Acta Materialia 228 (2022) 117751

journal homepage: www.elsevier.com/locate/actamat

Contents lists available at ScienceDirect

Acta Materialia

Data-driven shape memory alloy discovery using Artificial Intelligence | m
Materials Selection (AIMS) framework

W. Trehern, R. Ortiz-Ayala, K.C. Atli, R. Arroyave, I. Karaman*

Department of Materials Science and Engineering, Texas A&M University, College Station, TX, USA

ARTICLE INFO

Article history:

Received 20 February 2021
Revised 9 February 2022
Accepted 10 February 2022
Available online 12 February 2022

Keywords:

Shape memory alloys
Solid-state actuation
Materials informatics
Machine learning
Multi-objective optimization

ABSTRACT

One of the obstacles to the deployment of shape memory alloys (SMAs) in solid-state actuation is the low
efficiency and functional instability due to the transformation thermal hysteresis and large temperature
ranges during martensitic phase transformation. Numerous studies have been conducted in an effort to
minimize the thermal hysteresis and transformation temperature range of SMAs through ternary and qua-
ternary alloying of known binary alloy systems, such as NiTi, and considerable success has been achieved.
However, and crucially, the alloys discovered so far have failed to maintain a narrow hysteresis under ap-
plied stress. In the present study, an Al-enabled materials discovery framework was successfully used
to identify both SMA chemistries and the associated thermo-mechanical processing steps that result in
narrow transformation hysteresis and transformation range under an applied stress. The major elements
of the proposed workflow are described in detail and its materials-agnostic character makes it widely
applicable to other alloy discovery challenges. Using this framework, and without relying on subsequent
experimental exploratory analysis, an SMA composition, i.e. Ni3;TigzCuyy (at. %), was predicted and con-
firmed to have the narrowest thermal hysteresis and transformation range under stress achieved thus far
for a NiTi-based SMA. Furthermore, the alloy was shown to exhibit excellent cyclic stability and actu-
ation strain. The methodology and the dataset introduced here can be extended to design novel SMAs
with other target functions.

© 2022 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Shape memory alloys (SMAs) are excellent candidates for solid-
state actuation [1-6] and thermal energy harvesting applica-
tions [7-9] due to their capability to undergo reversible, solid-
to-solid martensitic phase transformations, with tailorable shape
change and energy conversion capabilities. However, irreversible
microstructural mechanisms associated with the temperature-
induced martensitic transformation introduce inefficiencies that
limit their use [10]. Motivated by the potential of low thermal hys-
teresis SMAs to enable efficient solid-state actuation, a few stud-
ies have attempted to tailor the thermal hysteresis by alloying
the most well-known NiTi SMAs with elements such as Cu, Pd,
Pt, Au, Co, V, Cr, Hf, and Zr [3,11,12]. Furthermore, several stud-
ies have shown that thermo-mechanical processing, such as aging
heat treatment or cold work followed by low temperature anneal-
ing also has an effect on the thermal hysteresis [13,14], but the
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combined (and potentially synergetic) effects of composition and
processing conditions remain unclear.

Thermal hysteresis in SMAs results from irreversible processes
during martensitic transformation, including frictional resistance
to interfacial motion and dissipation of stored elastic strain energy.
Thermal hysteresis leads to different temperatures for forward
and reverse transformations, namely martensite start (M) and
finish (Mf) and austenite start (As) and finish (A;) temperatures.
Thermal hysteresis in SMAs is often reported as the difference
between the A; and M temperatures measured from differential
scanning calorimetry (DSC) thermograms. There have been numer-
ous studies to develop SMA compositions with near-zero thermal
hysteresis [4,12], and alloys have been developed with a thermal
hysteresis as small as 0.4 °C during stress-free cycling [4,5,15].
However, these alloys have failed to show the same performance
under stress, i.e., during actuation [16] or during mechanical load
cycling, which are the two main conditions that these materials
are desired to operate at.

In addition to minimizing the thermal hysteresis in order to
increase the energy conversion efficiency in SMAs, maximizing the
reversible shape change (i.e. actuation strain) during martensitic
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transformation is critical to enhance the work output of SMAs
as solid-state actuators. To achieve this, complete transformation
of the SMA is necessary. Minimizing the transformation range
(A;-My), in addition to minimizing thermal hysteresis, allows a
higher actuation frequency, as well as less energy input to the sys-
tem, therefore, a higher energy conversion efficiency for the same
useful output. Currently, no literature is available that explores
the effect of composition or processing on the transformation
range.

To inform the development of SMAs with desired properties,
different theoretical and empirical approaches have been proposed
to predict the transformation characteristics of SMAs as a function
of composition [12,17]. The valence electron concentration ratio
has been proposed to be an indicator of composition dependence
of Mg temperature [18], but thermal hysteresis does not exhibit
such dependence. Both M; temperature and thermal hysteresis
display positive correlation with the latent heat of transformation
[11]. A lower Ms indicates higher phase stability of austenite
compared to martensite and thus a smaller latent heat between
the two phases in a given alloy system [19]. The best-known
estimator for the thermal hysteresis associated with the marten-
sitic transformation is the crystallographic compatibility between
martensite and austenite phases [12]. Based on the geometric
nonlinear theory of martensite, crystallographic compatibility can
be described by the middle eigenvalue (A,) of the transformation
stretch tensor between austenite and martensite lattices. The
closer X, is to 1, the lower the chance that defects will form in the
vicinity of austenite-martensite interfaces during transformation
(indicating good compatibility), and thus the smaller the hysteresis
will be [4,12,20-23]. However, this estimator does not account for
processing conditions [13,14], microstructural size effects [24,25],
or the effect of applied stress on the transformation characteristics
and lattice structure [26,27].

In order to take multiple material parameters and external
boundary conditions into account, including composition, process-
ing conditions, microstructural size effect, and applied stress, when
predicting the thermal hysteresis, materials informatics approaches
can be utilized [28]. Materials informatics allows analysis of high-
dimensional materials data through machine learning [29,30]. Pre-
viously, stress-free transformation temperatures and hysteresis of
NiTi-based SMAs have successfully been predicted using mate-
rials informatics [31-35]. In CuAl-based SMAs, machine learning
was used to identify an alloy with a high transformation entropy
change [36]. However, all these efforts focused only on achiev-
ing the target properties using only chemical changes and did not
consider the role of processing conditions and applied stress on
the transformation characteristics. This is an important limitation
as processing plays a fundamental role in determining the perfor-
mance of SMAs.

In the present work, machine learning was used to design an
SMA for optimum solid-state actuation and thermal energy har-
vesting efficiency. Initially, a high-quality dataset was developed to
include material composition, processing history and test param-
eters in order to properly account for all necessary details of ev-
ery data entry. Utilizing this dataset, the goal was to use machine
learning and optimization techniques to (1) minimize the transfor-
mation range (As-M¢) and (2) maximize the actuation strain un-
der an applied stress (>1.5% strain at an applied stress of 50 MPa
or more). In addition to these objectives, the candidate alloy was
constrained to operate between M; > 20 °C (cold reservoir is room
temperature) and A < 50 °C. There were no constraints imposed
for the composition or processing parameters, allowing for a mas-
sive alloy design space with complex processing procedures to be
explored.
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2. Computational and experimental methods

2.1. Materials informatics framework - Artificial Intelligence
Materials Selection (AIMS)

The present study searched for an SMA with a minimum trans-
formation range and an actuation strain of at least 1.5% under an
applied stress of 50 MPa or more, using a materials informatics
strategy that employed the Artificial Intelligence Material Selec-
tion (AIMS) framework introduced here. The AIMS framework uses
various machine learning approaches to guide the exploration and
discovery of materials (Fig. 1). The process entails extracting and
cleaning large amounts of data about the material system of inter-
est from the literature and from high-throughput experiments, us-
ing machine learning to discover qualitative and quantitative infor-
mation about the material system, and making predictions for un-
known material compositions and processing parameters. Selected
materials are then synthesized, and predictions are compared with
experimental data, and the process repeats. Each step is described
in more detail below.

Starting from step M1 (denoted by an asterisk* in Fig. 1), lit-
erature data extraction serves as the foundation for the frame-
work. This step can be accomplished more efficiently by using a
literature mining software [37], tabulation of tables, and plot dig-
itizers [38]. These literature data can also guide any experimen-
tal data generation in the laboratory, step M2. These experiments
should be conducted using high-throughput batch design tech-
niques and lab automation [39] in order to optimize the workflow.
A dataset is then compiled from the literature and high through-
put experimental data, and augmented with descriptors based on
composition (valence electron number, atomic radii, etc.) (step M3)
[40,41].

Data cleaning and initial setup is done by correcting errors,
removing duplicate data, and identifying features and responses
in the dataset to be used in the analysis. In the case of missing
values within the dataset, default values should be defined and
used to replace these missing values where possible. Default values
should be inserted primarily in the processing features if a sam-
ple did not undergo a specific processing procedure. For example,
a sample that did not undergo heat treatment might be consid-
ered as if it was heat treated at room temperature for 0 h. Cat-
egorical features such as the quenching medium after heat treat-
ment need to be encoded to numerical values (water quenching
may be given the value of 1, oil quenching given a value of 2,
etc.) for analysis (step Al). Before performing any machine learn-
ing model training, it is advised that the data are explored and
evaluated using feature correlation and dimensionality reduction
techniques (step A2) [42,43]. This is an important step to reduce
the number of features in the feature set and visualize the spread
of the data [44]. In cases where there is an imbalance of classes,
the data should be resampled and then split for model training
(step A3) [45].

When the data have been prepared for machine learning, tree-
based algorithms are used first, allowing for quick model creation
and evaluation (step I1) [46]. This step can provide valuable in-
sights into the data, such as feature importance, and identify any
outliers that may need to be checked. The iterative model train-
ing process includes both feature engineering and hyperparameter
tuning, which should be performed for each model that is trained
(step 12) [47]. At this point, other algorithms may be employed,
such as neural networks or Gaussian process regressors, to predict
new material properties. These predicted data should then be vi-
sualized with the real data inlayed into the prediction visualization
for comparison (step I3).
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AIMS: Artificial Intelligence
Materials Selection

M1 | Literature Data Extraction
M2 | High Throughput Synthesis
M3 | Database Creation
Al | Data Preparation
A2 | Explore and Visualize
A3 | Data Sampling and Splitting
I1 | Initial Model Creation
12 | Model Refining and Tuning
13 | Predict and Visualize
S1 | Optimization
S2 | Materials Selection
S3 | Design of Experiments

Fig. 1. The Artificial Intelligence Materials Selection (AIMS) framework that captures the iterative workflow necessary for data-driven discovery in materials science.

When there are multiple target properties, a multi-objective op-
timization approach may prove useful in conjunction with Bayesian
Optimization or Natural Selection Genetic Algorithms (step S1)
[48-52]. It may also be useful to develop a Pareto front to bet-
ter visualize and understand tradeoffs made in the material pre-
dictions. Based on the optimization results, the selected material
should be evaluated by a metric for novelty and feasibility (often
by consulting phase diagrams) (step S2). Once a material has been
identified, the best candidate alloy can be synthesized, or a design
space can be created bounded by constraints in the material com-
position and processing procedures space (step S3). Within these
bounds, Design of Experiments (DOE) can be performed to explore
the material characteristics within the regions of interest [53]. In
this way, the AIMS framework can be employed to exploit large
amounts of materials data over a wide design space to guide ma-
terials designers to a more targeted space for further exploration
and materials discovery.

2.2. Deploying AIMS framework for SMAs

Following the AIMS framework, the results from raw experi-
mental data for NiTi-based SMAs with various alloying elements
(~6000 data entries from 16 years of experiments generated in the
authors’ laboratory) were tabulated into a spreadsheet (steps M1-
M2 in Fig. 1). For all data entries, the composition, processing con-
ditions, test parameters, and material response were recorded. Any
variation in composition, processing, and test parameters (such as
varying stress levels) are recorded as separate data entries. These
results included data from all SMA compositions and processing
conditions tested, regardless of whether they exhibit phase trans-
formation or not, which is important for quantifying uncertainty
for data entries. Literature data (~250 data entries) for various
compositions were also added to supplement the dataset [3,4,10-
26,31-33,36,54-88]. The dataset was then cleaned, and new de-
scriptors based on the chemistry were added, such as the atomic
number and number of valence electrons (step M3, A1). For this

work, descriptors were found from pure element properties avail-
able in the periodic table. Supplementary Table S2 lists all de-
scriptors and information regarding the identification information
and the status after performing feature correlation. In all, for each
distinct material data point, the dataset included 88 features re-
lated to the materials composition, processing, and test parame-
ters, along with 26 material responses related to the functional
properties and microstructure characteristics. In this analysis, the
microstructure data is used to assess discrepancies within the
dataset, but is not used as a feature nor response in the machine
learning models. A complete list of features, descriptors, and mate-
rials responses included in the dataset is summarized in Fig. 2 and
can also be found in the supplementary information (Supplemen-
tary Tables S1 and S2).

Upon completion of the dataset, Pearson correlation was used
to identify and remove extraneous descriptors that were highly lin-
early correlated (step A2). Of the 59 descriptors in Supplementary
Table S2, 31 of the descriptors were highly correlated with other
descriptors with absolute correlation values of greater than 0.85
(Fig. S1 in supplementary). These features were removed from the
dataset, resulting in the final Pearson correlation matrix at right
in Fig. S1. Next, Principal Component Analysis (PCA) [89] was used
to transform the high dimensional space to principal components.
A scree plot was created, plotting the principal components against
the Explained Variance Ratio (ratio of variance that is attributed by
each of the principal components) (Fig. S2A in supplementary ma-
terials). The two components that explain the most variance, prin-
cipal components 1 and 2, were plotted against each other in a
biplot shown at right in Fig. S2B in supplementary materials. The
data points are colored by the Martensite Start (Ms) temperature.

Upon inspection of the reduced dimensional space, large dif-
ferences for material responses in neighboring data entries were
identified and evaluated on a case-by-case basis to determine if
the flagged data entries were outliers and/or conflict with the
known physical principles. The points in the red circle (Fig. S2B.)
are for NiTiHf shape memory alloys and were expected to have
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Table 1
Transformation temperatures of Nis)TiszCuy; and NiggxTixCuyg (X = 40, 42, 44, 46, 48, 50) as measured from the 2nd cycle differential scanning calorimetry
(DSC) data.
Ni (at%) Ti (at%) Cu (at%) M¢(°C) M;(°C) As(°C) Ag(°C) Transformation Range (As-My) (°C)
40.0 40.0 20.0 -62.3 -22.2 -49.4 -8.1 54.2
38.0 42.0 20.0 -25.6 -12.1 -13.5 0.7 26.3
36.0 44.0 20.0 -4.6 4.7 4.5 16.1 20.7
34.0 46.0 20.0 6.9 17.5 16.1 28.4 21.5
32.0 48.0 20.0 17.2 233 26.3 34.4 17.2
30.0 50.0 20.0 70.3 78.3 79.1 85.2 14.9
32.0 47.0 21.0 31.7 373 36.7 41.2 9.5

AtomicOrb
ElecStryctyre

=2
7 ValElec
o, Num!
CoefThermExp A =@ OxideStates.
ElecCond . -g _5_,’ NumProt
ThermCond o Q
pulod >
5

Vay
POrPressurg
Velocoyng
ElecResist
oneYsUOSsIod
Ju10d108
o

X
/\@oﬁ“;e(axures
S

A% Y.

b
5 8
M. T
S (G T8 9%
£ .9 £8 2%
5 gz °
[=% c S = Parent
P . 53
S5 g8
< s L
ORr-
> SN
@§ rtensite

Grain Size
28uY
suuyPouon

Parent
aysuaven

Fig. 2. Sunburst charts illustrating the breakdown of the shape memory alloy dataset developed. All 88 features, circles (A) and (B), visualized by composition, materials
descriptors (double dark blue bar), processing, and test parameters. All 26 material responses, circle (C), include functional properties and microstructure characteristics (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article).

high Mg temperatures. However, these data points showed signif-
icantly lower transformation temperatures than other similar Ni-
TiHf compositions. Upon inspection of the group of data, the NiTiHf
samples were from the same experimental batch, indicating pro-
cessing or testing complications associated with the results. It was
determined that the set of samples were not subjected to a ho-
mogenization heat treatment after casting, dramatically changing
the observed transformation temperatures in comparison to simi-
lar compositions in the dataset. These data points were removed
from the data set.

Next, the cleaned data is prepared for training the initial
machine learning models. In the case of an unbalanced num-
ber of sample compositions or processing procedures (e.g., 300
data points for solution heat treated samples, but only 40 data
points for cold-rolled samples), the lesser number of samples must
be oversampled, the greater number of samples must be under-
sampled, or a mixture of the two (step A3). In this case, the Syn-
thetic Minority Over-samplingTechnique (SMOTE) was employed to
over-sample the data by creating synthetic material responses with
Gaussian noise [90] for various composition and processing param-
eters. The dataset was then split 80/20 (80% for training and 20%
for testing), and multiple regression models were trained on the

training data to predict the desired material responses (Mg, Ay, ac-
tuation strain, and transformation range).

Initial model creation and training with XGBoost [91], a popu-
lar decision-tree regression technique, was performed to evaluate
model fit and quickly identify important features (step I1) (Fig. 3).
The XGBoost regressor identified the average enthalpy of fusion
and average Mendeleev number as the two most important fea-
tures for predicting the transformation range (Fig. 3D). From these
results, the top 20 important features (shown in Tables S1 and
S2 in supplementary materials) were then used to train three dif-
ferent machine learning regressors. Random Forest, Extreme Gra-
dient Boosting, and Deep Neural Network regressors were fit to
the data, and hyperparameters were tuned using Hyperopt [92] for
each model and for each desired material property. For the neural
network, a rectified linear unit (ReLU) activation function was used
at each layer [93]. L2 regularization and dropout [94] was used
with an optimum dropout rate of 0.4 to prevent model overfitting.
Early stopping was also used to improve model robustness and
the loss was analyzed with the binary cross-entropy (CE) method
[95], comparing the real and predicted properties and updating the
weights and biases through back propagation and gradient descent
in order to minimize the loss function. The results of 80% training
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Fig. 3. The performance of the trained Extreme Gradient Boosting (XGB) regression model in predicting the martensite finish (Ms) (A) and austenite finish (A¢) (B) temper-
atures, and actuation strain levels (C) of NiTi-based shape memory alloys. The important material features in the dataset for predicting the transformation range (A¢ - M),
determined using parameter sensitivity analysis with Extreme Gradient Boosting regression, (D), and the optimal prediction region from the deep neural network (DNN)
regressor, overlayed with the NiTiCu ternary phase diagram [100] (E). Scaled ternary diagrams for the DNN regressor predictions of A; (F) and transformation range (G) are

also shown.

data and 20% testing data for each of the three model types can be
seen in Fig. 5A and performance metrics (measured by Mean Ab-
solute Error and Root Mean Squared Error) are summarized as bar
charts in Fig. 5B (step 12). Based on the model performances, the
deep neural network, developed using Keras [96] and Tensorflow
[97], was selected for further analysis.

Iterative predictions were made for Mg, Ay, actuation strain, and
transformation Range (Af - My) as a function of composition, pro-
cessing, and, importantly, thermo-mechanical testing parameters
using the deep neural network (step I3). The test parameters in-
cluded applied stress levels of 0 MPa to 300 MPa in order to eval-
uate the performance of the predicted compositions and estimate
the change in transformation range under applied stress. Many of
the predicted compositions with theoretically small transformation
range were found out to lie outside the original dataset composi-
tion space, allowing the discovery of new alloys. The predictions
were then constrained by the design requirements (Mg > 20 °C, Af
< 50 °C), and any predictions outside these bounds were elimi-

nated. For alloy selection, a weighted-sum (75% for transformation
range, 25% for actuation strain) multi-objective Bayesian optimiza-
tion was used (S1) to determine which predictions would have the
highest Expected Improvement (EI) for the transformation range
(minimization) and actuation strain (maximization).

2.3. AIMS predictions for SMAs

In general, the results predicted that alloying NiTi with Cu, Pd,
and Au would exhibit the best results in terms of narrow thermal
transformation ranges. However, NiTiPd and NiTiAu alloys were not
pursued due to the high cost, elevated transformation tempera-
tures, and increase in transformation range under an applied stress
[61,64,98]. NiTiCu was predicted to have a small transformation
range (Fig. 3E and G) and good actuation strains within the de-
sign constraints. The best predicted performance within the NiTiCu
system was for Niz;Tis;Cuy; (at. %) with a predicted homogeniz-
ing heat treatment of 925 °C for 48 h and hot rolling reduction to
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Fig. 4. NiTiCu ternary phase diagram visualization [100] with training data used in the machine learning model (green), the predicted optimal composition (red), and other

NiTiCu validation points (blue).

20% at 850 °C (predicted transformation range of 7 +/- 4 °C and
predicted actuation strain of 2.0 +/- 0.5% under 50 MPa stress).
This result was surprising and completely unexpected, as Cu typ-
ically substitutes Ni, and Ti is usually held at 50 at.% for conven-
tional NiTiCu SMAs [73,74]. The compositions of NiTiCu that were
present in the training data (Fig. 4) lie primarily in the single-
phase region of the phase diagram. Predictive capabilities outside
traditional alloy composition design space further justify the use-
fulness of machine learning in materials design. NiTiCu predictions
for martensite finish, austenite finish, transformation range, and
actuation strains for varying heat treatment temperatures (425 °C
to 925 °C) and varying stresses (50 MPa to 300 MPa) can be found
in the supplementary materials. In addition, NiTiCu-X (X: Pd, Au,
and Hf) predictions (incrementing by X content) are also visualized
in the supplementary text (Supplementary Tables S6-S8).

2.4. Alloy fabrication and thermomechanical characterization

The predicted optimal material Nis;Tig;Cuy; was then fab-
ricated and experimentally characterized, and the experimen-
tal results and predictions were compared (S3). In addition to
Ni3,Tig7Cuyq, several other Ti-lean NiTiCu samples were synthe-
sized and compared. The compositions were arc melted from high
purity raw materials (>99.99%), in an argon atmosphere. The al-
loy buttons (60 g) were flipped and remelted 5 times, sealed in
a quartz tube under argon, and homogenized at 925 °C for 48 h,
and hot rolled at 850 °C to 20% reduction in thickness, as pre-
dicted by the machine learning model. The material was then cut
using wire electrical discharge machining (wire-EDM) to extract
a 3 mm-diameter x 1 mm-thick differential scanning calorime-
ter (DSC) specimen and dog-bone-shaped tensile testing specimens
with gage dimensions of 8 mm x 3 mm X 1.0 mm. The specimens
were polished to 1 um surface finish prior to testing to remove the
possible effects of an EDM recast layer. A TA Instruments Q2000
Differential Scanning Calorimetry (DSC) was used to determine the
stress-free phase transformation temperatures of the arc melted
button. The material was thermally cycled 2 times at a heating-
cooling rate of 10 °C min~!. Stress-free transformation tempera-
tures were determined from the DSC peaks using the slope line ex-
tension method as described in ASTM F2004-17. The latent heat of

transformation was also calculated from the area under the trans-
formation peaks.

Isobaric heating and cooling experiments were performed on
the Ni3;Tigz;Cuy; SMA in an effort to characterize its transforma-
tion behavior, including the evolution of transformation temper-
atures, actuation strain (measured as the strain recovered during
reverse transformation), irrecoverable strain (measured as the open
loop strain at the upper cycle temperature) and thermal hysteresis
(measured as the width of the strain vs. temperature loop corre-
sponding to one half the transformation strain) as a function of
stress. Tests were performed on a servo-hydraulic MTS test frame.
Strain was measured using a high-temperature extensometer di-
rectly attached to the gage section of the samples. Samples were
heated through conduction from the grips with heating bands.
Cooling of the samples was achieved by conduction by flowing
liquid nitrogen through copper tubes wrapped around the grips.
The rate of heating and cooling during mechanical testing was
10 + 2 °C min~!. The temperature was measured using a K-type
thermocouple, directly attached to the gage section of the sam-
ples. Test was initiated by heating the specimen to 125 °C and then
loading to 2 MPa (a small stress level enough to ensure whether
the specimen transforms within the selected temperature range
without causing transformation induced plasticity). The specimen
then undergoes a single thermal cycle (cooling to 0 °C and then
heating back to 125 °C) while maintaining the applied stress. Upon
completion of the thermal cycle, the load is increased by 50 MPa
and another thermal cycle is performed under constant stress. This
procedure is repeated until specimen fails.

For constant-stress thermal cycling experiments, a custom-built
test frame was used to cycle the sample 800 times. 50 MPa was
applied to the Ni3,Tig;Cuy; SMA through a dead load hanging from
the bottom grip. Heating of the sample was performed through
conduction from inductively heated grips. Cooling was performed
through convection using a muffin fan. Heating and cooling rates
during thermal cycling were maintained at approximately 65 °C
min~! and 35 °C min~!, respectively. Displacement was measured
using a linear variable differential transformer (LVDT) and recorded
displacements were converted into strain taking the 8 mm initial
gauge length of sample as reference.

The microstructure of the samples was observed using FEI
Quanta 600 FE-SEM with a voltage of 15 kV. Oxford energy dis-



W. Trehern, R. Ortiz-Ayala, K.C. Atli et al.

A.
M_ (°C)

A_(°C)

Acta Materialia 228 (2022) 117751

Transformation
Range (A_-M,, °C)

Actuation
Strain (%)

XGBoost Rand. Forest

Deep NN

200

-200

200

-200

200

-200

10.0f

0.0

1
0 100

1
5.0 10.

200 0.0
@ Training Data=="" A Testing Data==
B. 3 [MAE MAE MAE MAE

S
w
£
% RMSE RMSE RMSE RMSE
c
]
= P an . A F -

MAE MAE MAE MAE
-
3
o
<]
8 [rRmse RMSE RMSE RMSE
x

a e r " - r o

MAE MAE MAE MAE
z
=z
-3
9| RMSE RMSE RMSE RMSE
(=]

0 10 20 30 40 -1 0 1 0 10 20 30 40 -1 0 0 5 10 15 20 -1 0 1 0002040608 -1 0 1

M, (°C) A (°C)

Transformation
Range (A-M,, °C)

Actuation
Strain (%)

Fig. 5. Visualization of machine learning regressor model fitting to the shape memory alloy data set (A) and respective error metrics and histogram of residual errors (B).
80% of the data was used to train the model and 20% of the data was used to test the model performance. MAE: Mean Absolute Error, RMSE: Root Mean Squared Error.

persive X-ray spectroscopy (EDS) system equipped with X-ray map-
ping and digital imaging was used to determine the composition of
the matrix and the second phase present in the homogenized and
hot rolled samples. The second phase area fraction was quantified
using Image] software for the backscatter electron images.

3. Results and discussion
3.1. Thermomechanical characterization results

The predicted and experimental DSC results for Niz;Tig;Cuyg
(Fig. 6A) showed a transformation range of ~9.5 °C (A = 41.2 °C,
M¢ = 31.7 °C) with the latent heat of transformation for marten-
site (M) to austenite (A) transformation of dHy.a= 14.89 J/g and
for austenite to martensite transformation of dHp_y=14.71 ]/g. This
transformation range differs from the predicted by 2.5 °C, which
is within the prediction standard deviation (7 +/- 4 °C). This is a
remarkable agreement considering the large differences in trans-
formation ranges observed in SMAs. The other Ti-lean composi-
tions were tested in DSC, and the results are tabulated (Table 1)
and compared with the respective predictions in Fig. 7. It is clear
that Ni3;Tig;Cuyy exhibits a smaller transformation range than the
other Ti-lean NiTiCu samples, with 5.4 °C decrease from the small-
est transformation range Ti-lean sample.

The predictive capabilities of the model remain accurate even
in the presence of an applied stress. We note that known esti-

mators, such as the middle eigenvalue (A,) of the transformation
stretch tensor between austenite and martensite lattices, are un-
able to predict the thermal hysteresis or transformation range un-
der stress. This is especially true for more ductile SMAs, such as
Cu-based ones, which exhibit thermal cyclic instability under stress
as defects form more readily, increasing frictional resistance to in-
terfacial motion. In addition, the differences in the elastic constants
of austenite and martensite phases influence the thermal hysteresis
and transformation range under stress, with different elastic defor-
mation levels occurring in the two phases during thermal cycling
with an applied stress, leading to changes in the compatibility be-
tween the transforming phases. Furthermore, plastic accommoda-
tion and relaxation of coherency strains as an interface bypasses
dislocations and precipitates causes dissipation of elastic strain en-
ergy, leaving less elastic strain energy to assist the reverse trans-
formation, increasing the thermal hysteresis of an SMA [27].

Ni3, Tig7Cuyy was then thermally cycled under different tensile
stresses to determine the stress vs. temperature phase diagram
(Fig. 6C). It is observed that below 150 MPa, the SMA undergoes
a fully reversible transformation exhibiting no irrecoverable strain.
The maximum value of actuation strain was recorded as ~2% at
200 MPa at the expense of a 0.2% irrecoverable strain. Transforma-
tion range under 2 MPa is 5.3 °C, which is even smaller than the
one measured from DSC results, and increases with increasing ap-
plied stress, reaching 7.8 °C at 50 MPa and finally exceeds 20 °C at
200 MPa.
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The actuation strains as predicted by the deep neural net-
work are remarkably close to the experimental actuation strains
(Fig. 6B). The actuation strains are generally lower than other NiTi-
based alloys due to the single stage martensitic transformation
from cubic (B2) to orthorhombic (B19) in NiTiCu compositions
with Cu content greater than 20 at.% [99], which may have con-
tributed to the models high predictive accuracy considering the
small range of actuation strain values. The model captures the
change from cubic-monoclinic (<20 at.%) to cubic-orthorhombic
(>20 at.%) martensitic transformations well for both transforma-
tion range and actuation strains (shown in supplementary materi-
als). This indicates a trade-off between large actuation strains (for
Cu<20 at.% showing B2-B19’) and small transformation ranges (for
Cu>20 at.% showing B2-B19). This insight is not only a testament
of machine learning predictive capabilities, even in the absence of
microstructural data, but also demonstrates a need for interpreta-
tion of predictions through scientific reasoning.

Based on the stress vs. temperature phase diagram, a stress
level of 50 MPa was selected for constant-stress thermal cycling
experiments since the alloy satisfied the transformation tempera-
ture boundary conditions at this stress level (M > 20 °C and Af¢
< 50 °C). Specimens were subjected to 800 thermal cycles un-
der 50 MPa constant stress, revealing 1.7% actuation strain, ex-
cellent cyclic stability, 5.2 °C thermal hysteresis under stress, and
16.7 °C transformation range under stress at the end of the 800
cycles (data for strain evolution shown in Fig. 8A, the last 5 cy-
cles are shown in Fig. 8B). Inarguably, SMAs with such cyclic sta-
bility and extremely narrow thermal hysteresis under stress would
be ideal materials for actuation applications near ambient temper-
atures and especially for thermal energy harvesting applications,
where low temperature gradients are encountered.

The Nis;Tig7Cuy; sample is in the two-phase region of the
phase diagram [100] and is expected to show (Cu, Ni),Ti precip-
itates. The microstructure was confirmed to have the (Cu, Ni),Ti
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precipitates with an area fraction of 14% after heat treatment as
seen in SEM/BSE images with composition confirmation using EDS
(Fig. 9). After hot rolling, the precipitates are slightly elongated
in the rolling direction (RD), retaining a similar second phase
area fraction of 12%. In addition to the inherent lattice compat-
ibility in NiTiCu alloys, it is likely the internal stresses at the
interfaces between the transforming matrix and (Cu,Ni),Ti pre-
cipitates help to enable the B2«<-B19 transformation to follow the
same low energy path during each thermal cycle [101,102],
yielding excellent cyclic stability and small transformation
range.

3.2. Comparisons with other NiTi-based alloys

The data for the Ni3;TigzCuy; alloy and various other NiTi
based alloy systems from the dataset were plotted against the two
most important features for the transformation range as identified

by XGBoost (Fig. 10). The features identified as the third and
fourth most important ones - Ni content (at. %) and final heat
treatment in Fig. 3D - are also indirectly considered by plotting
only solution treated alloys in Fig. 10 that are equiatomic, based
on the elemental substitutions. The important features exhibit
distinct separate regions for the compositions and the transfor-
mation ranges, indicating that these features identified with the
XGBoost regressor greatly impact the transformation range for dif-
ferent alloy compositions. The Mendeleev number is an ordering
number attributed to each chemical element, ordering them by
similar properties (using the chemical scale) along a singular axis
[103,104]. The importance of average enthalpy of fusion may not
have any physical meaning, however, it allows for compositional
mapping of different SMA compositions and separation of high
and low transformation ranges in a single dimension. These results
point to a chemical space that holds promise for future efforts to
design SMAs with narrow transformation ranges.
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The measured transformation ranges under zero applied stress
(in DSC) for various NiTi-X compositions are visualized as a box-
plot in Fig. 11A. Compared to other NiTi-X compositions tested
in DSC for bulk specimens, the Nis;Tig;Cuy; alloy designed, fab-
ricated and tested in this study (#12 (predicted) and #13 (ex-
perimental), in red) exhibited the narrowest transformation range.
The well-known, near-zero thermal hysteresis SMA composition,
Ti5oNizq4Cuqp3Pds g, has no visible hysteresis in electrical resis-
tivity measurements, however, in DSC the alloy shows a transfor-
mation range of ~27 °C and a thermal hysteresis of ~15 °C [15].
The resistivity of the austenite (B2) and martensite (B19) phases

are very similar for the Tisg;Nisg4qCuip3Pds; sample, which re-
sulted in a very subtle change during martensitic transformation
[15]. However, the reasons for the differences in SMA transforma-
tion characteristics between the DSC and resistivity measurements
are not very well known. In comparison, we present in this work
the Ni3;Tig;Cuyy alloy with a transformation range of 9.5 °C and
thermal hysteresis of 3.9 °C as confirmed by DSC.

The isobaric heating and cooling at various stress levels indi-
cates that the Ni3,Tis;Cuy; alloy under 50 MPa shows a transfor-
mation range of 7.8 °C, a thermal hysteresis of 3.2 °C, and fully
recoverable transformation strain of 1.2%. In the case where higher

10
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actuation strain is desirable with slightly elevated transformation
temperatures, 100 MPa will yield a transformation range of 11.5 °C,
thermal hysteresis of 3.5 °C, and fully recoverable transformation
strain of 1.7%. The dislocations at stress levels above 100 MPa
lead to significantly larger transformation ranges and irrecoverable
strains, for example, at 150 MPa the transformation range increases
to 171 °C, thermal hysteresis increases to 6.5 °C, and transforma-
tion strain is 2.03% with irrecoverable strain of 0.07%. With an ap-
plied stress, the Nis;Tigz;Cuy; alloy retains the small transforma-
tion range whereas many other NiTi-based alloy compositions with
small transformation range and hysteresis do not. For compari-
son, a TisgNis3 5CuiysPd4 sample at 47.6 MPa has a transformation
range of 25 °C, thermal hysteresis of 15 °C, and actuation strain of
1.47% [16].

Available experimental data for the minimum transformation
ranges measured under tensile stress during isobaric heating and
cooling experiments were plotted for each composition, shown in
Fig. 11B. Under an applied stress, the Nis,Tig;Cuy; alloy identified
in this study showed a 6 °C lower transformation range than the
nearest NiTi-X alloy. The predicted transformation range at lower
stress levels is slightly more accurate than at higher stress levels
(Fig. 11B). This could be due to the model’s inability to accommo-
date for the accumulation of irrecoverable strain and defect for-
mation at each stress level, effectively increasing the transforma-
tion range in the material. For visualization of all predictions in
this work, refer to the supplementary materials for the predicted
ternary diagrams for all targeted properties in NiTiCu for various
stress levels and for heat treatments.

4. Summary and conclusions

The Artificial Intelligence Materials Selection (AIMS) frame-
work in this work was successfully deployed for guiding mate-
rials informatics and machine learning approaches in SMAs. The
material-agnostic framework can also be utilized in other datasets
to analyze and predict within various material systems. Informa-
tion can also be attained through the use of material descriptors
and feature engineering, aiding in discovery of new composition-
processing-property relationships. The iterative workflow allows
for the navigation through high dimensional material spaces and
rapid development of materials with targeted properties.

Here, a shape memory alloy (SMA) that maintains a narrow
thermal hysteresis and transformation range under stress was
identified by employing AIMS and a new SMA dataset developed
with more than 6000 discrete experimental data points. This work
has outlined all necessary information for the creation of an SMA
database for use in machine learning, and this study has also
proven the need for interpretation of machine learning predictions
through scientific reasoning. This work is also the first to model
the transformation range and actuation strains for various stress
levels in SMAs. These target material properties are two of the
most important properties to optimize when designing an SMA for
actuator applications. A region showing promise for designing fu-
ture SMAs with narrow transformation ranges was also mapped for
the Enthalpy of Fusion and the Mendeleev Number, guiding poten-
tial studies in the future iterations of AIMS for SMAs.

The fabrication and experimental characterization of the de-
signed alloy demonstrated the lowest transformation range and
thermal hysteresis under an applied tensile stress reported thus
far for NiTi-based SMAs, as well as excellent cyclic stability,
agreeing very well with the predictions of the machine learning
model. All generated predictions for NiTiCu (supplementary ma-
terial) can provide valuable transformation characteristics for the
entire NiTiCu system to aid other research in alloy design. These
results also indicate that SMA technology can efficiently work at

1
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very low temperature gradients and also show promise for low-
grade thermal energy harvesting applications.
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