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Bayesian optimization with adaptive surrogate models for
automated experimental design
Bowen Lei 1, Tanner Quinn Kirk2, Anirban Bhattacharya1, Debdeep Pati1, Xiaoning Qian 3,4, Raymundo Arroyave 5✉ and
Bani K. Mallick1

Bayesian optimization (BO) is an indispensable tool to optimize objective functions that either do not have known functional forms
or are expensive to evaluate. Currently, optimal experimental design is always conducted within the workflow of BO leading to
more efficient exploration of the design space compared to traditional strategies. This can have a significant impact on modern
scientific discovery, in particular autonomous materials discovery, which can be viewed as an optimization problem aimed at
looking for the maximum (or minimum) point for the desired materials properties. The performance of BO-based experimental
design depends not only on the adopted acquisition function but also on the surrogate models that help to approximate
underlying objective functions. In this paper, we propose a fully autonomous experimental design framework that uses more
adaptive and flexible Bayesian surrogate models in a BO procedure, namely Bayesian multivariate adaptive regression splines and
Bayesian additive regression trees. They can overcome the weaknesses of widely used Gaussian process-based methods when
faced with relatively high-dimensional design space or non-smooth patterns of objective functions. Both simulation studies and
real-world materials science case studies demonstrate their enhanced search efficiency and robustness.
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INTRODUCTION
The concept of optimal experimental design, within the overall
framework of Bayesian optimization (BO), has been put forward as
a design strategy to circumvent the limitations of traditional
(costly) exploration of (arbitrary) design spaces. BO utilizes a
flexible surrogate model to stochastically approximate the
(generally) expensive objective function. This surrogate, in turn,
undergoes Bayesian updates as new information about the design
space is acquired, according to a predefined acquisition policy.
The use of a Bayesian surrogate model does not impose any a
priori restrictions (such as concavity or convexity) on the objective
function. It was mainly introduced by Mockus1 and Kushner2 and
pioneered by Jones et al.3, who developed a framework that
balanced the need to exploit available knowledge of the design
space with the objective to explore it by using a metric or policy
that selects the best next experiment to carry out with the end-
goal of accelerating the iterative design process. Multiple
extensions have been developed to make the algorithm more
efficient4–7. This popular tool has been successfully used in a wide
range of applications8,9. Extensive surveys of this method and its
applications can also be found10–12.
Materials discovery (MD) can be mapped to an optimization

problem in which the goal is to maximize or minimize some
desired properties of a material by varying certain features/
structural motifs that are ultimately controlled by changing the
overall chemistry and processing conditions. A typical task in MD
is to predict the material properties based on a collection of
features and then use such predictions in an inverse manner to
identify the specific set of features leading to a desired, optimal
performance. The major goal is then to identify how to search the
complex material space spanning the elements in the periodic
table, arranged in a virtually infinite number of possible

configurations and microstructures, as generated by arbitrary
synthesis/processing methods, to meet the target properties.
Recently, a design paradigm has been proposed—optimal
experimental design—built upon the foundation of BO13–18,
which seeks to circumvent the limits of traditional (costly)
exploration of the materials design space. Early examples were
demonstrated by Frazier and Wang19, who took into account both
the need to harness the knowledge that exists about the design
space and the goal of exploring and identifying the best
experiment to speed up the iterative design process. The other
important task, other than discovering the target position in the
space, is the identification of the key factors responsible for most
of the variance in the properties of interest during MD20–22. This
helps us better understand the underlying physical/chemical
mechanisms controlling the properties or phenomena of interest,
which in turn results in better strategies for MD and design17,23.
There have been several follow-up papers, mainly extending the
algorithm in different applied directions13–15.
The BO algorithm consists of two major components10,12: (i)

modeling a (potentially) high-dimensional black-box function, f, as
a surrogate of the (expensive-to-query) objective function, and (ii)
optimizing the selected criterion considering uncertainty based on
the posterior distribution of f to obtain the design points in the
feature space Ω. In the procedure, we repeat the two steps until
we satisfy the stopping criteria or, as it is often the case in
experimental settings, we exhaust the resources available. A
critical aspect of BO is the choice of the probabilistic surrogate
model used to fit f. A Gaussian process (GP) is the typical choice, as
it is a powerful stochastic interpolation method that is distin-
guished from others by its mathematical explicitness and
computational flexibility, and with straightforward uncertainty
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quantification, which makes it broadly applicable to many
problems12,13,24.
Oftentimes, stationary or isotropic GP-based BO may be

challenging when faced with (even moderately) high-
dimensional design spaces, particularly when very little initial
information about the design space is available—in some fields of
science and engineering where BO is being used14,25,26, data
sparsity is, in fact, the norm, rather than the exception. In MD
problems, data sparsity is exacerbated by the (apparent) high
dimensionality of the design space, as a priori, it is possible that
many controllable features could be responsible for the materials’
behavior/property of interest. In practice, however, the potentially
high-dimensional MD space may actually be reduced, as in
materials science it is often the case that a small subset of all
available degrees of freedom is actually controlling the materials’
behavior of interest. Searching over a large dimensional space
when only a small subspace is of interest may be highly
computationally inefficient. A challenge is then how to discover
the dominant degrees of freedom when very little data is available
and no proper feature selection can be carried out at the outset of
the discovery process. The problem may become more complex
due to the existence of interaction effects among the covariates
since such interactions are extremely challenging to discover
when the available data is very sparse.
We note that there are some more flexible GP-based models,

like automatic relevance detection (ARD),27 which introduces a
different scale parameter for each input variable inside the
covariance function to facilitate removal of unimportant variables
and may alleviate the problem. Recently, Talapatra et al.14

proposed a robust model for f, based on Gaussian mixtures and
Bayesian model averaging, as a strategy to deal with the data
dimension and sparsity problem. Their framework was capable of
detecting subspaces most correlated with optimization objectives
by evaluating the Bayesian evidence of competing feature
subsets. However, their covariance functions, and in general,
most commonly used covariance functions for GP usually induce
smoothness property and assume continuity for f, which may not
necessarily be warranted and limit its performance when f is non-
smooth or has sudden transitions—this may be a common
occurrence in many MD challenges. Also, GP-based methods may

still not perform well when the dimension of predictors is
relatively high or the choice of the kernel is not suitable for the
unknown function10,12. Apart from these solutions, there is a broad
literature on flexible nonstationary covariance kernels28. Deep
network kernel is a prominent recent example29 while its strength
may be limited when faced with sparse datasets.
The focus of this paper is to replace GP-based machine learning

models with other, potentially more adaptive and flexible,
Bayesian models. More specifically, we explore Bayesian spline-
based models and Bayesian ensemble-learning methods as
surrogate models in a BO setting. Bayesian multivariate adaptive
regression splines (BMARS)30,31 and Bayesian additive regression
trees (BART)32 are used in this paper as they can potentially be
superior alternatives to GP-based surrogates, particularly when the
objective function, f, requires more flexible models. BMARS is a
flexible nonparametric approach based on product spline basis
functions. BART belongs to Bayesian ensemble-learning-based
methods and fits unknown patterns through a sum of small trees.
Both of them are well equipped with automatic feature selection
techniques.
In this article, we present a fully automated experimental design

framework that adopts BART and BMARS as the surrogate models
used to predict the outcome(s) of yet-to-be-made observations/
queries of/to the expensive “black-box” function. The surrogates
are used to evaluate the acquisition policy within the context of
BO. Automated algorithm-based experimental design is a growing
technology used in many fields such as materials informatics, and
biosystems design22,33,34. It combines the principles of specific
domains with the use of machine learning to accelerate scientific
discovery. We compare the performance of this BO approach
using non-GP surrogate models against other GP-based BO
methods using standard analytic functions, and then present
results in which the framework has been applied to realistic
materials science discovery problems. We then discuss the
possible underlying reasons for the remarkable improvements in
performance associated with using more flexible surrogate
models, particularly when the (unknown) objective function is
very complex and does not follow the underlying assumptions
motivating the use of GPs as surrogates.

Fig. 1 Plots of black-box functions. a The valley of a two-dimensional Rosenbrock function which has the formula y ¼ 100ðx2 � x21Þ2 þ ðx1 � 1Þ2.
b The frequent and regularly distributed local minima of a two-dimensional Rastrigin function which has the formula
y ¼ 20þP2

i¼1½x2i � 10 cosð2πxiÞ�.
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RESULTS
Simulation studies
In this section, we present two simulation studies where we set
the Rosenbrock35 and the Rastrigin36,37 functions as the black-box
function(s) to optimize, respectively. Figure 1 shows a two-
dimensional example for each of them. They are two commonly
used test functions in optimization benchmark studies. In both
optimization tasks, the goal is to find the global minimum point of
the unknown function. Therefore, we record the minimum value
of observed response y in each iteration for each model for
comparison. As shown in Fig. 2, a faster decline of the curve
indicates a more efficient search for the target point and better
performance.
As for the probabilistic models, we compare our proposal,

which uses BART32 and BMARS30, with the popularly used baseline
GP regression with Radial-basis function (GP RBF) kernel38. At the
same time, RBK kernel with ARD (GP RBK ARD)27 is considered, as
well as nonstationary kernels like the dot-product kernel (GP
Dot)39 and more flexible deep network kernel (GP DKNet)29. We
also compare them with the Bayesian model average using GP
(BMA1 and BMA2)14, which showed an edge over the benchmark
method. BMA1 and BMA2 refer to the use of first- or second-order
Laplace approximation to calculate the relevant marginal prob-
abilities of the mixture model. We use a constant mean function
for all the GP-based modes above. For the acquisition function, we
choose the expected improvement (EI) metric3 for all the models.
To ensure a fair comparison, we also use a random search within
the inner optimization problem of the acquisition function.
In order to have a comprehensive performance evaluation, we

begin the optimization of the above models with five different
sizes of initial datasets (N= 2, 5, 10, 15, 20) that are uniformly
sampled from the search space14. As for each N and each
algorithm, the results are based on 100 replicates. To reduce the
number of iterations, we choose two samples each time in the
workflow. For the stopping criteria, it is regarded as running out of
the budget which is set as 80 function evaluations. Relevant
results for N= 10, 20 are depicted in Fig. 2 and those for other N
values can be referred to in Supplementary Note 1.

The Rosenbrock function, also called the Valley or Banana
function, is often used as a test case for optimization algo-
rithms36,40. The formula of a d-dimensional Rosenbrock function is
as follows:

f ðxÞ ¼
Xd�1

i¼1

½100ðxiþ1 � x2i Þ
2 þ ðxi � 1Þ2�: (1)

This function is unimodal, with the global minimum being at x*=
(1,…, 1) with f(x*)= 0, which lays inside a long, narrow, parabolic-
shaped flat valley as shown in Fig. 1a. In this function, we have a
continuous search space and for each xi the range is [−2, 2].
During the workflow, locating the valley is trivial. However, further
convergence to the global optimum is difficult, making this a
good test problem.
Here, we set d= 4 and simulate the data. Apart from these four

important predictors, we also add four uninformative predictors
that follow the standard normal distribution. These four new-
added features do not affect the response but are designed to
augment the dimensionality of the problem, potentially obfuscat-
ing the solution and “frustrating” the optimizers. This enables us to
check whether these frameworks can reveal true factors properly
and lead to an efficient exploration. Otherwise, a lot of
unnecessary searches occurring among the insignificant directions
can slow down the process of locating the optimum point.
Moreover, the quality of the predictions may suffer as a result.
As seen in Fig. 2a, b, the solid blue curves for BMARS show the

sharpest decrease, suggesting that it is the most efficient
optimizer. BART-based BO (solid red curve) also exhibits compe-
titive performance, relative to popular GP-based techniques like
GP (RBK ARD) (solid gray curve), BMA1 (solid dark green curve),
and BMA2 (dotted orange curve). Meanwhile, GP (DKNet) (dotted
purple curve) cannot show its strength and drops slowly as it
requires considerably more data to be trained properly. As seen
from (1), the Rosenbrock function overall is a polynomial function
with a good smoothness property, which may explain why GP-
based surrogates perform competitively despite not being the
best. Turning to the final stable stage, it is the blue curve (BMARS)
that firstly shows a flat pattern and is closest to the optimum value
f(x*)= 0.
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Fig. 2 The average minimum y observed based on each model in each iteration. a Rosenbrock function with the initial set of sample size
N= 10. b Rosenbrock function with the initial set of sample size N= 20. c Rastrigin function with the initial set of sample size N= 10.
d Rastrigin function with the initial set of sample size N= 20.

B. Lei et al.

3

Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences npj Computational Materials (2021) 194



Turning to the Rastrigin function36,40, it is a nonconvex function
used to measure the performance of optimization workflows. The
formula for a d-dimensional Rastrigin function reads as follows:

f ðxÞ ¼ 10d þ
Xd
i¼1

½x2i � 10 cosð2πxiÞ�: (2)

It is based on a quadratic function with an addition of cosine
modulation which brings about frequent and regularly distributed
local minima as depicted in Fig. 1b. Similar to Rosenbrock’s case,
the search space is continuous and we focus on [−2, 2] for each
direction. Thus, the test function is highly multimodal, making it a
challenging task where algorithms easily get stuck in local minima.
The global minimum point is x*= (0,…, 0) and f(x*)= 0.
For the simulated data, we set d= 10 and again we add five

uninformative features following a standard normal distribution.
With these five additional variables (or design degrees of
freedom), we can assess whether these frameworks are capable
of detecting the factors that are truly correlated with the objective
function, enabling an efficient exploration of the design space.
As seen in Fig. 2c, d, the solid blue curves for BMARS again

exhibit the fastest decline, indicating the best performance. The
BART-based BO (solid red curves) follows and presents similar
decreased speed with most of the GP-based methods. However,
the dotted brown curve seems to be the slowest, which is for the
baseline GP (RBK). Considering the convergent stage, the blue
curve reaches it between 50 and 60 iterations and the minimum
observed y is very close to the global optimum value f(x*)= 0. The
other methods remain in a decreasing pattern with larger values
of the minimum observed y. It is no surprise that GP-based
methods suffer under this scenario, for which Rastrigin function’s
quick switch between different local minima may be the reason,
especially for GP (RBK). In contrast, with the flexible bases
constructed and multiple tree models, BMARS and BART are able
to capture this complex trend of f. We note that BART might need
a few more training samples to gain more competitive advantages
over more flexible GPs like BMA1 and BMA2 due to block patterns
of Rastrigin function.
Having established the better overall performance of our

proposed non-GP base functions applied to complex BO
problems, we will now turn our attention to two materials
science-motivated problems.

MD in the MAX phase space
MAX phases (ternary layered carbides/nitrides)14,41 create an
adequate system to investigate the behavior of autonomous
materials design frameworks, as a result of both their chemical
richness and the wide range of their properties. The pure ternary

MAX phase composition palette has so far been explored to a
limited degree, so there is also significant potential to reveal
promising chemistries with optimal property sets14,42,43. For these
reasons, we compared different algorithms for searching among
the Mn+ 1AXn phases, where M refers to a transition metal, A refers
to group IV and VA elements, and X corresponds to carbon or
nitrogen.
Specifically, the materials design space for this work consists of

the conventional MAX phases M2AX and M3AX2, where M ∈ {Sc, Ti,
V, Cr, Zr, Nb, Mo, Hf, Ti}, A∈ {Al, Si, P, S, Ga, Ge, As, Cd, In, Sn, Tl, Pd},
and X∈ {C, N}. The space is discrete which includes 403 stable
MAX phases in total, aligned with Talapatra et al.14. More
discussion about the discrete space in BO can be found in
Supplementary Note 4. The goal of the automated algorithm is to
provide a fast exploration of the material space, namely to find the
most appropriate material design, which is either (i) the maximum
bulk modulus K or (ii) the minimum shear modulus G. The results
in the following sections are obtained with the aim (i), while those
for (ii) can be found in Supplementary Note 2. We point out that
while the material design space is small, knowledge of the ground
truth can assist significantly in the verification of the solutions
arrived at by different optimization algorithms.
For the predictors, we follow the setting in Talapatra et al.14 and

consider 13 possible features in the model: empirical constants C,
m, which link the elements of the material to its bulk modulus;
valence electron concentration Cv; electron to atom ratio e

a; lattice
parameters a and c; atomic number Z; interatomic distance Idist;
the groups corresponding to the periodic table of the M, A, and X
elements ColM, ColA, ColX, respectively; the order O of MAX phase
(whether of order 1 according to M2AX or order 2 according to
M3AX2); and the atomic packing factor (APF). We note that the
features above can potentially be correlated with the intrinsic
mechanical properties of MAX phases, although a priori we
assume that we have no knowledge as to how such features are
correlated. In practice, as was found in ref. 14, only a small subset
of the feature space is correlated with the target properties. We
note that in ref. 14 the motivation for using Bayesian model
averaging was precisely to be able to detect subsets within the
larger feature set most effectively correlated with the target
properties to optimize.
For the probabilistic model, we align with the simulation study

above and compare our suggested framework that uses BART32

and BMARS30 to the widely used baselines, including GP (RBK)38,
GP (RBK ARD)27, GP (Dot)39, Bayesian model average using GP
(BMA1 and BMA2)14, and GP (DKNet)29. For the acquisition
function, we choose EI for each of them to ensure a fair
comparison. To get a comprehensive picture, we follow the
structure in the previous section (where we studied the

Table 1. The mean value and interquartile range (IQR) of the number of experiments based on each model to find the maximum bulk modulus K in
MAX phases with the initial set of sample size N∈ {2, 5, 10, 15, 20}.

Model N= 2 N= 5 N= 10 N= 15 N= 20 N= 2 N= 5 N= 10 N= 15 N= 20

(Mean) (Mean) (Mean) (Mean) (Mean) (IQR) (IQR) (IQR) (IQR) (IQR)

BART 36.18 39.33 32.76 38.67 43.42 21 31 22 20.5 18.5

BMA1 55.2 51.66 67.02 59.12 65.78 78 83.5 63 67.5 62

BMA2 57.36 55.48 60.42 66.59 71.7 76.5 77 74 60 52.5

BMARS 36.82 34.94 41.5 48.94 50.9 24 22 26 24 22.5

GP (RBK) 77.46 76.95 76.86 73.04 75.3 49 59 61 69 62

GP (RBK ARD) 73.3 50.2 35.5 40.05 39.8 67.5 31 13.5 8.5 7.5

GP (Dot) 45.5 45.25 63.1 57.2 65.8 29.5 24. 21. 32.5 17

GP (DKNet) 91.6 78.35 62.9 62.55 81.6 15 43.5 69.5 71 50

The bold values represent the top two models in terms of search performance.
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benchmark Rosenbrock and Rastrigin functions) and start the
above models with five different sizes of initial samples (N= 2, 5,
10, 15, 20), which are randomly chosen from the design space. For
each N, the results are based on 100 replicates. To avoid an
excessive number of iterations, we add two materials at a time in
the platform. For the stopping criteria, it is set as successfully
locating the material with ideal properties or running out of the
budget which is set as 80, roughly 20% of the available space. For
these replicates not converging within the budget, we follow
Talapatra et al.14 and regard their number of calculations as 100 to
avoid an excessive number of evaluations.
Due to the high cost per experiment, the framework has better

performance if it needs a fewer number of experiments before
finding the candidate with desired properties. Therefore, we use it
as a vital criterion for evaluating model capabilities. Table 1 shows
the mean value and interquartile range (IQR) of the total number
of evaluations searching for the maximum bulk modulus K within
the MAX phase design space. The smaller values of the mean and
IQR indicate a more efficient and stable platform.
As depicted in Table 1, while GP (Dot), BMA1, and BMA2 are

more efficient than GP (RBK) and GP (DKNet) when looking for the
maximum bulk modulus K, BART and BMARS can further greatly
reduce the number of experiments and maintain a more stable
performance compared to GP-based models. For GP (RBK ARD), it
achieves good speed when N is larger than 10, but shows poor
and unstable performance under small N. Also, considering the
interquartile range of each model, BART and BMARS tend to
be more robust under each setting and can achieve the goal
before 80 iterations, while the other five are more likely to run out
of the budget without achieving the objective.
Two possible reasons could explain why BMARS and BART can

improve the searching speed much more efficiently than
competing strategies. On the one hand, BMARS and BART are
known to be more flexible surrogates compared to GP-based
methods and are more powerful when faced with unknown and
complex mechanisms in real-world data. On the other hand,
BMARS and BART usually scale better with the dimension and can
be more robust when handling high or even moderately
dimensional design spaces.

In MD problems, beyond the identification of optimal regions in
the materials design space, it is also desirable to understand the
factors/features most correlated with the properties of interest. By
taking these predictor and interaction rankings into account,
researchers can gain a deeper understanding of the connection
between features and material properties. We present the relevant
results for the maximum bulk modulus K, and those for the
minimum shear modulus G are in Supplementary Note 2. BART
and BMARS are endowed with automatic feature selection based
on their appearances in the corresponding surrogate models,
while baselines GP (RBK) and GP (Dot) cannot identify feature
importance relative to the BO objective. Although BMA1 and
BMA2 can utilize the coefficient of each component to provide
some information about feature importance, they cannot directly
tell the exact order of individual variables and interactions.
Under five different scenarios N∈ {2, 5, 10, 15, 20}, Tables 2 and 3

list the top 5 important factors aimed at the maximum value of K
using BART and BMARS, respectively. The rankings are based on the
median inclusion times of the 100 replicates from the last model
when the workflow stops. When using BART, ColA, ea, ColM, APF, and
Idist are the most useful. While turning to BMARS, ColA, ea, c, a, APF, and
Idist always play a key role. We can see a similar pattern for the top-
ranked features between the two models for different N, although
some differences exist in their order. Regarding the interactions
among features, we measure their importance by counting the
coexistence of two of them within each basis function. The more
frequently they are used in the same basic function, the greater their
influences on material improvement are. The detailed results for the
interaction selection can be referred in Supplementary Note 2.
During the material development process, we may not know which

features we should add to the model in advance. In light of this, it is
usually the case that one considers all possible features during the
training and optimization to avoid missing important features. This
brings an important challenge because it is often not possible to carry
out any sort of feature selection ahead of the experimental campaign.
Moreover, GP-based BO frameworks tend to become less efficient as
the dimension of the design space increases as the required coverage
to ensure adequate learning of the response surface is exponential
with the number of features11. Moreover, the sparse nature of the
sampling scheme—BO, after all, is used when there are stringent
resource constraints to query the problem space—makes the
(learned) response surface very flat over wide regions of the design
space, with some interspersed, local highly nonconvex landscapes44.
These issues make high-dimensional BO very hard. In materials
science problems, a key challenge is that many of the potential
dimensions of the problem space are uninformative, i.e., they are not
correlated with the objective of interest.
It is thus desirable to develop frameworks that are robust

against the existence of possibly many uninformative or
redundant features. To further check the platform’s utility to distill
useful information and maintain the speed, we simulate 16
random predictors following the standard normal distribution and
mix them with the 13 predictors described above. With these new
non-informative features, we use the same automated framework
and explore the space for the materials with ideal properties.
As shown from Table 4, BART’s performance is not degraded by

the newly added unhelpful information and is still the most
efficient choice, indicating its robust property. At the same time,
although BMARS is slower than the best, it is still competitive
compared to other GP-based approaches like BMA1 and BMA2.
BART-based BO is clearly capable of detecting non-informative
features in a very effective manner.
We also find the top 5 features as well as interaction effects for

both BART and BMARS. For the 16 newly added unimportant
features, we denote them by n1,…, n16. Tables 5 and 6 summarize
the most significant features. We can see that the results do not
include n1,…, n16, indicating a good ability to filter out useless
information. Compared with Table 2, we can also notice that the

Table 2. The top 5 important factors selected by BART for the
maximum bulk modulus K in MAX phases with the initial set of sample
size N∈ {2, 5, 10, 15, 20}.

Setting Top 1 Top 2 Top 3 Top 4 Top 5

N= 2 ColA e
a APF ColM c

N= 5 ColA e
a ColM APF Idist

N= 10 ColA APF ColM e
a Idist

N= 15 ColA e
a APF ColM Idist

N= 20 ColA APF e
a ColM Idist

Table 3. The top 5 important factors selected by BMARS for the
maximum bulk modulus K in MAX phases with the initial set of sample
size N∈ {2, 5, 10, 15, 20}.

Setting Top 1 Top 2 Top 3 Top 4 Top 5

N= 2 e
a ColA APF Idist c

N= 5 ColA Idist APF e
a c

N= 10 ColA e
a APF Idist a

N= 15 ColA e
a APF Idist c

N= 20 ColA APF e
a Idist a
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outputs of BART are very similar to those without additional non-
informative data and ColA, e

a, ColM, APF, and Idist are again
frequently chosen in different N showing a robust performance.
While compared with Table 3, the selections from BMARS
experience more changes and are more influenced by this
uncorrelated knowledge.
Moving to the interaction effects, BART successfully neglects

unimportant features and maintains its performance. At the same
time, BMARS is capable of (almost) filtering out all non-informative
features and only leaves a small portion of the interactions
between new predictors and the original data. Exact selection
results can be found in Supplementary Note 2.

Optimal design for stacking fault energy in high entropy alloy
spaces
To further demonstrate our model’s advantage, we search among
a much larger discrete material design space whose size is 36,273

instead of 403 in the previous section. This dataset represents
face-centred cubic (FCC) compositions in the 7-element CoCr-
FeMnNiV-Al high entropy alloy (HEA) space. Specifically, we focus
on the task of exploring the stacking fault energy (SFE) chemical
landscape in this system. SFE is an intrinsic property of crystals
that measures their inherent resistance for adjacent crystal plans
to shear against each other. Its value can be a good indicator of
the (dominant) plastic deformation mechanism of the alloy and is
thus a valuable alloy design parameter45,46. The SFE in this alloy
system has been predicted for each composition using a support
vector regressor trained on 498 high-fidelity SFE calculations from
density functional theory (DFT) using the axial-next-nearest-
neighbor-Ising model47,48 relating SFE to the lattice energies of
(disordered) FCC, hexagonal close-packed (HCP) and double HCP
(DHCP) crystals of the same chemical composition. In addition to
SFE, stoichiometrically weighted averages and variances were
calculated for each composition for 17 pure element properties to
generate a total of 34 property-based features.
In this new analysis, we have two goals: namely, to find the

global minimum and global maximum in the SFE landscape. Thus,
we record the minimum value and the maximum value of the
observed response in each iteration for each model for
comparison. As we can see, a faster curve increase in Fig. 3a, b
and a sharper curve decline in Fig. 3c, d indicate a more efficient
search for the target point and better performance.
For the predictors, we choose 41 potential predictors (34

property-based features in addition to the compositions of the
seven constituent elements), which provides a larger set of
candidate features. This set is a mixture of informative and
(potentially) uninformative features and some of the informative
features are correlated to each other, which may bring about a
more challenging feature selection task. We follow the analysis
above and compare our suggested framework that uses BART32

and BMARS30 to the GP regression (RBK, RBK ARD, Dot, and
DKNet)27,29,38,39 and Bayesian model average using GP (BMA1 and
BMA2)14. For the acquisition function, we continue using EI for
each of them to maintain a fair comparison. Also, we start the
above models with five different sizes of initial samples (N= 2, 5,
10, 15, 20), which are randomly chosen from the design space. For
each N, the results are based on 100 replicates. Curves for N= 10
and 20 are presented here and outputs under other initial sample
sizes are summarized in Supplementary Note 3.
As seen in Fig. 3a, b, when looking for the maximum SFE, the

solid blue curves for BMARS, solid red curves for BART, and dotted
light blue curves for GP (Dot) have the sharpest increase,
indicating the best performance. While the other curves
representing other GP-based surrogates tend to move slowly.

Table 4. The mean value and interquartile range of the number of experiments based on each model to find the maximum bulk modulus K in MAX
phases with additional non-informative features with the initial set of sample size N∈ {2, 5, 10, 15, 20}.

Model N= 2 N= 5 N= 10 N= 15 N= 20 N= 2 N= 5 N= 10 N= 15 N= 20

(Mean) (Mean) (Mean) (Mean) (Mean) (IQR) (IQR) (IQR) (IQR) (IQR)

BART 32.04 28.96 34.22 34.7 39.24 24.5 22 24 26 22.5

BMA1 61.48 58.48 69.62 70.6 75.06 64 72 55 53.5 46

BMA2 63.02 62.94 68.9 67 74.94 80 75 64 63.5 56

BMARS 63.8 62.35 67.52 66.77 70.6 58.5 34.5 56 59 54

GP (RBK) 63.7 67.29 66.7 70.36 72 70.5 65.5 64.5 55.5 48.5

GP (RBK ARD) 73.7 81.25 82.8 74.5 78.3 46. 26.5 41.5 45.5 32

GP (Dot) 58.1 48.45 57.85 58.75 72.7 13. 28.5 12.5 14.5 36.5

GP (DKNet) 81.1 81.2 95. 94.65 92.5 36.5 47.5 25.5 18 20.5

The bold values correspond to the top two models in terms of search performance.

Table 5. The top 5 important factors selected by BART for the
maximum bulk modulus K in MAX phases with additional non-
informative features with the initial set of sample size N∈ {2, 5, 10, 15,
20}.

Setting Top 1 Top 2 Top 3 Top 4 Top 5

N= 2 APF ColA ColM Idist e
a

N= 5 APF ColA Idist ColM e
a

N= 10 APF ColM ColA Idist e
a

N= 15 APF ColA Idist ColM e
a

N= 20 APF ColA ColM Idist e
a

Table 6. The top 5 important factors selected by BART for the
maximum bulk modulus K in MAX phases with additional non-
informative features with the initial set of sample size N∈ {2, 5, 10, 15,
20} using BMARS.

Setting Top 1 Top 2 Top 3 Top 4 Top 5

N= 2 ColA e
a APF ColM Idist

N= 5 ColA APF ColM Idist e
a

N= 10 ColA e
a ColM AP Idist

N= 15 ColA e
a APF Idist ColM

N= 20 ColA e
a APF ColM Idist
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The figure shows that BART- and BMARS-based BO is capable of
finding the materials with SFE values close to the ground-truth
maximum in the dataset in ~80 iterations, corresponding to just
0.25% of the total materials design space that could be explored.
This is an impressive performance that is eclipsed when
considering the performance of BART/BMARS-BO in the minimiza-
tion problem, as shown in Fig. 3c, d. In Fig. 3c, d, the blue curves
for BMARS and red curves for BART drop much faster than other
curves, which confirms a more efficient search ability of our
methods. In this case, by about ~40 iterations, the optimizer has
converged to the points extremely close to the ground-truth
minimum in the dataset. This corresponds to about 0.125% of the
total materials design space. In this case, the performance of the
proposed frameworks is much better than most of the alter-
natives. Here we note that, although GP (Dot) performs better
than BMARS or BART in a few settings, an additional advantage of
the latter methods is the automatic detection of important
features detailed below.
In this case study, not only the design space has become much

larger but also the number of candidate design features has
increased. Using other approaches, it would be more difficult to
evaluate the significance of the different features (or degrees of
freedom) as well as their interactions. Here, we present the
corresponding results for finding the maximum SFE, and those for
the minimum SFE are in Supplementary Note 3.
Under five different scenarios N∈ {2, 5, 10, 15, 20}, Tables 7 and

8 list the top five factors most correlated with the maximum in the

SFE using BART and BMARS, respectively. The rankings are based
on the median inclusion times of the 100 replicates from the last
model when the workflow stops. For BART, Specific.Heat_Avg,
Pauling.EN_Var, Mn, and Ni are the most important features.
Meanwhile, turning to BMARS, Specific.Heat_Avg, Pauling.EN_Va,
C_11_Avg, and Mn always play vital roles. Comparing top-ranked
features for sets of different N, we observe similar patterns, but
with a few differences in order. Immediately, one can see that only
a few chemical elements are detected to be strongly correlated to
the SFE in this HEA system and that, instead, other (atomically
averaged) intrinsic properties may be more informative when
attempting to predict this important quantity. This implies that
focusing exclusively on chemistry as opposed to derived features
may not have been an optimal strategy towards BO-based
exploration of this space. Notably, Ni figures as the feature highly
correlated to SFE in almost all scenarios considered. This is not
surprising as Ni is also highly correlated with the stability of FCC
over competing phases (such as HCP), and thus, higher Ni content
in an alloy should be correlated to higher stability of FCC and
higher SFE49. Co and Mn also appear as important covariates. In
the case of Co, limited experimental studies have shown that
increased Co tends to result in lower SFEs in FCC-based HEAs50.
While trying to understand the underlying reasons for why other
covariates (Specific hear, Pauling Electronegativity, etc.) seem to
be highly correlated to SFE is beyond the scope of this work,
what is notable is that in this framework, such insights can be
gleaned at the same time that the materials problem space is

Fig. 3 The average maximum or minimum stacking fault energy (SFE) [mJ⋅m−2] observed on each model in each iteration. a The
maximum SFE with the initial set of sample size N= 10. b The maximum SFE with the initial set of sample size N= 20. c The minimum SFE with
the initial set of sample size N= 10. d The minimum SFE with the initial set of sample size N= 20.

Table 7. The top five important factors selected by BART for the maximum stacking fault energy (SFE) with the initial set of sample size N∈ {2, 5, 10,
15, 20}.

Setting Top 1 Top 2 Top 3 Top 4 Top 5

N= 2 Specific.Heat_Avg Pauling.EN_Var Mn Ni C_11_Avg

N= 5 Mn Pauling.EN_Var C._Avg C_11_Avg Specific.Heat_Avg

N= 10 Specific.Heat_Avg Pauling.EN_Var Mn Ni Co

N= 15 Mn Specific.Heat_Avg Co Pauling.EN_Var SGTE.LSE_Avg

N= 20 Mn Specific.Heat_Avg Pauling.EN_Var Ni SGTE.LSE_Avg

B. Lei et al.
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being explored. Thus, in an admittedly limited manner, the BART/
BMARS-BO framework not only assists in the (very) efficient
exploration of materials design spaces but also enhances our
understanding of the underpinnings of material behavior. More
results about the interactions among features are presented in
Supplementary Note 3.

DISCUSSION
In general, there are two major categories of BO: (i) acquisition-
based BO (ABO), and (ii) partitioning-based BO (PBO). ABO10,12,36 is
the most traditional and broadly used BO. The key idea is to pick
an acquisition function, which is derived from the posterior and
then optimized at each iteration to specify the next experiment.
On the other hand, PBO36,51 successfully avoids the optimization
of acquisition functions by intelligently partitioning the space
based on observed experiments and exploring promising areas,
greatly reducing computations. Compared to PBO, ABO usually
makes better use of the available knowledge and makes higher
quality decisions, leading to a fewer number of needed
experiments. In this study, we focused on ABO to construct the
autonomous workflow for material discovery.
GP-based BO has been widely used in a number of areas and

gradually become a benchmark method12,13,24 for optimization of
expensive “black-box” functions. However, its power can be
limited by the intrinsic weaknesses of GP10,12. Isotropic covariance
functions such as the Matérn and Gaussian kernels commonly
employed in the literature have continuous sample paths, which is
undesirable in many problems including material discovery as it is
well known that the behavior of materials often changes abruptly
with minute changes in chemical make-up or (multiscale)
microstructural arrangements. Moreover, such isotropic kernels
are provably suboptimal52 in function estimation when there are
spurious covariates or anisotropic smoothness. While remedies
have been proposed in the literature involving more flexible
kernel functions with additional hyperparameters53 and sparse
additive GPs54,55, tuning and computation of such models can be
significantly challenging, especially given a modest amount of
data. Thus, in complex material science problems such as ours,
Bayesian approaches based on additive regression trees or
multivariate splines constitute an attractive alternative to GPs.
Attractive theoretical properties of BART, including adaptivity to
the underlying anisotropy and roughness, have recently
appeared56.
In this paper, we proposed a fully automated experimental

design pipeline where we took advantage of more adaptive and
flexible Bayesian models including BMARS30,31 and BART32 within
an otherwise conventional BO procedure. A wide range of
problems in scientific studies can be handled with this
algorithm-based workflow, including MD. Both the simulation
studies and real data analysis applied to scientifically relevant
materials problems demonstrate that using BO with BMARS and
BART outperforms GP-based methods in terms of searching speed
for the optimal design and automatic feature importance
determination. To be more specific, due to its well-designed

spline basis, BMARS is able to catch challenging patterns like
sudden transitions in the response surface. At the same time, BART
also ensembles multiple individual trees and leads to a strong
regression algorithm. Resulting from the recursive partitioning
structures, they are equipped with a model-free variable selection
that is based on feature inclusion frequencies in their basic
functions and trees. This enables them to more accurately
recognize the trends and correctly reveal the true factors.
We would like to close by briefly discussing potential

applications of the framework in the context of autonomous
materials research (AMR). Recently, the concept of autonomous
experimentation for MD57 has quickly emerged as an active area
of research58–60. Going beyond traditional high-throughput
approaches to MD61–63, AMR aims to deploy robotic-assisted
platforms capable of the automated exploration of complex
materials spaces. Autonomy, in the context of AMR, can be
achieved by developing systems capable of automatically select-
ing the experimental points to explore in a principled manner,
with as little human intervention as possible. Our proposed non-
GP BO methods seem to have robust performance against a wide
range of problems. It is thus conceivable that the experimental
design engines of AMR platforms could benefit from algorithms
such as those proposed here.

METHODS
Bayesian optimization
BO10 is a procedure intended to determine the global minimum (or
maximum, with the similar procedure) x* of an unknown objective
function f sequentially and optimally, where X denotes the search space:

x� ¼ argmin
fx2Xg

f ðxÞ: (3)

In the common setting of BO, the target function f can be either “black
box” or expensive to evaluate, as such a function may represent a
resource-intensive experiment or a very complex set of numerical
simulations. Thus, we would like to reduce the number of function
evaluations as we explore the design space and search for the optimal
point. It mainly includes two steps: (i) fitting the hidden pattern of the
target function, f, given observed data D so far based on some surrogate
models, and (ii) optimizing selected utility or acquisition functions u(x∣D)
based on the posterior distribution of the surrogate estimates of f in order
to decide the next sample point to evaluate in the design space X . To be
more specific, it generally follows Algorithm 1:

Algorithm 1. Bayesian optimization (BO). Input: initial observed dataset
D= {(yi, xi), i= 1,…, N}. Output: candidate with desired properties. 1: Begin
with s= 1. 2: while stopping criteria are not satisfied do (3 to 7). 3: Train
the chosen probabilistic model based on data D. 4: Calculate the selected
acquisition function u(x∣D). 5: Choose the next experiment point by
xsþ1 ¼ argmax fxsþ12XguðxjDÞ. 6: Get the new point (ys+ 1, xs+ 1) and add it
into the observed dataset D. 7: s= s+ 1. 8: return the candidate with
desired properties

A schematic illustration of BO is shown in Fig. 4—we note that such an
algorithm can be implemented in autonomous experimental design
platforms. Each of the subplots presents the state after one BO iteration,
where they include the true unknown function (blue curve), utility

Table 8. The top five important factors selected by BMARS for the maximum stacking fault energy (SFE) with the initial set of sample size N∈ {2, 5,
10, 15, 20}.

Setting Top 1 Top 2 Top 3 Top 4 Top 5

N= 2 SGTE.LSE_Avg Pauling.EN_Var C_11_Avg Ni C._Avg

N= 5 Pauling.EN_Var Specific.Heat_Avg C_12_Avg C._Avg C_11_Avg

N= 10 C_11_Avg Specific.Heat_Avg Mn Pauling.EN_Var C._Var

N= 15 Specific.Heat_Avg Mn Pauling.EN_Var Ni C_11_Avg

N= 20 Pauling.EN_Var Specific.Heat_Avg SGTE.LSE_Avg Fe Mn
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function—in this case EI—(red curve), fitted values using GP (orange
curve), 95% confidence interval (orange shaded area), observed samples
(black points), and the next experiment recommended by the utility/
acquisition function (gray triangle).
In this sequential optimization strategy, one of the key components is

the Bayesian surrogate model for f, which is used to fit the available data34

and to predict the outcome—with a measure of uncertainty—of
experiments yet to be carried out. Another important determinant of BO
efficiency is the choice of the acquisition function34. It can assist in setting
our expectations regarding how much we can learn and gain from a new
candidate design. The next design structure to be tested is usually the one
that maximizes the acquisition function, balancing the trade-off between
exploration and exploitation of the design space. There are many
commonly used acquisition functions, such as EI, probability of improve-
ment, upper confidence bound, and Thompson sampling10,11. Here, we
choose to use EI as the acquisition function, which can find the point that,
in expectation, improves on f �n the most:

uðxÞ ¼ EInðxÞ :¼ En½ðf ðxÞ � f �nÞþ�; (4)

where f �n is the maximum value observed so far,En½�� ¼ E½�jx1:n; y1:n� is the
expectation taken under the posterior distribution given the observed
data, and bþ ¼ maxðb; 0Þ. We note that we have explored other
acquisition functions and the relative performance of the corresponding
methods with the same surrogates were not significantly different.
The choice of the surrogate model in BO will have a considerable impact

on its performance, including the cost and time involved. As mentioned
above, GPs64 have been widely applied in BO in many applications,
including MD19. In this work, we utilize BMARS and Bayesian ensemble-
learning models, in particular, BART, to help guide the search through the
design space more efficiently. We will briefly introduce the potential
surrogate models in BO. More detailed technical descriptions of them are
included in Supplementary Methods.

GP and model mixing
One of the popular ways in BO is using GP regression as the surrogate
model to approximate the unknown f. Given xi 2 Rp (design feature
vectors) and yi(i= 1,…, n) (evaluated f values at the corresponding xi’s,
which can be noisy), we aim to fit the pattern of f and predict a new y*
associated with x*. Usually, we assume that yi is a function of xi with

additional noise: yi ¼ f ðxiÞ þ ϵi ; ϵi �i.i.d. Nð0; σ2Þ. In GP regression, a GP
prior is put on the unknown function f and f ¼ ðf ðx1Þ; ¼ ; f ðxnÞÞ> follows

a joint Gaussian distribution:

pðfÞ � N ðfjmðxÞ;KÞ; ½Kij � ¼ kðxi ; xjÞ; (5)

where m(⋅) is the mean function and k(⋅, ⋅) is the kernel function.
A common choice for m(⋅) is a constant mean function. For k(⋅, ⋅), there

are various candidates and we can decide it based on the corresponding
task. The radial-basis function (RBF) kernel is popular to capture stationary
and isotropic patterns. RBF kernels with ARD27 assign different scale
parameters for each feature instead of using a common value27, which can
help to identify key covariates determining f. There are also nonstationary
kernels, such as dot-product kernels39 and more flexible deep network
kernels29. For simplicity, we use D= {x1:n, y1:n} to denote the data we have
collected. For a new input x*, the predictive distribution of response y* is:

pðy�jx�;DÞ ¼ N ðμ�; σ2�Þ; (6)

μ� ¼ mðx�Þ þ kðx�; x1:nÞðK þ σ2IÞ�1ðy1:n �mðx1:nÞÞ; (7)

σ2� ¼ kðx�; x�Þ þ σ2 � kðx�; x1:nÞðK þ σ2IÞ�1
kðx1:n; x�Þ: (8)

GP-based nonparametric regression approaches have gained a lot of
popularity and have been widely used in various applications12,13,24.
However, when turning to the sequential experiments in MD, the model
may be imprecise and the search may be inefficient if we do not have
enough information about the predictive performance of each experi-
mental degree of freedom. Talapatra et al.14 address this issue by using
model mixing to develop multiple GP regression models based on
different combinations of the covariates and weigh all the potential
models according to their likelihood of being the true model. In this way,
they incorporated model uncertainty, leading to a more robust framework
capable of adaptively discovering the subset of covariates most predictive
of the objective function to optimize.

Bayesian multivariate adaptive regression splines
BMARS30,65 is a Bayesian version of the classical MARS model31, which is a
flexible nonparametric regression technique. It uses product spline basis
functions to model f and it automatically identifies the nonlinear
interactions among covariates. The regression develops a relationship
between the covariates xi 2 Rp and the response yi(i= 1,…, n) as

yi ¼ f ðxiÞ þ ϵi ; f̂ ðxiÞ ¼
Xl

j¼1

αjBjðxiÞ; ϵi �i.i.d. Nð0; σ2Þ; (9)

Fig. 4 Schematic illustration of Bayesian optimization (BO). Four subplots (a–d) give an example of the sequential automated experimental
design using BO. They describe the true unknown function (blue curve), expected improvement (red curve), fitted values using GP (orange
curve), 95% confidence interval (orange area), observed samples (black points), and the next experiment design (gray triangle) in each
iteration.
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where αj denotes the relevant coefficient for the basic function Bj taking
the form of

BjðxiÞ ¼
1; j ¼ 1;

QQj

q¼1
½sqj � ðxi;vðq;jÞ � tqjÞ�þ; j 2 f2; ¼ ; lg;

8><
>:

(10)

with sqj ∈ {−1, 1}, v(q, j) denoting the index of the variables, and the set {v
(q, j); q= 1,…,Qj} not repeated. Here tqj tells the partition location,
ð�Þþ ¼ maxð0; �Þ, and Qj is the polynomial degree of the basis Bj and also
corresponds to the number of predictors involved in Bj. The number of
parameters is O(l) and we set the maximum value of l as 500.
To obtain samples from the joint posterior distribution, the computation

is mainly based on the reversible jump Metropolis–Hastings algorithms66.
The sampling scheme only draws the important covariates, hence
automatic feature selection is naturally done in this procedure.

Ensemble learning and BART
Apart from model mixing, ensemble learning67 provides an alternative way
of combining models, which is a popular procedure that constructs
multiple weak learners and aggregates them into a stronger learner68–70. In
several circumstances, it is challenging for an individual model to capture
the unknown complex mechanism connecting inputs to the output(s) by
itself. Therefore, it is a better strategy to use a divide-and-conquer method
in the ensemble-learning framework, which allows each of the models to
fit a small part of the function. This is the key difference of our adopted
Bayesian ensemble learning from the GP-based model mixing strategy in
Talapatra et al.14. Ensemble learning’s robust performance to handle
complex data makes it a great candidate for BO71. However, it has not
been explored to its full potential in the context of optimal experimental
design yet. Hence, we choose to combine BO with the Bayesian ensemble
learning72, in particular, BART32. As BART is a tree-based model without
inherent smoothness assumptions, it is also a more flexible surrogate
model when modeling objective functions that are non-smooth, often
encountered in MD. This strategy is effective and efficient due to its ability
to take advantage of both the ensemble-learning procedure and the
Bayesian paradigm.
BART32 is a nonparametric regression method utilizing the Bayesian

ensemble-learning technique. Many simulations and real-world applica-
tions confirmed its flexible fitting capabilities73–75. Given xi 2 Rp and yi(i=
1,…, n), where it approximates the target function f by aggregating a set
of regression trees:

yi ¼ f ðxiÞ þ ϵi ; f̂ ðxiÞ ¼
Xl

j¼1

gjðxi ; T j ;MjÞ; ϵi �i.i.d. Nð0; σ2Þ; (11)

where Tj denotes a binary regression tree, Mj ¼ ðμj1; ¼ ; μjbj Þ> denotes a
vector of means corresponding to the bj leaf nodes of Tj, and gj(xi; Tj,Mj) is
the function that assigns μjt ∈Mj to xi.
Using regularization priors on those trees is critical for the superior

performance of this ensemble regression model. That way, each tree will
be regularized to explain a small and distinct part of f. This aligns with the
essence of ensemble learning, which is about combining weak learners
into a stronger model. The number of parameters is correlated with the
number of trees l as well as the tree depth dj and is O(l ⋅ 2d). In our analysis,
l is set as 50 and dj is usually smaller than 6.

At the same time, one can use this regression model for automatic
variable selection, which greatly expands its scope of use. The importance
of each predictor is based on the average variable inclusion frequency in
all splitting rules32. Bleich et al.76 further put forward a permutation-based
inferential approach, which is a good alternative for the factor significance
determination.

Automated experimental design framework
With BO using BMARS or BART, we propose an autonomous platform for
efficient experimental design, aiming at significantly reducing the number
of required trials and the total expense to find the best candidate in MD.
The framework is depicted in Fig. 5 and the detailed description is as
follows.
In this workflow, we begin with an initially observed dataset and the sample

size can be as small as two. Then, we train our surrogate Bayesian learning
model on the observed dataset and collect the relevant posterior samples.
Using these samples, the acquisition function for each potential experiment to
perform is calculated. After obtaining the values of the acquisition function, we
select the candidates with top scores and do experiments at these points. With
the new outcomes, the observed dataset is augmented and the stopping
criteria are checked. If the criteria are fulfilled, we stop the workflow and return
the candidate with the desired properties. Otherwise, we update the surrogate
model by making use of the augmented dataset and use the updated belief to
guide the next round of experiments.
Within this fully automated framework, what we need to provide is the

initial sample and the stopping criteria. The beginning dataset can be
some available data before this project. If we do not have this kind of
information, we can randomly conduct a small number of experiments to
populate the database and initialize the surrogate models used in the
sequential experimental protocol. For the stopping criteria, it can be
arriving at the desired properties or running out of the experimental
budget14.

DATA AVAILABILITY
The data files for materials discovery in the MAX phase space and optimal design for
stacking fault energy in high entropy alloy space are available upon reasonable
request.
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