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ABSTRACT

Bayesian Optimization (BO) has emerged as a powerful framework to efficiently explore and exploit ma-
terials design spaces. To date, most BO approaches to materials design have focused on the materials
discovery problem as if it were a single expensive-to-query ‘black box’ in which the target is to optimize
a single objective (i.e., material property or performance metric). Also, such approaches tend to be con-
straint agnostic. Here, we present a novel multi-information BO framework capable of actively learning
materials design as a multiple objectives and constraints problem. We demonstrate this framework by op-
timally exploring a Refractory Multi-Principal-Element Alloy (MPEA) space, here specifically, the system
Mo-Nb-Ti-V-W. The MPEAs are explored to optimize two density-functional theory (DFT) derived ductility
indicators (Pugh’s Ratio and Cauchy pressure) while learning design constraints relevant to the manufac-
turing of high-temperature gas-turbine components. Alloys in the BO Pareto-front are analyzed using DFT
to gain an insight into fundamental atomic and electronic underpinning for their superior performance,
as evaluated within this framework.

© 2022 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

1. Introduction
1.1. Motivation

Improved gas-turbine engine (GTE) technology requires the con-
tinued development of high-temperature materials with higher
strength and creep resistance at operational temperatures. The cur-
rent materials of choice for use in such extreme operating con-
ditions are Ni-based superalloys [1]. As gas-turbine efficiency can
be improved by increasing the inlet temperature to the engine
[2], there is a motivation to operate gas turbine engines at in-
creasingly elevated temperatures. Currently, Ni-based superalloys
operate at temperatures approaching their melting temperatures
(~ 0.9 Ty) [3]. Novel gas turbine technologies require metallic ma-
terials that can perform at temperatures exceeding 1150 °C, beyond
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which nickel-based superalloys are unable to perform due to inher-
ent limitations from their melting temperatures [1]. While sophis-
ticated cooling systems, such as cooling channels [4], thermal bar-
rier coatings [5], and engineering of thermal conductivity [5], have
been employed in the design of modern jet turbine blades, Ni-
based superalloys are quickly approaching their operational limit,
spurring exploration for novel, ultrahigh-temperature materials.
Recently, refractory multi-principal-element alloys (MPEAs)
have garnered much attention as an emerging class of high-
temperature materials. MPEAs consist of several alloying compo-
nents (typically 4 or more) with concentrations ranging from 5
to 35 at.%, whereas conventional alloys rely on a single predom-
inant constituent. Refractory MPEAs generally form body-centered-
cubic (bcc) solid solutions [6] that have been shown to possess
high-temperature properties comparable to those of the current
Ni-based superalloys [7]. The compositional complexity of these re-
fractory MPEAs creates opportunities to design alloys with unique
properties, such as high-temperature yield strength [7], low den-
sity [8], creep resistance [9], and oxidation resistance [10]. How-
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ever, while refractory MPEAs may satisfy performance constraints
at elevated temperatures, due to the ductile-to-brittle-transition
temperature of these alloys, many are brittle at room tempera-
ture and thus not machinable. The extreme difficultly associated
with processing refractory alloys has historically limited their de-
velopment [11]. In fact, room temperature ductility is a significant
bottleneck in the development of refractory MPEAs [12]. For this
reason we proposed a novel framework capable of multi-objective
Bayesian optimization and active learning of multiple constraint
boundaries in order to optimize for ductility in refractory MPEAs
while under GTE relevant design constraints.

With the advent of Integrated Computational Materials Engi-
neering (ICME), it has become possible solve the inverse problem
and design alloys with tailored properties [13]. ICME relies on sim-
ulation in tandem with experiments to build linkages along the
process-structure-property performance (PSPP) chain. Performance
constraints are often defined in terms of materials properties. In
turn, these materials properties are dictated by the structure of the
material. Finally, the structure of the material is determined by the
processing conditions used to realize the material. When inverted,
these linkages can guide the search for alloys that meet certain
performance constraints. Thus within an ICME framework, refrac-
tory MPEAs can be designed, in principle, with ductility in mind.

Other works where Bayesian optimization is used within the
ICME paradigm include examples of mutli-objective optimization,
optimization under unknown constraints, and active learning to
reduce the design space. Regarding multi-objective optimization,
Solomou et al. [14] demonstrated tri-objective Bayesian optimiza-
tion for the design of precipitation hardened shape memory alloys,
simultaneously optimizing for austenitic finish temperature, spe-
cific thermal hysteresis (defined by the difference of austenitic fin-
ish temperature and martensitic start temperature), and the max-
imum transformation strain. Regarding Bayesian optimization un-
der constraints, Griffiths et al. [15] were able to optimize drug-
like molecules while under the constraint that said molecules must
be valid molecular structures. The Bayesian optimization was per-
formed over the latent space of a variational autoencoder that en-
coded the molecular structure of candidate designs. The authors
used Bayesian Neural Network (BNN) classifiers that would output
the probability of a point in the latent space being mapped to a
valid molecular structure or not. Optimization was then carried out
in feasible regions of the design space. Regarding active learning
to reduce the design space, using the e-PAL framework, Jablonka
et al. [16] were able to use active learning to efficiently estimate
the Pareto-front during the multi-objective design of polymers for
dispersant applications. The polymers were designed for optimal
adsorption free energy, dimer free energy barrier, and radius of gy-
ration. The polymer design space was iteratively reduced as e-PAL
classified points as either likely dominated or likely Pareto optimal,
actively learning the Pareto-front. The framework converges when
all remaining points are classified as dominated (disregarded) or
Pareto optimal.

In this work, we present a novel framework to perform multi-
objective Bayesian optimization under unknown constraints. The
framework is capable of actively learning the constraint bound-
aries as well as iteratively reducing the design space by discern-
ing between feasible and infeasible design regions. We seek to
computationally link structure to property in refractory MPEAs by
optimizing well-known ductility indicators, i.e., Pugh’s ratio and
Cauchy’s pressure. The framework is benchmarked by designing
ductile refractory MPEAs while under two constraints (density and
solidus temperature) relevant to gas turbine application as a case
study. Furthermore, a detailed DFT calculations is done on pre-
dicted MPEAs to assess underlying features driving ductility and
its origin. While this work is limited to ductility, there exists op-
portunity to account for more objectives and constraints.
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1.2. Design objectives and constraints

A known ductility indicator in refractory MPEA design is the va-
lence electron concentration (VEC), as shown to be true theoreti-
cally [17] and experimentally [12]. A low VEC will promote shear
failure and suppress cleavage failure in bcc-based alloys due to
shear instability introduced by decreasing VEC [17]. It is a common
MPEA design rule that that refractory alloys with low VECs are
more ductile than those with higher VECs. For example, driven by
the fact that equimolar HfNbTiZr and HfNbTaTiZr alloys are known
to be ductile, Sheikh et al.[12] minimized the VEC in the HfNbTa-
TiZr alloy space under the constraint that the alloy be single-phase
bce. This constraint was encoded by the enthalpy of mixing and
the atomic size mismatch, which are known indicators of the sta-
bility of the bcc solid-solution phase. The authors identified and
synthesized Hfjy sNbg sTag 5Tiy sZr which had an elongation at frac-
ture of 18.8%. While the VEC is useful in identifying ductile alloys
in a HTP manner, it does not explicitly account for elasticity in the
crystal structure of the alloy. This points toward the inability of
such metrics to find the most ductile alloys, therefore, indicators
that capture the crystalline elasticity of an alloy are needed.

The ductility/brittleness of MPEAs can also be encoded by met-
rics derived from the elastic properties of alloys, such as the Pugh’s
ratio and the Cauchy pressure. These two indicators of ductility
have been used extensively in the design of ductile MPEAs [18-
20]. For pure crystalline metals, the Pugh’s ratio is defined as the
ratio of the bulk modulus over the shear modulus (B/G). This ra-
tio encodes the competition between resistance to plastic deforma-
tion (G) and the fracture strength (B); Thus B/G captures the extent
of the plastic range without fracture [21]. Pettifor [22] proposed
Cauchy pressure as an indicator of intrinsic ductility/brittleness,
which is the difference of two elastic constants C;; and Cy4. A
positive Cauchy pressure indicates non-directional metallic bonds
resulting in intrinsic ductility of the crystal, whereas a negative
Cauchy pressure corresponds to directional bonds and results in
an intrinsically brittle crystal structure. Both indicators can be es-
timated with high-fidelity DFT frameworks at great computational
cost. However, as the MPEA composition space is combinatorically
vast, sufficient exploration of the space is intractable using conven-
tional (computational or experimental) approaches.

Furthermore, while a given alloy may be ductile, its other prop-
erties may not be appropriate for GTE applications. For example,
a ductile alloy may be too dense (p < 11 g/cc) for use in avia-
tion. Likewise, an alloy that is optimized for ductility may have
too low of a solidus temperature (T; < 2000 °C) for use inside the
hot-zones of GTEs. While we do not wish to optimize for these
two properties, we still must classify alloys based on whether they
meet said constraints. Therefore, to explore effectively this vast de-
sign space for ductile alloys while under design constraints related
to GTE application, and under resource constraints due to the high
cost of the DFT truth-model, intelligent optimization schemes ca-
pable of balancing resources between optimization and classifica-
tion are needed. This classification step essentially aims to discover
the feasible alloy space amenable for further optimization.

1.3. Multi-information source, constraint-aware bayesian
optimization

Limitations on computational resources is a bottleneck in solv-
ing optimization problems in engineering applications. Many of en-
gineering systems are in the form of black-box objective functions
that require numerical approaches to search the input space for de-
signs corresponding to optimum values of the quantities of inter-
est. Among the proposed approaches for such design applications
are Bayesian optimization (BO) techniques. Bayesian techniques of-
fer a more efficient optimization by employing a heuristic-based
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search and, more importantly, the ability to update the system’s
state of knowledge continuously as new observations are intro-
duced to the system.

Furthermore, in many instances in materials engineering, sev-
eral models are available that represent the same system of in-
terest. These models are based on different assumptions and/or
simplifications, and thus differ in fidelity and cost of evaluation.
These models are treated as sources that provide useful informa-
tion about a quantity of interest and are thus called information
sources. In Refs. [23-27], it has been shown that employing multi-
information sources in multi-fidelity BO frameworks offers a more
robust and efficient approach to implement in design applications
in comparison to single model optimization techniques.

In multi-information source BO, the assumption is that ev-
ery source contains useful information regarding optimum design;
thus, accurately fusing these sources results in a fused model that
can mimic the response of the highest-fidelity model, known as
the ground truth, enabling the search of the design space for the
optimum design at no considerable computational cost. As later
developments of the works [23-27], in Ref. [28], a novel frame-
work is proposed that is capable of optimizing multiple objectives
in multi-fidelity settings. In many engineering applications, there
are several quantities of interest to be optimized simultaneously
that urges the need for multi-objective optimization techniques. In
Ref. [28], it has been shown that single fidelity approaches either
using a BO framework or other techniques such as ParEGO and ge-
netic algorithms are outperformed computationally when multiple
sources of information contribute to provide information about the
quantities of interest.

Regarding classification (or identification of a materials feasible
space), a challenge in constrained optimization problems is cor-
rectly recognizing the feasible regions and their boundaries. Al-
though sometimes checking the feasibility of a design input is done
at no considerable costs, for example, by simply inserting the de-
sign variables into a analytical equation, there exist cases that con-
straints are defined by computationally expensive models which
makes it impractical to verify the feasibility of every single de-
sign by querying their respective models. Therefore, constructing
cheaper machine learning models to represent the constraints can
reduce the overall cost of solving a constrained optimization prob-
lem.

A natural choice is to use surrogate models and information-
theoretic approaches to learn the constraint models and accu-
rately estimate their value at different locations in the input space
[29]. However, it might be unnecessary to model the constraint
over the entire input space as the boundary separating the fea-
sible and infeasible regions is what is truly of importance. Thus,
in this study, we propose a Bayesian classification (BC) framework
that uses classifiers and an active learning technique to effectively
learn the constraint boundaries and recognize the feasible regions
via checking the class memberships of any locations in the in-
put space. Similar to multi-fidelity BO frameworks, in classification
problems, there may exist several information sources that model
the same constraint. Thus, we introduce our classification frame-
work in form of a multi-fidelity BC configuration. Then, by coupling
this multi-fidelity BC framework with the multi-objective multi-
fidelity Bayesian framework introduced in Khatamsaz et al. [28],
we create a design framework that actively learns the constraint
boundaries and guides the search toward the optimum design by
recognizing the feasible regions.

Here, we make further developments to the multi-objective,
multi-fidelity BO framework introduced in Ref. [28] and propose a
novel approach to solve constrained-design problems. Specifically,
we deploy this framework in the Mo-Nb-Ti-V-W system, an exem-
plary MPEA system. By balancing the need to learn the constraint
boundaries more accurately with improving the system’s knowl-
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edge about the optimum values of quantities of interest, our pro-
posed framework is able to make decisions about the best action
to take at every stage of the process.

2. Methods
2.1. Gaussian process regression

In the context of BO, surrogate models are employed to model
the behavior of objective functions and to represent a cheaper
source to estimate the objective values associated to different de-
sign inputs and then calculate the expected gains regarding a po-
tential design evaluation at much lower computational costs with-
out the need to call the objective function directly.

We have implemented Gaussian process regression (GPR) to
model objective functions [30]. Gaussian process models are pow-
erful tools for probabilistic modeling purposes. They are easy
to manipulate and simple to update as new observations are
made available. In multi-fidelity BO frameworks, there are several
sources to estimate the same quantity of interest at different fi-
delity levels, each providing key piece of information about the
ground-truth quantity of interest. In presence of multi-information
sources, several Gaussian processes are constructed to represent
the response surface of these information sources.

Following Refs. [26,27], we assume we have available some set
of information sources, f;(x), where ie {1,2,...,S}, that can be
used to estimate the quantity of interest, f(x), at design point X.
These surrogates are indicated by fgp;(x). Assuming there are N;
evaluations of information source i denoted by {XN,--YN,-}v where
Xy, = (X1, .-, Xy, ;) Tepresents the N; input samples to informa-
tion source i and yy, = (ﬁ(xL,'),‘..,f,‘(xN]_,i)) represents the cor-
responding outputs from information source i, then the posterior
distribution of information source i at design point X is given as

fopi(®) | Xy, ¥y, ~ N (14i(X), 08 (X)) (1)
where

i (%) =K Xy, X)T[K; (X, X)) + 02017y,
0 i (%) =ki(x, x) — Ki(Xn,, x)" (2)

[Ki(Xn,, Xn,) + 02117 K (X, X)

where k; is a real-valued kernel function over the input space,
Ki(Xn;, Xy,) is the N; x N; matrix whose m, n entry is k;(Xpm . X i),
and K;(Xy,, X) is the N; x 1 vector whose mth entry is k;(X;, ;, X) for
information source i. We have also included the term a,ii, which
is used to model observation error for information sources based
on experiments. Without loss of generality, we employ the squared
exponential covariance function as the kernel function specified as

d
kix.x') =clexp (-
h=1

/)2
i O 212"’9 3)
h
where d is the dimensionality of the input space, o is the signal
variance, and [, where h=1,2,...,d, is the characteristic length-
scale that indicates the correlation strength between the points
within the dimension h. The parameters o2 and [, associated with
each information source can be estimated by maximizing the log
marginal likelihood.

When using multiple information sources to estimate a ground
truth quantity of interest, it is important to quantify the uncer-
tainty in the response of the information sources with respect to
the ground truth, which is defined as the discrepancy term to com-
pensate for the lower fidelity estimation of the ground truth quan-
tity of interest. We quantify the total variance that captures both
the variance associated with the Gaussian process representation
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and the quantified variance associated with the fidelity of the in-
formation source over the input space, as

0 (X) = 0 ;(X) + 07,(%) (4)
where o)? ;(X) is the variance related to the fidelity of information
source i that can be estimated from, for example, expert opinion
or available real-world data.

2.2. Gaussian process classification

Similar to optimization problems, Bayes’ theorem can be em-
ployed to calculate the joint probability p(y,x), where y is the class
label, in classification problems:

_ pOp&ly)
Y, p(CHP(XIC)

A challenge of Gaussian process classification (GPC) that is not
present in Gaussian process regression is that of non-Gaussian like-
lihoods in GPC. To overcome this, following Ref. [30], we use a
discriminative GPC approach that seeks to model p(y|x) directly,
which avoids the need to specify prior distributions over p(y) and
the specification of class-conditional densities, p(x|C.). Discrimina-
tive GPCs are probabilistic classifiers that predict the probability of
belonging to a class by placing a Gaussian process prior over a la-
tent function f(X) and computing the posterior distribution at a
desired location x [30,31]. Here, we are not interested in the val-
ues of the latent function, but it is used to conveniently formulate
the classifier. This latent function is responsible to connect the in-
put to the output, where the output is class membership proba-
bility. Consequently, we need the latent function posterior distri-
bution respectively. The Laplace approximation algorithm is em-
ployed that utilizes Gaussian approximation to the posterior of the
latent variables. The approximated posterior is then used to ob-
tain the class membership distribution, where Monte Carlo sam-
pling is done to estimate the class membership probability. Similar
to the construction of Gaussian process regressions, assuming we
have available some set of information sources i € {1, 2, ..., S} with
N; labeled samples, the latent function f;(x) has a multivariate nor-
mal distribution defined by

i (X) =K Xy, X)T[K; (X, Xn) |71 f(X)
2i(x) =ki(x, X) — K;(Xy,. )T (6)
[Ki (Xn,. Xn) 171K (X, X)

pUyIx) = (5)

The class label predictions are obtained by sampling from the
calculated posterior distribution and passing the samples through
a sigmoid function o, for example, the logistic sigmoid, to ensure
the output is bounded to [0,1]. Then the mean of the obtained dis-
tribution is the class membership probabilities.

In the context of BC and learning purposes, the uncertainty
associated to the predictions are essential in calculation of an
expected utility value. Note that this is the distinguishing char-
acteristic of the Gaussian process classification as a probabilistic
model in comparison to other classification techniques that makes
GPC well-suited for probabilistic frameworks and learning pur-
poses. A more detailed discussion is presented in Rasmussen and
Williams [30].

2.3. Information fusion of multiple sources

Assuming that every information source participating in the op-
timization process contains some useful information regarding the
ground truth quantity of interest, the goal is to accurately fuse the
information provided by these information sources to approximate
the quantity of interest as accurately as possible at much lower
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costs in comparison to evaluating the ground truth objective func-
tion [26,32-34].

Several approaches exist for fusing multiple sources of infor-
mation, such as Bayesian modeling averaging [35-40], the use of
adjustment factors [41-44], covariance intersection methods [45],
and fusion under known correlation [46-48].

Our assumption is that every information source contains useful
information regarding the ground truth quantity of interest and as
more information sources are incorporated into a fusion process,
the expectation is to have the variance of the quantity of inter-
est estimates decreased. This is not necessarily the case for all of
the aforementioned fusion techniques with the exception of fusion
under known correlation. Unlike most traditional multi-fidelity ap-
proaches [49-56], in our approach, we do not assume a hierar-
chy of information sources and our goal is optimization with re-
spect to ground truth and not optimization with the highest fi-
delity source. Therefore, determining correlations prior to fusion is
essentially important. To estimate the correlation coefficients be-
tween information sources, we use the reification process intro-
duced in Refs. [32,34]. In reification process, a pair of information
sources are selected each time and they are reified (‘made real’) in
turn, which means one information source is assumed to be the
true model and the deviation of the second information source
with respect to the reified model is calculated. These calculated
deviations are used to obtain the correlation between the mean
squared errors of the information sources. The covariance matrix is
formed after the reification is done over each pair of information
sources. Readers are encouraged to check Refs. [26,32-34] for de-
tailed discussion on how the correlation estimation is performed.
In case of known correlations between the discrepancies of infor-
mation sources, the fused mean and variance at a particular design
point x are defined as Winkler [48]

e (x) T (x)

E[f(x)] = = 7
F00l = =5 e (7)
A 1
Var( X ) = — 8
fx) T 00 e (8)
where e=[1,...,1]T is a S dimensional column vector of

ones, p(x)=[uq(X),...,us(x)]T given S models, and % (x)!
is the inverse of the covariance matrix between the informa-
tion sources. A more detailed discussion on this fusion tech-
nique and some examples of its implementation are presented in
Refs. [23,25,27,32,57-60].

2.4. Multi-objective optimization

A multi-objective optimization problem can be defined as
minimize {f;(x),..., fi(X)},xe X (9)

where fi(X), ..., fn(X) are the objectives and X is the feasible de-
sign space. In multi-objective optimization problems, it is usually
the case that there is no single solution that optimizes all objec-
tives simultaneously. Thus, the solution to such design problems is
a set of non-dominated designs that are not superior to each other,
forming the Pareto-front in the objective space. In this case, opti-
mal solutions, y, to a multi-objective optimization problem with n
objectives are denoted as y <y, and are defined by

{y:y: (ylvyzv""yﬂ)vyify;Vie{l’z!"'vn}v
Jje{l,2,....n}:y; <V} (10)

where ¥y’ = (y}.¥5....,y,) denotes any possible objective output.
The set of y € , where ) is the objective space, is the Pareto-front
of the problem.

There are several techniques to employ to estimate the Pareto-
front in multi-objective optimization problems such as weighted
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sum approach [61], the adaptive weighted sum approach [62], nor-
mal boundary intersection methods [63], hypervolume indicator
methods [64-70], and others. In the context of BO, and working
with expected improvement- based algorithms, the hypervolume
indicator approaches are well-suited as they allow for introduc-
ing a single random variable, combining multiple random vari-
ables (here, objective values), to consider the uncertainty of all
other variables as a whole. Thus, in a BO framework, a hypervol-
ume indicator can be the target variable to be optimized. The idea
is to define the volume between the estimated Pareto-front and
a fixed point in the objective space as the hypervolume and re-
late the expected improvement associated to each objective value
to the total hypervolume and calculate the expected hypervolume
improvement. We follow the work proposed in Refs. [28,71] for
BO of multi-objective functions in presence of multiple informa-
tion sources. An in-depth discussion on the calculation of the ex-
pected hypervolume improvement can be found in the mentioned
references and [72].

2.5. Active learning in Bayesian classification

Using GPCs to label the samples, there are uncertainty associ-
ated to the label predictions that also shows how uncertain is the
classifier about the label at a particular location. The class mem-
bership Y is a random variable indicated by a distribution P. In
general, we look for a measure that shows the degree of uncer-
tainty based on the given distribution for class memberships. A
convenient option is using discrete entropy to calculate the uncer-
tainty in the label predictions:

k
H(Y)=-)_p; log(p;) (11)

i=1

where there are k classes and p; is the probability of belonging to
class i. Higher values of entropy shows the larger uncertainty of
the classifier about the label of a sample. Thus, we look forward
to query samples and update the classifiers at locations where the
classifier is highly uncertain about the true label.

An issue when using entropy as a measure of uncertainty is
that in the case of multi-class classification, it is possible that the
classifier is only uncertain about the memberships in, for exam-
ple, two classes and is highly certain about the other class mem-
berships that may be unimportant. This is the case when the en-
tropy is still high, and it does not provide any information about
the confidence on some class memberships. To address this issue,
following Ref. [73], we can take the “Best versus second Best” ap-
proach. This technique only considers the top two uncertain class
memberships and measures the uncertainty based on the differ-
ence between the two probabilities.

For our constrained BO, we only perform binary classification
since we are using classifiers to separate the feasible and unfea-
sible regions. In this case, our problem reduces to finding the
samples closest to the classifier's predicted constraint boundary.
In other words, the samples with the smallest difference between
class membership probabilities are chosen to be queried from the
constraints to update the classifier and learn about the true con-
straint boundary.

2.6. Truth model - density functional theory

The truth model in the multi-objective optimization side
framework was queried through the DFT-based KKR (Korringa-
Kohn-Rostoker Green’s function) method, in which the coherent-
potential approximation (CPA) accounts properly for direct config-
urational average over chemical disorder [74], concomitantly with
the charge self-consistency required within the standard DFT. One
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of the objectives, i.e., bulk moduli, used by the framework were
calculated by employing a gradient-corrected exchange-correlation
functional (PBE) [75]. Additionally, the Warren-Cowley short-range
order (SRO, given as «,, (k; T)) of the designed compositions were
calculated as implemented within DFT-KKR-CPA linear-response
theory to analyze the ordering tendencies found in the final com-
positions [76-78].

The structural optimization to estimate local-lattice distortion
(LLD), a ductility metric of designed compositions in Table 1, were
performed using the DFT method as implemented within the Vi-
enna Ab initio Simulation Package [75,79-81]. The Perdew-Burke-
Ernzerhof (PBE) generalized gradient approximation (GGA) func-
tional [75] was employed for geometrical relaxations with total-
energy and force convergence criteria of 106 eV and 0.01 eV/A, re-
spectively. To mimc MPEAs within a finite cell, supercells were de-
signed using SCRAPs [82] - SuperCell Random APproximateS. We
chose two SCRAP sizes, (i) 128 atoms for design 1, and (ii) 160
atoms for design #2 to #7 in Table 1. The largest possible super-
cells were used to avoid size effects [83]. The Brillouin zone in-
tegration in charge self-consistency and ionic relaxtion were per-
formed on 1 x 1 x 1 using Monkhorst-Pack method [84] with a
plane-wave cutoff energy of 520 eV, where the effect of the core
electrons and interaction between the nuclei and the valence was
treated by the projector-augmented wave (PAW) [85,86].

The DFT-KKR-CPA is expensive to query. Therefore, computa-
tionally inexpensive alternatives, e.g., rule-of-mixtures approxima-
tion, are needed for both the Pugh’s ratio and the Cauchy pressure
to explore the objective space. In this work, to estimate the Pugh’s
ratio cheaply, we express the bulk and shear modulus in terms of
the Poisson ratio. We then calculate the weighted average of the
elemental Poisson ratio to evaluate Eq. (12), where i iterates along
all N elements in the design space, v; and x; is the Poisson ratio
of the ith element, respectively. For the Cauchy pressure, we calcu-
late the weighted average of C; and C44 elastic constants and find
their difference according to Eq. (13).

201+ 1Y vix)

B/G = (12)
3(1 -3 vix)

-~ N N

Cpres = Zcuxi - ZCMXi (]3)
i=1 i=1

2.7. Thermodynamic simulation

The truth model in the classification side of the framework
was queried through a high fidelity CALculation of PHase Diagrams
(CALPHAD) based simulation scheme. Equipped with the MPEA
specific TCHEA5 thermodynamic database, Thermo-Calc’s equilib-
rium simulation was used to query both the density and the
solidus temperature. The integration of these models within this
automated framework was achieved using the Thermo-Calc API,
TC-Python. These thermodynamic equilibrium simulations are rel-
atively expensive to query, As such, cheaper alternatives are re-
quired to explore the constraint space. The rule-of-mixtures was
used as a cheap alternative to the CALPHAD truth model for both
density and solidus temperature.

3. Results
3.1. Multi-fidelity Bayesian classification
In this work, we use Gaussian process classification (GPC) to

model the constraint boundaries to distinguish the feasible and
unfeasible regions in the design space (binary classification). A
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Fig. 1. 2 Dimensional classification test problem. The space is divided into regions
‘A’ and ‘B’. Two lower fidelity models estimate the true boundary.

BC framework employs entropy measure to determine the uncer-
tainty and search for the best next experiment to query the con-
straints and update corresponding GPCs to decrease the labeling
uncertainty the most. Similar to multi-fidelity BO frameworks in-
troduced in Refs. [23,25,26,28], a BC framework can be designed
in multi-fidelity settings. There may exist several models to rep-
resent the same constraint with different fidelity levels and eval-
uation costs. Using the reification process followed by fusion of
multiple sources introduced in Refs. [32,48,57], a fused classi-
fier can be constructed for each constraint that accurately models
the constraint boundary using information gained from different
sources. To show how a multi-fidelity BC approach is able to de-
termine the constraint boundaries more accurately and efficiently,
a test problem is designed and shown in Fig. 1. The highest fi-
delity model represents the true boundary while there are also two

(@) (b)

1.5 1.5

Single . '
fidelity

0.5
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lower fidelity models to estimate the boundary between regions ‘A’
and ‘B

In Fig. 2, the results of employing the BC framework in single-
and multi-fidelity settings have been shown. While the black curve
is the true boundary that is desired to be recognized, the blue
curve shows the classifier’s estimation of the boundary with 95%
confidence intervals. Red dots are the locations in the input space
queried in the BC process to update the classifiers and decrease the
uncertainty of classification. They show the estimated constraint
boundary after 20, 50, and 100 queries from the highest fidelity
model. After every 10 queries to lower fidelity models, a fused
model is constructed and the design closest to the boundary is
chosen to be queried from the highest fidelity model. The closer
a design is to the estimated boundary, the larger the classifier un-
certainty is about its class membership. Note that the boundary is
where the classifier assigns the probability of class memberships
very close to 50% in case of binary classification.

As seen in Fig. 2, employing multiple sources to represent the
same constraint has improved the performance of the classifier sig-
nificantly. Not only it has estimated the true boundary more accu-
rately with narrower confidence intervals, but also it has done so
with a smaller number of queries from the highest fidelity model.
Plus, the queried locations show how more effectively the frame-
work is able to make highly informative queries to help in deter-
mining the constraint boundary.

3.2. Proposed design framework

Fig. 3 illustrates the flowchart of the proposed design frame-
work to solve constrained optimization problems. Here, the BO and
BC frameworks are coupled to build a larger configuration that
wisely and optimally makes decisions about improving the sys-
tem’s knowledge regarding the optimum design while learning the
constraint boundaries to recognize the feasible design region.

In the BO part of this design framework, the most up-to-date
fused classifiers are used to determine the feasible regions and
prevent the framework to search unfeasible regions. Therefore, be-

Multi .
fidelity

Fig. 2. Boundary estimation results using single and multi fidelity Bayesian classification approaches. True constraint boundary (in black) versus estimated constraint bound-
ary with 95% confidence intervals (in blue). Red dots show where the framework has chosen to query. (a) and (d): 20 queries. (b) and (e): 50 queries. (c) and (f): 100 queries.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 3. Flowchart of design framework. This flowchart shows the main steps in the design framework. Gaussian process regressions (GPRs) model the objective function and

Gaussian process classifiers (GPCs) model the constraint boundaries.

fore spending any computational resources to test a set of gener-
ated samples to search for the best next experiment, fused clas-
sifiers determine if all samples are feasible. If not, the unfeasible
samples will be removed and new samples are generated until we
find the desired number of feasible samples to test. To make deci-
sion on feasibility of a design, we used u — 20 > 0.5 to guarantee
at least 95 percent confidence in predictions. One can change this
confidence interval accordingly, depending on how hard (or dif-
ficult) is a constraint. Then, Expected HyperVolume Improvement
(EHVI) is employed as the utility function to search for promising
designs to query and increase the hypervolume the most and im-
prove the estimation of the Pareto-front [72].

In the BC component of the framework, to actively learn the
constraint boundaries and increase the accuracy of the fused classi-
fiers, an entropy measure is used to gauge the uncertainty in label-
ing the samples. Since we do binary classification to label samples
as either feasible or unfeasible, the problem is reduced to finding
the closest samples to the predicted constraint boundary by clas-
sifiers. At every iteration of the framework, a decision has to be
made between querying the objective functions and thus improv-
ing the optimum value of a quantity of interest (hypervolume in

case of multi objective optimization) or querying the constraints
and updating classifiers to increase the accuracy of fused classi-
fiers.

To balance the decision between these two options, the ex-
pected relative change to the optimum value of an objective (i.e.
the expected hypervolume improvment) is calculated and is com-
pared to the relative change in entropy if we update the con-
straints. This is done by temporarily augmenting the samples de-
termined as the best next experiment and observing the changes
in the corresponding values. By comparing the observed relative
changes in each case, the framework chooses the action that adds
the most value to the system. Note that in both the BO and BC
components, multiple information sources may have been em-
ployed to represent every objective function and every constraint.
Thus, the selected samples are augmented to the GPR or the GPC
corresponding to the selected information source.

3.3. Material design process

The design framework depicted in Fig. 3 has been employed
to solve the aforementioned alloy design problem. There are two
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Fig. 4. Final results of introduced material design problem (a) Queried samples from the KKR model in the objective space. Final estimation of the Pareto-front shows 7
non-dominated designs. (b) Improvement in hypervolume of the estimated Pareto-front as a function of iteration. Note that the hypervolume value is depended on the
chosen reference point in the objective space, thus, the change in hypervolume is a better indication of making improvements to the Pareto-front estimation.

objectives defined in the problem to be maximized: Pugh’s ratio
and Cauchy pressure. These objectives encode the intrinsic ductil-
ity of candidate alloys. There are two GTE-relevant constraints that
must be satisfied: solidus temperature and density of the candi-
date alloys. The solidus temperature for any composition should
be greater than 2000 °C such that the alloy can withstand the
hot-zone inside GTEs. Furthermore, the density should be less than
11 g/cm?3 such that the alloy is light enough for application in avi-
ation. The design space is 5-dimensional (including temperature).
Candidate alloys can consist of permutations and combinations of
the following five elements: Mo, Nb, Ti, V, and W. The Thermo-Calc
thermodynamic equilibrium model was used as the truth-model
that represents the solidus and density constraints. For each con-
straint, there exists a low order rule-of-mixture approximation. Re-
garding the objective functions, there are also two models avail-
able, one as the lower fidelity information source that is inexpen-
sive to query and responds in a few seconds. Then, a high fidelity
KKR model was used as the ground truth (see Methods section).
Being computationally demanding, the KKR-model was queried af-
ter every 10 queries from the lower fidelity information source to
update the discrepancy of the low fidelity model and correct its
estimation of the objective values.

First remark We would like to note that the design constraints
(solidus temperature and density) are relatively easy to estimate
using conventional computational thermodynamic techniques. It
would thus be possible to simply carry out a high-throughput ex-
ploration of the materials space [87] and simply select the feasi-
ble region without any active learning step. The purpose of this
exercise is to demonstrate the integration of the discovery of the
feasible space within a materials optimization framework. This ca-
pability would be significant in the case of ‘real world’ closed-loop
materials discovery tasks in which the discovery of the feasible re-
gion in a materials design space is highly non-trivial and depen-
dent on exhaustive experimental characterization. For example, the
discovery of alloys with acceptable oxidation resistance and opti-
mal mechanical performance may depend on actual experimental
oxidation studies. Our framework is agnostic regarding the nature of
the information sources used and thus can easily be adapted to fully
experimental or hybrid experimental/computational settings.

The framework was run over 2000 iterations. Regardless of how
much is learned about the constraint boundaries, the last 500 it-
erations are allocated to perform only optimization to improve the
estimated Pareto-front. In later works, an adaptive technique will
be taken to increase the weights over optimization than classifica-
tion as the number of iterations increase.

The results are depicted in Fig. 4. In part (a), queried designs
from the KKR model are shown in the objective space and the
color map shows the order that queries are made. There are to-
tal of 284 queries made from the KKR model, where 229 are made
in the last 500 iterations. The final estimation of the Pareto-front
consists of 7 non-dominated designs. In Table 1, the design val-
ues corresponding to the estimated Pareto-front are specified. In
part (b), the change in hypervolume of the estimate Pareto-front
as number of iteration is depicted. As the number of iteration in-
creases, the change in hypervolume value gets smaller. Further-
more, it takes more number of iterations to see further improve-
ments in the hypervolume value, however, by allocating the last
500 iteration for optimization purposes, more improvements are
made. This essentially shows that as we move toward the final it-
erations, it is worth to invest on optimization and make the final
improvements possible to the solutions. An important point here
is that all queried samples are satisfying both solidus tempera-
ture and density constraints, which shows how by actively learning
the constraint boundaries and using classifiers, querying unfeasible
designs is prevented. Tests show that about 20% of the randomly
sampled designs violate at least one of the constraints.

Fig. 5 illustrates the cumulative number of actions taken at ev-
ery iteration. Out of 2000 iterations, 634 iterations are dedicated
to perform BO which means 634 queries are made from lower fi-
delity model. The KKR model is queried in batch of maximum of 5
designs after every 10 queries to the lower fidelity model. To find
the batch of designs to be queried from the KKR model, first, a set
of query candidates are generated and then their expected hyper-
volume improvement is calculated. Note that the objective values
at every location in the design space are estimated by GPRs that
provide normal distributions as the estimation. Then, samples with
positive expected hypervolume improvement are kept and clus-
tered by solving a k-medoid problem. Finally, the medoids (i.e. ac-
tual points belonging to a cluster in the design space that are max-
imally separated from other clusters) of these clusters are queried
from the KKR model. This approach assures a good distribution of
the queried samples all over the space that helps to fully discover
the non-dominated region.

Out of 1366 queries from the constraints, 1189 queries are made
from the density function. The reason that the framework strug-
gles to identify the density constraint could be the complex shape
of feasible and unfeasible regions, making it challenging to rec-
ognize the boundary. However, the results show that the frame-
work has learned enough to confidently recognize the feasible
regions.
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Fig. 5. Cumulative number of operations as a function of iteration. For most num-
ber of iterations, the framework has decided to query the density model and update
its classifier. It is an indication of the complexity of the density constraint bound-

ary and the framework struggles to learn it and reduce the classifier's uncertainty
in labeling the design inputs.

4. Discussion
4.1. HTP brute force analysis to evaluate framework classification

In order to assess the utility of using such an classification
framework, we benchmarked the BC of refractory MPEA space
against a traditional HTP ‘brute-force’ approach. In this brute-force
approach the density and solidus temperature constraints were
queried at increments of 5 at.% considering unary to quinary sys-
tems, resulting in 10,626 queries in total. However, with the BC
framework, only 1366 queries were needed to find the boundary
in the constraint space, dramatically improving the tractability of
the problem as the total number of queries over the potentially
feasible space was reduced by close to a factor of nine. Querying
these expensive information sources is beneficial as it can better
elucidate how well the classification aspect of the framework ac-
tually performs in this refractory MPEA space.

In order to visualize how composition affects the constrained
properties (solidus temperature and density) in this 5-dimensional
refractory MPEA space, we rely on a dimensionality reduction
technique known as t-distributed stochastic neighbor embedding
(tSNE). Each point represents an alloy with a distinct composition.
In tSNE embeddings, points that are close to each other in high di-
mensional space are plotted close to each other in 2-dimensional
space. Points colored in Fig. 8c are alloys that contain 50% or more
of a particular element. Points closer to the corners of this “pen-
tagonal” shape approach unary compositions. For example, points
near the red corner of the tSNE are rich in vanadium; The point on
the “corner” represents pure vanadium. Points along the edge con-
necting the red and blue regions are Mo-V binaries. The inner re-
gions of the tSNE represent the refractory MPEA space. We would
like to point out that this representation is mostly qualitative as
tSNE embeddings only preserve the local structure of the dataset,
while being agnostic with regard to its global structure.

The light blue stars represent the 7 alloys that lie on the
Pugh’s Ratio-Cauchy Pressure Pareto-front. These alloys are in the
Niobium-rich region of the tSNE. Their location in this tSNE em-
bedding provides a visualization of where in the refractory MPEA
space the Pareto-front lies. The location of Pareto-front in the re-
fractory MPEA space is not completely unexpected, as Nb has a rel-
atively low VEC of 5. However, according the prevailing VEC theory
of ductility in refractory MPEAs [12], Ti-rich alloys are expected to

Acta Materialia 236 (2022) 118133

be the most ductile in this region as Ti has a VEC of 4, the low-
est in the alloy space. However, in Fig. 6a and b, Ti-rich regions
have solidus temperatures below 2273 K, violating the solidus con-
straint. The reason the framework converges on Nb-rich alloys in-
stead of Ti-rich alloys is further demonstrated in Fig. 7 where the
property space is plotted. In Fig. 7a the VEC is plotted against
the solidus. Many of the Ti-rich alloys (depicted as squares) fall
beneath the 2273 K constraint. In Fig. 7b, the Ti-rich alloys that
do pass the solidus constraint do not have a large a Pugh’s ra-
tio as the Nb-Rich alloys (depicted as stars). While not as ductile
as Ti-rich alloys, most Nb-rich alloys pass the density and solidus
constraints. The classification side of the proposed framework was
able to recognize the Ti-rich region of the design space as infeasi-
ble by querying the solidus information source only 177 times.

Second remark We would also like to point out that our design
setting is truly agnostic with regard to the complexity of the alloy
space. Rather than focusing on high-complexity compositions, our
framework optimized a set of property targets, subject to appli-
cation specific design constraints. Whether such compositions are
located within the “high entropy” alloy space is immaterial when
trying to discover optimal alloys with a target application in mind.
It is the view of the authors that property/constraint-aware and
“entropy” agnostic exploration of High Entropy Alloy spaces is a
more productive research program as compared to approaches that
focus on alloy complexity as the sole objective of the alloy design
task (Fig. 7).

4.2. DFT analysis of Pareto-front-selected refractory MPEAs

The seven Nb-V rich alloys in Table 1 with superior mechanical
properties that comprise the Pareto-front were selected for further
analysis using DFT. Singh et al. [88] has shown that the ability of
an alloy to resist local distortion and compositional changes have
direct impact on ductility. However, the understanding of these
features controlling distortion and local compositional changes is
currently not discussed well. We performed detailed DFT calcu-
lations [74,76,79] of stability (formation energy), distortion factor
and local distortion (atomic displacements), and short-range order
(local chemical fluctuations) on design compositions.

Generally, refractory materials have very high moduli in the bcc
phase because of their low compactness. The interaction between
these elements are weaker than other crystal structures such as in
fcc materials. Therefore, the ductility is definitely an issue, which
helps a material to sustain against permanent (large) deformation
under a tensile loading at room temperature without fracturing.
In Fig. 8a and b, we plot BM of design compositions with re-
spect to Nb-V composition (in atomic-fraction) and phase stabil-
ity. The calculated BM was found in the moderate range in Fig. 8a,
similar to highly ductile fcc-based materials; moreover, each com-
positions were in the desired MPEA stability range (—150 meV-
atom~! <Ejo, <65 meV-atom=1) [78].

In Fig. 8c, we plotted distortion metric with respect to scalar
displacement, where most compositions show minimal local dis-
tortion except #7 that has both large distortion metric and lo-
cal atomic displacement. Our findings suggest that the distortion
factor may further get increased with temperature due to non-
uniform local contraction and expansion in different regions with
different atomic sizes, which may lead to large thermal strain in
local lattices. In Fig. 8d, we found elemental compositions can be
tuned to alter local atomic displacement that correlates well with
ductility in refractory MPEAs [88]. To provide more detail, we plot
distortion metric [88] with respect to difference of VEC (AVEC) of
bce alloys in Fig. 8d. The dashed line horizontal to x-axis shows
the separation between ductile and brittle materials based on the
atomic distortion criterion. Clearly, highly ductile materials are ex-
pected to have low distortion as found in fcc alloys.
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Table 1
Non-dominated designs corresponding to the Pareto-front in Fig. 4. Compositions
reported in atomic percentage.

Composition elements Mo Nb Ti \Y W
Design 1 0.014 0.738 0 0.233 0.015
Design 2 0.0330 0.8080 0.0090 0.0890 0.0610
Design 3 0.0100 0.7460 0.0050 0.0910 0.1480
Design 4 0.0110 0.6840 0.0150 0.2740 0.0160
Design 5 0.1140 0.7350 0.0010 0.1490 0.0010
Design 6 0.0150 0.8410 0.0550 0.0010 0.0880
Design 7 0.0140 0.7550 0.0160 0.2020 0.0130

Furthermore, defects are very common to refractory alloys,
which are detrimental for ductility. Notably, it has been reported
that the presence of tungsten up to 5 at.% in refractory-based
MPEAs [83] either slows down or stops the formation of new
defects, moreover, high-vacancy migration energy of heavier el-
ements also slows down the diffusion of defects. Although our
framework was not optimized for defect related properties, the
presence of small to moderate at.% molybdenum/tungsten further
affirms that new designed compositions in Table 1 satisfy critical
feature requirements for ductility. This understanding of low defect
concentration in tungsten based alloys can be helpful as the de-
fect creation and propagation into crystal phase make them more
fragile at higher strains, which is not desired for high-temperature
applications.

The disorder has been shown to induce change in the DOS
at/near electronic Fermi energy [89], which can be interpreted
as the effect of disorder and electron correlation. The transition-
metal-based refractory MPEAs are among the candidate alloys due
to the presence of their partially filled d-bands. In Fig. 9a, we plot
the value of total DOS (TDOS) at the Fermi-level. We found an in-
teresting trend where #2 and #7, despite having the same TDOS
values at the Fermi-level, show opposite trends in energy stabil-
ity. To understand this contrast, we plot total density of states for
both the alloys in full energy range (—6 eV to 3 eV). Despite being
energetically stable #2 shows an unstable peak at the Fermi-level
while #7 shows valley in density of states, and this feature in DOS
has been found to correlate well with the alloy stability [90]. But
we do not know if this small but finite change in DOS structure at
the Fermi-level has any severe impact on thermodynamic behav-

1

ior or charge fluctuations at finite temperature. The SRO analysis
can give us useful information related to local change of chemical
compositions, which is a critical aspect of ductile materials.

The local chemical fluctuations [91], if significantly large, may
affect the synthesis of single phase alloy and mechanical prop-
erties, therefore, we believe understanding change in local re-
sponse, i.e., short-range behavior (SRO), can give useful guideline
regarding minimizing pronounced changes of chemical composi-
tion. The SRO theory [76] uses local atomic interaction to predict
local chemical behavior, this is important as changes in chemical
composition has a strong connection with interaction of alloying
elements.

In Fig. 9c and d, we plot the SRO for #2 and #7 MPEAs to reflect
on temperature dependent changes in their chemical behavior.
Both the alloys in Fig. 9c and d show clustering trend below spin-
odal temperature (Tsp) driven by Mo-W pairs. An absolute instabil-
ity to ko, mode [76] occurs below Tsp, where [a=1) (ko; Tsp)]yw =0.
For ko, = (000), the alloy is unstable to segregation (atomic or
vacancy clustering), rather than local ordering. Interestingly, we
found that the #7 shows competing ordering (B2 (H = 111) type)
mode while clustering (I") mode is slightly stronger, i.e., I' = (000)
peak compete with finite k, peak. The most unstable SRO mode
for both the alloys with large chemical fluctuation has the largest
peak in oy (ko; T > Tsp) at wavevector k, for a specific Mo-W pairs
in the solid-solution phase.

The DOS values at Fermi energy for #2 and #7 MPEAs are al-
most same but their electronic-structure in Fig. 9b at the Fermi
energy are quite different, where #2 has has small peaks. The
finite peak at Fermi energy is the reason for thermodynamic
instability towards clustering despite its energy stability (Esom
(#2) = —12 meV-atom~!). The prediction of clustering indicates
weak interaction among alloying elements both at higher temper-
ature and below Tsp, i.e., small or no charge fluctuation in disorder
phase.

Except for design composition #7 in Table 1, the DFT analysis
indicates the ductility for all other design compositions. The small
lattice distortion, weak charge fluctuation, and possibility of low
defect concentration in W based alloys [83] of predicted composi-
tions is strong indication that the design framework is able to cap-
ture the useful structure-property trend in refractory MPEAs criti-
cal for GTEs application.
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5. Conclusion

The machinability of refractory MPEAs is a major bottleneck in
their development and deployment as structural materials in GTEs.
However, with ICME approaches, GTE-amenable refractory MPEAs
can be designed with ductility in mind. This can be achieved by
optimizing for ductility indicators, such as the Pugh’s Ratio and
Cauchy Pressure, while under GTE relevant constraints such as the
density and the solidus temperature. The Pugh’s Ratio and Cauchy
Pressure can be estimate with DFT methods; likewise, the den-
sity and solidus constraints can be queried by Thermo-Calc’s ther-
modynamic equilibrium simulations, classifying points as feasible
based on whether they satisfy both constraints. However, due to
the vast nature of the MPEA design space and the high computa-
tional cost of these models, computational resources must be al-
located in such a way that optimization of objectives is balanced
with classification of meeting constraints.

The results from our framework show significant promise in
the use of multi-objective and classification frameworks within an
ICME methodology for materials design. Most notably, the results
showed that the proposed multi-information source BO framework
is capable of efficiently exploring high-dimensional materials de-
sign spaces under multiple objective targets. Regarding classifica-
tion, our novel framework (with 1366 queries) is around 8 times
faster than the traditional HTP “brute-force” approaches (with
10,626 queries), a huge improvement in terms of resource alloca-
tion.

While the proposed framework has been implemented and
deployed in an in silico platform, the overall principle is truly
source-agnostic. Each information source for both objectives and
constraints is transformed into a Gaussian Process representation.
Therefore, this approach can potentially be deployed for the effi-
cient exploration and exploitation of materials spaces in physical
closed-loop materials discovery platforms. With the exponential
increase in interest of materials community towards autonomous
materials discovery platforms, we believe that the frameworks like
one proposed here will provide a useful direction to develop novel
material discovery platforms.
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