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Abstract  1 

 On-tissue chemical derivatization is a valuable tool for expanding compound coverage in 2 

untargeted metabolomics studies with matrix-assisted laser desorption/ionization mass 3 

spectrometry imaging (MALDI-MSI). Applying multiple derivatization agents in parallel 4 

increases metabolite coverage even further but results in large and more complex datasets that can 5 

be challenging to analyze. In this work, we present a pipeline to provide rigorous annotations for 6 

on-tissue derivatized MSI data using METASPACE. To test and validate the pipeline, maize roots 7 

were used as a model system to obtain MSI datasets after chemical derivatization with four 8 

different reagents, Girard’s T and P for carbonyl groups, coniferyl aldehyde for primary amines 9 

and 2-picolylamine for carboxylic acids. Using this pipeline helped us annotate 631 unique 10 

metabolites from the CornCyc/BraChem database compared to 256 in the underivatized dataset 11 

yet at the same time, shortening the processing time compared to manual processing and providing 12 

robust and systematic scoring and annotation. We have also developed a method to remove false 13 

derivatized annotations, which can clean 5-25% of false derivatized annotations from the 14 

derivatized data, depending on the reagent. Taken together, our pipeline facilitates the use of 15 

broadly targeted spatial metabolomics using multiple derivatization reagents.  16 

 17 

Introduction  18 

 Untargeted metabolomic analysis using mass spectrometry has become an important tool 19 

to better understand the mechanisms present in biological systems1. However, these studies present 20 

a unique challenge in metabolite identification, or finding metabolites represented in mass 21 

spectrometry data, exacerbated by the large size of metabolome. The Human Metabolome 22 

Database contains over 110,000 metabolites2,3. Plants have an even larger metabolome, estimated 23 

to be around 400,000 unique compounds which are responsible for numerous functions within a 24 

plant and within the plant’s environment4. The chemical diversity of each metabolome contributes 25 

to the challenge of metabolite detection and identification. Peptides, amino acids, carbohydrates, 26 

acids, and lipids can comprise the metabolites present in a biological system, each with unique 27 

chemical properties and functionalities which makes comprehensive identification difficult5. 28 

Therefore, increasing the compound coverage of analytical techniques is paramount to better 29 

understanding the complex metabolome of biological species. 30 
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 In addition to identifying compounds that are present, determining the spatial localization 1 

of these compounds is necessary to better understand biological functions. Spatial metabolomics 2 

using mass spectrometry imaging (MSI) has become a powerful tool to address this issue. Among 3 

the MSI techniques, matrix-assisted laser desorption/ionization (MALDI) MSI is appealing due to 4 

its high spatial resolution, a wide range of detectable molecules, and a variety of commercially 5 

available instrumentation. One critical bottleneck in MSI is limited compound coverage due to the 6 

low ionization efficiency of certain compounds and inherently small sampling size. The technique 7 

of on-tissue chemical derivatization applied prior to MALDI imaging has shown to be a useful 8 

strategy as it converts poorly ionizing compounds to positively charged or highly ionizable 9 

compounds, therefore dramatically increasing their signals. Most applications of on-tissue 10 

derivatization have focused on targeted MSI for specific chemical compounds. Girard’s T (GT) 11 

has been used to derivatize plant hormones in bean seeds6, triamcinolone acetonide in human 12 

osteoarthritic tissue7, glycans and oligosaccharides8,9, lactones in gram negative bacteria10, and 13 

steroids in mice or rat tissues11,12. Girard’s P (GP) has been utilized to for detecting cholesterol 14 

and derivatives in mouse brains13, sialylated oligosaccharides in human milk14, and N-glycans in 15 

human cancer tissue15. Coniferyl aldehyde (CA) has been used for derivatizing primary amine 16 

containing compounds such as amino acids, neurotransmitters, and short peptides16–19. 2-17 

Picolylamine (PA) has been applied to derivatize fatty acids in rat brain tissue20.  18 

 METASPACE is a web-based platform for untargeted spatial metabolomics and able to 19 

automatically and systematically perform metabolite and lipid annotation of high mass resolution 20 

MSI data. The quality of the annotation is estimated through the metabolite score match score 21 

(MSM), calculated as a product of several measures assessing the data quality as well as how it 22 

matches to theoretically predicted properties including theoretical isotope patterns. The false 23 

discovery rate (FDR) of the produced list of metabolite annotations is then estimated following the 24 

target-decoy strategy widely used in other omics using a target database (including ions from a 25 

metabolome of interest, considering plausible adducts e.g. H+, Na+, or K+) and a decoy database 26 

(including implausible ions calculated for the same metabolome e.g. B+, Db+, or Ag+)21. 27 

METASPACE additionally uses a machine learning algorithm to identify off-sample localized 28 

features and removes them22. This platform has been applied to many applications such as studying 29 

metabolite distribution in diabetic kidney tissue23, microbial metabolites24, lipid composition of 30 

demyelinated mouse spinal cord25, metabolite distribution in whole zebrafish26, and N-glycans in 31 
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human kidney and mouse lung tissue27. Additionally, METASPACE annotation quality has been 1 

used as an optimization metric for steps in the MALDI imaging workflow such as tissue storage28, 2 

MALDI matrix spraying parameters29, or post calibration of imaging datasets30. Finally, 3 

METASPACE is designed to easily share MSI data and has become a popular public repository.  4 

 Recently, our group has proposed the use of multiple on-tissue derivatization reagents on 5 

serial tissue sections to dramatically increase the compound coverage in semi-targeted MALDI 6 

imaging31,32. The challenge of these studies is the data analysis and interpretation, as it may take 7 

weeks to manually analyze multiple replicates of each derivatization reaction. Another challenge 8 

is the analyst bias and potential for human error which can result in missed or incorrect annotations. 9 

METASPACE was originally developed for the annotation and analysis of underivatized MSI 10 

data21. Here we present and make publicly available the novel functionality of METASPACE to 11 

support chemical derivatization so that chemically derivatized MS imaging datasets can be 12 

automatically annotated and scored with FDR. Previously, there has been no automatic annotation 13 

method for derivatized MSI data and any chemically derivatized MSI data had to be manually 14 

analyzed. Now, during the data upload or reprocessing, the submitter can enter the expected 15 

chemical modification which will be used for annotation. The focus of this work is to demonstrate 16 

this new functionality in METASPACE and, furthermore, propose a systematic workflow to 17 

identify and remove false positive annotations. Maize roots were used as a model system with the 18 

derivatization using four sets of chemical reagents.   19 

 20 

Materials and Methods. 21 

Brief Experimental Details. 22 

Full details of the experimental section are found in the supporting information. Sample 23 

preparation was performed based on our previous work.31,32 In brief, B109 maize roots were grown 24 

in a damp paper towel to 10-11 cm, embedded in 10% (w/v) gelatin and cryosectioned at 2 cm 25 

away from the seed with 20 µm thickness.31 Tissue sections were then dried down and 26 

derivatization reagents, additives and matrices were applied via TM sprayer (HTX Technologies, 27 

Chapel Hill, NC). Data was collected on a MALDI source (MALDI Injector; Spectroglyph , 28 

Kennewick, WA) coupled to an Orbitrap mass spectrometer (QExactive HF; Thermo Fisher 29 
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Scientific, San Jose, CA). Three replicates of each condition were imaged at a 20 µm raster step 1 

at the mass resolution of 120,000 at m/z 200 for a scan range of m/z 100 – 1000. Once collected, 2 

data was converted to imzML and uploaded to METASPACE (https://metaspace2020.eu/). LC-3 

MS(/MS) was collected to support annotations.  4 

 5 

METASPACE Data Analysis.  6 

A total of 18 MSI datasets were uploaded to METASPACE: three replicates of four 7 

derivatizations (GP, GT, CA, PA) and two controls (positive and negative mode). We annotated 8 

data against three metabolite databases on METASPACE: BraChem/CornCyc, LipidMaps (2017-9 

12-12) and ChEBI (2018-01). BraChem/CornCyc database is a custom combined database of 10 

BraChem (2018-01) and CornCyc (v9, 2018-07). For the control datasets, we considered [M+H]+ 11 

and [M+K]+ adducts in positive mode and deprotonated molecule, [M-H]-, in negative mode. For 12 

the derivatized datasets, the adducts were selected dependent on the derivatization reaction as 13 

follows. GP and GT have permanent positive charges we considered the [M]+ adduct and entered 14 

the chemical modification as ‘+C7H10N3O-H2O’ (or ‘+C7H8N3’ or + 134.0718 Da) for GP and 15 

‘+C5H14N3O-H2O’ (or ‘+C5H12N3’ or + 114.1031 Da) for GT. CA and PA have no permanent 16 

charge so we considered [M+H]+ and [M+K]+ adducts with the chemical modifications entered as 17 

‘+C10H10O3-H2O’ (or ‘+C10H8O2’ or + 160.0524 Da) for CA and ‘+C6H8N2-H2O’ (or + 90.0581 18 

Da) for PA. All METASPACE processed data is publicly available in the devoted project: 19 

https://metaspace2020.eu/project/MaizeB109_Roots_Deriv_2022. There are more annotated 20 

datasets in the project folder than the original 18 imzML datasets, a total of 48, because multiple 21 

METASPACE analyses were performed on each dataset, including different database searches or 22 

false derivatized annotation searches. A description of each dataset filename is found in 23 

Supplementary Table 1.  24 

 25 

Results and Discussion. 26 

Annotating Chemically-Derivatized Metabolites using METASPACE. 27 

The workflows of two approaches to annotate chemically-derivatized MSI data are 28 

compared in Figure 1: the manual conventional approach and METASPACE-based semi-29 
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automatic approach proposed in this work. Without an automatic annotation tool, the typical 1 

untargeted derivatized MSI workflow (Figure 1a) requires four major steps: 1) manual extractions 2 

of region-of-interest (ROI) features, 2) identification of ROI features unique to the derivatized 3 

sample by comparing to a control, 3) identification of tissue-localized features by generating 4 

images and manual filtering, and 4) manual database searching after subtracting the derivatization 5 

mass from each feature. Performing these steps is time-consuming and is subject to analyst biases 6 

which can often lead to missed or incorrect annotations. Depending on the size of data sets and the 7 

number of replicates, it may take at least a few days if not weeks to analyze the entire dataset. 8 

METASPACE provides an automated, rigorous, and efficient method to analyze derivatized MS 9 

imaging data using the chemical modification tool (Figure 1b). Steps 1, 3, and 4 above are greatly 10 

simplified as all are performed automatically by METASPACE, systematically providing 11 

annotations for the derivatized and underivatized data in minutes per dataset. The chemical 12 

modification tool accounts for the change in molecular formula corresponding to an applied 13 

derivatization reagent (e.g., the formula of chemical reagent) and annotates the “derivatized” 14 

molecular formulas (formulas where the chemical composition is updated accounting for the 15 

derivatization agent). A screenshot of METASPACE’s data submission page with the chemical 16 

modification tool highlighted is shown in Figure S1.  After selecting signals for such derivatized 17 

molecular formulas, the rest of the process follows regular METASPACE annotation, including 18 

calculations of the MSM scores and FDR. However, step 2 in manual analysis is currently not 19 

implemented in METASPACE, which may result in false derivatized annotations by annotating 20 

underivatized compounds as if they were derivatized. These unintended false positives, however, 21 

can be removed by comparing the same analysis on MSI data of underivatized tissue as discussed 22 

in the next subsection. 23 
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 1 

Figure 1. Workflow for (a) manual untargeted analysis of chemically derivatized MSI data and 2 

(b) automatic annotation proposed in this work using METASPACE including the removal of false 3 

derivatized annotations. Blue and orange color indicate the derivatization status (orange for 4 

underivatized, blue for derivatized) for the respective dataset, analysis step, or result. 5 

To evaluate the proposed METASPACE workflow, four different derivatization reagents 6 

were applied to maize root cross-sections: CA for primary amines, PA for carboxylic acids, GP 7 

and GT for carbonyls (Figure S2). Three replicates of each on-tissue modification and 8 

underivatized control were searched in three databases, BraChem/CornCyc33, LipidMaps34 and 9 

ChEBI35. BraChem (Brassica Napus Database) is a database from an LC-MS/MS study of rapeseed 10 

totaling roughly 11,000 metabolites with ~5,000 unique formulas. To supplement the BraChem 11 

database, it was combined with the CornCyc database which is a compendium of maize specific 12 

metabolites and metabolic pathways with ~2,500 metabolites and ~1,750 unique formulas. This 13 

combination was uploaded as a publicly available custom database on METASPACE. LipidMaps 14 

is a comprehensive lipid database containing both experimentally identified lipids as well as 15 

computationally predicted lipids with the version on METASPACE totaling 42,022 lipids with 16 

7,354 unique molecular formulas. ChEBI contains a broad range of natural metabolites from 17 



 8 

various organisms as well as synthetic compounds that are biologically relevant, with the version 1 

on METASPACE totaling 34,748 metabolites with 13,505 unique molecular formulas. Only 2 

annotations from these databases which are present in two or three replicates are included in the 3 

following discussion. The results of the chemical modification search using METASPACE are 4 

discussed below and used to validate the tool as well as determine the improvements to the results.  5 

 6 

False Annotations in Chemical Derivatization. 7 

 As with any untargeted metabolomics analysis, false positive matching is unavoidable in 8 

metabolite annotation. METASPACE minimizes this effect by calculating FDR by comparing 9 

MSM scores between annotations against plausible ions (target database) and implausible ions 10 

(decoy database). However, chemical derivatization analysis represents a specific challenge as it 11 

produces another type of false positives which we call “false derivatized annotations”. This can 12 

happen due to the fact that on-tissue chemical derivatization reactions do not produce 100% yield 13 

even in the most effective scenarios, because 1) the reaction time is limited as the solvent 14 

evaporates quickly, and 2) only metabolites extracted by solvent may react with the reagent. Thus, 15 

a “false derivatized annotation” occurs when an unmodified metabolite, which is present in the 16 

sample and detected by mass spectrometry, is isomeric to a molecular formula constructed by 17 

applying the derivatization reaction to another molecule from the target database. Additionally, 18 

any compounds which are not targeted by the derivatization reagent may also not react. Figure 2 19 

shows an example of true and false derivatized annotations. Chemical derivatization is properly 20 

considered in derivatization search for dihexose resulting in true annotation; however, unreacted 21 

protonated arginine (C6H14N4O2) is isomeric to nitromethane (CH3NO2) that is theoretically 22 

derivatized by GT, [CH3NO2 + C5H14N3O – H2O]+ = [C6H14N4O2 +H]+, resulting in false 23 

annotation. As each derivatization agent used in this work contains common functional groups 24 

made of biologically common atoms (CxHyOzNw), a molecular formula of a potentially derivatized 25 

metabolite is often isomeric to some other molecule from the target database. Additionally, besides 26 

isomeric matches between underivatized and derivatized molecular formulas, there can be also 27 

isobaric matches within the 3 ppm tolerance used in METASPACE. In manual untargeted 28 

derivatization annotations (Figure 1a), step 2 extracts only unique derivatized features by 29 
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comparing derivatized and underivatized datasets, typically done manually using an Excel sheet 1 

or semi-automatically using an in-house Python code.  2 

 3 

Figure 2. Illustration of derivatized annotations. Schematic for annotation of true and false 4 

derivatized annotations. Dihexose is present in maize root tissue, derivatized and annotated 5 

correctly. Arginine is not derivatized but results in a false derivatized annotation after matching to 6 

a database compound, nitromethane, after the derivatized search. 7 

The chemical modification tool of METASPACE cannot solve this issue by analyzing the 8 

derivatized dataset alone; however, the same unreacted metabolites are also present in the control 9 

and the corresponding false annotation can be removed by analyzing the underivatized control 10 

samples as if they are derivatized. Figure S3 further illustrates this process. If there is no matching 11 

in derivatization search of non-reacted compounds, they will result in only true derivatized 12 

annotations (Figure S3a). However, false derivatized annotation can occur when there happen to 13 

be a matching such as in arginine in search for GT derivatization (Figure S3b). To remove the 14 

false derivatized annotations, underivatized control data can be analyzed as if it is derivatized 15 

(Figure S3c). Any formula matches thus detected are all false derivatized annotations as there is 16 

no derivatization and can be removed from the derivatized dataset. In this work, this was 17 

accomplished by downloading annotations from METASPACE and comparing them in Excel and 18 

removing any overlap between the derivatized dataset and the derivatized search in the 19 

underivatized dataset. 20 

This approach is expected to remove almost all of the false derivatized annotations. Figure 21 

3 shows the percentage of peaks filtered out as false derivatized annotations for each derivatization 22 

reagent when searched against three metabolite databases. FDR 20% was used for all annotations. 23 

PA has a lower false derivatized annotation rate than the other three derivatization reagents when 24 
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searched against the largest database (ChEBI), likely due to the unique structure (i.e., pyridine 1 

ring). However, there are more false annotations (16.3%) in plant database (BraChem/CornCyc) 2 

than in a more general database such as ChEBI (5.3%). It may be due to plants have many more 3 

metabolites containing similar chemical formula with PA. CA has a very high false derivatized 4 

annotation rate when searched against LipidMaps (25%) than other databases because of the lack 5 

of tentative positives, only 18. This analysis gives an insight on how to improve true annotations 6 

in untargeted analysis using chemical derivatization; the use of derivatization reagents with unique 7 

formulas or functionality would alleviate false derivatized annotations from the start.  8 

 9 

Figure 3. Pie chart for the number of true and false derivatized annotations in METASPACE 10 

analysis of derivatized maize root sections at 20% FDR. 11 

The number of matches from the BraChem/CornCyc database after false derivatized 12 

annotation removal are shown in Figure 4a. The matches for underivatized control samples in 13 

positive and negative mode with DHB and DAN matrix, respectively, are compared with the 14 

derivatized sample sets. GP and GT have much higher numbers of matching at low FDR than the 15 

control, CA or PA modification. When using BraChem/CornCyc database with FDR 10% (Figure 16 

4a), for example, the number of matches is 248 and 302 for GP and GT, respectively, but it is only 17 

39, 84, 43, and 24 for positive control, negative control, CA, and PA, respectively. It is because 18 

GP and GT dramatically improved derivatized ion signals compared to CA and PA, which not 19 

only allowed for annotation but also improved quality of molecular signals (and thus higher 20 

numbers of annotations at the same FDR) due to high-quality isotope images. An example is 21 

C28H46O and C29H46O, matched to campest-4-en-3-one and avenastenone in the CornCyc database, 22 
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in which they have a ~1,000 times signal increase for GT and ~200 times signal increase for GP 1 

compared to the control. Low matching with the CA modification at a low FDR is attributed to 2 

fewer compounds with primary amines in maize roots and less ion signal improvement with CA. 3 

Fewer high-quality matches for CA and PA can also be attributed to the lack of a permanent 4 

positive charge limiting the signal improvement compared to GP and GT. Figure S4 shows 5 

matches for all three databases before and after false derivatization removal. As expected, ChEBI 6 

has the most matches at 20% FDR as it is the largest database (Figure S4); however, 7 

BraChem/CornCyc, the only plant specific database, has high-quality matching with comparable 8 

or higher number of matches at 5 or 10% FDR, especially for GP and GT. 9 

 10 

Figure 4. (A) Number of annotations after the removal of false derivatized annotation for the 11 

BraChem/CornCyc database at the FDR cutoffs of 5%, 10%, and 20%. (B) A Venn diagram 12 

showing the overlap in unique formulas annotated from the BraChem/CornCyc at 20% FDR. 13 

Girard’s T and Girard’s P were combined as they both target carbonyls. 14 

Figure 4b shows a Venn diagram comparing the METASPACE annotated metabolite 15 

features between the data sets when searched against BraChem/CornCyc database at 20% FDR. 16 

There is only a little overlap in matches between underivatized and derivatized data highlighting 17 

the number of new features observed through derivatization. Combining both positive and negative 18 
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mode, a total of 261 annotations are made in control whereas 450, 52, and 105 additional 1 

annotations are made by the derivatization with GP/GT, PA, and CA, respectively, resulting in a 2 

total of 578 annotations uniquely found only in chemical derivatization. The overlap between each 3 

derivatization is relatively small, suggesting the benefits of targeting multiple chemical 4 

functionalities. For example, 27% and 11% of PA derivatized annotations are also detected in 5 

GP/GT and CA annotations, respectively, and 16% and 6.1% of CA derivatized annotations are 6 

also found in GP/GT and PA annotations, respectively. There are 21 compounds which are 7 

annotated in both the CA dataset and either the PA or GP/GT datasets. It is possible that some of 8 

them might be due to side reactions. This highlights a challenge with chemical derivatization that 9 

highly reactive derivatization reagents, such as CA, may partially react with untargeted functional 10 

groups. We are systematically investigating potential side reactions of CA (work in progress). 11 

Further study is necessary to identify side reactions for each derivatization reagent as we have 12 

previously done for on-tissue boronic acid modifications36, in which the METASPACE chemical 13 

derivatization tool will be useful to annotate side reactions.  14 

 15 

Amino Acids and Other Tentative Matches with METASPACE.   16 

Amino acids, being amphiprotic, have low ionization efficiency in MALDI-MS; however, 17 

CA works well to derivatize and increase the signal of amino acids. In this work, nineteen 18 

derivatized amino acids including gamma-aminobutyric acid (GABA) have sufficient signals to 19 

be visualized (Figure 5) compared to three in the underivatized control. Of the 19 amino acids, 20 

sixteen were matched in all three replicates and three were detected in two replicates. Fourteen of 21 

them have a low FDR, eight 5% and six 10% FDR, respectively. Two have a medium FDR of 22 

20%, and three have high FDR of 50%. This wide range of FDR is due to the abundance difference 23 

of amino acid ion signals (Figure S5A), making amino acids a good system to investigate the 24 

efficiency of derivatization, how it contributes to the detection, and to annotation by 25 

METASPACE. Tyrosine was annotated as protonated and potassiated ions; however, the 26 

protonated ion is removed by METASPACE’s on-sample algorithm as it is largely delocalized and 27 

likely isomeric or isobaric by a background signal (not shown). The MSM score, a primary score 28 

to calculate FDR, is a product of three different scores: ρChaos quantifies the level of spatial chaos 29 

(versus structure) in the monoisotopic ion image, ρSpatial quantifies the spatial co-localization 30 
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between isotopic ion images, and ρSpectral quantifies the similarity of the relative isotopic 1 

intensities to the theoretically predicted isotope intensities for a molecule of interest. Figure S5B 2 

presents each of the scores composing MSM for Asn, an amino acid detected with 5% FDR, and 3 

Phe, an amino acid detected with 50% FDR. Asn has a much higher MSM (0.908) than Phe 4 

(0.2145), but their ρSpectral and ρChaos scores are both above 0.95, indicating ρSpatial as the 5 

major determinant for the MSM score (0.914 vs 0.225). While ρSpectral also measures the 6 

likelihood of chemical formula and affected by ion signals, ρSpatial is more affected by the 7 

detected molecular intensities. This is explained by the fact that isotopic ion images for low-8 

intensity molecules have low signal-to-noise ratio thus leading to a decrease in spatial co-9 

localization between isotopic ion images (calculated across all pixels). Some isotopes may even 10 

become below the limit of detection in some pixels and nullified altogether. Generally, lower 11 

abundance metabolites have higher FDRs and lower MSMs, primarily due to the ρSpatial score. 12 

However, like Phe, some low-scoring metabolite annotations which are expected to be present may 13 

require additional investigation as they may be missed with too strict of an FDR filter. For the rest 14 

of this manuscript, we will restrict the discussion to 20% FDR as a cutoff searched against 15 

BraChem/CornCyc database as summarized in Figure 4, providing a higher sensitivity in 16 

annotation compared to 10% FDR yet excluding more false positives compared to 50% FDR.  17 



 14 

 1 

Figure 5. Heatmap images of 18 amino acids including GABA annotated with METASPACE in 2 

maize root sections. Tyrosine is significantly overlapping with a background ion signal and not 3 

shown. The names of amino acids are colored according to the FDR they were annotated with: 4 

blue for 5% FDR, green for 10% FDR, violet for 20% FDR, and red for 50% FDR. Maize root 5 

morphology is included for reference: ep, epidermis; c, cortex; p, pith; en, endodermis; ph, phloem; 6 

x, xylem. Scale bar is 200 µm. 7 

 Interpreting the spatial localizations of the detected amino acids, we focus on the two 8 

morphological regions of the root: cortex and pith (see maize root morphology in Figure 5)19. 9 

Previously, we studied the genotypic difference of B73 and Mo17 species of maize as well as their 10 

hybrids. In this work we use B109 which is a cross of B73 and another Iowa strain, BS20(S)Cl-11 

73-1-1, and is phenotypically similar to B7337. Comparing the amino acid localizations between 12 

B109 (this work) and B73 (previous study) leads to the following observations. It should be noted 13 

that the compounds in xylem or phloem are often difficult to differentiate from those in pith due 14 

to the delocalization during the sample prep or their low abundance. As they are all involved in 15 
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amino acid transportation or storage, we will combine them as pith in the following discussion. In 1 

contrast, cortex is more involved in amino acid synthesis. The ion images for Gln and Leu/Ile are 2 

similar between B73 and B109 in that they are mostly present in pith. Gly is also similar for being 3 

present mostly in cortex. In contrast, Ala, Val, and Asn differ in their localization between B109 4 

and B73. In B109, all three show localization in cortex. In B73, Ala and Val are localized mostly 5 

in pith and Asn shows a homogeneous distribution. Further study would be necessary to interpret 6 

these differences, but it may be explained by the hypothesis that B73 relies more on the transport 7 

from seeds through pith. A few other amino acids have interesting localizations in B109 that we 8 

could not detect in our previous work in B73 or Mo17, thanks mostly to higher ion signals in this 9 

work achieved by using a better instrument and more optimized protocol; a total of 16 amino acids 10 

were detected in the previous work compared to 19 detected in this work. Among the newly 11 

detected amino acids, Lys is primarily localized in the epidermis and endodermis whereas Met, 12 

Arg, and Trp are present in high abundance in the pith.  13 

 In addition to amino acids, numerous other metabolites were annotated by METASPACE. 14 

Figure S6 shows examples of ion images for each derivatization agent, obtained when using the 15 

BraChem/CornCyc database with 20% FDR. A few of the unique localizations include m/z 16 

281.150 in PA which is localized to the epidermis and endodermis. m/z 426.333 in GT and m/z 17 

428.291 in GP are localized mostly to the endodermis. m/z 262.102, m/z 321.160, and m/z 481.101 18 

in CA and m/z 596.442 in GP are all localized to the pith. m/z 385.139 and m/z 467.085 in CA, and 19 

m/z 307.140 and m/z 443.155 in GT are all localized to the cortex. Finally, m/z 524.457 in GT and 20 

m/z 544.426 in GP are localized to the phloem. Diverse localizations detected by several different 21 

derivatization reactions further support the usefulness of adopting multiple chemical derivatization 22 

strategy.  23 

To cross-validate some of the annotated compounds, we performed an untargeted LC-MS 24 

and LC-MS/MS analysis with a quadrupole-time of flight mass spectrometer for the solvent-based 25 

extracts of roots grown in the same condition as the sectioned root. The accurate mass matching 26 

was performed for LC-MS data using the MassProfiler software and searched against the 27 

BraChem/CornCyc database. MassProfiler matches the accurate masses as well as isotope 28 

abundances, similar to the ρSpectral score used in METASPACE. LC-MS/MS data was analyzed 29 

using MS-DIAL and matched against the MONA spectral library. A total of 257 annotations were 30 
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obtained for LC-MS/MS and 2078 annotations for LC-MS combining both polar and non-polar 1 

extracts in positive and negative mode at the cutoff score of 60 and 80, respectively. We expect 2 

the overlap in annotated compounds is limited between LC-MS(/MS) and MALDI imaging due to 3 

the differences in sample processing and ionization mechanisms, and more importantly the fact 4 

there is no derivatization used for LC-MS(/MS). Overall, coverage of 24-29% is obtained in LC-5 

MS MassProfiler data analysis among the METASPACE matches with 20% FDR (Figure S7A); 6 

94 out of 322 in GT, 100 out of 401 in GP, 27 out of 101 in CA, 18 out of 76 in PA. There are 7 

fewer matches in LC-MS/MS (Figure S7B), likely due to the difference in the database and 8 

insufficient MS/MS signals. In Supplementary Table 2, the LC-MS/MS matches are shown for 9 

each derivatization reagent.  10 

 11 

CornCyc Annotations. 12 

The METASPACE annotations when using the CornCyc database can give information 13 

about the compound coverage and biological value of our derivatized data.  As expected, 14 

derivatization increased the number of tentatively identifiable metabolites. Within the CornCyc 15 

database, 75 molecular formulas were matched to known maize metabolites within the positive 16 

and negative mode control data. With the addition of each derivatization reagent an additional 178 17 

compounds are matched in the database for a total of 253 compounds. This number is much smaller 18 

than a total of 578 when we used the combined database of CornCyc/Brachem, which is attributed 19 

to the smaller number of compounds in the CornCyc database (only ~1,750 unique formulas). The 20 

value of using this database is the pathway annotation available using the Plant Metabolic Network 21 

pathway tools.38 In total, metabolites from 195 pathways were annotated in the control data while 22 

using derivatization allowed to detect metabolites from 343 pathways.  23 

To determine the specific classes of metabolites and pathways where derivatization 24 

provided improvement, enrichment analysis was performed on each derivatization reagent and the 25 

results are shown in Figure S8. Enrichment provides an interesting interpretation of derivatized 26 

data that shows where improvement in compound coverage is gained due to derivatization. As the 27 

number of matches is limited (Figure 4b), PA did not give valuable results (not shown). Molecules 28 

detected when using CA, as expected, demonstrated a high enrichment in the amino acid 29 

biosynthesis (p = 1.9e-15) and other amino acid related pathways as well as ethene and ethylene 30 
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biosynthesis pathways. GP and GT have similar enrichment results, which is expected as they have 1 

the same derivatization target. Many of the terpenoids and sterols have a carbonyl group and their 2 

biosynthesis are highly enriched in both GP and GT. The phytosterol biosynthesis is a subclass 3 

pathway of both terpenoid and sterol biosynthesis. As a result, it is most highly enriched among 4 

the subclass pathways, also partially due to its importance in developing roots39,40. As shown in 5 

Figure 6 for its simplified pathways, all five metabolites containing a ketone or aldehyde were 6 

annotated in this pathway, with GT and GP derivatization covering 100% of compounds in the 7 

pathway. Overall, they are abundant in cortex where their biosynthesis might be occurring but 8 

avenastenone and episterone are also localized to the phloem, possibly indicating transportation 9 

through the developing root.  10 

 11 

Figure 6. Plant phytosterol biosynthesis pathway annotated using METASPACE analysis of GT 12 

data with the CornCyc database. All five compounds were also identified in the GP dataset in high 13 

confidence with 5% FDR. The five compounds annotated are the only compounds containing a 14 

ketone or aldehyde in the pathway. Scale bar is 200 micron. 15 

The brassinosteriod pathway is another highly enriched subclass pathway, especially in 16 

GP-derivatization. Brassinosteroids are important plant growth hormones that are known to be 17 

biosynthesized in the roots, especially during root development. Eight unique formulas were 18 
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annotated with the GP data in this pathway, compared to seven in the GT data (Figure S9), 1 

including a few previously identified in GC-MS studies41. Only 2 of these carbonyl containing 2 

compounds are annotated in the underivatized datasets with 20% FDR in plant phytosterol and 3 

brassinosteroid pathways, further confirming on-tissue chemical derivatization greatly increases 4 

the compound coverage in an untargeted spatial metabolomics study. Recently, MALDI-2 is 5 

demonstrated for its ability to enhance ion signals for native sterols in MS imaging42 without any 6 

derivatization. The two techniques, MALDI-2 and derivatization with GP or GT, are expected to 7 

be complimentary each other as MALDI-2 detects sterols mostly as a water-loss, [M-H2O+H]+, 8 

while GP or GT can only derivatize ketone or aldehyde group.  9 

 10 

Conclusions 11 

 Using chemical derivatization in spatial metabolomics provides enhanced sensitivity yet 12 

previously required extensive manual data analysis. We present a publicly available workflow for 13 

annotation of derivatized metabolites implemented in METASPACE. As compared to laborious 14 

manual data analysis and interpretation as well as subjective annotation, METASPACE provides 15 

a fast, automated platform that robustly annotates and scores derivatized annotations. Moreover, 16 

using METASPACE provides confidence in those annotations in the form of their FDR scoring. 17 

Using this tool, the analysis of large datasets including multiple derivatization reagents and 18 

replicates could be performed in a systematic manner yet achievable in hours rather than days. 19 

This makes derivatization far more amenable in large untargeted spatial metabolomics studies. As 20 

demonstrated with the search against the BraChem/CornCyc database, the use of multiple 21 

derivatization reagents in parallel dramatically increases the compound coverage and improves the 22 

understanding of spatial metabolism and enriched metabolic pathways. 23 

 False derivatized annotations represent a challenge with any derivatization method in 24 

spatial metabolomics because of potential isomeric or isobaric relationships between underivatized 25 

metabolites and other derivatized metabolites. We addressed this issue by searching for each 26 

chemical modification in the underivatized dataset to identify and remove potential false 27 

annotations. Moreover, we learned the following lessons that can be helpful in designing novel 28 

strategies for chemical derivatization in the future. First, the structure and formula of the 29 

derivatization reagent is important; the more unique the formula, the less likely derivatized and 30 
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underivatized molecules will be isomeric. For example, a derivatization reagent with a rare atom 1 

in biological system (e.g., F or Cl) or isotope labels would be much less likely to result in a random 2 

isomeric match. Second, the use of a smaller, more targeted database leads to fewer randomly 3 

annotated compounds, which minimizes false positive annotations and improves annotation of real 4 

metabolites. Unexpected side reactions are a potential pitfall when using chemical derivatization 5 

in untargeted spatial metabolomics. Systematic studies should be performed to better understand 6 

possible side reactions and their reaction efficiencies to avoid such pitfalls. Further development 7 

of derivatization reagents focused on MS imaging will lead to the expansion of untargeted spatial 8 

metabolomics, especially improving reaction efficiencies, reducing false positives, and increasing 9 

molecular coverage. The METASPACE chemical derivatization tool as well as the methods 10 

described herein are applicable to any derivatization reaction, currently available or to-be newly 11 

developed, and would accelerate applications of MS imaging by robust high-throughput analysis.  12 
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