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a b s t r a c t 

One of the obstacles to the deployment of shape memory alloys (SMAs) in solid-state actuation is the low 

efficiency and functional instability due to the transformation thermal hysteresis and large temperature 

ranges during martensitic phase transformation. Numerous studies have been conducted in an effort to 

minimize the thermal hysteresis and transformation temperature range of SMAs through ternary and qua- 

ternary alloying of known binary alloy systems, such as NiTi, and considerable success has been achieved. 

However, and crucially, the alloys discovered so far have failed to maintain a narrow hysteresis under ap- 

plied stress. In the present study, an AI-enabled materials discovery framework was successfully used 

to identify both SMA chemistries and the associated thermo-mechanical processing steps that result in 

narrow transformation hysteresis and transformation range under an applied stress. The major elements 

of the proposed workflow are described in detail and its materials-agnostic character makes it widely 

applicable to other alloy discovery challenges. Using this framework, and without relying on subsequent 

experimental exploratory analysis, an SMA composition, i.e. Ni 32 Ti 47 Cu 21 (at. %), was predicted and con- 

firmed to have the narrowest thermal hysteresis and transformation range under stress achieved thus far 

for a NiTi-based SMA. Furthermore, the alloy was shown to exhibit excellent cyclic stability and actu- 

ation strain. The methodology and the dataset introduced here can be extended to design novel SMAs 

with other target functions. 

© 2022 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. 
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. Introduction 

Shape memory alloys (SMAs) are excellent candidates for solid- 

tate actuation [1–6] and thermal energy harvesting applica- 

ions [7–9] due to their capability to undergo reversible, solid- 

o-solid martensitic phase transformations, with tailorable shape 

hange and energy conversion capabilities. However, irreversible 

icrostructural mechanisms associated with the temperature- 

nduced martensitic transformation introduce inefficiencies that 

imit their use [10] . Motivated by the potential of low thermal hys- 

eresis SMAs to enable efficient solid-state actuation, a few stud- 

es have attempted to tailor the thermal hysteresis by alloying 

he most well-known NiTi SMAs with elements such as Cu, Pd, 

t, Au, Co, V, Cr, Hf, and Zr [ 3 , 11 , 12 ]. Furthermore, several stud-

es have shown that thermo-mechanical processing, such as aging 

eat treatment or cold work followed by low temperature anneal- 

ng also has an effect on the thermal hysteresis [ 13 , 14 ], but the
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ombined (and potentially synergetic) effects of composition and 

rocessing conditions remain unclear. 

Thermal hysteresis in SMAs results from irreversible processes 

uring martensitic transformation, including frictional resistance 

o interfacial motion and dissipation of stored elastic strain energy. 

hermal hysteresis leads to different temperatures for forward 

nd reverse transformations, namely martensite start (M s ) and 

nish (M f ) and austenite start (A s ) and finish (A f ) temperatures. 

hermal hysteresis in SMAs is often reported as the difference 

etween the A f and M s temperatures measured from differential 

canning calorimetry (DSC) thermograms. There have been numer- 

us studies to develop SMA compositions with near-zero thermal 

ysteresis [ 4 , 12 ], and alloys have been developed with a thermal

ysteresis as small as 0.4 °C during stress-free cycling [ 4 , 5 , 15 ].
owever, these alloys have failed to show the same performance 

nder stress, i.e., during actuation [16] or during mechanical load 

ycling, which are the two main conditions that these materials 

re desired to operate at. 

In addition to minimizing the thermal hysteresis in order to 

ncrease the energy conversion efficiency in SMAs, maximizing the 

eversible shape change (i.e. actuation strain) during martensitic 

https://doi.org/10.1016/j.actamat.2022.117751
http://www.ScienceDirect.com
http://www.elsevier.com/locate/actamat
http://crossmark.crossref.org/dialog/?doi=10.1016/j.actamat.2022.117751&domain=pdf
mailto:ikaraman@tamu.edu
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ransformation is critical to enhance the work output of SMAs 

s solid-state actuators. To achieve this, complete transformation 

f the SMA is necessary. Minimizing the transformation range 

A f -M f ), in addition to minimizing thermal hysteresis, allows a 

igher actuation frequency, as well as less energy input to the sys- 

em, therefore, a higher energy conversion efficiency for the same 

seful output. Currently, no literature is available that explores 

he effect of composition or processing on the transformation 

ange. 

To inform the development of SMAs with desired properties, 

ifferent theoretical and empirical approaches have been proposed 

o predict the transformation characteristics of SMAs as a function 

f composition [ 12 , 17 ]. The valence electron concentration ratio 

as been proposed to be an indicator of composition dependence 

f M s temperature [18] , but thermal hysteresis does not exhibit 

uch dependence. Both M s temperature and thermal hysteresis 

isplay positive correlation with the latent heat of transformation 

11] . A lower M s indicates higher phase stability of austenite 

ompared to martensite and thus a smaller latent heat between 

he two phases in a given alloy system [19] . The best-known 

stimator for the thermal hysteresis associated with the marten- 

itic transformation is the crystallographic compatibility between 

artensite and austenite phases [12] . Based on the geometric 

onlinear theory of martensite, crystallographic compatibility can 

e described by the middle eigenvalue ( λ2 ) of the transformation 

tretch tensor between austenite and martensite lattices. The 

loser λ2 is to 1, the lower the chance that defects will form in the 

icinity of austenite-martensite interfaces during transformation 

indicating good compatibility), and thus the smaller the hysteresis 

ill be [ 4 , 12 , 20–23 ]. However, this estimator does not account for

rocessing conditions [ 13 , 14 ], microstructural size effects [ 24 , 25 ],

r the effect of applied stress on the transformation characteristics 

nd lattice structure [ 26 , 27 ]. 

In order to take multiple material parameters and external 

oundary conditions into account, including composition, process- 

ng conditions, microstructural size effect, and applied stress, when 

redicting the thermal hysteresis, materials informatics approaches 

an be utilized [28] . Materials informatics allows analysis of high- 

imensional materials data through machine learning [ 29 , 30 ]. Pre- 

iously, stress-free transformation temperatures and hysteresis of 

iTi-based SMAs have successfully been predicted using mate- 

ials informatics [31–35] . In CuAl-based SMAs, machine learning 

as used to identify an alloy with a high transformation entropy 

hange [36] . However, all these efforts focused only on achiev- 

ng the target properties using only chemical changes and did not 

onsider the role of processing conditions and applied stress on 

he transformation characteristics. This is an important limitation 

s processing plays a fundamental role in determining the perfor- 

ance of SMAs. 

In the present work, machine learning was used to design an 

MA for optimum solid-state actuation and thermal energy har- 

esting efficiency. Initially, a high-quality dataset was developed to 

nclude material composition, processing history and test param- 

ters in order to properly account for all necessary details of ev- 

ry data entry. Utilizing this dataset, the goal was to use machine 

earning and optimization techniques to (1) minimize the transfor- 

ation range (A f -M f ) and (2) maximize the actuation strain un- 

er an applied stress ( > 1.5% strain at an applied stress of 50 MPa

r more). In addition to these objectives, the candidate alloy was 

onstrained to operate between M f > 20 °C (cold reservoir is room 

emperature) and A f < 50 °C. There were no constraints imposed 

or the composition or processing parameters, allowing for a mas- 

ive alloy design space with complex processing procedures to be 

xplored. 
2 
. Computational and experimental methods 

.1. Materials informatics framework – Artificial Intelligence 

aterials Selection (AIMS) 

The present study searched for an SMA with a minimum trans- 

ormation range and an actuation strain of at least 1.5% under an 

pplied stress of 50 MPa or more, using a materials informatics 

trategy that employed the Artificial Intelligence Material Selec- 

ion (AIMS) framework introduced here. The AIMS framework uses 

arious machine learning approaches to guide the exploration and 

iscovery of materials ( Fig. 1 ). The process entails extracting and 

leaning large amounts of data about the material system of inter- 

st from the literature and from high-throughput experiments, us- 

ng machine learning to discover qualitative and quantitative infor- 

ation about the material system, and making predictions for un- 

nown material compositions and processing parameters. Selected 

aterials are then synthesized, and predictions are compared with 

xperimental data, and the process repeats. Each step is described 

n more detail below. 

Starting from step M1 (denoted by an asterisk ∗ in Fig. 1 ), lit- 

rature data extraction serves as the foundation for the frame- 

ork. This step can be accomplished more efficiently by using a 

iterature mining software [37] , tabulation of tables, and plot dig- 

tizers [38] . These literature data can also guide any experimen- 

al data generation in the laboratory, step M2. These experiments 

hould be conducted using high-throughput batch design tech- 

iques and lab automation [39] in order to optimize the workflow. 

 dataset is then compiled from the literature and high through- 

ut experimental data, and augmented with descriptors based on 

omposition (valence electron number, atomic radii, etc.) (step M3) 

 40 , 41 ]. 

Data cleaning and initial setup is done by correcting errors, 

emoving duplicate data, and identifying features and responses 

n the dataset to be used in the analysis. In the case of missing 

alues within the dataset, default values should be defined and 

sed to replace these missing values where possible. Default values 

hould be inserted primarily in the processing features if a sam- 

le did not undergo a specific processing procedure. For example, 

 sample that did not undergo heat treatment might be consid- 

red as if it was heat treated at room temperature for 0 h. Cat- 

gorical features such as the quenching medium after heat treat- 

ent need to be encoded to numerical values (water quenching 

ay be given the value of 1, oil quenching given a value of 2, 

tc.) for analysis (step A1). Before performing any machine learn- 

ng model training, it is advised that the data are explored and 

valuated using feature correlation and dimensionality reduction 

echniques (step A2) [ 42 , 43 ]. This is an important step to reduce

he number of features in the feature set and visualize the spread 

f the data [44] . In cases where there is an imbalance of classes, 

he data should be resampled and then split for model training 

step A3) [45] . 

When the data have been prepared for machine learning, tree- 

ased algorithms are used first, allowing for quick model creation 

nd evaluation (step I1) [46] . This step can provide valuable in- 

ights into the data, such as feature importance, and identify any 

utliers that may need to be checked. The iterative model train- 

ng process includes both feature engineering and hyperparameter 

uning, which should be performed for each model that is trained 

step I2) [47] . At this point, other algorithms may be employed, 

uch as neural networks or Gaussian process regressors, to predict 

ew material properties. These predicted data should then be vi- 

ualized with the real data inlayed into the prediction visualization 

or comparison (step I3). 



W. Trehern, R. Ortiz-Ayala, K.C. Atli et al. Acta Materialia 228 (2022) 117751 

Fig. 1. The Artificial Intelligence Materials Selection (AIMS) framework that captures the iterative workflow necessary for data-driven discovery in materials science. 
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When there are multiple target properties, a multi-objective op- 

imization approach may prove useful in conjunction with Bayesian 

ptimization or Natural Selection Genetic Algorithms (step S1) 

48–52] . It may also be useful to develop a Pareto front to bet- 

er visualize and understand tradeoffs made in the material pre- 

ictions. Based on the optimization results, the selected material 

hould be evaluated by a metric for novelty and feasibility (often 

y consulting phase diagrams) (step S2). Once a material has been 

dentified, the best candidate alloy can be synthesized, or a design 

pace can be created bounded by constraints in the material com- 

osition and processing procedures space (step S3). Within these 

ounds, Design of Experiments (DOE) can be performed to explore 

he material characteristics within the regions of interest [53] . In 

his way, the AIMS framework can be employed to exploit large 

mounts of materials data over a wide design space to guide ma- 

erials designers to a more targeted space for further exploration 

nd materials discovery. 

.2. Deploying AIMS framework for SMAs 

Following the AIMS framework, the results from raw experi- 

ental data for NiTi-based SMAs with various alloying elements 

 ∼60 0 0 data entries from 16 years of experiments generated in the 

uthors’ laboratory) were tabulated into a spreadsheet (steps M1- 

2 in Fig. 1 ). For all data entries, the composition, processing con- 

itions, test parameters, and material response were recorded. Any 

ariation in composition, processing, and test parameters (such as 

arying stress levels) are recorded as separate data entries. These 

esults included data from all SMA compositions and processing 

onditions tested, regardless of whether they exhibit phase trans- 

ormation or not, which is important for quantifying uncertainty 

or data entries. Literature data ( ∼250 data entries) for various 

ompositions were also added to supplement the dataset [ 3 , 4 , 10–

6 , 31–33 , 36 , 54–88 ]. The dataset was then cleaned, and new de-

criptors based on the chemistry were added, such as the atomic 

umber and number of valence electrons (step M3, A1). For this 
3 
ork, descriptors were found from pure element properties avail- 

ble in the periodic table. Supplementary Table S2 lists all de- 

criptors and information regarding the identification information 

nd the status after performing feature correlation. In all, for each 

istinct material data point, the dataset included 88 features re- 

ated to the materials composition, processing, and test parame- 

ers, along with 26 material responses related to the functional 

roperties and microstructure characteristics. In this analysis, the 

icrostructure data is used to assess discrepancies within the 

ataset, but is not used as a feature nor response in the machine 

earning models. A complete list of features, descriptors, and mate- 

ials responses included in the dataset is summarized in Fig. 2 and 

an also be found in the supplementary information (Supplemen- 

ary Tables S1 and S2). 

Upon completion of the dataset, Pearson correlation was used 

o identify and remove extraneous descriptors that were highly lin- 

arly correlated (step A2). Of the 59 descriptors in Supplementary 

able S2, 31 of the descriptors were highly correlated with other 

escriptors with absolute correlation values of greater than 0.85 

Fig. S1 in supplementary). These features were removed from the 

ataset, resulting in the final Pearson correlation matrix at right 

n Fig. S1. Next, Principal Component Analysis (PCA) [89] was used 

o transform the high dimensional space to principal components. 

 scree plot was created, plotting the principal components against 

he Explained Variance Ratio (ratio of variance that is attributed by 

ach of the principal components) (Fig. S2A in supplementary ma- 

erials). The two components that explain the most variance, prin- 

ipal components 1 and 2, were plotted against each other in a 

iplot shown at right in Fig. S2B in supplementary materials. The 

ata points are colored by the Martensite Start (M S ) temperature. 

Upon inspection of the reduced dimensional space, large dif- 

erences for material responses in neighboring data entries were 

dentified and evaluated on a case-by-case basis to determine if 

he flagged data entries were outliers and/or conflict with the 

nown physical principles. The points in the red circle (Fig. S2B.) 

re for NiTiHf shape memory alloys and were expected to have 
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Table 1 

Transformation temperatures of Ni 32 Ti 47 Cu 21 and Ni 80-X Ti X Cu 20 (X = 40, 42, 44, 46, 48, 50) as measured from the 2nd cycle differential scanning calorimetry 

(DSC) data. 

Ni (at%) Ti (at%) Cu (at%) M f ( °C) M s ( °C) A s ( °C) A f ( °C) Transformation Range (A f -M f ) ( °C) 

40.0 40.0 20.0 -62.3 -22.2 -49.4 -8.1 54.2 

38.0 42.0 20.0 -25.6 -12.1 -13.5 0.7 26.3 

36.0 44.0 20.0 -4.6 4.7 4.5 16.1 20.7 

34.0 46.0 20.0 6.9 17.5 16.1 28.4 21.5 

32.0 48.0 20.0 17.2 23.3 26.3 34.4 17.2 

30.0 50.0 20.0 70.3 78.3 79.1 85.2 14.9 

32.0 47.0 21.0 31.7 37.3 36.7 41.2 9.5 

Fig. 2. Sunburst charts illustrating the breakdown of the shape memory alloy dataset developed. All 88 features, circles (A) and (B), visualized by composition, materials 

descriptors (double dark blue bar), processing, and test parameters. All 26 material responses, circle (C), include functional properties and microstructure characteristics (For 

interpretation of the references to color in this figure legend, the reader is referred to the web version of this article). 
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igh M S temperatures. However, these data points showed signif- 

cantly lower transformation temperatures than other similar Ni- 

iHf compositions. Upon inspection of the group of data, the NiTiHf 

amples were from the same experimental batch, indicating pro- 

essing or testing complications associated with the results. It was 

etermined that the set of samples were not subjected to a ho- 

ogenization heat treatment after casting, dramatically changing 

he observed transformation temperatures in comparison to simi- 

ar compositions in the dataset. These data points were removed 

rom the data set. 

Next, the cleaned data is prepared for training the initial 

achine learning models. In the case of an unbalanced num- 

er of sample compositions or processing procedures (e.g., 300 

ata points for solution heat treated samples, but only 40 data 

oints for cold-rolled samples), the lesser number of samples must 

e oversampled, the greater number of samples must be under- 

ampled, or a mixture of the two (step A3). In this case, the Syn- 

hetic Minority Over- sampling Technique (SMOTE) was employed to 

ver-sample the data by creating synthetic material responses with 

aussian noise [90] for various composition and processing param- 

ters. The dataset was then split 80/20 (80% for training and 20% 

or testing), and multiple regression models were trained on the 
4 
raining data to predict the desired material responses (M f , A f , ac- 

uation strain, and transformation range). 

Initial model creation and training with XGBoost [91] , a popu- 

ar decision-tree regression technique, was performed to evaluate 

odel fit and quickly identify important features (step I1) ( Fig. 3 ). 

he XGBoost regressor identified the average enthalpy of fusion 

nd average Mendeleev number as the two most important fea- 

ures for predicting the transformation range ( Fig. 3 D). From these 

esults, the top 20 important features (shown in Tables S1 and 

2 in supplementary materials) were then used to train three dif- 

erent machine learning regressors. Random Forest, Extreme Gra- 

ient Boosting, and Deep Neural Network regressors were fit to 

he data, and hyperparameters were tuned using Hyperopt [92] for 

ach model and for each desired material property. For the neural 

etwork, a rectified linear unit (ReLU) activation function was used 

t each layer [93] . L2 regularization and dropout [94] was used 

ith an optimum dropout rate of 0.4 to prevent model overfitting. 

arly stopping was also used to improve model robustness and 

he loss was analyzed with the binary cross-entropy (CE) method 

95] , comparing the real and predicted properties and updating the 

eights and biases through back propagation and gradient descent 

n order to minimize the loss function. The results of 80% training 
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Fig. 3. The performance of the trained Extreme Gradient Boosting (XGB) regression model in predicting the martensite finish (M f ) (A) and austenite finish (A f ) (B) temper- 

atures, and actuation strain levels (C) of NiTi-based shape memory alloys. The important material features in the dataset for predicting the transformation range (A f – M f ), 

determined using parameter sensitivity analysis with Extreme Gradient Boosting regression, (D), and the optimal prediction region from the deep neural network (DNN) 

regressor, overlayed with the NiTiCu ternary phase diagram [100] (E). Scaled ternary diagrams for the DNN regressor predictions of A f (F) and transformation range (G) are 

also shown. 
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ata and 20% testing data for each of the three model types can be

een in Fig. 5 A and performance metrics (measured by Mean Ab- 

olute Error and Root Mean Squared Error) are summarized as bar 

harts in Fig. 5 B (step I2). Based on the model performances, the 

eep neural network, developed using Keras [96] and Tensorflow 

97] , was selected for further analysis. 

Iterative predictions were made for M f , A f , actuation strain, and 

ransformation Range (A f - M f ) as a function of composition, pro- 

essing, and, importantly, thermo-mechanical testing parameters 

sing the deep neural network (step I3). The test parameters in- 

luded applied stress levels of 0 MPa to 300 MPa in order to eval-

ate the performance of the predicted compositions and estimate 

he change in transformation range under applied stress. Many of 

he predicted compositions with theoretically small transformation 

ange were found out to lie outside the original dataset composi- 

ion space, allowing the discovery of new alloys. The predictions 

ere then constrained by the design requirements (M f > 20 °C, A f 

 50 °C), and any predictions outside these bounds were elimi- 
i

5 
ated. For alloy selection, a weighted-sum (75% for transformation 

ange, 25% for actuation strain) multi-objective Bayesian optimiza- 

ion was used (S1) to determine which predictions would have the 

ighest Expected Improvement (EI) for the transformation range 

minimization) and actuation strain (maximization). 

.3. AIMS predictions for SMAs 

In general, the results predicted that alloying NiTi with Cu, Pd, 

nd Au would exhibit the best results in terms of narrow thermal 

ransformation ranges. However, NiTiPd and NiTiAu alloys were not 

ursued due to the high cost, elevated transformation tempera- 

ures, and increase in transformation range under an applied stress 

 61 , 64 , 98 ]. NiTiCu was predicted to have a small transformation

ange ( Fig. 3 E and G) and good actuation strains within the de- 

ign constraints. The best predicted performance within the NiTiCu 

ystem was for Ni 32 Ti 47 Cu 21 (at. %) with a predicted homogeniz- 

ng heat treatment of 925 °C for 48 h and hot rolling reduction to 
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Fig. 4. NiTiCu ternary phase diagram visualization [100] with training data used in the machine learning model (green), the predicted optimal composition (red), and other 

NiTiCu validation points (blue). 
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0% at 850 °C (predicted transformation range of 7 + /- 4 °C and
redicted actuation strain of 2.0 + /- 0.5% under 50 MPa stress). 

his result was surprising and completely unexpected, as Cu typ- 

cally substitutes Ni, and Ti is usually held at 50 at.% for conven- 

ional NiTiCu SMAs [ 73 , 74 ]. The compositions of NiTiCu that were

resent in the training data ( Fig. 4 ) lie primarily in the single-

hase region of the phase diagram. Predictive capabilities outside 

raditional alloy composition design space further justify the use- 

ulness of machine learning in materials design. NiTiCu predictions 

or martensite finish, austenite finish, transformation range, and 

ctuation strains for varying heat treatment temperatures (425 °C 
o 925 °C) and varying stresses (50 MPa to 300 MPa) can be found

n the supplementary materials. In addition, NiTiCu-X (X: Pd, Au, 

nd Hf) predictions (incrementing by X content) are also visualized 

n the supplementary text (Supplementary Tables S6–S8). 

.4. Alloy fabrication and thermomechanical characterization 

The predicted optimal material Ni 32 Ti 47 Cu 21 was then fab- 

icated and experimentally characterized, and the experimen- 

al results and predictions were compared (S3). In addition to 

i 32 Ti 47 Cu 21 , several other Ti-lean NiTiCu samples were synthe- 

ized and compared. The compositions were arc melted from high 

urity raw materials ( > 99.99%), in an argon atmosphere. The al- 

oy buttons (60 g) were flipped and remelted 5 times, sealed in 

 quartz tube under argon, and homogenized at 925 °C for 48 h, 
nd hot rolled at 850 °C to 20% reduction in thickness, as pre- 
icted by the machine learning model. The material was then cut 

sing wire electrical discharge machining (wire-EDM) to extract 

 3 mm-diameter x 1 mm-thick differential scanning calorime- 

er (DSC) specimen and dog-bone-shaped tensile testing specimens 

ith gage dimensions of 8 mm x 3 mm x 1.0 mm. The specimens

ere polished to 1 μm surface finish prior to testing to remove the 

ossible effects of an EDM recast layer. A TA Instruments Q20 0 0 

ifferential Scanning Calorimetry (DSC) was used to determine the 

tress-free phase transformation temperatures of the arc melted 

utton. The material was thermally cycled 2 times at a heating- 

ooling rate of 10 °C min −1 . Stress-free transformation tempera- 

ures were determined from the DSC peaks using the slope line ex- 

ension method as described in ASTM F2004-17. The latent heat of 
6 
ransformation was also calculated from the area under the trans- 

ormation peaks. 

Isobaric heating and cooling experiments were performed on 

he Ni 32 Ti 47 Cu 21 SMA in an effort to characterize its transforma- 

ion behavior, including the evolution of transformation temper- 

tures, actuation strain (measured as the strain recovered during 

everse transformation), irrecoverable strain (measured as the open 

oop strain at the upper cycle temperature) and thermal hysteresis 

measured as the width of the strain vs. temperature loop corre- 

ponding to one half the transformation strain) as a function of 

tress. Tests were performed on a servo-hydraulic MTS test frame. 

train was measured using a high-temperature extensometer di- 

ectly attached to the gage section of the samples. Samples were 

eated through conduction from the grips with heating bands. 

ooling of the samples was achieved by conduction by flowing 

iquid nitrogen through copper tubes wrapped around the grips. 

he rate of heating and cooling during mechanical testing was 

0 ± 2 °C min −1 . The temperature was measured using a K-type 

hermocouple, directly attached to the gage section of the sam- 

les. Test was initiated by heating the specimen to 125 °C and then 
oading to 2 MPa (a small stress level enough to ensure whether 

he specimen transforms within the selected temperature range 

ithout causing transformation induced plasticity). The specimen 

hen undergoes a single thermal cycle (cooling to 0 °C and then 
eating back to 125 °C) while maintaining the applied stress. Upon 

ompletion of the thermal cycle, the load is increased by 50 MPa 

nd another thermal cycle is performed under constant stress. This 

rocedure is repeated until specimen fails. 

For constant-stress thermal cycling experiments, a custom-built 

est frame was used to cycle the sample 800 times. 50 MPa was 

pplied to the Ni 32 Ti 47 Cu 21 SMA through a dead load hanging from 

he bottom grip. Heating of the sample was performed through 

onduction from inductively heated grips. Cooling was performed 

hrough convection using a muffin fan. Heating and cooling rates 

uring thermal cycling were maintained at approximately 65 °C 
in −1 and 35 °C min −1 , respectively. Displacement was measured 

sing a linear variable differential transformer (LVDT) and recorded 

isplacements were converted into strain taking the 8 mm initial 

auge length of sample as reference. 

The microstructure of the samples was observed using FEI 

uanta 600 FE-SEM with a voltage of 15 kV. Oxford energy dis- 
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Fig. 5. Visualization of machine learning regressor model fitting to the shape memory alloy data set (A) and respective error metrics and histogram of residual errors (B). 

80% of the data was used to train the model and 20% of the data was used to test the model performance. MAE: Mean Absolute Error, RMSE: Root Mean Squared Error. 
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ersive X-ray spectroscopy (EDS) system equipped with X-ray map- 

ing and digital imaging was used to determine the composition of 

he matrix and the second phase present in the homogenized and 

ot rolled samples. The second phase area fraction was quantified 

sing ImageJ software for the backscatter electron images. 

. Results and discussion 

.1. Thermomechanical characterization results 

The predicted and experimental DSC results for Ni 32 Ti 47 Cu 21 
 Fig. 6 A) showed a transformation range of ∼9.5 °C (A f = 41.2 °C,
 f = 31.7 °C) with the latent heat of transformation for marten- 

ite (M) to austenite (A) transformation of dH M-A = 14.89 J/g and 

or austenite to martensite transformation of dH A-M 
= 14.71 J/g. This 

ransformation range differs from the predicted by 2.5 °C, which 

s within the prediction standard deviation (7 + /- 4 °C). This is a 
emarkable agreement considering the large differences in trans- 

ormation ranges observed in SMAs. The other Ti-lean composi- 

ions were tested in DSC, and the results are tabulated ( Table 1 )

nd compared with the respective predictions in Fig. 7 . It is clear 

hat Ni 32 Ti 47 Cu 21 exhibits a smaller transformation range than the 

ther Ti-lean NiTiCu samples, with 5.4 °C decrease from the small- 

st transformation range Ti-lean sample. 

The predictive capabilities of the model remain accurate even 

n the presence of an applied stress. We note that known esti- 
7 
ators, such as the middle eigenvalue ( λ2 ) of the transformation 

tretch tensor between austenite and martensite lattices, are un- 

ble to predict the thermal hysteresis or transformation range un- 

er stress. This is especially true for more ductile SMAs, such as 

u-based ones, which exhibit thermal cyclic instability under stress 

s defects form more readily, increasing frictional resistance to in- 

erfacial motion. In addition, the differences in the elastic constants 

f austenite and martensite phases influence the thermal hysteresis 

nd transformation range under stress, with different elastic defor- 

ation levels occurring in the two phases during thermal cycling 

ith an applied stress, leading to changes in the compatibility be- 

ween the transforming phases. Furthermore, plastic accommoda- 

ion and relaxation of coherency strains as an interface bypasses 

islocations and precipitates causes dissipation of elastic strain en- 

rgy, leaving less elastic strain energy to assist the reverse trans- 

ormation, increasing the thermal hysteresis of an SMA [27] . 

Ni 32 Ti 47 Cu 21 was then thermally cycled under different tensile 

tresses to determine the stress vs. temperature phase diagram 

 Fig. 6 C). It is observed that below 150 MPa, the SMA undergoes 

 fully reversible transformation exhibiting no irrecoverable strain. 

he maximum value of actuation strain was recorded as ∼2% at 

00 MPa at the expense of a 0.2% irrecoverable strain. Transforma- 

ion range under 2 MPa is 5.3 °C, which is even smaller than the 

ne measured from DSC results, and increases with increasing ap- 

lied stress, reaching 7.8 °C at 50 MPa and finally exceeds 20 °C at 
00 MPa. 
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Fig. 6. (A) Differential Scanning Calorimetry (DSC) thermogram for the designed and fabricated Ni 32 Ti 47 Cu 21 shape memory alloy. (B) Predicted and experimental actuation 

strains under various stress levels. (C) Isobaric heating cooling test results under various stress levels and corresponding stress vs. temperature phase diagram constructed 

using this data. The Clausius-Clapeyron (CC) slope for M f , M s , A s , and A f is calculated as 18.1 MPa/ °C, 15.9 MPa/ °C, 9.5 MPa/ °C, and 7.1 MPa/ °C, respectively. 

Fig. 7. Comparison of the predicted and experimental martensitic transformation ranges and austenite finish temperatures confirmed by DSC for the designed and fabricated 

NiTiCu shape memory alloy compositions in this study. All samples have the same processing history. 
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The actuation strains as predicted by the deep neural net- 

ork are remarkably close to the experimental actuation strains 

 Fig. 6 B). The actuation strains are generally lower than other NiTi- 

ased alloys due to the single stage martensitic transformation 

rom cubic (B2) to orthorhombic (B19) in NiTiCu compositions 

ith Cu content greater than 20 at.% [99] , which may have con- 

ributed to the models high predictive accuracy considering the 

mall range of actuation strain values. The model captures the 

hange from cubic-monoclinic ( < 20 at.%) to cubic-orthorhombic 

 > 20 at.%) martensitic transformations well for both transforma- 

ion range and actuation strains (shown in supplementary materi- 

ls). This indicates a trade-off between large actuation strains (for 

u < 20 at.% showing B2-B19’) and small transformation ranges (for 

u > 20 at.% showing B2-B19). This insight is not only a testament 

f machine learning predictive capabilities, even in the absence of 

icrostructural data, but also demonstrates a need for interpreta- 

ion of predictions through scientific reasoning. 
8 
Based on the stress vs. temperature phase diagram, a stress 

evel of 50 MPa was selected for constant-stress thermal cycling 

xperiments since the alloy satisfied the transformation tempera- 

ure boundary conditions at this stress level (M f > 20 °C and A f 

 50 °C). Specimens were subjected to 800 thermal cycles un- 

er 50 MPa constant stress, revealing 1.7% actuation strain, ex- 

ellent cyclic stability, 5.2 °C thermal hysteresis under stress, and 

6.7 °C transformation range under stress at the end of the 800 

ycles (data for strain evolution shown in Fig. 8 A, the last 5 cy- 

les are shown in Fig. 8 B). Inarguably, SMAs with such cyclic sta- 

ility and extremely narrow thermal hysteresis under stress would 

e ideal materials for actuation applications near ambient temper- 

tures and especially for thermal energy harvesting applications, 

here low temperature gradients are encountered. 

The Ni 32 Ti 47 Cu 21 sample is in the two-phase region of the 

hase diagram [100] and is expected to show (Cu, Ni) 2 Ti precip- 

tates. The microstructure was confirmed to have the (Cu, Ni) Ti 
2 
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Fig. 8. A. Constant stress heating and cooling results at 50 MPa showing the transformation strain and irrecoverable strain evolution with thermal cycling. B. The last 5 

cycles of the constant stress experiment showing transformation strains of 1.7%, no irrecoverable strain, 5.2 °C thermal hysteresis and 16.7 °C transformation range. 

Fig. 9. Backscattered Electron (BSE) images of the homogenized and hot rolled Ni 32 Ti 47 Cu 21 samples. The second phase particles appear slightly elongated in the rolling 

direction (RD). Compositions of the matrix and second phase were confirmed with energy dispersive X-ray spectroscopy (EDS). 
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recipitates with an area fraction of 14% after heat treatment as 

een in SEM/BSE images with composition confirmation using EDS 

 Fig. 9 ). After hot rolling, the precipitates are slightly elongated 

n the rolling direction (RD), retaining a similar second phase 

rea fraction of 12%. In addition to the inherent lattice compat- 

bility in NiTiCu alloys, it is likely the internal stresses at the 

nterfaces between the transforming matrix and (Cu,Ni) 2 Ti pre- 

ipitates help to enable the B2 ↔ B19 transformation to follow the 

ame low energy path during each thermal cycle [ 101 , 102 ],

ielding excellent cyclic stability and small transformation 

ange. 

.2. Comparisons with other NiTi-based alloys 

The data for the Ni 32 Ti 47 Cu 21 alloy and various other NiTi 

ased alloy systems from the dataset were plotted against the two 

ost important features for the transformation range as identified 
9 
y XGBoost ( Fig. 10 ). The features identified as the third and 

ourth most important ones – Ni content (at. %) and final heat 

reatment in Fig. 3 D – are also indirectly considered by plotting 

nly solution treated alloys in Fig. 10 that are equiatomic, based 

n the elemental substitutions. The important features exhibit 

istinct separate regions for the compositions and the transfor- 

ation ranges, indicating that these features identified with the 

GBoost regressor greatly impact the transformation range for dif- 

erent alloy compositions. The Mendeleev number is an ordering 

umber attributed to each chemical element, ordering them by 

imilar properties (using the chemical scale) along a singular axis 

 103 , 104 ]. The importance of average enthalpy of fusion may not 

ave any physical meaning, however, it allows for compositional 

apping of different SMA com positions and separation of high 

nd low transformation ranges in a single dimension. These results 

oint to a chemical space that holds promise for future effort s to 

esign SMAs with narrow transformation ranges. 
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Fig. 10. Transformation range of the solution heat treated, equiatomic (by substitution) data entries for all NiTi-based shape memory alloys in the newly developed dataset 

on shape memory alloys, visualized as a function of the two most important materials features identified by the parameter sensitivity analysis for the Extreme Gradient 

Boosting regression model. The two important features, average enthalpy of fusion and average Mendeleev number, were calculated using simple rule-of-mixtures, using 

each element contribution to the total alloy composition. The features do not represent any chemical or physical meaning, however, they separate the compositions into low 

(on the left) and high (on the right) transformation ranges. The result for the designed and experimentally validated NiTiCu alloy is also shown. 

Fig. 11. (A) Box plots for the transformation range of various shape memory alloy compositions from the newly developed shape memory alloy dataset together with the 

predicted and experimental results of the NiTiCu alloy designed using the Artificial Intelligence Materials Selection (AIMS) framework. (B) The minimum transformation 

range under applied stress for various alloy compositions. Predicted and experimental results of the NiTiCu alloy of the present study are shown in red. 

(

p

i

r

p

T

T

t

m  

T

a

s

[

t

a

t

t

c

m

r

The measured transformation ranges under zero applied stress 

in DSC) for various NiTi-X compositions are visualized as a box- 

lot in Fig. 11 A. Compared to other NiTi-X compositions tested 

n DSC for bulk specimens, the Ni 32 Ti 47 Cu 21 alloy designed, fab- 

icated and tested in this study (#12 (predicted) and #13 (ex- 

erimental), in red) exhibited the narrowest transformation range. 

he well-known, near-zero thermal hysteresis SMA composition, 

i 50.2 Ni 34.4 Cu 12.3 Pd 3.1 , has no visible hysteresis in electrical resis- 

ivity measurements, however, in DSC the alloy shows a transfor- 

ation range of ∼27 °C and a thermal hysteresis of ∼15 °C [15] .
he resistivity of the austenite (B2) and martensite (B19) phases 
10 
re very similar for the Ti 50.2 Ni 34.4 Cu 12.3 Pd 3.1 sample, which re- 

ulted in a very subtle change during martensitic transformation 

15] . However, the reasons for the differences in SMA transforma- 

ion characteristics between the DSC and resistivity measurements 

re not very well known. In comparison, we present in this work 

he Ni 32 Ti 47 Cu 21 alloy with a transformation range of 9.5 °C and 
hermal hysteresis of 3.9 °C as confirmed by DSC. 

The isobaric heating and cooling at various stress levels indi- 

ates that the Ni 32 Ti 47 Cu 21 alloy under 50 MPa shows a transfor- 

ation range of 7.8 °C, a thermal hysteresis of 3.2 °C, and fully 
ecoverable transformation strain of 1.2%. In the case where higher 
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ctuation strain is desirable with slightly elevated transformation 

emperatures, 100 MPa will yield a transformation range of 11.5 °C, 
hermal hysteresis of 3.5 °C, and fully recoverable transformation 

train of 1.7%. The dislocations at stress levels above 100 MPa 

ead to significantly larger transformation ranges and irrecoverable 

trains, for example, at 150 MPa the transformation range increases 

o 17.1 °C, thermal hysteresis increases to 6.5 °C, and transforma- 

ion strain is 2.03% with irrecoverable strain of 0.07%. With an ap- 

lied stress, the Ni 32 Ti 47 Cu 21 alloy retains the small transforma- 

ion range whereas many other NiTi-based alloy compositions with 

mall transformation range and hysteresis do not. For compari- 

on, a Ti 50 Ni 33.5 Cu 12.5 Pd 4 sample at 47.6 MPa has a transformation 

ange of 25 °C, thermal hysteresis of 15 °C, and actuation strain of 
.47% [16] . 

Available experimental data for the minimum transformation 

anges measured under tensile stress during isobaric heating and 

ooling experiments were plotted for each composition, shown in 

ig. 11 B. Under an applied stress, the Ni 32 Ti 47 Cu 21 alloy identified 

n this study showed a 6 °C lower transformation range than the 

earest NiTi-X alloy. The predicted transformation range at lower 

tress levels is slightly more accurate than at higher stress levels 

 Fig. 11 B). This could be due to the model’s inability to accommo- 

ate for the accumulation of irrecoverable strain and defect for- 

ation at each stress level, effectively increasing the transforma- 

ion range in the material. For visualization of all predictions in 

his work, refer to the supplementary materials for the predicted 

ernary diagrams for all targeted properties in NiTiCu for various 

tress levels and for heat treatments. 

. Summary and conclusions 

The Artificial Intelligence Materials Selection (AIMS) frame- 

ork in this work was successfully deployed for guiding mate- 

ials informatics and machine learning approaches in SMAs. The 

aterial-agnostic framework can also be utilized in other datasets 

o analyze and predict within various material systems. Informa- 

ion can also be attained through the use of material descriptors 

nd feature engineering, aiding in discovery of new composition- 

rocessing-property relationships. The iterative workflow allows 

or the navigation through high dimensional material spaces and 

apid development of materials with targeted properties. 

Here, a shape memory alloy (SMA) that maintains a narrow 

hermal hysteresis and transformation range under stress was 

dentified by employing AIMS and a new SMA dataset developed 

ith more than 60 0 0 discrete experimental data points. This work 

as outlined all necessary information for the creation of an SMA 

atabase for use in machine learning, and this study has also 

roven the need for interpretation of machine learning predictions 

hrough scientific reasoning. This work is also the first to model 

he transformation range and actuation strains for various stress 

evels in SMAs. These target material properties are two of the 

ost important properties to optimize when designing an SMA for 

ctuator applications. A region showing promise for designing fu- 

ure SMAs with narrow transformation ranges was also mapped for 

he Enthalpy of Fusion and the Mendeleev Number, guiding poten- 

ial studies in the future iterations of AIMS for SMAs. 

The fabrication and experimental characterization of the de- 

igned alloy demonstrated the lowest transformation range and 

hermal hysteresis under an applied tensile stress reported thus 

ar for NiTi-based SMAs, as well as excellent cyclic stability, 

greeing very well with the predictions of the machine learning 

odel. All generated predictions for NiTiCu (supplementary ma- 

erial) can provide valuable transformation characteristics for the 

ntire NiTiCu system to aid other research in alloy design. These 

esults also indicate that SMA technology can efficiently work at 
11 
ery low temperature gradients and also show promise for low- 

rade thermal energy harvesting applications. 
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