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a b s t r a c t 

Bayesian Optimization (BO) has emerged as a powerful framework to efficiently explore and exploit ma- 

terials design spaces. To date, most BO approaches to materials design have focused on the materials 

discovery problem as if it were a single expensive-to-query ‘black box’ in which the target is to optimize 

a single objective (i.e., material property or performance metric). Also, such approaches tend to be con- 

straint agnostic. Here, we present a novel multi-information BO framework capable of actively learning 

materials design as a multiple objectives and constraints problem. We demonstrate this framework by op- 

timally exploring a Refractory Multi-Principal-Element Alloy (MPEA) space, here specifically, the system 

Mo-Nb-Ti-V-W. The MPEAs are explored to optimize two density-functional theory (DFT) derived ductility 

indicators (Pugh’s Ratio and Cauchy pressure) while learning design constraints relevant to the manufac- 

turing of high-temperature gas-turbine components. Alloys in the BO Pareto-front are analyzed using DFT 

to gain an insight into fundamental atomic and electronic underpinning for their superior performance, 

as evaluated within this framework. 

© 2022 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. 
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. Introduction 

.1. Motivation 

Improved gas-turbine engine (GTE) technology requires the con- 

inued development of high-temperature materials with higher 

trength and creep resistance at operational temperatures. The cur- 

ent materials of choice for use in such extreme operating con- 

itions are Ni-based superalloys [1] . As gas-turbine efficiency can 

e improved by increasing the inlet temperature to the engine 

2] , there is a motivation to operate gas turbine engines at in- 

reasingly elevated temperatures. Currently, Ni-based superalloys 

perate at temperatures approaching their melting temperatures 

 ∼ 0 . 9 T m ) [3] . Novel gas turbine technologies require metallic ma-

erials that can perform at temperatures exceeding 1150 ◦C, beyond 
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hich nickel-based superalloys are unable to perform due to inher- 

nt limitations from their melting temperatures [1] . While sophis- 

icated cooling systems, such as cooling channels [4] , thermal bar- 

ier coatings [5] , and engineering of thermal conductivity [5] , have 

een employed in the design of modern jet turbine blades, Ni- 

ased superalloys are quickly approaching their operational limit, 

purring exploration for novel, ultrahigh-temperature materials. 

Recently, refractory multi-principal-element alloys (MPEAs) 

ave garnered much attention as an emerging class of high- 

emperature materials. MPEAs consist of several alloying compo- 

ents (typically 4 or more) with concentrations ranging from 5 

o 35 at.%, whereas conventional alloys rely on a single predom- 

nant constituent. Refractory MPEAs generally form body-centered- 

ubic (bcc) solid solutions [6] that have been shown to possess 

igh-temperature properties comparable to those of the current 

i-based superalloys [7] . The compositional complexity of these re- 

ractory MPEAs creates opportunities to design alloys with unique 

roperties, such as high-temperature yield strength [7] , low den- 

ity [8] , creep resistance [9] , and oxidation resistance [10] . How- 

https://doi.org/10.1016/j.actamat.2022.118133
http://www.ScienceDirect.com
http://www.elsevier.com/locate/actamat
http://crossmark.crossref.org/dialog/?doi=10.1016/j.actamat.2022.118133&domain=pdf
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ver, while refractory MPEAs may satisfy performance constraints 

t elevated temperatures, due to the ductile-to-brittle-transition 

emperature of these alloys, many are brittle at room tempera- 

ure and thus not machinable. The extreme difficultly associated 

ith processing refractory alloys has historically limited their de- 

elopment [11] . In fact, room temperature ductility is a significant 

ottleneck in the development of refractory MPEAs [12] . For this 

eason we proposed a novel framework capable of multi-objective 

ayesian optimization and active learning of multiple constraint 

oundaries in order to optimize for ductility in refractory MPEAs 

hile under GTE relevant design constraints. 

With the advent of Integrated Computational Materials Engi- 

eering (ICME), it has become possible solve the inverse problem 

nd design alloys with tailored properties [13] . ICME relies on sim- 

lation in tandem with experiments to build linkages along the 

rocess-structure-property performance (PSPP) chain. Performance 

onstraints are often defined in terms of materials properties. In 

urn, these materials properties are dictated by the structure of the 

aterial. Finally, the structure of the material is determined by the 

rocessing conditions used to realize the material. When inverted, 

hese linkages can guide the search for alloys that meet certain 

erformance constraints. Thus within an ICME framework, refrac- 

ory MPEAs can be designed, in principle, with ductility in mind. 

Other works where Bayesian optimization is used within the 

CME paradigm include examples of mutli-objective optimization, 

ptimization under unknown constraints, and active learning to 

educe the design space. Regarding multi-objective optimization, 

olomou et al. [14] demonstrated tri-objective Bayesian optimiza- 

ion for the design of precipitation hardened shape memory alloys, 

imultaneously optimizing for austenitic finish temperature, spe- 

ific thermal hysteresis (defined by the difference of austenitic fin- 

sh temperature and martensitic start temperature), and the max- 

mum transformation strain. Regarding Bayesian optimization un- 

er constraints, Griffiths et al. [15] were able to optimize drug- 

ike molecules while under the constraint that said molecules must 

e valid molecular structures. The Bayesian optimization was per- 

ormed over the latent space of a variational autoencoder that en- 

oded the molecular structure of candidate designs. The authors 

sed Bayesian Neural Network (BNN) classifiers that would output 

he probability of a point in the latent space being mapped to a 

alid molecular structure or not. Optimization was then carried out 

n feasible regions of the design space. Regarding active learning 

o reduce the design space, using the e-PAL framework, Jablonka 

t al. [16] were able to use active learning to efficiently estimate 

he Pareto-front during the multi-objective design of polymers for 

ispersant applications. The polymers were designed for optimal 

dsorption free energy, dimer free energy barrier, and radius of gy- 

ation. The polymer design space was iteratively reduced as e-PAL 

lassified points as either likely dominated or likely Pareto optimal, 

ctively learning the Pareto-front. The framework converges when 

ll remaining points are classified as dominated (disregarded) or 

areto optimal. 

In this work, we present a novel framework to perform multi- 

bjective Bayesian optimization under unknown constraints. The 

ramework is capable of actively learning the constraint bound- 

ries as well as iteratively reducing the design space by discern- 

ng between feasible and infeasible design regions. We seek to 

omputationally link structure to property in refractory MPEAs by 

ptimizing well-known ductility indicators, i.e., Pugh’s ratio and 

auchy’s pressure. The framework is benchmarked by designing 

uctile refractory MPEAs while under two constraints (density and 

olidus temperature) relevant to gas turbine application as a case 

tudy. Furthermore, a detailed DFT calculations is done on pre- 

icted MPEAs to assess underlying features driving ductility and 

ts origin. While this work is limited to ductility, there exists op- 

ortunity to account for more objectives and constraints. 
2 
.2. Design objectives and constraints 

A known ductility indicator in refractory MPEA design is the va- 

ence electron concentration (VEC), as shown to be true theoreti- 

ally [17] and experimentally [12] . A low VEC will promote shear 

ailure and suppress cleavage failure in bcc-based alloys due to 

hear instability introduced by decreasing VEC [17] . It is a common 

PEA design rule that that refractory alloys with low VECs are 

ore ductile than those with higher VECs. For example, driven by 

he fact that equimolar HfNbTiZr and HfNbTaTiZr alloys are known 

o be ductile, Sheikh et al. [12] minimized the VEC in the HfNbTa- 

iZr alloy space under the constraint that the alloy be single-phase 

cc. This constraint was encoded by the enthalpy of mixing and 

he atomic size mismatch, which are known indicators of the sta- 

ility of the bcc solid-solution phase. The authors identified and 

ynthesized Hf 0 . 5 Nb 0 . 5 Ta 0 . 5 Ti 1 . 5 Zr which had an elongation at frac- 

ure of 18.8%. While the VEC is useful in identifying ductile alloys 

n a HTP manner, it does not explicitly account for elasticity in the 

rystal structure of the alloy. This points toward the inability of 

uch metrics to find the most ductile alloys, therefore, indicators 

hat capture the crystalline elasticity of an alloy are needed. 

The ductility/brittleness of MPEAs can also be encoded by met- 

ics derived from the elastic properties of alloys, such as the Pugh’s 

atio and the Cauchy pressure. These two indicators of ductility 

ave been used extensively in the design of ductile MPEAs [18–

0] . For pure crystalline metals, the Pugh’s ratio is defined as the 

atio of the bulk modulus over the shear modulus (B/G). This ra- 

io encodes the competition between resistance to plastic deforma- 

ion (G) and the fracture strength (B); Thus B/G captures the extent 

f the plastic range without fracture [21] . Pettifor [22] proposed 

auchy pressure as an indicator of intrinsic ductility/brittleness, 

hich is the difference of two elastic constants C 12 and C 44 . A 

ositive Cauchy pressure indicates non-directional metallic bonds 

esulting in intrinsic ductility of the crystal, whereas a negative 

auchy pressure corresponds to directional bonds and results in 

n intrinsically brittle crystal structure. Both indicators can be es- 

imated with high-fidelity DFT frameworks at great computational 

ost. However, as the MPEA composition space is combinatorically 

ast, sufficient exploration of the space is intractable using conven- 

ional (computational or experimental) approaches. 

Furthermore, while a given alloy may be ductile, its other prop- 

rties may not be appropriate for GTE applications. For example, 

 ductile alloy may be too dense ( ρ < 11 g/cc) for use in avia-

ion. Likewise, an alloy that is optimized for ductility may have 

oo low of a solidus temperature ( T s < 20 0 0 ◦C) for use inside the
ot-zones of GTEs. While we do not wish to optimize for these 

wo properties, we still must classify alloys based on whether they 

eet said constraints. Therefore, to explore effectively this vast de- 

ign space for ductile alloys while under design constraints related 

o GTE application, and under resource constraints due to the high 

ost of the DFT truth-model, intelligent optimization schemes ca- 

able of balancing resources between optimization and classifica- 

ion are needed. This classification step essentially aims to discover 

he feasible alloy space amenable for further optimization. 

.3. Multi-information source, constraint-aware bayesian 

ptimization 

Limitations on computational resources is a bottleneck in solv- 

ng optimization problems in engineering applications. Many of en- 

ineering systems are in the form of black-box objective functions 

hat require numerical approaches to search the input space for de- 

igns corresponding to optimum values of the quantities of inter- 

st. Among the proposed approaches for such design applications 

re Bayesian optimization (BO) techniques. Bayesian techniques of- 

er a more efficient optimization by employing a heuristic-based 
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earch and, more importantly, the ability to update the system’s 

tate of knowledge continuously as new observations are intro- 

uced to the system. 

Furthermore, in many instances in materials engineering, sev- 

ral models are available that represent the same system of in- 

erest. These models are based on different assumptions and/or 

implifications, and thus differ in fidelity and cost of evaluation. 

hese models are treated as sources that provide useful informa- 

ion about a quantity of interest and are thus called information 

ources . In Refs. [23–27] , it has been shown that employing multi- 

nformation sources in multi-fidelity BO frameworks offers a more 

obust and efficient approach to implement in design applications 

n comparison to single model optimization techniques. 

In multi-information source BO, the assumption is that ev- 

ry source contains useful information regarding optimum design; 

hus, accurately fusing these sources results in a fused model that 

an mimic the response of the highest-fidelity model, known as 

he ground truth, enabling the search of the design space for the 

ptimum design at no considerable computational cost. As later 

evelopments of the works [23–27] , in Ref. [28] , a novel frame- 

ork is proposed that is capable of optimizing multiple objectives 

n multi-fidelity settings. In many engineering applications, there 

re several quantities of interest to be optimized simultaneously 

hat urges the need for multi-objective optimization techniques. In 

ef. [28] , it has been shown that single fidelity approaches either 

sing a BO framework or other techniques such as ParEGO and ge- 

etic algorithms are outperformed computationally when multiple 

ources of information contribute to provide information about the 

uantities of interest. 

Regarding classification (or identification of a materials feasible 

pace), a challenge in constrained optimization problems is cor- 

ectly recognizing the feasible regions and their boundaries. Al- 

hough sometimes checking the feasibility of a design input is done 

t no considerable costs, for example, by simply inserting the de- 

ign variables into a analytical equation, there exist cases that con- 

traints are defined by computationally expensive models which 

akes it impractical to verify the feasibility of every single de- 

ign by querying their respective models. Therefore, constructing 

heaper machine learning models to represent the constraints can 

educe the overall cost of solving a constrained optimization prob- 

em. 

A natural choice is to use surrogate models and information- 

heoretic approaches to learn the constraint models and accu- 

ately estimate their value at different locations in the input space 

29] . However, it might be unnecessary to model the constraint 

ver the entire input space as the boundary separating the fea- 

ible and infeasible regions is what is truly of importance. Thus, 

n this study, we propose a Bayesian classification (BC) framework 

hat uses classifiers and an active learning technique to effectively 

earn the constraint boundaries and recognize the feasible regions 

ia checking the class memberships of any locations in the in- 

ut space. Similar to multi-fidelity BO frameworks, in classification 

roblems, there may exist several information sources that model 

he same constraint. Thus, we introduce our classification frame- 

ork in form of a multi-fidelity BC configuration. Then, by coupling 

his multi-fidelity BC framework with the multi-objective multi- 

delity Bayesian framework introduced in Khatamsaz et al. [28] , 

e create a design framework that actively learns the constraint 

oundaries and guides the search toward the optimum design by 

ecognizing the feasible regions. 

Here, we make further developments to the multi-objective, 

ulti-fidelity BO framework introduced in Ref. [28] and propose a 

ovel approach to solve constrained-design problems. Specifically, 

e deploy this framework in the Mo-Nb-Ti-V-W system, an exem- 

lary MPEA system. By balancing the need to learn the constraint 

oundaries more accurately with improving the system’s knowl- 
3 
dge about the optimum values of quantities of interest, our pro- 

osed framework is able to make decisions about the best action 

o take at every stage of the process. 

. Methods 

.1. Gaussian process regression 

In the context of BO, surrogate models are employed to model 

he behavior of objective functions and to represent a cheaper 

ource to estimate the objective values associated to different de- 

ign inputs and then calculate the expected gains regarding a po- 

ential design evaluation at much lower computational costs with- 

ut the need to call the objective function directly. 

We have implemented Gaussian process regression (GPR) to 

odel objective functions [30] . Gaussian process models are pow- 

rful tools for probabilistic modeling purposes. They are easy 

o manipulate and simple to update as new observations are 

ade available. In multi-fidelity BO frameworks, there are several 

ources to estimate the same quantity of interest at different fi- 

elity levels, each providing key piece of information about the 

round-truth quantity of interest. In presence of multi-information 

ources, several Gaussian processes are constructed to represent 

he response surface of these information sources. 

Following Refs. [26,27] , we assume we have available some set 

f information sources, f i (x ) , where i ∈ { 1 , 2 , . . . , S} , that can be
sed to estimate the quantity of interest, f (x ) , at design point x .

hese surrogates are indicated by f GP ,i (x ) . Assuming there are N i 

valuations of information source i denoted by { X N i 
, y N i } , where

 N i 
= (x 1 ,i , . . . , x N i ,i ) represents the N i input samples to informa-

ion source i and y N i = 

(
f i (x 1 ,i ) , . . . , f i (x N i ,i ) 

)
represents the cor- 

esponding outputs from information source i , then the posterior 

istribution of information source i at design point x is given as 

f GP ,i (x ) | X N i , y N i ∼ N 

(
μi (x ) , σ

2 
GP ,i (x ) 

)
(1) 

here 

μi (x ) = K i (X N i , x ) 
T [ K i (X N i , X N i ) + σ 2 

n,i 
I] −1 y N i 

2 
GP ,i 

(x ) = k i (x , x ) − K i (X N i , x ) 
T 

[ K i (X N i , X N i ) + σ 2 
n,i 
I] −1 K i (X N i , x ) 

(2) 

here k i is a real-valued kernel function over the input space, 

 i (X N i 
, X N i 

) is the N i × N i matrix whose m, n entry is k i (x m,i , x n,i ) ,

nd K i (X N i 
, x ) is the N i × 1 vector whose m th entry is k i (x m,i , x ) for

nformation source i . We have also included the term σ 2 
n,i 
, which 

s used to model observation error for information sources based 

n experiments. Without loss of generality, we employ the squared 

xponential covariance function as the kernel function specified as 

 i (x , x 
′ ) = σ 2 

s exp 

( 

−
d ∑ 

h =1 

(x h − x ′ 
h 
) 2 

2 l 2 
h 

) 

(3) 

here d is the dimensionality of the input space, σ 2 
s is the signal 

ariance, and l h , where h = 1 , 2 , . . . , d, is the characteristic length-

cale that indicates the correlation strength between the points 

ithin the dimension h . The parameters σ 2 
s and l h associated with 

ach information source can be estimated by maximizing the log 

arginal likelihood. 

When using multiple information sources to estimate a ground 

ruth quantity of interest, it is important to quantify the uncer- 

ainty in the response of the information sources with respect to 

he ground truth, which is defined as the discrepancy term to com- 

ensate for the lower fidelity estimation of the ground truth quan- 

ity of interest. We quantify the total variance that captures both 

he variance associated with the Gaussian process representation 
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nd the quantified variance associated with the fidelity of the in- 

ormation source over the input space, as 

2 
i (x ) = σ 2 

GP ,i (x ) + σ 2 
f,i (x ) (4) 

here σ 2 
f,i 

(x ) is the variance related to the fidelity of information 

ource i that can be estimated from, for example, expert opinion 

r available real-world data. 

.2. Gaussian process classification 

Similar to optimization problems, Bayes’ theorem can be em- 

loyed to calculate the joint probability p ( y , x ), where y is the class

abel, in classification problems: 

p(y | x ) = 

p(y ) p( x | y ) ∑ C 
c=1 p(C c ) p( x | C c ) 

(5) 

 challenge of Gaussian process classification (GPC) that is not 

resent in Gaussian process regression is that of non-Gaussian like- 

ihoods in GPC. To overcome this, following Ref. [30] , we use a 

iscriminative GPC approach that seeks to model p(y | x ) directly, 
hich avoids the need to specify prior distributions over p(y ) and 

he specification of class-conditional densities, p( x | C c ) . Discrimina- 

ive GPCs are probabilistic classifiers that predict the probability of 

elonging to a class by placing a Gaussian process prior over a la- 

ent function f ( X ) and computing the posterior distribution at a 

esired location x [30,31] . Here, we are not interested in the val- 

es of the latent function, but it is used to conveniently formulate 

he classifier. This latent function is responsible to connect the in- 

ut to the output, where the output is class membership proba- 

ility. Consequently, we need the latent function posterior distri- 

ution respectively. The Laplace approximation algorithm is em- 

loyed that utilizes Gaussian approximation to the posterior of the 

atent variables. The approximated posterior is then used to ob- 

ain the class membership distribution, where Monte Carlo sam- 

ling is done to estimate the class membership probability. Similar 

o the construction of Gaussian process regressions, assuming we 

ave available some set of information sources i ∈ { 1 , 2 , . . . , S} with

 i labeled samples, the latent function f i ( x ) has a multivariate nor- 

al distribution defined by 

μi (x ) = K i (X N i , x ) 
T [ K i (X N i , X N i )] 

−1 f ( X ) 

i (x ) = k i (x , x ) − K i (X N i , x ) 
T 

[ K i (X N i , X N i )] 
−1 K i (X N i , x ) 

(6) 

The class label predictions are obtained by sampling from the 

alculated posterior distribution and passing the samples through 

 sigmoid function σ , for example, the logistic sigmoid, to ensure 

he output is bounded to [0,1]. Then the mean of the obtained dis- 

ribution is the class membership probabilities. 

In the context of BC and learning purposes, the uncertainty 

ssociated to the predictions are essential in calculation of an 

xpected utility value. Note that this is the distinguishing char- 

cteristic of the Gaussian process classification as a probabilistic 

odel in comparison to other classification techniques that makes 

PC well-suited for probabilistic frameworks and learning pur- 

oses. A more detailed discussion is presented in Rasmussen and 

illiams [30] . 

.3. Information fusion of multiple sources 

Assuming that every information source participating in the op- 

imization process contains some useful information regarding the 

round truth quantity of interest, the goal is to accurately fuse the 

nformation provided by these information sources to approximate 

he quantity of interest as accurately as possible at much lower 
4

osts in comparison to evaluating the ground truth objective func- 

ion [26,32–34] . 

Several approaches exist for fusing multiple sources of infor- 

ation, such as Bayesian modeling averaging [35–40] , the use of 

djustment factors [41–44] , covariance intersection methods [45] , 

nd fusion under known correlation [46–48] . 

Our assumption is that every information source contains useful 

nformation regarding the ground truth quantity of interest and as 

ore information sources are incorporated into a fusion process, 

he expectation is to have the variance of the quantity of inter- 

st estimates decreased. This is not necessarily the case for all of 

he aforementioned fusion techniques with the exception of fusion 

nder known correlation. Unlike most traditional multi-fidelity ap- 

roaches [49–56] , in our approach, we do not assume a hierar- 

hy of information sources and our goal is optimization with re- 

pect to ground truth and not optimization with the highest fi- 

elity source. Therefore, determining correlations prior to fusion is 

ssentially important. To estimate the correlation coefficients be- 

ween information sources, we use the reification process intro- 

uced in Refs. [32,34] . In reification process, a pair of information 

ources are selected each time and they are reified (‘made real’) in 

urn, which means one information source is assumed to be the 

rue model and the deviation of the second information source 

ith respect to the reified model is calculated. These calculated 

eviations are used to obtain the correlation between the mean 

quared errors of the information sources. The covariance matrix is 

ormed after the reification is done over each pair of information 

ources. Readers are encouraged to check Refs. [26,32–34] for de- 

ailed discussion on how the correlation estimation is performed. 

n case of known correlations between the discrepancies of infor- 

ation sources, the fused mean and variance at a particular design 

oint x are defined as Winkler [48] 

 [ ̂  f (x )] = 

e T ̃  �(x ) −1 μ(x ) 

e T ̃  �(x ) −1 e 
(7) 

ar 

(
ˆ f (x ) 

)
= 

1 

e T ̃  �(x ) −1 e 
(8) 

here e = [1 , . . . , 1] T is a S dimensional column vector of 

nes, μ(x ) = [ μ1 (x ) , . . . , μS (x )] 
T given S models, and ˜ �(x ) −1 

s the inverse of the covariance matrix between the informa- 

ion sources. A more detailed discussion on this fusion tech- 

ique and some examples of its implementation are presented in 

efs. [23,25,27,32,57–60] . 

.4. Multi-objective optimization 

A multi-objective optimization problem can be defined as 

inimize { f 1 ( x ) , . . . , f n ( x ) } , x ∈ X (9)

here f 1 ( x ) , . . . , f n ( x ) are the objectives and X is the feasible de-

ign space. In multi-objective optimization problems, it is usually 

he case that there is no single solution that optimizes all objec- 

ives simultaneously. Thus, the solution to such design problems is 

 set of non-dominated designs that are not superior to each other, 

orming the Pareto-front in the objective space. In this case, opti- 

al solutions, y , to a multi-objective optimization problem with n 

bjectives are denoted as y ≺ y ′ , and are defined by 
 y : y = (y 1 , y 2 , . . . , y n ) , y i ≤ y ′ i ∀ i ∈ { 1 , 2 , . . . , n } , 

∃ j ∈ { 1 , 2 , . . . , n } : y j < y ′ j } (10) 

here y ′ = (y ′ 1 , y ′ 2 , . . . , y ′ n ) denotes any possible objective output.
he set of y ∈ Y , where Y is the objective space, is the Pareto-front

f the problem. 

There are several techniques to employ to estimate the Pareto- 

ront in multi-objective optimization problems such as weighted 
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um approach [61] , the adaptive weighted sum approach [62] , nor- 

al boundary intersection methods [63] , hypervolume indicator 

ethods [64–70] , and others. In the context of BO, and working 

ith expected improvement- based algorithms, the hypervolume 

ndicator approaches are well-suited as they allow for introduc- 

ng a single random variable, combining multiple random vari- 

bles (here, objective values), to consider the uncertainty of all 

ther variables as a whole. Thus, in a BO framework, a hypervol- 

me indicator can be the target variable to be optimized. The idea 

s to define the volume between the estimated Pareto-front and 

 fixed point in the objective space as the hypervolume and re- 

ate the expected improvement associated to each objective value 

o the total hypervolume and calculate the expected hypervolume 

mprovement. We follow the work proposed in Refs. [28,71] for 

O of multi-objective functions in presence of multiple informa- 

ion sources. An in-depth discussion on the calculation of the ex- 

ected hypervolume improvement can be found in the mentioned 

eferences and [72] . 

.5. Active learning in Bayesian classification 

Using GPCs to label the samples, there are uncertainty associ- 

ted to the label predictions that also shows how uncertain is the 

lassifier about the label at a particular location. The class mem- 

ership Y is a random variable indicated by a distribution P . In 

eneral, we look for a measure that shows the degree of uncer- 

ainty based on the given distribution for class memberships. A 

onvenient option is using discrete entropy to calculate the uncer- 

ainty in the label predictions: 

(Y ) = −
k ∑ 

i =1 

p i log (p i ) (11) 

here there are k classes and p i is the probability of belonging to 

lass i . Higher values of entropy shows the larger uncertainty of 

he classifier about the label of a sample. Thus, we look forward 

o query samples and update the classifiers at locations where the 

lassifier is highly uncertain about the true label. 

An issue when using entropy as a measure of uncertainty is 

hat in the case of multi-class classification, it is possible that the 

lassifier is only uncertain about the memberships in, for exam- 

le, two classes and is highly certain about the other class mem- 

erships that may be unimportant. This is the case when the en- 

ropy is still high, and it does not provide any information about 

he confidence on some class memberships. To address this issue, 

ollowing Ref. [73] , we can take the “Best versus second Best” ap- 

roach. This technique only considers the top two uncertain class 

emberships and measures the uncertainty based on the differ- 

nce between the two probabilities. 

For our constrained BO, we only perform binary classification 

ince we are using classifiers to separate the feasible and unfea- 

ible regions. In this case, our problem reduces to finding the 

amples closest to the classifier’s predicted constraint boundary. 

n other words, the samples with the smallest difference between 

lass membership probabilities are chosen to be queried from the 

onstraints to update the classifier and learn about the true con- 

traint boundary. 

.6. Truth model – density functional theory 

The truth model in the multi-objective optimization side 

ramework was queried through the DFT-based KKR (Korringa–

ohn–Rostoker Green’s function) method, in which the coherent- 

otential approximation (CPA) accounts properly for direct config- 

rational average over chemical disorder [74] , concomitantly with 

he charge self-consistency required within the standard DFT. One 
5 
f the objectives, i.e., bulk moduli, used by the framework were 

alculated by employing a gradient-corrected exchange-correlation 

unctional (PBE) [75] . Additionally, the Warren–Cowley short-range 

rder (SRO, given as αμν(k ; T ) ) of the designed compositions were 

alculated as implemented within DFT-KKR-CPA linear-response 

heory to analyze the ordering tendencies found in the final com- 

ositions [76–78] . 

The structural optimization to estimate local-lattice distortion 

LLD), a ductility metric of designed compositions in Table 1 , were 

erformed using the DFT method as implemented within the Vi- 

nna Ab initio Simulation Package [75,79–81] . The Perdew–Burke–

rnzerhof (PBE) generalized gradient approximation (GGA) func- 

ional [75] was employed for geometrical relaxations with total- 

nergy and force convergence criteria of 10 6 eV and 0.01 eV/ ̊A, re- 

pectively. To mimc MPEAs within a finite cell, supercells were de- 

igned using SCRAPs [82] – SuperCell Random APproximateS. We 

hose two SCRAP sizes, (i) 128 atoms for design 1, and (ii) 160 

toms for design #2 to #7 in Table 1 . The largest possible super- 

ells were used to avoid size effects [83] . The Brillouin zone in- 

egration in charge self-consistency and ionic relaxtion were per- 

ormed on 1 × 1 × 1 using Monkhorst–Pack method [84] with a 

lane-wave cutoff energy of 520 eV, where the effect of the core 

lectrons and interaction between the nuclei and the valence was 

reated by the projector-augmented wave (PAW) [85,86] . 

The DFT-KKR-CPA is expensive to query. Therefore, computa- 

ionally inexpensive alternatives, e.g., rule-of-mixtures approxima- 

ion, are needed for both the Pugh’s ratio and the Cauchy pressure 

o explore the objective space. In this work, to estimate the Pugh’s 

atio cheaply, we express the bulk and shear modulus in terms of 

he Poisson ratio. We then calculate the weighted average of the 

lemental Poisson ratio to evaluate Eq. (12) , where i iterates along 

ll N elements in the design space, νi and x i is the Poisson ratio 
f the i th element, respectively. For the Cauchy pressure, we calcu- 

ate the weighted average of C 12 and C 44 elastic constants and find 

heir difference according to Eq. (13) . 

/G = 

2(1 + 

∑ N 
i =1 νi x i ) 

3(1 − ∑ N 
i =1 νi x i ) 

(12) 

 pres = 

N ∑ 

i =1 

C 12 x i −
N ∑ 

i =1 

C 44 x i (13) 

.7. Thermodynamic simulation 

The truth model in the classification side of the framework 

as queried through a high fidelity CALculation of PHase Diagrams 

CALPHAD) based simulation scheme. Equipped with the MPEA 

pecific TCHEA5 thermodynamic database, Thermo-Calc’s equilib- 

ium simulation was used to query both the density and the 

olidus temperature. The integration of these models within this 

utomated framework was achieved using the Thermo-Calc API, 

C-Python. These thermodynamic equilibrium simulations are rel- 

tively expensive to query, As such, cheaper alternatives are re- 

uired to explore the constraint space. The rule-of-mixtures was 

sed as a cheap alternative to the CALPHAD truth model for both 

ensity and solidus temperature. 

. Results 

.1. Multi-fidelity Bayesian classification 

In this work, we use Gaussian process classification (GPC) to 

odel the constraint boundaries to distinguish the feasible and 

nfeasible regions in the design space (binary classification). A 
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Fig. 1. 2 Dimensional classification test problem. The space is divided into regions 

‘A’ and ‘B’. Two lower fidelity models estimate the true boundary. 
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C framework employs entropy measure to determine the uncer- 

ainty and search for the best next experiment to query the con- 

traints and update corresponding GPCs to decrease the labeling 

ncertainty the most. Similar to multi-fidelity BO frameworks in- 

roduced in Refs. [23,25,26,28] , a BC framework can be designed 

n multi-fidelity settings. There may exist several models to rep- 

esent the same constraint with different fidelity levels and eval- 

ation costs. Using the reification process followed by fusion of 

ultiple sources introduced in Refs. [32,48,57] , a fused classi- 

er can be constructed for each constraint that accurately models 

he constraint boundary using information gained from different 

ources. To show how a multi-fidelity BC approach is able to de- 

ermine the constraint boundaries more accurately and efficiently, 

 test problem is designed and shown in Fig. 1 . The highest fi-

elity model represents the true boundary while there are also two 
ig. 2. Boundary estimation results using single and multi fidelity Bayesian classification a

ry with 95% confidence intervals (in blue). Red dots show where the framework has chos

For interpretation of the references to color in this figure legend, the reader is referred t

6

ower fidelity models to estimate the boundary between regions ‘A’ 

nd ‘B’. 

In Fig. 2 , the results of employing the BC framework in single- 

nd multi-fidelity settings have been shown. While the black curve 

s the true boundary that is desired to be recognized, the blue 

urve shows the classifier’s estimation of the boundary with 95% 

onfidence intervals. Red dots are the locations in the input space 

ueried in the BC process to update the classifiers and decrease the 

ncertainty of classification. They show the estimated constraint 

oundary after 20, 50, and 100 queries from the highest fidelity 

odel. After every 10 queries to lower fidelity models, a fused 

odel is constructed and the design closest to the boundary is 

hosen to be queried from the highest fidelity model. The closer 

 design is to the estimated boundary, the larger the classifier un- 

ertainty is about its class membership. Note that the boundary is 

here the classifier assigns the probability of class memberships 

ery close to 50% in case of binary classification. 

As seen in Fig. 2 , employing multiple sources to represent the 

ame constraint has improved the performance of the classifier sig- 

ificantly. Not only it has estimated the true boundary more accu- 

ately with narrower confidence intervals, but also it has done so 

ith a smaller number of queries from the highest fidelity model. 

lus, the queried locations show how more effectively the frame- 

ork is able to make highly informative queries to help in deter- 

ining the constraint boundary. 

.2. Proposed design framework 

Fig. 3 illustrates the flowchart of the proposed design frame- 

ork to solve constrained optimization problems. Here, the BO and 

C frameworks are coupled to build a larger configuration that 

isely and optimally makes decisions about improving the sys- 

em’s knowledge regarding the optimum design while learning the 

onstraint boundaries to recognize the feasible design region. 

In the BO part of this design framework, the most up-to-date 

used classifiers are used to determine the feasible regions and 

revent the framework to search unfeasible regions. Therefore, be- 
pproaches. True constraint boundary (in black) versus estimated constraint bound- 

en to query. (a) and (d): 20 queries. (b) and (e): 50 queries. (c) and (f): 100 queries. 

o the web version of this article.) 
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Fig. 3. Flowchart of design framework. This flowchart shows the main steps in the design framework. Gaussian process regressions (GPRs) model the objective function and 

Gaussian process classifiers (GPCs) model the constraint boundaries. 
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ore spending any computational resources to test a set of gener- 

ted samples to search for the best next experiment, fused clas- 

ifiers determine if all samples are feasible. If not, the unfeasible 

amples will be removed and new samples are generated until we 

nd the desired number of feasible samples to test. To make deci- 

ion on feasibility of a design, we used μ − 2 σ > 0 . 5 to guarantee

t least 95 percent confidence in predictions. One can change this 

onfidence interval accordingly, depending on how hard (or dif- 

cult) is a constraint. Then, Expected HyperVolume Improvement 

EHVI) is employed as the utility function to search for promising 

esigns to query and increase the hypervolume the most and im- 

rove the estimation of the Pareto-front [72] . 

In the BC component of the framework, to actively learn the 

onstraint boundaries and increase the accuracy of the fused classi- 

ers, an entropy measure is used to gauge the uncertainty in label- 

ng the samples. Since we do binary classification to label samples 

s either feasible or unfeasible, the problem is reduced to finding 

he closest samples to the predicted constraint boundary by clas- 

ifiers. At every iteration of the framework, a decision has to be 

ade between querying the objective functions and thus improv- 

ng the optimum value of a quantity of interest (hypervolume in 
7

ase of multi objective optimization) or querying the constraints 

nd updating classifiers to increase the accuracy of fused classi- 

ers. 

To balance the decision between these two options, the ex- 

ected relative change to the optimum value of an objective (i.e. 

he expected hypervolume improvment) is calculated and is com- 

ared to the relative change in entropy if we update the con- 

traints. This is done by temporarily augmenting the samples de- 

ermined as the best next experiment and observing the changes 

n the corresponding values. By comparing the observed relative 

hanges in each case, the framework chooses the action that adds 

he most value to the system. Note that in both the BO and BC 

omponents, multiple information sources may have been em- 

loyed to represent every objective function and every constraint. 

hus, the selected samples are augmented to the GPR or the GPC 

orresponding to the selected information source. 

.3. Material design process 

The design framework depicted in Fig. 3 has been employed 

o solve the aforementioned alloy design problem. There are two 
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Fig. 4. Final results of introduced material design problem (a) Queried samples from the KKR model in the objective space. Final estimation of the Pareto-front shows 7 

non-dominated designs. (b) Improvement in hypervolume of the estimated Pareto-front as a function of iteration. Note that the hypervolume value is depended on the 

chosen reference point in the objective space, thus, the change in hypervolume is a better indication of making improvements to the Pareto-front estimation. 
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bjectives defined in the problem to be maximized: Pugh’s ratio 

nd Cauchy pressure. These objectives encode the intrinsic ductil- 

ty of candidate alloys. There are two GTE-relevant constraints that 

ust be satisfied: solidus temperature and density of the candi- 

ate alloys. The solidus temperature for any composition should 

e greater than 20 0 0 ◦C such that the alloy can withstand the

ot-zone inside GTEs. Furthermore, the density should be less than 

1 g/cm 
3 such that the alloy is light enough for application in avi- 

tion. The design space is 5-dimensional (including temperature). 

andidate alloys can consist of permutations and combinations of 

he following five elements: Mo, Nb, Ti, V, and W. The Thermo-Calc 

hermodynamic equilibrium model was used as the truth-model 

hat represents the solidus and density constraints. For each con- 

traint, there exists a low order rule-of-mixture approximation. Re- 

arding the objective functions, there are also two models avail- 

ble, one as the lower fidelity information source that is inexpen- 

ive to query and responds in a few seconds. Then, a high fidelity 

KR model was used as the ground truth (see Methods section). 

eing computationally demanding, the KKR-model was queried af- 

er every 10 queries from the lower fidelity information source to 

pdate the discrepancy of the low fidelity model and correct its 

stimation of the objective values. 

First remark We would like to note that the design constraints 

solidus temperature and density) are relatively easy to estimate 

sing conventional computational thermodynamic techniques. It 

ould thus be possible to simply carry out a high-throughput ex- 

loration of the materials space [87] and simply select the feasi- 

le region without any active learning step. The purpose of this 

xercise is to demonstrate the integration of the discovery of the 

easible space within a materials optimization framework. This ca- 

ability would be significant in the case of ‘real world’ closed-loop 

aterials discovery tasks in which the discovery of the feasible re- 

ion in a materials design space is highly non-trivial and depen- 

ent on exhaustive experimental characterization. For example, the 

iscovery of alloys with acceptable oxidation resistance and opti- 

al mechanical performance may depend on actual experimental 

xidation studies. Our framework is agnostic regarding the nature of 

he information sources used and thus can easily be adapted to fully 

xperimental or hybrid experimental/computational settings. 

The framework was run over 20 0 0 iterations. Regardless of how 

uch is learned about the constraint boundaries, the last 500 it- 

rations are allocated to perform only optimization to improve the 

stimated Pareto-front. In later works, an adaptive technique will 

e taken to increase the weights over optimization than classifica- 
ion as the number of iterations increase. r

8 
The results are depicted in Fig. 4 . In part (a), queried designs 

rom the KKR model are shown in the objective space and the 

olor map shows the order that queries are made. There are to- 

al of 284 queries made from the KKR model, where 229 are made 

n the last 500 iterations. The final estimation of the Pareto-front 

onsists of 7 non-dominated designs. In Table 1 , the design val- 

es corresponding to the estimated Pareto-front are specified. In 

art (b), the change in hypervolume of the estimate Pareto-front 

s number of iteration is depicted. As the number of iteration in- 

reases, the change in hypervolume value gets smaller. Further- 

ore, it takes more number of iterations to see further improve- 

ents in the hypervolume value, however, by allocating the last 

00 iteration for optimization purposes, more improvements are 

ade. This essentially shows that as we move toward the final it- 

rations, it is worth to invest on optimization and make the final 

mprovements possible to the solutions. An important point here 

s that all queried samples are satisfying both solidus tempera- 

ure and density constraints, which shows how by actively learning 

he constraint boundaries and using classifiers, querying unfeasible 

esigns is prevented. Tests show that about 20% of the randomly 

ampled designs violate at least one of the constraints. 

Fig. 5 illustrates the cumulative number of actions taken at ev- 

ry iteration. Out of 20 0 0 iterations, 634 iterations are dedicated 

o perform BO which means 634 queries are made from lower fi- 

elity model. The KKR model is queried in batch of maximum of 5 

esigns after every 10 queries to the lower fidelity model. To find 

he batch of designs to be queried from the KKR model, first, a set 

f query candidates are generated and then their expected hyper- 

olume improvement is calculated. Note that the objective values 

t every location in the design space are estimated by GPRs that 

rovide normal distributions as the estimation. Then, samples with 

ositive expected hypervolume improvement are kept and clus- 

ered by solving a k-medoid problem. Finally, the medoids (i.e. ac- 

ual points belonging to a cluster in the design space that are max- 

mally separated from other clusters) of these clusters are queried 

rom the KKR model. This approach assures a good distribution of 

he queried samples all over the space that helps to fully discover 

he non-dominated region. 

Out of 1366 queries from the constraints, 1189 queries are made 

rom the density function. The reason that the framework strug- 

les to identify the density constraint could be the complex shape 

f feasible and unfeasible regions, making it challenging to rec- 

gnize the boundary. However, the results show that the frame- 

ork has learned enough to confidently recognize the feasible 

egions. 
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Fig. 5. Cumulative number of operations as a function of iteration. For most num- 

ber of iterations, the framework has decided to query the density model and update 

its classifier. It is an indication of the complexity of the density constraint bound- 

ary and the framework struggles to learn it and reduce the classifier’s uncertainty 

in labeling the design inputs. 
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. Discussion 

.1. HTP brute force analysis to evaluate framework classification 

In order to assess the utility of using such an classification 

ramework, we benchmarked the BC of refractory MPEA space 

gainst a traditional HTP ‘brute-force’ approach. In this brute-force 

pproach the density and solidus temperature constraints were 

ueried at increments of 5 at.% considering unary to quinary sys- 

ems, resulting in 10,626 queries in total. However, with the BC 

ramework, only 1366 queries were needed to find the boundary 

n the constraint space, dramatically improving the tractability of 

he problem as the total number of queries over the potentially 

easible space was reduced by close to a factor of nine. Querying 

hese expensive information sources is beneficial as it can better 

lucidate how well the classification aspect of the framework ac- 

ually performs in this refractory MPEA space. 

In order to visualize how composition affects the constrained 

roperties (solidus temperature and density) in this 5-dimensional 

efractory MPEA space, we rely on a dimensionality reduction 

echnique known as t-distributed stochastic neighbor embedding 

tSNE). Each point represents an alloy with a distinct composition. 

n tSNE embeddings, points that are close to each other in high di- 

ensional space are plotted close to each other in 2-dimensional 

pace. Points colored in Fig. 8 c are alloys that contain 50% or more

f a particular element. Points closer to the corners of this “pen- 

agonal” shape approach unary compositions. For example, points 

ear the red corner of the tSNE are rich in vanadium; The point on 

he “corner” represents pure vanadium. Points along the edge con- 

ecting the red and blue regions are Mo-V binaries. The inner re- 

ions of the tSNE represent the refractory MPEA space. We would 

ike to point out that this representation is mostly qualitative as 

SNE embeddings only preserve the local structure of the dataset, 

hile being agnostic with regard to its global structure. 

The light blue stars represent the 7 alloys that lie on the 

ugh’s Ratio-Cauchy Pressure Pareto-front. These alloys are in the 

iobium-rich region of the tSNE. Their location in this tSNE em- 

edding provides a visualization of where in the refractory MPEA 

pace the Pareto-front lies. The location of Pareto-front in the re- 

ractory MPEA space is not completely unexpected, as Nb has a rel- 

tively low VEC of 5. However, according the prevailing VEC theory 

f ductility in refractory MPEAs [12] , Ti-rich alloys are expected to 
9 
e the most ductile in this region as Ti has a VEC of 4, the low-

st in the alloy space. However, in Fig. 6 a and b, Ti-rich regions

ave solidus temperatures below 2273 K, violating the solidus con- 

traint. The reason the framework converges on Nb-rich alloys in- 

tead of Ti-rich alloys is further demonstrated in Fig. 7 where the 

roperty space is plotted. In Fig. 7 a the VEC is plotted against 

he solidus. Many of the Ti-rich alloys (depicted as squares) fall 

eneath the 2273 K constraint. In Fig. 7 b, the Ti-rich alloys that 

o pass the solidus constraint do not have a large a Pugh’s ra- 

io as the Nb-Rich alloys (depicted as stars). While not as ductile 

s Ti-rich alloys, most Nb-rich alloys pass the density and solidus 

onstraints. The classification side of the proposed framework was 

ble to recognize the Ti-rich region of the design space as infeasi- 

le by querying the solidus information source only 177 times. 

Second remark We would also like to point out that our design 

etting is truly agnostic with regard to the complexity of the alloy 

pace. Rather than focusing on high-complexity compositions, our 

ramework optimized a set of property targets, subject to appli- 

ation specific design constraints. Whether such compositions are 

ocated within the “high entropy” alloy space is immaterial when 

rying to discover optimal alloys with a target application in mind. 

t is the view of the authors that property/constraint-aware and 

entropy” agnostic exploration of High Entropy Alloy spaces is a 

ore productive research program as compared to approaches that 

ocus on alloy complexity as the sole objective of the alloy design 

ask ( Fig. 7 ). 

.2. DFT analysis of Pareto-front-selected refractory MPEAs 

The seven Nb-V rich alloys in Table 1 with superior mechanical 

roperties that comprise the Pareto-front were selected for further 

nalysis using DFT. Singh et al. [88] has shown that the ability of 

n alloy to resist local distortion and compositional changes have 

irect impact on ductility. However, the understanding of these 

eatures controlling distortion and local compositional changes is 

urrently not discussed well. We performed detailed DFT calcu- 

ations [74,76,79] of stability (formation energy), distortion factor 

nd local distortion (atomic displacements), and short-range order 

local chemical fluctuations) on design compositions. 

Generally, refractory materials have very high moduli in the bcc 

hase because of their low compactness. The interaction between 

hese elements are weaker than other crystal structures such as in 

cc materials. Therefore, the ductility is definitely an issue, which 

elps a material to sustain against permanent (large) deformation 

nder a tensile loading at room temperature without fracturing. 

n Fig. 8 a and b, we plot BM of design compositions with re- 

pect to Nb-V composition (in atomic-fraction) and phase stabil- 

ty. The calculated BM was found in the moderate range in Fig. 8 a,

imilar to highly ductile fcc-based materials; moreover, each com- 

ositions were in the desired MPEA stability range ( −150 meV- 

tom 
−1 < E f orm 

< 65 meV-atom 
−1 ) [78] . 

In Fig. 8 c, we plotted distortion metric with respect to scalar 

isplacement, where most compositions show minimal local dis- 

ortion except #7 that has both large distortion metric and lo- 

al atomic displacement. Our findings suggest that the distortion 

actor may further get increased with temperature due to non- 

niform local contraction and expansion in different regions with 

ifferent atomic sizes, which may lead to large thermal strain in 

ocal lattices. In Fig. 8 d, we found elemental compositions can be 

uned to alter local atomic displacement that correlates well with 

uctility in refractory MPEAs [88] . To provide more detail, we plot 

istortion metric [88] with respect to difference of VEC ( �V EC ) of 

cc alloys in Fig. 8 d. The dashed line horizontal to x-axis shows 

he separation between ductile and brittle materials based on the 

tomic distortion criterion. Clearly, highly ductile materials are ex- 

ected to have low distortion as found in fcc alloys. 
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Fig. 6. t-SNE projection of the MoNbTiVW alloy space. Colored points in the reference embedding (right) denote alloys that contain alloys that contain 45% or more of a 

particular element. The solidus temperature is plotted on the same embedding (right). Likewise, the density is plotted on the embedding (left). 

Fig. 7. t-SNE projection of the MoNbTiVW alloy space. Colored points in the reference embedding (right) denote alloys that contain alloys that contain 45% or more of a 

particular element. The solidus temperature is plotted on the same embedding (right). Likewise, the density is plotted on the embedding (left). 

Fig. 8. DFT analysis of thermodynamics and structural properties. (a,b) We plotted bulk-moduli with respect to atomic-fraction (Nb + V) and formation-enthalpy (E f orm ).The 

structural analysis of key mechanical properties responsible for ductility in Refractory MPEAs, (a) local-lattice distortion with respect to (c) static-displacement, and (d) 

valence electron count difference in bcc alloys. 

10 
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Fig. 9. Electronic-structure and short-range order and analysis. (a) Total DOS at Fermi energy for MPEAs in Table 1 . (b) The total density of states (DOS) plot for two key 

design compositions from the shaded region in (a), i.e., #2 and #7. (b) The total density of states, and (c,d) short-range order for #2 and #7. 

Table 1 

Non-dominated designs corresponding to the Pareto-front in Fig. 4 . Compositions 

reported in atomic percentage. 

Composition elements Mo Nb Ti V W 

Design 1 0.014 0.738 0 0.233 0.015 

Design 2 0.0330 0.8080 0.0090 0.0890 0.0610 

Design 3 0.0100 0.7460 0.0050 0.0910 0.1480 

Design 4 0.0110 0.6840 0.0150 0.2740 0.0160 

Design 5 0.1140 0.7350 0.0010 0.1490 0.0010 

Design 6 0.0150 0.8410 0.0550 0.0010 0.0880 

Design 7 0.0140 0.7550 0.0160 0.2020 0.0130 
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Furthermore, defects are very common to refractory alloys, 

hich are detrimental for ductility. Notably, it has been reported 

hat the presence of tungsten up to 5 at.% in refractory-based 

PEAs [83] either slows down or stops the formation of new 

efects, moreover, high-vacancy migration energy of heavier el- 

ments also slows down the diffusion of defects. Although our 

ramework was not optimized for defect related properties, the 

resence of small to moderate at.% molybdenum/tungsten further 

ffirms that new designed compositions in Table 1 satisfy critical 

eature requirements for ductility. This understanding of low defect 

oncentration in tungsten based alloys can be helpful as the de- 

ect creation and propagation into crystal phase make them more 

ragile at higher strains, which is not desired for high-temperature 

pplications. 

The disorder has been shown to induce change in the DOS 

t/near electronic Fermi energy [89] , which can be interpreted 

s the effect of disorder and electron correlation. The transition- 

etal-based refractory MPEAs are among the candidate alloys due 

o the presence of their partially filled d-bands. In Fig. 9 a, we plot

he value of total DOS (TDOS) at the Fermi-level. We found an in- 

eresting trend where #2 and #7, despite having the same TDOS 

alues at the Fermi-level, show opposite trends in energy stabil- 

ty. To understand this contrast, we plot total density of states for 

oth the alloys in full energy range ( −6 eV to 3 eV). Despite being

nergetically stable #2 shows an unstable peak at the Fermi-level 

hile #7 shows valley in density of states, and this feature in DOS 

as been found to correlate well with the alloy stability [90] . But 

e do not know if this small but finite change in DOS structure at 

he Fermi-level has any severe impact on thermodynamic behav- 
11 
or or charge fluctuations at finite temperature. The SRO analysis 

an give us useful information related to local change of chemical 

ompositions, which is a critical aspect of ductile materials. 

The local chemical fluctuations [91] , if significantly large, may 

ffect the synthesis of single phase alloy and mechanical prop- 

rties, therefore, we believe understanding change in local re- 

ponse, i.e., short-range behavior (SRO), can give useful guideline 

egarding minimizing pronounced changes of chemical composi- 

ion. The SRO theory [76] uses local atomic interaction to predict 

ocal chemical behavior, this is important as changes in chemical 

omposition has a strong connection with interaction of alloying 

lements. 

In Fig. 9 c and d, we plot the SRO for #2 and #7 MPEAs to reflect

n temperature dependent changes in their chemical behavior. 

oth the alloys in Fig. 9 c and d show clustering trend below spin-

dal temperature (T sp ) driven by Mo-W pairs. An absolute instabil- 

ty to k o mode [76] occurs below T sp , where [ α(−1) (k o ; T sp )] IJ μν = 0 .

or k o = (0 0 0) , the alloy is unstable to segregation (atomic or

acancy clustering), rather than local ordering. Interestingly, we 

ound that the #7 shows competing ordering (B2 (H = 111) type) 

ode while clustering ( �) mode is slightly stronger, i.e., � = (0 0 0)

eak compete with finite k o peak. The most unstable SRO mode 

or both the alloys with large chemical fluctuation has the largest 

eak in αμν(k o ; T > T sp ) at wavevector k o for a specific Mo-W pairs

n the solid-solution phase. 

The DOS values at Fermi energy for #2 and #7 MPEAs are al- 

ost same but their electronic-structure in Fig. 9 b at the Fermi 

nergy are quite different, where #2 has has small peaks. The 

nite peak at Fermi energy is the reason for thermodynamic 

nstability towards clustering despite its energy stability (E f orm 

#2) = −12 meV-atom 
−1 ). The prediction of clustering indicates 

eak interaction among alloying elements both at higher temper- 

ture and below T sp , i.e., small or no charge fluctuation in disorder 

hase. 

Except for design composition #7 in Table 1 , the DFT analysis 

ndicates the ductility for all other design compositions. The small 

attice distortion, weak charge fluctuation, and possibility of low 

efect concentration in W based alloys [83] of predicted composi- 

ions is strong indication that the design framework is able to cap- 

ure the useful structure-property trend in refractory MPEAs criti- 

al for GTEs application. 
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. Conclusion 

The machinability of refractory MPEAs is a major bottleneck in 

heir development and deployment as structural materials in GTEs. 

owever, with ICME approaches, GTE-amenable refractory MPEAs 

an be designed with ductility in mind. This can be achieved by 

ptimizing for ductility indicators, such as the Pugh’s Ratio and 

auchy Pressure, while under GTE relevant constraints such as the 

ensity and the solidus temperature. The Pugh’s Ratio and Cauchy 

ressure can be estimate with DFT methods; likewise, the den- 

ity and solidus constraints can be queried by Thermo-Calc’s ther- 

odynamic equilibrium simulations, classifying points as feasible 

ased on whether they satisfy both constraints. However, due to 

he vast nature of the MPEA design space and the high computa- 

ional cost of these models, computational resources must be al- 

ocated in such a way that optimization of objectives is balanced 

ith classification of meeting constraints. 

The results from our framework show significant promise in 

he use of multi-objective and classification frameworks within an 

CME methodology for materials design. Most notably, the results 

howed that the proposed multi-information source BO framework 

s capable of efficiently exploring high-dimensional materials de- 

ign spaces under multiple objective targets. Regarding classifica- 

ion, our novel framework (with 1366 queries) is around 8 times 

aster than the traditional HTP “brute-force” approaches (with 

0,626 queries), a huge improvement in terms of resource alloca- 

ion. 

While the proposed framework has been implemented and 

eployed in an in silico platform, the overall principle is truly 

ource-agnostic. Each information source for both objectives and 

onstraints is transformed into a Gaussian Process representation. 

herefore, this approach can potentially be deployed for the effi- 

ient exploration and exploitation of materials spaces in physical 

losed-loop materials discovery platforms. With the exponential 

ncrease in interest of materials community towards autonomous 

aterials discovery platforms, we believe that the frameworks like 

ne proposed here will provide a useful direction to develop novel 

aterial discovery platforms. 
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