initialized around 0 for p = 0.5, a local minimizer, the416

ensemble needs to be initialized with a large variance. Using variance 1, which is 10417

times larger than 0.1, the variance for the ensemble initialization around 1, lpEKI418

converges to the true value. The performance di↵erence between di↵erent trials is419
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Fig. 3: Time series of lpEKI estimate, ⇠(vn), which is averaged over 100 di↵erent
trials.

marginal. The standard deviations of the estimate after 50 iterations are 6.62⇥ 10�3420

(p = 1 initialized with 1), 7.95⇥ 10�3 (p = 1 initialized with 0), 8.79⇥ 10�3 (p = 0.5421

initialized with 1), and 1.14 ⇥ 10�2 (p = 0.5 initialized with 0). As a reference, the422

estimate using the transformation (3.8) based on matching the densities of random423

variables converges to 0.71.424

4.2. Compressive sensing. The second test is a compressive sensing problem.425

The true signal u is a vector in R200, which is sparse with only four randomly selected426

non-zero components (their magnitudes are also randomly chosen from the standard427

normal distribution.) The forward model G : R200 ! R20 is a random Gaussian428

matrix of size 20⇥ 200, which yields a measurement vector in R20. The measurement429

y is obtained by applying the forward model to the true signal u polluted by Gaussian430

noise with mean zero and variance 0.01431

(4.3) y = Gu+ ⌘, G 2 R20⇥200, ⌘ ⇠ N (0, 0.01).432

As the forward model is linear, several robust methods can solve the sparse recovery433

problem, including the l1 convex minimization method [4]. This test aims to compare434

the performance of lpEKI for various p values, rather than to advocate the use of435

lpEKI over other standard methods. As the forward model is linear and cheap to436

calculate, the standard methods are preferred over lpEKI for this test.437

We first use a large ensemble size, 2000 ensemble members, to run lpEKI. The438

ensemble is initialized by drawing samples from a Gaussian distribution with mean439

zero and a diagonal covariance (which yields variance 0.1 for each component). For440

p = 1 and 0.7, the tuned regularization coe�cients, �, are 100 and 300. When p = 2,441

which corresponds to TEKI, the best result can be obtained using � ranging from442

10 to 200; we use the result of � = 50 to compare with the other cases. For p = 1,443

we also compare the result of the convex l1 minimization method using the interior444

point method using the Karush-Kuhn-Tucker condition [5] implemented in the Python445

library CVXOPT [26].446
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Fig. 4: Compressive sensing. Reconstruction of sparse signal using lpEKI for p=2, 1,
and 0.7. Ensemble size is 2000. The bottom right plot is the reconstruction using the
convex l1 minimization method. For the true signal, only the nonzero components
are marked.

Figure 4 shows the lpEKI estimates after 20 iterations averaged over 100 trials447

for p = 2 (top left), p = 1 (top right), and p = 0.7 (bottom left), along with the448

estimate by the convex optimization (bottom right). As it is well known in compressive449

sensing, l2 regularization fails to capture the true signal’s sparse structure. As p450

decreases to 1, lpEKI develops sparsity in the estimate, comparable to the estimate451

of the convex l1 minimization method. The slightly weak magnitudes of the three452

most significant components by lpEKI improve as p decreases to 0.7. When p = 0.7,453

lpEKI captures the correct magnitudes at the cost of losing the smallest magnitude454

component. The smallest magnitude component can be captured if the regularization455

coe�cient � decreases to 20 (see the left plot of Figure 5 for the lpEKI estimate with456

� = 20). However, this estimate also has several artificial non-zero components, which457

increases the l1 error by about 15%. We note that the smallest magnitude component458

is challenging to capture; the magnitude is comparable to the measurement error459

0.1 =
p
0.01. When the measurement error variance decreases by a factor of 10,460

lpEKI with p = 0.7 captures the smallest magnitude component with less significant461

artificial non-zero components (the right plot of Figure 5).462

Another cost of using p < 1 to impose stronger sparsity than p = 1 is a slow463

convergence rate of lpEKI. The time series of the l1 estimation error and the data464

misfit of lpEKI averaged over 100 trials are shown in Figure 6 alongside those of the465

convex optimization method. The results show that p = 0.7 converges slower than466

p = 1 (see Table 1 for the numerical values of the error and the misfit). Although467

there is a slowdown in convergence, it is worth noting that lpEKI with p = 0.7468

converges in a reasonably short time, 15 iterations, to achieve the best result. lpEKI469

with p = 2 converges fast with the smallest data misfit. In this case, by combining470

many columns of G, lpEKI makes a good approximation to the measurement error,471

This manuscript is for review purposes only.



14 YOONSANG LEE

Fig. 5: lpEKI estimates capturing the smallest magnitude component. Left: uses a
smaller � = 20. Right: uses a smaller measurement error variance 10�3.

Method l1 error data misfit
p = 2, ens size 2000 14.0802 0.0515
p = 1, ens size 2000 0.7848 0.8018
p = 0.7, ens size 2000 0.2773 1.2737
p = 1, ens size 50 1.6408 1.4095
p = 0.7, ens size 50 0.6027 1.8958

l1 convex minimization 0.5623 0.9030

Table 1: Compressive sensing. lpEKI estimate l1 error and data misfit for p = 2, 1
and 0.7.

which yields a data misfit smaller than the actual norm of the measurement error472

0.6014. In comparison, the other methods have misfits larger than the measurement473

norm. However, the l2 regularization is not strong enough to impose sparsity in the474

estimate and yields the largest estimation error, which is 20 times larger than the case475

of p = 1. Note that the convex optimization method has the fastest convergence rate;476

it converges within three iterations and captures the four nonzero components with477

slightly smaller magnitudes than p = 0.7 for the three most significant components.478

The ensemble size 2000 is larger than the dimension of the unknown vector u,479

200. A large ensemble size can be impractical for a high-dimensional unknown vector.480

To see the applicability of lpEKI using a small ensemble size, we use 50 ensemble481

members and two batches following the multiple batch approach [29]. The first batch482

runs 10 iterations, and all components whose magnitudes are less than 0.1 (the square483

root of the observation variance) are removed. The problem’s size the second batch484

solves ranges from 30-45 (depending on a realization of the initial ensemble), which485

is then solved for another 10 iterations. The estimates using 50 ensemble members486

for p = 1 and p = 0.7 after two batch runs (i.e., 20 iterations) are shown in Figure 7.487

Compared with the large ensemble size case, the small ensemble size run also captures488

the most significant components at the cost of fluctuating components larger than the489

large ensemble size test. We note that the estimates are averaged over 100 trials, and490

thus there are components whose magnitudes are less than the threshold value 0.1491

used in the multiple batch run.492

As a measure to check the performance di↵erence for di↵erent trials, Figure 8493

shows the standard deviations of lpEKI estimates for p = 1 and 0.7 after 20 iterations.494

The first row shows the results using 2000 ensemble members, while the second row495
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Fig. 6: Compressive sensing. l1 error of the lpEKI estimate and data misfit.

Fig. 7: Compressive sensing. Reconstruction of sparse signal using lpEKI for p=1
and 0.7. Ensemble size is 50. For the true signal, only the nonzero components are
marked.

shows the ones using 50 ensemble members. The standard deviations of the large496

ensemble size are smaller than those of the small ensemble size case as the large497

ensemble size has a smaller sampling error. In all cases, the standard deviations are498

smaller than 6% of the magnitude of the most significant components. In terms of p,499

the standard deviations of p = 0.7 are smaller than those of p = 1.500

4.3. 2D elliptic problem. Next, we consider an inverse problem where the501

forward model is given by an elliptic partial di↵erential equation. The model is502

related to subsurface flow described by Darcy flow in the two-dimensional unit square503

(0, 1)2 ⇢ R2504

(4.4) �r · (k(x)rp(x)) = f(x), x = (x1, x2) 2 (0, 1)2.505

The scalar field k(x) > ↵ > 0 is the permeability, and another field p(x) is the506

piezometric head or the pressure field of the flow. For a known source term f(x), the507

inverse problem estimates the permeability from measurements of the pressure field508

p. This model is a standard model for an inverse problem in oil reservoir simulations509

and has been actively used to measure EKI’s performance and its variants, including510

TEKI [20, 9].511

We follow the same setting used in TEKI [9] for the boundary conditions and the512

source term. The boundary conditions consist of Dirichlet and Neumann boundary513

conditions514

p(x1, 0) = 100,
@p

@x1
(1, x2) = 0,�k

@p

@x1
(0, x2) = 500,

@p

@x2
(x1, 1) = 0,515
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Fig. 8: Compressive sensing. Standard deviation of the estimates using 100 trials.

and the source term is piecewise constant516

f(x1, x2) =

8
<

:

0 if 0  x2  4
6 ,

137 if 4
6 < x2  5

6 ,
274 if 5

6 < x2  1.
517

A physical motivation of the above configuration can be found in [8]. We use 15⇥ 15518

regularly spaced points in (0, 1)2 to measure the pressure field with a small measure-519

ment error variance 10�6. For a given k, the forward model is solved by a FEM520

method using the second-order polynomial basis on a 60⇥ 60 uniform mesh.521

In addition to the standard setup, we impose a sparse structure in the permeabil-522

ity. We assume that the log permeability, log k, can be represented by 400 components523

in the cosine basis �ij = cos(i⇡x1) cos(j⇡x2), i, j = 0, 1, ..., 19,524

(4.5) log k(x) =
19X

i,j=0

uij�ij(x),525

where only six of {uij} are nonzero. That is, we assume that the discrete cosine526

transform of log k is sparse with only 6 nonzero components out of 400 components.527

Thus, the problem we consider here can be formulated as an inverse problem to re-528

cover u = {uij} 2 R400 (which has only six nonzero components) from a measurement529

y 2 R225, the measurement of p at 15⇥ 15 regularly spaced points. In terms of spar-530

sity reconstruction, the current setup is similar to the previous compressive sensing531

problem, but the main di↵erence lies in the forward model. In this test, the forward532

model is nonlinear and computationally expensive to solve, where the forward model533

in the compressive sensing test was linear using a random measurement matrix.534

For this test, we run lpEKI using only a small ensemble size due to the high535

computational cost of running the forward model. As in the previous test, we use the536

multiple batch approach. First, the lpEKI ensemble of size 50 is initialized around537
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p l1 error data misfit
2 21.3389 4.1227
1 0.1553 0.5707
0.8 0.0719 0.5682

Table 2: 2D elliptic problem. lpEKI estimate l1 error and data misfit for p = 2, 1 and
0.8.

zero with Gaussian perturbations of variance 0.1. After the first five iterations, all538

components whose magnitudes less than 5⇥ 10�3 are removed at each iteration. The539

threshold value is slightly smaller than the smallest magnitude component of the true540

signal. Over 100 di↵erent trials, the average number of nonzero components after 30541

iterations is 18 that is smaller than the ensemble size.542

The true value of u used in this test and its corresponding log permeability, log k,543

are shown in the first row of Figure 9 (u is represented as a one-dimensional vector544

by concatenating the row vectors of {uij}). The lpEKI estimates for p = 2, 1, and 0.8545

are shown in the second to the fourth rows of Figure 9. Here p = 0.8 was the smallest546

value we can use for lpEKI due to the numerical overflow in the exponentiation of547

log k. A smaller p can be used with a smaller variance for ensemble initialization, but548

the gain is marginal. The results of lpEKI are similar to the compressive sensing case.549

p = 0.8 has the best performance recovering the four most significant components of550

u. p = 1 has slightly weak magnitudes missing the correct magnitudes of the two most551

significant components (corresponding to one-dimensional indices 141 and 364). Both552

cases converge within 20 iterations to yield the best result (see Figure 10 and Table 2553

for the time series and numerical values of the l1 error and data misfit). When p = 2,554

lpEKI performs the worst; it has the largest l1 error and data misfit. We note that555

p = 2 uses the result after running 50 iterations at which the estimate converges.556

The performance di↵erence between di↵erent trials is not significant. The stan-557

dard deviations of the lpEKI estimates using 100 trials are shown in Figure 11. The558

standard deviations for nonzero components are larger than the other components,559

but the largest standard deviation is less than 3% of the magnitude of the true signal.560

As in the compressive sensing test, the deviations are slightly smaller for p < 1 than561

p = 1.562

5. Discussions and conclusions. We have proposed a strategy to implement563

lp, 0 < p  1, regularization in ensemble Kalman inversion (EKI) to recover sparse564

structures in the solution of an inverse problem. The lp-regularized ensemble Kalman565

inversion (lpEKI) proposed here uses a transformation to convert the lp regularization566

problem to the l2 regularization problem, which is then solved by the standard EKI567

with an augmented measurement model used in Tikhonov EKI. We showed a one-568

to-one correspondence between the local minima of the original and the transformed569

formulations. Thus a local minimum of the original problem can be obtained by570

finding a local minimum of the transformed problem. As other iterative methods for571

non-convex problems, initialization plays a vital role in the proposed method’s per-572

formance. The e↵ectiveness and robustness of regularized EKI are validated through573

a suite of numerical tests, showing robust results in recovering sparse solutions using574

p  1.575

In implementing lp regularization for EKI, there is a limit on p < 1 due to an576

overflow. One definitive source of the overflow is the transformation ⇠ that involves577
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(a) true

(b) p = 2

(c) p = 1

(d) p = 0.8

Fig. 9: 2D elliptic problem. Left column: the true u and lpEKI estimates for p = 2, 1,
and 0.8. Right column: log k of the true and lpEKI estimates. All plots have the same
grey scale. p = 1 and 0.8 use the results after 20 iterations while p = 2 uses the result
after 50 iterations. For the true signal, only the nonzero components are marked.
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Fig. 10: 2D elliptic problem. l1 error of the lpEKI estimates and data misfit.

Fig. 11: 2D elliptic problem. Standard deviation of the estimates using 100 trials.

2
p as an exponent. For a small p < 1, the transformation ⇠ can diverge, and thus EKI578

su↵ers from instability. One possible workaround is to impose the lp penalty term579

directly in the fidelity term instead of transforming it to the l2 regularization using ⇠.580

The penalty term incorporated in the fidelity term can be achieved by an extended581

measurement framework similar to Tikhonov EKI but with a nonlinear measurement582

operator. Also, in the ensemble filters, the filter estimate can diverge to machine583

infinity under a stringent filter setup, which is called ‘catastrophic filter divergence’584

[19, 17]. It is shown in [22] that one of the mechanisms for the filter instability is585

related to the measurement operator. As lp regularization in EKI is implemented586

through an extended measurement operator, it is natural to investigate a connection587

between the catastrophic filter divergence and the instability in lpEKI for p < 1. In588

particular, it is worth considering several methods that prevent the catastrophic filter589

divergence, including adaptive inflation [33, 24], for stabilizing lpEKI. The e↵ect of590

the above-mentioned approaches in stabilizing lpEKI for p < 1 is under investigation591

and will be reported in another place.592

For successful applications of lpEKI for high-dimensional inverse problems, it593

is essential to maintain a small ensemble size for e�ciency. In the current study,594

we considered the multiple batch approach. The approach removes non-significant595

components after each batch, and thus the problem size (i.e., the dimension of the596

unknown signal) decreases over di↵erent batch runs. This approach enabled lpEKI597

to use only 50 ensemble members to solve 200 and 400-dimensional inverse problems.598

Other techniques, such as variance inflation and localization, improve the performance599

of the standard EKI using a small ensemble size [30]. It would be natural to investigate600

if these techniques can be extended to lpEKI to decrease the sampling error of lpEKI.601

In the current study, we have left several variants of lpEKI for future work.602
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Weighted l1 has been shown to recover sparse solutions using fewer measurements603

than the standard l1 [7]. It is straightforward to implement weighted l1 (and fur-604

ther weighted lp for p < 1) in lpEKI by replacing the identity matrix in (2.10) with605

another type of covariance matrix corresponding to the desired weights. We plan to606

study several weighting strategies to improve the performance of lpEKI. As another607

variant oflpEKI, we plan to investigate the adaptive time-stepping under the contin-608

uous limit. The time step for solving the continuous limit equation, which is called609

‘learning rate’ in the machine learning community, is known to a↵ect an optimization610

solver [11]. The standard ensemble Kaman inversion has been applied to machine611

learning tasks, such as discovering the vector fields defining a di↵erential equation,612

using time series data [23] and sparse learning using thresholding [31]. We plan to613

investigate the e↵ect of an adaptive time-stepping for performance improvements and614

compare with the sparsity EKI method using thresholding in dimension reduction in615

machine learning.616
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