Verifying Fortran Programs with CIVL

Wenhao Wu'™ @, Jan Hiickelheim?®, Paul D. Hovland?®, and
Stephen F. Siegel!

! University of Delaware, Newark DE 19716, USA
{wuwenhao, siegell}@udel.edu
2 Argonne National Laboratory, Lemont IL 60439, USA
{jhueckelheim, hovland}®@anl.gov

Abstract. Fortran is widely used in computational science, engineer-
ing, and high performance computing. This paper presents an extension
to the CIVL verification framework to check correctness properties of
Fortran programs. Unlike previous work that translates Fortran to C,
LLVM IR, or other intermediate formats before verification, our work
allows CIVL to directly consume Fortran source files. We extended the
parsing, translation, and analysis phases to support Fortran-specific fea-
tures such as array slicing and reshaping, and to find program violations
that are specific to Fortran, such as argument aliasing rule violations, in-
valid use of variable and function attributes, or defects due to Fortran’s
unspecified expression evaluation order. We demonstrate the usefulness
of our tool on a verification benchmark suite and kernels extracted from
a real world application.

Keywords: Fortran - verification - static analysis - model checking

1 Introduction

Fortran is a structured imperative programming language with a unique set of
features, such as common data blocks and array reshaping and sectioning, that
support efficient numerical computing. Many scientific applications, especially
those requiring high performance, are written entirely in Fortran; others have
core subroutines or rely on external components written in Fortran. A 2018
report from the European Performance Optimisation and Productivity Centre
states that over half of the 151 HPC programs the centre had analyzed over a
two-year period were written in pure Fortran or a combination of Fortran and
C or C++ [10]. Likewise, 12 of the 33 HPC benchmark applications in the U.S.
Department of Energy’s widely-used CORAL suite have components written in
Fortran [17].

The Fortran language has been used and revised for decades, and it has had
many standard versions. Early versions of Fortran employed a fixed-form coding
style, well-suited for punch cards and with strict positional constraints. Begin-
ning with Fortran 90, a free-form style was introduced, enabling more structured
programs, eliminating limits on line lengths, and providing more flexibility with

http://orcid.org/0000-0002-9087-4240
http://orcid.org/0000-0003-3479-6361
http://orcid.org/0000-0002-0907-2567
http://orcid.org/0000-0001-9359-3332

2 W. Wu et al.

character positioning by removing the restriction that the first six columns could
be used only for labels and continuation characters. Modern Fortran programs
tend to use the free-form style, but programs derived from a Fortran 77 prede-
cessor or relying on legacy components may rely on fixed-form style or a mix of
both styles.

Fortran is used to implement applications such as Nek5000 [21] or Flash
[32] that are used for critical tasks such as nuclear reactor licensing reviews or
to answer important scientific questions. These applications are often compu-
tationally demanding, requiring hours of computation on millions of execution
units. Because of the critical importance and high resource requirements of these
applications, one would like to verify their correctness.

The Fortran language itself provides little support for verification—not even
assertions. Compilers can check certain simple syntactic and semantic properties,
and static analyzers such as Coverity [35] can detect standard violations and
other anomalies. But there are very few tools that can be used to specify and
verify deeper functional correctness properties of programs, and nothing like the
rich ecosystem of formal verification tools for C.

One might approach Fortran program verification by using a source-to-source
translator such as f2c [11] to convert to C and then applying a C verifier. Unfor-
tunately, even if the translator provides a completely valid translation, defects
in the original code may not be preserved in the translated code; an example
is given in Section 3.1. In addition, the C verifier may not be able to access
translator support libraries, or defects that manifest themselves via the library
may be difficult to map back to the original program.

A second approach is to use a compiler front end to convert Fortran code into
an intermediate form such as the LLVM [16] Intermediate Representation (IR),
and then apply a verifier for the IR. This is more difficult than it appears: most
verifiers that consume LLVM IR are tuned to a specific source language and front
end and cannot be easily modified to effectively verify multiple languages. This
issue is explored in [13] in the case of SMACK, a C-via-LLVM verifier that has
been extended to provide limited support for other languages, including Fortran.
Moreover, as with source-to-source translators, the front end may translate away
a defect in the original program; this is discussed in Section 3.2.

In this paper, we present an approach to extending the CIVL [33] verifica-
tion framework so that it can be directly applied to Fortran source code. CIVL
is a model checker that uses symbolic execution to verify correctness properties
and was originally designed for programs written in C with a set of parallel
programming language extensions such as OpenMP [26]. In our extended frame-
work, summarized in Section 2, a new Fortran front end with a static analyzer
has been integrated into the system. In Section 3 we describe the sequence of
defect-preserving transformations that convert the Fortran source to the CIVL
intermediate verification language, CIVL-C. Proper handling of arrays is a spe-
cial concern, discussed in Section 4. The Fortran extension supports a subset of
the major features defined in the language standard, focused on those features
necessary to verify code excerpts from real world applications.

Verifying Fortran Programs with CIVL 3

In Section 5, we evaluate our approach by verifying several examples of For-
tran code, including (1) a custom Fortran benchmark suite designed to test
CIVL’s ability to verify programs using unique Fortran features such as array
slicing and reshaping, (2) a published micro verification benchmark [13], and
(3) a set of code excerpts from Nek5000 [21]. The evaluation employs both of
CIVL’s verification modes on Fortran programs. The first uses assumptions and
assertions inserted in the program to specify the desired correctness properties.
The second compares two programs with the same input-ouput signatures to
determine whether they are functionally equivalent.

Related work is discussed in Section 6, and conclusions and future work are
summarized in Section 7.

2 Overview of CIVL Extension

The Concurrency Intermediate Verification Language (CIVL) platform was de-
veloped to verify C programs that use various concurrency language extensions
[33]. CIVL has two primary components: a front end and a back end verifier.
The front end consumes a set of source files, which, prior to this work, had to be
written in C or CUDA-C, possibly using certain CIVL extensions to C. These
source files may use one or more concurrency language extensions, including
MPI [18], OpenMP [26], Pthreads [25], and CUDA-C [24]. The input is parsed,
analyzed and merged to create a single abstract syntax tree (AST) representing
the whole program. This AST then undergoes a sequence of transformations to
replace all of the concurrency primitives with equivalent CIVL-C primitives, and
to simplify the AST in other ways, resulting in a “pure” CIVL-C AST.

The back end first converts the pure AST to a lower-level representation in
which each procedure is represented as a program graph. A node in this graph
represents a program counter value, i.e., a location in the procedure body. An
edge represents an atomic transition, and is decorated with a guard expression
that specifies when the transition is enabled, and a basic statement, such as
an assignment. The verifier then performs an explicit enumeration of the reach-
able states of the program (“model checking”). This is carried out by depth-first
search, while saving the seen states in a hash table. Each state maps variables
to symbolic expressions and includes a path condition—a symbolic expression of
boolean type that records the guards that held along the explored path (“sym-
bolic execution”). An interleaving model of concurrency is used, and processes
can be created and destroyed dynamically.

During the search, automated theorem provers are invoked to determine
whether the path condition has become unsatisfiable (in which case the search
backtracks) and to check assertions. CIVL checks both explicit assertions ap-
pearing in the program and implicit assertions (a divisor is not 0, a pointer
deference is valid, and so on). The supported provers include Z3 [20], CVC4 [4],
Why3 [5], and a number of additional provers invoked by Why3.

4 W. Wu et al.

c 5 c Cparse | AST Builder | <L
sources tokens C Parser trees (©) ASTs bure
AST Merger CIVLLC
Preprocessor and AST
Transformer
Fortran Fortran [Fortran | Fortran parse | AST Builder | civiC
sources tokens Parser trees | (Fortran) T >
Pure queries
CIVL-C Ml R Program . » Provers:
odel Builder > erifier Z3,CVC4,
Graph It) g
AST raphs < results Why3

Fig. 1. CIVL architecture: front end (top) and back end (bottom)

Figure 1 shows the tool prior to this work and highlights the extensions
developed as part of this paper. Modifications were made to both the front and
back end to enable the direct application of CIVL to Fortran source code.

The CIVL preprocessor was generalized to accept a superset of C and For-
tran: it is common practice to use C preprocessor directives in Fortran programs
and Fortran compilers can invoke the preprocessor as a first pass. The tokens
emanating from the preprocessor have a type specific to the source language—C
or Fortran—which is determined by the file suffix or a command line option. It
is possible to invoke CIVL on a mix of C and Fortran source files—each will
be preprocessed separately and yield a separate stream of tokens in the correct
language.

Each Fortran token stream enters the Fortran parser. This was produced by
the parser generator ANTLR [28] using a grammar derived from the Open For-
tran Project (OFP) [31]. We extended the grammar by adding support for CIVL
primitives, such as assertions and assumptions, which can appear as structured
comments in the Fortran source. The parser produces a parse tree, which is then
converted to a CIVL-C AST. Each C token stream follows a similar path, and
also results in a CIVL-C AST. Finally, the individual ASTs, together with ASTs
generated from any libraries, are merged into a single AST, analogous to the
linking phase in a standard compilation flow. The supported Fortran subset is
listed below:

— program units: main programs, subroutines, and functions

— statements: allocate, assignment, call, computed goto, data, dimension, do,
exit, goto, if, implicit, intent, parameter, pointer assignment, print, return,
stop, target, type declaration, and write

— expressions: variable references, function calls, operators for scalar types

— intrinsic functions: mod, max, abs, sin, cos, atan, and sqrt

— extended features: CIVL preprocessor directives and CIVL primitives.

The transformation from a Fortran parse tree to a CIVL-C AST is quite
involved because the languages differ substantially. In almost every case, we were
able to find a way to represent a Fortran statement—in a semantics-preserving

Verifying Fortran Programs with CIVL 5

and defect-preserving way—using existing CIVL-C AST nodes; in a few cases
we had to add new fields to the AST node. Issues include the Fortran “intent”
specification for a procedure parameter (in, out, or in/out); pass-by-reference
semantics; and advanced array operations. Details for some of these translations
are described in Section 3.

The verifier was also upgraded to check specific Fortran runtime constraints
during state exploration. For example, the verifier normally uses short-circuit
semantics for evaluating and and or expressions. This is appropriate for C, but
Fortran does not mandate short-circuiting or the order in which subexpressions
are evaluated. Since evaluation can result in error, a verifier which assumes
short-circuiting semantics could miss defects in a Fortran program. By default,
our modified verifier turns off short-circuiting for Fortran code.

3 Defect-Preserving Translation

When used for verification, it is crucial that all translation phases preserve de-
fects. This is in contrast to translation and lowering phases in a compiler, which
generally are allowed to narrow the semantics of a program or choose arbitrarily
from multiple interpretations. In this section, we first demonstrate with small
examples that an approach relying on existing source-to-source translation tools
such as f2c, or compiler front ends such as Flang, is bound to miss certain de-
fects in the Fortran input, since these defects are removed by these tools. One
might be tempted to argue that defects which disappear during translation or
compilation are not really important. However, these defects are still present in
the original source code and may manifest themselves when a different compiler
is used or when other seemingly innocent changes are made to the code or the
translation/compilation tool chain.

3.1 Translation from Source to Source

Figure 2 shows a procedure in Fortran 77 and its C translation produced by f2c.
The example extracts a value x from an array at the given index, and computes
max(x,0). An array bounds check is performed in the same boolean expression in
which the array is accessed. The C code is certainly valid, because it uses short-
circuiting when evaluating logic expressions. Thus, the evaluation of the second
part of the boolean expression is skipped if the first part is false. Fortran, on the
other hand, does not define the order in which the subexpressions are evaluated,

1 if (idx .le. size_arr .and. 1 /* Function Body */

2 arr(idx) .ge. 0) then 2 if (*idx <= *arr_size__ && arr[*idx] >= 0.f) {
3 relu = arr(idx) 3 #relu = arr[*idx];

4 else 4%} else {

5 relu = 0 5 *relu = 0.f;

6 end if 6}

Fig. 2. Applying f2¢ to Fortran and operator removes a defect

6 W. Wu et al.

and the compiler may choose an evaluation order that causes an out-of-bounds
access in the second half of the expression. The implementation-defined order
chosen by f2c happens to remove this defect during translation, which makes
it difficult to detect for a verifier that is only provided with the C program.
Nevertheless, the Fortran program may break when a different translator or
compiler tool chain is used to execute it.

Besides the lack of defect preservation, there are other drawbacks when us-
ing a source-to-source converter, including the fact that some of them introduce
hard-to-verify external headers or libraries to simulate Fortran behaviors. Fur-
ther, by verifying translated code, source file information (e.g., file and identifier
names, code locations, etc.) can be harder to communicate to the user, and
translation tools may actually introduce new errors, leading to another poten-
tial source of unreliable verification results.

3.2 Translation for Compilation

A popular approach for verifying source code is to build a verifier based on a
mature compiler tool chain (e.g., LLVM [16]). This allows verification researchers
to spend more of their time on research and less time on maintaining language
front ends, and allows robust support of a variety of languages. We argue that
such an approach, while also very valuable, achieves a different outcome than
what we present in our work. Compiler front ends such as Clang or Flang are
not developed with the goal of preserving defects, and defective programs may
be lowered into correct LLVM intermediate representation (IR). Furthermore,
the compiler may in rare cases introduce new defects due to compiler bugs. In
the absence of such compiler bugs, verification based on the IR will ensure that
the input program is correct if compiled with the same compiler and settings that
were used for verification. With our approach, we instead aim to verify that a
program adheres to the language standard.

Figure 3 shows the LLVM-IR produced by Flang (version 1.5 2017-05-01) for
the Fortran code snippet in Figure 2. Similar to the case with f2c, it first checks
the array bounds by comparing %15 (element index) with %17 (array size). If
the index is out of bounds (i.e., %18 is evaluated as true), then the control flow
skips the block that accesses the array elements, and the second subexpression

1 L.LB1_339: ; preds = JL.entry

2 %14 = bitcast i64* %idx to i32%, !dbg !18

3 %15 = load i32, i32x %14, align 4, 'dbg !'18

4 %16 = bitcast i64* Y%arr_size to i32x, !dbg !18

5 %17 = load i32, i32* %16, align 4, !dbg !18

6 %18 = icmp sgt 132 %15, %17, !dbg !'18

7 br il %18, label %L.LB1_313, label %L.LB1_349, !dbg !18

8 ..
9 L.LB1_313: ; preds = %L.LB1_349, L.LB1_339

10 %41 = bitcast i64% %relu to float*, !dbg !21

11 store float 0.000000e+00, float* %41, align 4, !'dbg !21
12 br label JL.LB1_314

Fig. 3. Result of applying Flang to Fortran code of Figure 2

Verifying Fortran Programs with CIVL 7

subroutine intent_bad(i) subroutine intent_good(i) void INCR(intx __OUT_I) {

int I;
integer, intent(out) :: i integer, intent(inout) :: i ;n= I’+ 1
i=1i+1 i=1i+1 ’
. . *__0UT_I = I;
end subroutine end subroutine

}

Fig. 4. Fortran routine that fails to conform to specified intent; one that conforms; and
CIVL translation of the non-conforming code

in the condition expression is omitted. This means that the defect in the original
Fortran code is undetectable in the IR.

Figure 4 is another case where Flang translates an incorrect program into
valid IR. A Fortran subroutine may use the INTENT attribute in an illegal way,
for example by declaring an argument as INTENT(OUT) and subsequently reading
from it. This is problematic since the value of such a variable is undefined at
the entry of the subroutine, even if it was initialized in the caller. Flang never-
theless generates identical LLVM IR for the two subroutines, the first of which
violates the Fortran standard, the second of which declares the same argument
as INTENT(INOUT) and hence correctly passes the variable into and out of the
subroutine.

3.3 Translation for Verification

Based on these observations, we extended CIVL with a front end to translate
Fortran to CIVL-C ASTs in a way that is designed to preserve defects. The
front end avoids AST simplifications and optimizations that may introduce or
remove defects, or that may hide violations of the Fortran language standard.
The short-circuit evaluation of logic expressions is disabled by default when ver-
ifying Fortran source. When processing the code of Figure 2, the CIVL-C AST
builder thus keeps both subexpressions in the condition, and all parts of the ex-
pression are evaluated in the verification phase. The model checker consequently
reports an out-of-bounds access in the array.?

We also developed a static analyzer to detect certain defects before the pro-
gram is even translated to a CIVL-C AST. The analyzer mainly checks con-
straints on variable attributes or procedure specifications. For example, variables
in Fortran may have the ALLOCATABLE, POINTER, or TARGET attribute. It is le-
gal to pointer-assign a variable with the POINTER attribute to a variable with
the TARGET or POINTER attribute, but not to a variable without any of these
attributes. Both sides of each pointer assignment are statically checked for re-
quired attributes by the analyzer. When all constraints of a specific attribute
are verified for each associated variable, that attribute information is not passed
to the model checker. Similarly, a subroutine or function is only allowed to be
recursively called if it has the RECURSIVE attribute, and our analyzer checks this
by searching for loops in the call graph and checking if subroutines or functions

3 It is also possible (however unlikely) that a defect may manifest only when short-circuiting is
enabled. A strictly conservative solution could use nondeterministic choice to decide, at each
logical expression, whether to short-circuit. We plan to add such an option to CIVL.

8 W. Wu et al.

that are part of a loop have the required attribute. As a result, this kind of
constraint is checked by the analyzer and it is not necessary to include certain
attributes in the CIVL-C AST.

The defect-preserving translation is mainly performed by the Fortran AST
builder shown in Figure 1. For properties that can not be verified by the analyzer,
the translation phase inserts auxiliary structures into the CIVL-C AST for ver-
ification in a later phase. For example, the subroutines in Figure 4 have distinct
CIVL-C AST structures. A formal parameter having INTENT(OUT) attribute is
initialized with a value representing “undefined.” This allows the model checker
to find and report a violation (reading an undefined value) during the transi-
tion executing the assignment statement. The CIVL translation of the incorrect
routine is shown in Figure 4(right).

In summary, our extended front end focuses on preserving defects and trans-
lates source code into a CIVL-C AST specifically designed for verification. Vio-
lations of variable attributes and function specifications are guaranteed by per-
forming specialized analysis or by inserting auxiliary information into the AST
that is analyzed in a later phase.

4 Fortran Array Modeling

Fortran arrays are more powerful than arrays in most other languages, and re-
quire special handling during the translation to CIVL-C. Section 4.1 will briefly
discuss some of the features of Fortran arrays, before we discuss how these fea-
tures are modeled in Section 4.2.

4.1 Fortran Array Semantics

Fortran natively supports multi-dimensional arrays. For example, b and c in
Figure 5 are two-dimensional arrays. Fortran stores arrays in column major
style, unlike C arrays, which are stored in row major style.

1 REAL:: b(6,3), c(0:9,-3:3), u(3)

2 REAL, POINTER, DIMENSION(:) :: p

3 INTEGER, DIMENSION(3) :: idx

4 ! copy columns -1, 0, 1 from every other row of ¢ into the first 5 rows of b
5b(1:5,:) = c(::2,-1:1)

6 ! fill the array idx with constant values 1, 4, 17

7 idx = (/1, 4, 17/)

8 ! use the array idx as indices into a. This will copy al1,4,17] into ul1,2,3]
9 u = a(idx)

10 ! associate the pointer p with column 1 in array c

11 p => c(:,1)

12b = 42.0

Fig. 5. Examples of Fortran array usage: a 2-dimensional array of size 6 x 3, a 2-
dimensional array with non-default index ranges, a pointer to a one-dimensional array,
and two one-dimensional arrays of size 3, one for integers and one for reals, are declared.
Following that, several data copy operations and pointer associations are performed.

Verifying Fortran Programs with CIVL 9

Arrays in Fortran are 1-based by default, just like in Matlab or Julia, but
unlike in C and many other languages. However, Fortran allows the base to be
specified for each array dimension. For example, ¢ in Figure 5 represents a two
dimensional array whose row dimension of size 10 is 0-based and whose column
dimension ranges from —3 to 3. Array sizes and index ranges can be either defined
statically or calculated from parameters or function and subroutine arguments.

Fortran programs can in most situations determine the size of arrays using
the intrinsic size or shape functions. It is also possible to modify an entire array,
or an array along an entire dimension, without explicitly referring to its size. For
example, one can assign a scalar value to an entire array though a simple assign-
ment as shown in line 12 of Figure 5. Fortran compilers usually implement this
behavior using an array descriptor that is embedded in the generated program
and contains the array size and shape information.

Furthermore, Fortran supports the extraction of slices from an array by spec-
ifying a subscript triplet for each dimension, which specifies a lower and upper
bound on the index as well as a stride. It is possible to omit the lower (and/or
upper) bound, in which case the start (and/or end) of the array is used. An op-
tional stride n can be specified to extract only every n-th element. For example,
line 5 in Figure 5 extracts even rows, and of those, only the columns from —1
to 1, from c. These values are then copied into the first five rows of b. Instead
of subscript triplets, one can also use an integer array as an index for another
array. This is shown in line 9. Fortran provides other ways to modify or rein-
terpret arrays, including the reshape function that can change the number of
dimensions and the size in each dimension, and has optional arguments to pad
or reorder an array.

When an array is passed to a function or subroutine as an argument, it may
be accessed with a different index scheme inside that function or subroutine. For
example, a three-dimensional array with index ranges [0 : 8][0 : 2][0 : 2] could be
passed to a subroutine that internally declares this argument as an array with
ranges [1 : 9][1 : 3][1 : 3] or [0 : 8][0 : 8] or any other number of dimensions
or index ranges, as long as the array within the callee has at most as many
overall entries as the array within the caller. This essentially provides a wview
of the original array, and because Fortran uses the call-by-reference paradigm,
any changes to this re-interpreted array within the callee will also affect the
original array in the caller. Depending on the situation, the Fortran compiler
may implement this using an array descriptor and suitable index expressions,
or by transparently copying data to and from an array that is used within the
callee.

A similar situation occurs when Fortran pointers are used. Despite their
similar name with C pointers, their behavior and features differ significantly.
Fortran pointers can represent a view into a multi-dimensional array, and contain
size and shape information. For example, a pointer can be associated with an
array slice that represents column 1 across all rows in an array, as shown in line
11 of Figure 5. In this case, writing to the first element in p will also modify the
first row in c¢’s column 1. The size and shape functions can be used on p and

10 W. Wu et al.

will return the size and shape of the portion of ¢ that p is associated with. The
pointer itself can be accessed with a subscript triplet or index array, and the
pointer can be passed to a subroutine or function that may reinterpret it with a
different dimensionality or index range.

There are a number of details regarding the use of arrays and pointers in For-
tran that we do not discuss in this paper for brevity. We refer to [1] (particularly
Sections 5.4, 5.6 and 12.6.4) for a more thorough discussion.

4.2 Modeling Fortran Arrays for Verification

Arrays in CIVL-C always have indices starting at 0 and do not support strides,
sectioning, or reshaping. To handle the features described in the previous subsec-
tion, each Fortran array is modeled by a CIVL-C array that is augmented with a
recursive data structure called FORTRAN_ARRAY_DESCRIPTOR. This allows CIVL
to model the rich Fortran array semantics using only CIVL-C language features.
As Figure 6 shows, the descriptor stores metadata for an array instance, and
contains the kind, rank, index upper and lower bounds and strides, as well as a
pointer.

When a Fortran program creates a new array from scratch, CIVL will create a
CIVL-C array whose length is the total number of elements in the Fortran array.
This array is then augmented with an array descriptor whose kind is SOURCE and
whose pointer holds the memory address of the CIVL-C array. The bounds and
stride in the descriptor are set according to those set by the Fortran program. In
essence, the descriptor provides a mapping from the Fortran array index (which
may be strided or non-zero-based) into the CIVL-C array index (which is dense
and zero-based). This mapping is used by the CIVL-C program whenever the
Fortran program accesses the array.

If a Fortran array instance is created by reshaping or sectioning an existing
array, no new CIVL-C array is created. Semantically, the new array instance
in Fortran provides a view into the existing array, which we model by creat-
ing a new array descriptor with appropriate bounds and stride whose kind is

1 typedef struct FORTRAN_ARRAY_MEMORY *farr_mem;

2 typedef struct FORTRAN_ARRAY_DESCRIPTOR *farr_desc;

3 typedef enum FORTRAN_ARRAY_DESCRIPTOR_KIND {

4 SOURCE, // A var. decl. w/ an array type or a dimension attr.
5 SECTION, // An array section

6 RESHAPE // An array, whose indices are reshaped w/ no cloning
7 } farr_kind;

8 struct FORTRAN_ARRAY_DESCRIPTOR {

9 farr_kind kind; // The kind of a Fortran array descriptor

10 unsigned int rank; // The rank or the number of dimensions.
11 int *1bnd; // A list of index left-bounds for each dim.

12 int *rbnd; // A list of index right-bounds for each dim.

13 int *strd; // A list of index stride for each dim.

14 farr_mem memory; // Being non-null iff kind is ’SOURCE’

15 farr_desc parent; // Being non-null iff kind is NOT ’SOURCE’

Fig. 6. Implementation of the CIVL-C array descriptor.

Verifying Fortran Programs with CIVL 11

1 int main() {

1 PROGRAM ARRAYOP 2 fa_desc A = fa_create(sizeof(int), 1, {{0},{8},{1}});

2 INTEGER :: A(0:8) 3 fa_desc arg_A = fa_section(A, {{1},{7},{2}});

3 CALL SUBR(A(1:7:2)) 4 subr(__arg Afj - ’ i ’

41 a: {0,1,0,2,0,3,0,4,0} —-3TE-A)3 .)
5 fa_destroy(__arg_A); ! pop section descriptor

5 END PROGRAM ARRAYOP .

6 6 fa_destroy(A); ! free array descriptor and data storage
7}

7 SUBROUTINE SUBR(B)

& INTEGER :: B(-1:0, 2:3) ° void subr(fadesc __B) {

9 fa_desc B = fa_reshape(__B, 2, {{-1,2},{0,3},{1,1}});

9 B(-1, 2) =1 R : - 1.
10 B(1.3) =2 1? *(int*)fa_subscript(B, {-1,2}) = 1;
11 B(O, 2 =3 S) L
12 B(O. 3 -4 12 *(intx)fa_subscript (B, {0,3}) = 4;

- i
13 END SUBROUTINE SUBR 13 fa_destroy(B); ! pop reshape descriptor

Fig. 7. Transformation of array section and reshape operations

set to SECTION or RESHAPE, and whose pointer stores the location of the array
descriptor for the existing array. This new descriptor now provides a mapping
from indices of the new array instance into indices of the existing array instance.
Such an array section or reshaped array can itself be reshaped or sectioned by
the Fortran program, which will result in a stack of array descriptors. Whenever
the Fortran program accesses an array at a given index, CIVL will recursively
use the mappings provided by the descriptors until the index in the underlying
CIVL-C array is resolved by a descriptor of kind SOURCE. Figure 7 shows how
some basic Fortran array operations are translated to CIVL-C using the array
descriptor and associated utility functions.

5 Evaluation

The first goal of this evaluation is to determine whether CIVL correctly verifies
or finds defects in a suite of synthetic Fortran programs that use various language
features peculiar to Fortran. The second goal is to investigate how CIVL performs
on Fortran code from an existing production-level HPC application.

5.1 Compute Environment and Experimental Artifacts

All CIVL executions were conducted on a TACAS 2022 Artifact Evaluation
Virtual Machine (AEVM) with Ubuntu 20.04; the version of CIVL is 1.21. All
SMACK executions were conducted on a TACAS 2020 AEVM provided by the
authors of [13]; the version of SMACK is 1.9.1. Both virtual machines were
deployed by Oracle VirtualBox 6.1 on a laptop running MacOS 11.6.2 on a
2.5 GHz Quad-Core Intel Core i7 CPU with x86 64 architecture and 16 GB
memory. The CIVL program and all experimental artifacts can be downloaded
from https://vsl.cis.udel.edu/tacas2022.

5.2 Specification and Verification Approach

As shown in Figure 8, CIVL primitives are inserted as structured comments for
verifying a Fortran code, which have no effect on the normal build process. Sim-
ilar directives exist for C. These primitives have two major kinds: type qualifiers

https://vsl.cis.udel.edu/tacas2022

12 W. Wu et al.

1 PROGRAM civl_primitive_example
'$CVL $input
INTEGER :: arg
INTEGER :: x
!$CVL $assume(-1 .LE. arg .AND. arg .LE. 1);
X = arg
'$CVL $assume(x .LT. 0);
x = ABS(x)
9 !'$CVL $assert(0 .LE. x .AND. x .LE. 1);
10 END PROGRAM civl_primitive_example

00N O WN

Fig. 8. Example illustrating CIVL Fortran primitives.

and verification statements. $input specifies that the variable in the following
declaration is to be initialized with an unconstrained value of its type. The value
can be subsequently constrained with an assumption statement. Alternatively,
an input variable may be given an exact concrete value on the command line.
Input variables are read-only.

The $output qualifier declares a variable to be write-only. Output variables
are used for functional equivalence verification. When two programs have the
same input and output variables, they can be compared to determine whether,
given the same inputs, the two programs will produce the same outputs. This
is carried out by CIVL’s compare command, which merges the two programs
into a single program with a new driver. The driver invokes the two programs in
sequence on the same input variables, and then asserts that the corresponding
outputs agree.

A CIVL assumption statement has the form $assume (expr) ;. It is used to
constrain the set of executions that are considered to be valid. If an assump-
tion is violated, no error is reported; instead, the execution is ignored and the
search backtracks immediately. $assert (expr) ; reports an assertion violation
if the argument expression does not hold. This statement provides the capabil-
ity of checking desired properties in Fortran, which has no intrinsic assertion
procedure. All primitives must be preceded by the prefix !$CVL.

5.3 Fortran Verification Benchmark Suites

Our suite incorporates the 22 synthetic examples from the SMACK suite [13].
These examples cover basic Fortran structures ranging from expressions to func-
tions and subroutines. The only change made is to switch SMACK-style asser-
tions and symbolic value assignment to CIVL primitives. SMACK uses calls of
the form assert (exzpr) to check desired properties, which is similar to CIVL’s
$assert primitive. With SMACK, symbolic values are generated by calling
__verifier_nondet_int() and assigning the result to a variable, while CIVL
uses the $input qualifier.

To these, we added 13 examples we created ourselves, exercising different
language features, including argument intent specification, array sectioning, and
boolean expressions that might lead to different results if short-circuiting is or is
not used. We include a parallel example that uses an OpenMP for loop, executed

Verifying Fortran Programs with CIVL 13

SMACK
Z CIVL

/i /1

A A7) ;7 i
Vv

NN N N]
SR \F RS S ST

Fig. 9. Total verification time (in seconds) for CIVL and SMACK on benchmarks.
Each time is the mean over 5 of 7 executions after dropping the shortest and longest.

with 4 threads. Finally, we constructed 4 pairs of programs each of which can
be compared for functional equivalence.

The programs are listed on the x-axis in Figure 9. Where the name includes
“fail” or “bad”, a negative verification result is expected; otherwise, a positive
result is expected. The figure also shows the average verification execution time
printed by CIVL and SMACK on each example. CIVL has correct results in all
cases, while SMACK encounters exceptions or has incorrect results for some of
the CIVL Fortran examples. Thus, the figure only reports timing results when
the verification results are correct.

5.4 Verifying Nek5000 Components

Nek5000 [21] is a computational fluid dynamics code for simulating unsteady
incompressible two- or three-dimensional fluid flow. Nek5000 has hundreds of
industrial and academic users and won a Gordon Bell prize for its scalability on
high performance compute clusters.

The code contains many Fortran subroutines that perform a numerical com-
putation that can be easily expressed in a formal way. For example, there are
various implementations for matrix multiplication, each optimized for best per-
formance on a particular matrix size. We use CIVL to verify that these subrou-
tines indeed compute matrix multiplications, by showing their equivalence with
a straightforward un-optimized textbook implementation.

Furthermore, Nek5000 contains subroutines to numerically approximate the
integral of a function, a process known as quadrature. Quadrature rules typi-
cally define carefully chosen locations, known as quadrature points, at which the
function in question is evaluated. The results are then each multiplied with a
weight, and summed to obtain the overall integral. The quality of a quadrature
rule is often evaluated by quantifying its order of accuracy, where a higher order

14 W. Wu et al.

N Points 2 Degree 2 Violation @ encountered at depth 3244:
Ref soln 2xAF_SIN(2) CIVL execution violation in p@
Quadrature 2xAF_SIN(2) (kind: ASSERTION_VIOLATION, certainty:
Expected error: ZERO MAYBE)

at driver_speclib_bad.f:103.6-12
. Program Output Message ..
'$CVL $ASSERT(DIFF .EQ. MINDIFF)

=== Source files === AANANAR
util.f (util.f)
driver_speclib.f (driver_speclib.f) .. Detailed Violation Info ..

speclib.f (speclib.f)
=== Source files ===

=== Command ===
civl verify -checkMemorylLeak=false === Command ===
util.f driver_speclib.f speclib.f .
=== Stats === === Stats ===
time (s) 1 11.64 time (s) 1 4,19
memory (bytes) 1 3393191936 memory (bytes) 1 2587885568
max process count 1 max process count 1
states 1 54336 states 1 4973
states saved 1 50392 states saved 1 4585
state matches HL) state matches HL)
transitions 1 54335 transitions 1 4974
trace steps 1 35239 trace steps 1 3244
valid calls 1 148085 valid calls 1 13662
provers 1 cvcd, z3, why3 provers 1 cvcd, z3, why3
prover calls : 10 prover calls 7
=== Result === === Result ===
The standard properties hold for all The program MAY NOT be correct. See
executions. CIVLREP/util_log.txt

Fig. 10. CIVL output for verifying correct and erroneous Nek5000 examples

quadrature rule yields the exact result for polynomials of a higher degree. The
Gauss-Lobatto Legendre quadrature rules are a unique set of weights and points
that are known to be optimal under certain conditions, and are used in Nek5000.
We use CIVL to verify that the quadrature implemented in Nek5000 indeed has
the claimed order of accuracy, by verifying that the quadrature is exact for poly-
nomials with symbolic coefficients of the claimed degree. Due to its uniqueness
properties, this also proves that Nek5000 indeed uses Gauss-Lobatto Legendre
weights and points.

We also seeded some of these implementations with defects and confirmed
that CIVL reports the defects. Figure 10 shows the output from CIVL on a
correct and incorrect example from Nek5000. Table 1 shows the verification
results for the Nek5000 excerpts for various parameter values. The expected
result is obtained in all cases, at modest cost (at most 12 seconds).

6 Related Work

Fortran has been the focus of early program verification research. One of the
first papers on symbolic execution dealt with Fortran [8], and one of the earliest
verification condition generation tools was for Fortran [6]. More recently, several
Fortran static analyzers have been developed, including ftnchek [19], Cleanscape
FORTRAN-Lint [9], and FORCHECK /Coverity [35]. These tools detect certain

Verifying Fortran Programs with CIVL 15

Name LoC Result Scale Time States
speclib 560 True 2<NP<2;2<DEGL3 5.14s 10857
speclib 560 True 2<NP<3;2<DEG<5H 12.08s 55908
speclib_bad 560 False 2<NP<2;2<DEGL3 4.67s 6011
speclib_bad 560 False 2<NP<3;2<DEGL5H 4.27s 3223
mxm_unroll 458 Eqv 3x3 5.49s 26867
mxm_unroll 458 Eqv 4 x4 8.51s 59914
mxm_unroll_bad 458 NEq 3x3 5.48s 26865
mxm_unroll_bad 458 NEq 4x4 8.56s 59912
mxm_pencil 458 Eqv 2x2 5.83s 9264
mxm_pencil 458 Eqv 3x3 7.38s 26893
mxm_pencil 458 Eqv 4x4 10.14s 59968
mxm_pencil_bad 458 NEq 2x2 6.01s 9262
mxm_pencil_bad 458 NEq 3x3 7.53s 26891
mxm_pencil_bad 458 NEq 4x4 10.48s 59966

Table 1. Results of verifying Nek5000 code excerpts at various scales

pre-defined generic defects, such as variables that are read but never written, un-
used variables and functions, and inconsistencies in common block declarations.
They do not allow one to specify and verify functional correctness properties.

Other tools use dynamic analysis (or a combination of static and dynamic
analysis) to check such generic properties. One example uses the PIPS compiler
to detect forbidden aliasing in subroutines [22]. The NAG Fortran compiler can
also insert checking code to catch many defects at runtime [29].

In contrast, CamFort [27] implements a lightweight specification and static
analysis approach. The user annotates the Fortran program with comments in a
domain specific language for specifying array access patterns (stencils) or asso-
ciating units of measurements to variables. CamFort, which is written in Haskel,
parses the code, constructs an AST, and verifies conformance to the properties
using Z3. This approach strikes a balance between the generality of program ver-
ifiers such as CIVL, which can specify arbitrary assertions in a general purpose
assertion language, and the more tractable static analysis tools.

Several tools have been developed to translate Fortran to other languages.
These include f2¢ [11] (which translates to C) and Fable [14] (C++). In addition
to the issues discussed in Section 3.1, the potential of these tools as front ends for
verifiers is limited by the fact that the translated code is often considerably more
complex than the original or involves complex libraries which the verifier must
also understand. It should be noted that Fable’s approach to modeling Fortran
arrays is similar to ours in that it defines a class that bundles a reference to the
data with meta-data describing the “view” of the array.

A number of verification tools work off of the LLVM compiler’s low-level in-
termediate language, LLVM IR. These include SMACK [30], Divine [2], LLBMC
[34], and SeaHorn [15]. In theory, this should allow one to chain together any
of the many compiler front ends that generates LLVM IR with a general LLVM

16 W. Wu et al.

IR verifier. In practice, this is very difficult, and most of these verifiers accept
only a subset of LLVM IR generated by a particular front end from a partic-
ular source language—usually C or C++ [13]. To the best of our knowledge,
only SMACK has been applied to Fortran [13], using the Flang front end [12].
However, the subset of Fortran accepted and the example codes themselves are
small. A more significant concern, discussed in Section 3, is that a front end
may “compile away” defects in the source program by choosing one of several
acceptable ways to translate a construct with unspecified behavior, or assuming
the absence of undefined behaviors.

In this work we have translated Fortran to the intermediate verification lan-
guage (IVL) CIVL-C. Other, more widely-used, IVLs include Boogie [3] and
Why3 [5]. Among these languages, CIVL-C stands out for its robust support for
pointers and concurrency, which simplifies much of the modeling effort.

The CIVL verifier analyzes a CIVL-C program using symbolic execution, a
widely-used technique for test-case generation and verification. Other mature
symbolic execution tools include KLEE [7] (for C programs, via LLVM) and
Symbolic PathFinder [23] (for Java byte code).

7 Conclusion and Future Work

We presented a Fortran extension to CIVL, a novel model-checking approach
that preserves and reveals defects in source code written in Fortran. Compared
with compiler-based verifiers, this tool parses and analyzes source programs from
a verification perspective. In doing so, it mitigates against the risk of missing
defects that are eliminated via legal but non-defect-preserving compiler opti-
mizations.

The extension includes a data structure and associated algorithms for de-
scribing Fortran array metadata and tracking complex array transformations.
This method of handling Fortran arrays could be adopted by other verification
tools. The extension also supports a set of CIVL verification primitives which
can be introduced into Fortran programs as structured comments.

Evaluation results show that our tool performs correctly and quickly (com-
pared to previous work) on a range of synthetic benchmarks and some kernels
extracted from real world applications. In the future, we plan to enlarge the
supported subset of Fortran language features and to enhance support for veri-
fying Fortran programs with OpenMP directives. The resulting CIVL extension
is expected to cover the DataRaceBench [36] suite, including both the C and
Fortran examples.

Acknowledgements

This material is based upon work by the RAPIDS Institute, supported by the
U.S. Department of Energy, Office of Science, Office of Advanced Scientific Com-
puting Research, Scientific Discovery through Advanced Computing (SciDAC)
program, and by contracts DE-AC02-06CH11357 and DE-SC0021162. Support
was also provided by U.S. National Science Foundation award CCF-1955852.

Verifying Fortran Programs with CIVL 17

References

10.

11.

12.

13.

14.

. Adams, J.C., Brainerd, W.S., Hendrickson, R.A., Maine, R.E., Martin, J.T., Smith,

B.T.: The Fortran 2003 Handbook: the Complete Syntax, Features and Procedures.
Springer Science & Business Media (2008). https://doi.org/10.1007/978-1-84628-
746-6

Baranova, Z., Barnat, J., Kejstova, K., Kucera, T., Lauko, H., Mréazek, J., Rockai,
P., Still, V.: Model checking of C and C+-+ with DIVINE 4. In: Automated Tech-
nology for Verification and Analysis. LNCS, vol. 10482, pp. 201-207. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-68167-2 14

Barnett, M., Chang, B.Y.E., DeLine, R., Jacobs, B., Leino, K.R.M.: Boo-
gie: A modular reusable verifier for object-oriented programs. In: de Boer,
F.S., Bonsangue, M.M., Graf, S., de Roever, W.P. (eds.) Formal Methods for
Components and Objects, 4th International Symposium (FMCO 2005). Lec-
ture Notes in Computer Science, vol. 4111, pp. 364-387. Springer (2005).
https://doi.org/10.1007/11804192 17

Barrett, C., Conway, C.L., Deters, M., Hadarean, L., Jovanovi¢, D., King, T.,
Reynolds, A., Tinelli, C.: CVC4. In: Gopalakrishnan, G., Qadeer, S. (eds.) Com-
puter Aided Verification - 23rd International Conference, CAV 2011, Snowbird, UT,
USA, July 14-20, 2011. Proceedings. Lecture Notes in Computer Science, vol. 6806,
pp. 171-177. Springer (2011), http://dl.acm.org/citation.cfm?id=2032305.2032319
Bobot, F., Filliatre, J.C., Marché, C., Paskevich, A.: Why3: Shepherd your herd of
provers. In: Boogie 2011: First International Workshop on Intermediate Verifica-
tion Languages. pp. 53—64. Wroclaw, Poland (August 2011), http://proval.lri.fr/
publications/boogiellfinal.pdf

Boyer, R.S., Moore, J.S.: A verification condition generator for Fortran. Tech. Rep.
CSL-103, SRI International, Computer Science Laboratory, Menlo Park, CA (June
1980), https://apps.dtic.mil/sti/pdfs/ADA094609.pdf

Cadar, C., Dunbar, D., Engler, D.: KLEE: Unassisted and automatic generation of
high-coverage tests for complex systems programs. Proc. 8th USENIX Symposium
on Operating Systems Design and Implementation (OSDI’08) (2008)

Clarke, L.A.: A system to generate test data and symbolically ex-
ecute programs. IEEE Trans. Softw. Eng. 2, 215-222 (May 1976).
https://doi.org/10.1109/TSE.1976.233817

Cleanscape Software International: FORTRAN-lint: a pre-compile analysis tool,
https://stellar.cleanscape.net/docs lib/data_F-lint2.pdf, accessed 13-Oct-2021
Dingle, N.: Not only Fortran and MPI: POP’s view of HPC software
in Europe, https://pop-coe.eu/blog/not-only-fortran-and-mpi-pops-view-of-hpc-
software-in-europe, accessed 14-Oct-2021

Feldman, S.I.: A Fortran to C converter. SIGPLAN Fortran Forum 9(2), 21-22
(Oct 1990). https://doi.org/10.1145/101363.101366

Flang Fortran language front-end. https://github.com/flang-compiler/flang, ac-
cessed 09-Oct-2021

Garzella, J.J., Baranowski, M., He, S., Rakamari¢, Z.: Leveraging compiler inter-
mediate representation for multi- and cross-language verification. In: Beyer, D.,
Zufferey, D. (eds.) Verification, Model Checking, and Abstract Interpretation. pp.
90-111. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-39322-9 5
Grosse-Kunstleve, R.W., Terwilliger, T.C., Sauter, N.K., Adams, P.D.: Automatic
Fortran to C++ conversion with FABLE. Source Code for Biology and Medicine
7(5) (2012). https://doi.org/10.1186/1751-0473-7-5

https://doi.org/10.1007/978-1-84628-746-6
https://doi.org/10.1007/978-1-84628-746-6
https://doi.org/10.1007/978-3-319-68167-2_14
https://doi.org/10.1007/11804192_17
http://dl.acm.org/citation.cfm?id=2032305.2032319
http://proval.lri.fr/publications/boogie11final.pdf
http://proval.lri.fr/publications/boogie11final.pdf
https://apps.dtic.mil/sti/pdfs/ADA094609.pdf
https://doi.org/10.1109/TSE.1976.233817
https://stellar.cleanscape.net/docs_lib/data_F-lint2.pdf
https://pop-coe.eu/blog/not-only-fortran-and-mpi-pops-view-of-hpc-software-in-europe
https://pop-coe.eu/blog/not-only-fortran-and-mpi-pops-view-of-hpc-software-in-europe
https://doi.org/10.1145/101363.101366
https://github.com/flang-compiler/flang
https://doi.org/10.1007/978-3-030-39322-9_5
https://doi.org/10.1186/1751-0473-7-5

18

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

W. Wu et al.

Gurfinkel, A., Kahsai, T., Navas, J.A.: SeaHorn: A framework for verifying C pro-
grams (competition contribution). In: Baier, C., Tinelli, C. (eds.) Tools and Algo-
rithms for the Construction and Analysis of Systems. Lecture Notes in Computer
Science, vol. 9035, pp. 447-450. Springer Berlin Heidelberg, Berlin, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-46681-0 41

Lattner, C., Adve, V.. LLVM: a compilation framework for lifelong program
analysis & transformation. In: Proceedings of the International Symposium on
Code Generation and Optimization (CGO’04). pp. 75-86. IEEE Computer Society
(2004). https://doi.org/10.1109/CG0O.2004.1281665

Lawrence Livermore National Laboratory: CORAL benchmark codes (2014), https:
//asc.llnl.gov/coral-benchmarks, accessed 14-Oct-2021

Message Passing Interface Forum: MPI: A Message-Passing Interface standard,
version 3.1 (Jun 2015), https://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.
pdf

Moniot, R.K.: ftnchek: a static analyzer for Fortran 77, https://www.dsm.fordham.
edu/ " ftnchek/, accessed 09-Oct-2021

de Moura, L., Bjgrner, N.: Z3: An efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) Tools and Algorithms for the Construction and Analysis of Sys-
tems, 14th International Conference, TACAS 2008, Held as Part of the Joint Eu-
ropean Conferences on Theory and Practice of Software, ETAPS 2008, Budapest,
Hungary, March 29-April 6, 2008. Proceedings. Lecture Notes in Computer Science,
vol. 4963, pp. 337-340. Springer (2008). https://doi.org/10.1007/978-3-540-78800-
3 24

NEK5000: a fast and scalable high-order solver for computational fluid dynamics
(2021), https://nek5000.mcs.anl.gov, accessed 14-Oct-2021

Nguyen, T.V.N., Irigoin, F.: Alias verification for Fortran code optimiza-
tion. Electronic Notes in Theoretical Computer Science 65(2), 52-66 (2002).
https://doi.org/10.1016,/S1571-0661(04)80396-7, COCV’02, Compiler Optimiza-
tion Meets Compiler Verification (Satellite Event of ETAPS 2002)

Noller, Y., Pasireanu, C.S., Fromherz, A., Le, X.B.D., Visser, W.: Symbolic
Pathfinder for SV-COMP. In: Beyer, D., Huisman, M., Kordon, F., Steffen, B.
(eds.) Tools and Algorithms for the Construction and Analysis of Systems. pp.
239-243. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17502-3_ 21
NVIDIA: CUDA Toolkit Documentation, v11.4.2, https://docs.nvidia.com/cuda/,
accessed 14-Oct-2021

Open Group: IEEE Std 1003.1: Standard for information technology—Portable
Operating System Interface (POSIX(R)) base specifications, issue 7: pthread.h
(2018), https://pubs.opengroup.org/onlinepubs/9699919799 /basedefs/pthread.h.
html

OpenMP Architecture Review Board: OpenMP Application Programming Inter-
face (Nov 2020), https://www.openmp.org/wp-content/uploads/OpenMP-API-
Specification-5-1.pdf, version 5.1

Orchard, D., Contrastin, M., Danish, M., Rice, A.: Verifying spatial properties
of array computations. Proceedings of the ACM on Programming Languages
1(OOPSLA), 1-30 (Oct 2017). https://doi.org/10.1145/3133899, article no. 75
Parr, T.: The Definitive ANTLR4 Reference. The Pragmatic Bookshelf, Dallas,
TX (2013), https://pragprog.com /titles/tpantlr2 /the-definitive-antlr-4-reference /
Polyhedron Solutions: Linux Fortran compiler diagnostic comparisons,
https://www.fortran.uk/fortran-compiler-comparisons/intellinux- fortran-
compiler-diagnostic-capabilities/, accessed 13-Oct-2021

https://doi.org/10.1007/978-3-662-46681-0_41
https://doi.org/10.1109/CGO.2004.1281665
https://asc.llnl.gov/coral-benchmarks
https://asc.llnl.gov/coral-benchmarks
https://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf
https://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf
https://www.dsm.fordham.edu/~ftnchek/
https://www.dsm.fordham.edu/~ftnchek/
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://nek5000.mcs.anl.gov
https://doi.org/10.1016/S1571-0661(04)80396-7
https://doi.org/10.1007/978-3-030-17502-3_21
https://docs.nvidia.com/cuda/
https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/pthread.h.html
https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/pthread.h.html
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5-1.pdf
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5-1.pdf
https://doi.org/10.1145/3133899
https://pragprog.com/titles/tpantlr2/the-definitive-antlr-4-reference/
https://www.fortran.uk/fortran-compiler-comparisons/intellinux-fortran-compiler-diagnostic-capabilities/
https://www.fortran.uk/fortran-compiler-comparisons/intellinux-fortran-compiler-diagnostic-capabilities/

30.

31.

32.

33.

34.

35.

36.

Verifying Fortran Programs with CIVL 19

Rakamari¢, Z., Emmi, M.: SMACK: Decoupling source language details from
verifier implementation. In: Biere, A., Bloem, R. (eds.) Proceedings of the
26th International Conference on Computer Aided Verification (CAV). Lec-
ture Notes in Computer Science, vol. 8559, pp. 106-113. Springer (2014).
https://doi.org/10.1007/978-3-319-08867-9 7

Rasmussen, C.E., et al.: OFP: Open Fortran Project, https://sourceforge.net/p/
fortran-parser/wiki/Home/, accessed 14-Oct-2021

Rosner, R., Calder, A., Dursi, L., Fryxell, B., Lamb, D., Niemeyer, J., Olson, K.,
Ricker, P., Timmes, F., Truran, J., Tufo, H., Young, Y.N., Zingale, M., Lusk, E.,
Stevens, R.: Flash code: Studying astrophysical thermonuclear flashes. Computing
in Science and Engineering 2, 3341 (2000). https://doi.org/10.1109/5992.825747
Siegel, S.F., Zheng, M., Luo, Z., Zirkel, T.K., Marianiello, A.V., Edenhofner, J.G.,
Dwyer, M.B., Rogers, M.S.: CIVL: The Concurrency Intermediate Verification
Language. In: SC15: Proceedings of the International Conference for High Per-
formance Computing, Networking, Storage and Analysis. ACM, New York (Nov
2015). https://doi.org/10.1145/2807591.2807635, article no. 61, pages 1-12

Sinz, C., Merz, F., Falke, S.: LLBMC: A bounded model checker for LLVM’s
intermediate representation. In: Flanagan, C., Konig, B. (eds.) Tools and Algo-
rithms for the Construction and Analysis of Systems. Lecture Notes in Com-
puter Science, vol. 7214, pp. 542-544. Springer, Berlin, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-28756-5 44

Synopsys: Synopsys static analysis (Coverity) Fortran syntax analysis,
https://community.synopsys.com /s/article/Synopsys-Static- Analysis- Coverity-
Fortran-Syntax- Analysis, accessed 13-Oct-2021

Verma, G., Shi, Y., Liao, C., Chapman, B., Yan, Y.: Enhancing DataRaceBench
for evaluating data race detection tools. In: 2020 IEEE/ACM 4th International
Workshop on Software Correctness for HPC Applications (Correctness). pp. 20—
30. IEEE (2020). https://doi.org/10.1109/Correctness51934.2020.00008

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the

chapter’s Creative Commons license, unless indicated otherwise in a credit line to the

material. If material is not included in the chapter’s Creative Commons license and

your intended use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-319-08867-9_7
https://sourceforge.net/p/fortran-parser/wiki/Home/
https://sourceforge.net/p/fortran-parser/wiki/Home/
https://doi.org/10.1109/5992.825747
https://doi.org/10.1145/2807591.2807635
https://doi.org/10.1007/978-3-642-28756-5_44
https://community.synopsys.com/s/article/Synopsys-Static-Analysis-Coverity-Fortran-Syntax-Analysis
https://community.synopsys.com/s/article/Synopsys-Static-Analysis-Coverity-Fortran-Syntax-Analysis
https://doi.org/10.1109/Correctness51934.2020.00008
http://creativecommons.org/licenses/by/4.0/

	Verifying Fortran Programs with CIVL

