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Abstract

On-tissue chemical derivatization is a valuable tool for expanding compound coverage in
untargeted metabolomics studies with matrix-assisted laser desorption/ionization mass
spectrometry imaging (MALDI-MSI). Applying multiple derivatization agents in parallel
increases metabolite coverage even further but results in large and more complex datasets that can
be challenging to analyze. In this work, we present a pipeline to provide rigorous annotations for
on-tissue derivatized MSI data using METASPACE. To test and validate the pipeline, maize roots
were used as a model system to obtain MSI datasets after chemical derivatization with four
different reagents, Girard’s T and P for carbonyl groups, coniferyl aldehyde for primary amines
and 2-picolylamine for carboxylic acids. Using this pipeline helped us annotate 631 unique
metabolites from the CornCyc/BraChem database compared to 256 in the underivatized dataset
yet at the same time, shortening the processing time compared to manual processing and providing
robust and systematic scoring and annotation. We have also developed a method to remove false
derivatized annotations, which can clean 5-25% of false derivatized annotations from the
derivatized data, depending on the reagent. Taken together, our pipeline facilitates the use of

broadly targeted spatial metabolomics using multiple derivatization reagents.

Introduction

Untargeted metabolomic analysis using mass spectrometry has become an important tool
to better understand the mechanisms present in biological systems!. However, these studies present
a unique challenge in metabolite identification, or finding metabolites represented in mass
spectrometry data, exacerbated by the large size of metabolome. The Human Metabolome
Database contains over 110,000 metabolites?3. Plants have an even larger metabolome, estimated
to be around 400,000 unique compounds which are responsible for numerous functions within a
plant and within the plant’s environment*. The chemical diversity of each metabolome contributes
to the challenge of metabolite detection and identification. Peptides, amino acids, carbohydrates,
acids, and lipids can comprise the metabolites present in a biological system, each with unique
chemical properties and functionalities which makes comprehensive identification difficult®.
Therefore, increasing the compound coverage of analytical techniques is paramount to better

understanding the complex metabolome of biological species.
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In addition to identifying compounds that are present, determining the spatial localization
of these compounds is necessary to better understand biological functions. Spatial metabolomics
using mass spectrometry imaging (MSI) has become a powerful tool to address this issue. Among
the MSI techniques, matrix-assisted laser desorption/ionization (MALDI) MSI is appealing due to
its high spatial resolution, a wide range of detectable molecules, and a variety of commercially
available instrumentation. One critical bottleneck in MSI is limited compound coverage due to the
low ionization efficiency of certain compounds and inherently small sampling size. The technique
of on-tissue chemical derivatization applied prior to MALDI imaging has shown to be a useful
strategy as it converts poorly ionizing compounds to positively charged or highly ionizable
compounds, therefore dramatically increasing their signals. Most applications of on-tissue
derivatization have focused on targeted MSI for specific chemical compounds. Girard’s T (GT)
has been used to derivatize plant hormones in bean seeds®, triamcinolone acetonide in human
osteoarthritic tissue’, glycans and oligosaccharides®?, lactones in gram negative bacteria'®, and
steroids in mice or rat tissues!"'2. Girard’s P (GP) has been utilized to for detecting cholesterol
and derivatives in mouse brains'3, sialylated oligosaccharides in human milk'4, and N-glycans in
human cancer tissue'>. Coniferyl aldehyde (CA) has been used for derivatizing primary amine
containing compounds such as amino acids, neurotransmitters, and short peptides'®'®. 2-

Picolylamine (PA) has been applied to derivatize fatty acids in rat brain tissue?’.

METASPACE is a web-based platform for untargeted spatial metabolomics and able to
automatically and systematically perform metabolite and lipid annotation of high mass resolution
MSI data. The quality of the annotation is estimated through the metabolite score match score
(MSM), calculated as a product of several measures assessing the data quality as well as how it
matches to theoretically predicted properties including theoretical isotope patterns. The false
discovery rate (FDR) of the produced list of metabolite annotations is then estimated following the
target-decoy strategy widely used in other omics using a target database (including ions from a
metabolome of interest, considering plausible adducts e.g. H, Na*, or K") and a decoy database
(including implausible ions calculated for the same metabolome e.g. B, Db", or Ag")?'.
METASPACE additionally uses a machine learning algorithm to identify off-sample localized
features and removes them??. This platform has been applied to many applications such as studying
metabolite distribution in diabetic kidney tissue??, microbial metabolites®*, lipid composition of

demyelinated mouse spinal cord®’, metabolite distribution in whole zebrafish?, and N-glycans in
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human kidney and mouse lung tissue?’. Additionally, METASPACE annotation quality has been
used as an optimization metric for steps in the MALDI imaging workflow such as tissue storage®,
MALDI matrix spraying parameters?’, or post calibration of imaging datasets’®. Finally,

METASPACE is designed to easily share MSI data and has become a popular public repository.

Recently, our group has proposed the use of multiple on-tissue derivatization reagents on
serial tissue sections to dramatically increase the compound coverage in semi-targeted MALDI
imaging?'32. The challenge of these studies is the data analysis and interpretation, as it may take
weeks to manually analyze multiple replicates of each derivatization reaction. Another challenge
is the analyst bias and potential for human error which can result in missed or incorrect annotations.
METASPACE was originally developed for the annotation and analysis of underivatized MSI
data®'. Here we present and make publicly available the novel functionality of METASPACE to
support chemical derivatization so that chemically derivatized MS imaging datasets can be
automatically annotated and scored with FDR. Previously, there has been no automatic annotation
method for derivatized MSI data and any chemically derivatized MSI data had to be manually
analyzed. Now, during the data upload or reprocessing, the submitter can enter the expected
chemical modification which will be used for annotation. The focus of this work is to demonstrate
this new functionality in METASPACE and, furthermore, propose a systematic workflow to
identify and remove false positive annotations. Maize roots were used as a model system with the

derivatization using four sets of chemical reagents.

Materials and Methods.
Brief Experimental Details.

Full details of the experimental section are found in the supporting information. Sample
preparation was performed based on our previous work.?!*? In brief, B109 maize roots were grown
in a damp paper towel to 10-11 cm, embedded in 10% (w/v) gelatin and cryosectioned at 2 cm
away from the seed with 20 um thickness.’! Tissue sections were then dried down and
derivatization reagents, additives and matrices were applied via TM sprayer (HTX Technologies,
Chapel Hill, NC). Data was collected on a MALDI source (MALDI Injector; Spectroglyph ,

Kennewick, WA) coupled to an Orbitrap mass spectrometer (QExactive HF; Thermo Fisher



. W NN

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

25

26
27

28
29

Scientific, San Jose, CA). Three replicates of each condition were imaged at a 20 um raster step
at the mass resolution of 120,000 at m/z 200 for a scan range of m/z 100 — 1000. Once collected,
data was converted to imzML and uploaded to METASPACE (https://metaspace2020.eu/). LC-

MS(/MS) was collected to support annotations.

METASPACE Data Analysis.

A total of 18 MSI datasets were uploaded to METASPACE: three replicates of four
derivatizations (GP, GT, CA, PA) and two controls (positive and negative mode). We annotated
data against three metabolite databases on METASPACE: BraChem/CornCyc, LipidMaps (2017-
12-12) and ChEBI (2018-01). BraChem/CornCyc database is a custom combined database of
BraChem (2018-01) and CornCyc (v9, 2018-07). For the control datasets, we considered [M+H]"
and [M+K]" adducts in positive mode and deprotonated molecule, [M-H], in negative mode. For
the derivatized datasets, the adducts were selected dependent on the derivatization reaction as
follows. GP and GT have permanent positive charges we considered the [M]" adduct and entered
the chemical modification as ‘+C7H1oN3O-H2O’ (or ‘+C7HsN3” or + 134.0718 Da) for GP and
‘“+CsH1aN3O-H2O’ (or ‘“+CsHi2N3” or + 114.1031 Da) for GT. CA and PA have no permanent
charge so we considered [M+H]" and [M+K]" adducts with the chemical modifications entered as
‘+C10H1003-H20’ (or “+C10HgO?’ or + 160.0524 Da) for CA and ‘“+CgHsN2-H2O’ (or + 90.0581
Da) for PA. All METASPACE processed data is publicly available in the devoted project:

https://metaspace2020.eu/project/MaizeB109 Roots Deriv_2022. There are more annotated
datasets in the project folder than the original 18 imzML datasets, a total of 48, because multiple
METASPACE analyses were performed on each dataset, including different database searches or
false derivatized annotation searches. A description of each dataset filename is found in

Supplementary Table 1.

Results and Discussion.

Annotating Chemically-Derivatized Metabolites using METASPACE.

The workflows of two approaches to annotate chemically-derivatized MSI data are

compared in Figure 1: the manual conventional approach and METASPACE-based semi-
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automatic approach proposed in this work. Without an automatic annotation tool, the typical
untargeted derivatized MSI workflow (Figure 1a) requires four major steps: 1) manual extractions
of region-of-interest (ROI) features, 2) identification of ROI features unique to the derivatized
sample by comparing to a control, 3) identification of tissue-localized features by generating
images and manual filtering, and 4) manual database searching after subtracting the derivatization
mass from each feature. Performing these steps is time-consuming and is subject to analyst biases
which can often lead to missed or incorrect annotations. Depending on the size of data sets and the
number of replicates, it may take at least a few days if not weeks to analyze the entire dataset.
METASPACE provides an automated, rigorous, and efficient method to analyze derivatized MS
imaging data using the chemical modification tool (Figure 1b). Steps 1, 3, and 4 above are greatly
simplified as all are performed automatically by METASPACE, systematically providing
annotations for the derivatized and underivatized data in minutes per dataset. The chemical
modification tool accounts for the change in molecular formula corresponding to an applied
derivatization reagent (e.g., the formula of chemical reagent) and annotates the “derivatized”
molecular formulas (formulas where the chemical composition is updated accounting for the
derivatization agent). A screenshot of METASPACE’s data submission page with the chemical
modification tool highlighted is shown in Figure S1. After selecting signals for such derivatized
molecular formulas, the rest of the process follows regular METASPACE annotation, including
calculations of the MSM scores and FDR. However, step 2 in manual analysis is currently not
implemented in METASPACE, which may result in false derivatized annotations by annotating
underivatized compounds as if they were derivatized. These unintended false positives, however,
can be removed by comparing the same analysis on MSI data of underivatized tissue as discussed

in the next subsection.
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Figure 1. Workflow for (a) manual untargeted analysis of chemically derivatized MSI data and
(b) automatic annotation proposed in this work using METASPACE including the removal of false
derivatized annotations. Blue and orange color indicate the derivatization status (orange for

underivatized, blue for derivatized) for the respective dataset, analysis step, or result.

To evaluate the proposed METASPACE workflow, four different derivatization reagents
were applied to maize root cross-sections: CA for primary amines, PA for carboxylic acids, GP
and GT for carbonyls (Figure S2). Three replicates of each on-tissue modification and
underivatized control were searched in three databases, BraChem/CornCyc*, LipidMaps®** and
ChEBI*’. BraChem (Brassica Napus Database) is a database from an LC-MS/MS study of rapeseed
totaling roughly 11,000 metabolites with ~5,000 unique formulas. To supplement the BraChem
database, it was combined with the CornCyc database which is a compendium of maize specific
metabolites and metabolic pathways with ~2,500 metabolites and ~1,750 unique formulas. This
combination was uploaded as a publicly available custom database on METASPACE. LipidMaps
is a comprehensive lipid database containing both experimentally identified lipids as well as
computationally predicted lipids with the version on METASPACE totaling 42,022 lipids with

7,354 unique molecular formulas. ChEBI contains a broad range of natural metabolites from
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various organisms as well as synthetic compounds that are biologically relevant, with the version
on METASPACE totaling 34,748 metabolites with 13,505 unique molecular formulas. Only
annotations from these databases which are present in two or three replicates are included in the
following discussion. The results of the chemical modification search using METASPACE are

discussed below and used to validate the tool as well as determine the improvements to the results.

False Annotations in Chemical Derivatization.

As with any untargeted metabolomics analysis, false positive matching is unavoidable in
metabolite annotation. METASPACE minimizes this effect by calculating FDR by comparing
MSM scores between annotations against plausible ions (target database) and implausible ions
(decoy database). However, chemical derivatization analysis represents a specific challenge as it
produces another type of false positives which we call “false derivatized annotations”. This can
happen due to the fact that on-tissue chemical derivatization reactions do not produce 100% yield
even in the most effective scenarios, because 1) the reaction time is limited as the solvent
evaporates quickly, and 2) only metabolites extracted by solvent may react with the reagent. Thus,
a “false derivatized annotation” occurs when an unmodified metabolite, which is present in the
sample and detected by mass spectrometry, is isomeric to a molecular formula constructed by
applying the derivatization reaction to another molecule from the target database. Additionally,
any compounds which are not targeted by the derivatization reagent may also not react. Figure 2
shows an example of true and false derivatized annotations. Chemical derivatization is properly
considered in derivatization search for dihexose resulting in true annotation; however, unreacted
protonated arginine (CsHi4N4O») is isomeric to nitromethane (CH3NO;) that is theoretically
derivatized by GT, [CH3NO: + CsHisN3O — H,O]" = [CsH1aN4O2 +H]*, resulting in false
annotation. As each derivatization agent used in this work contains common functional groups
made of biologically common atoms (CxHyO,Ny), a molecular formula of a potentially derivatized
metabolite is often isomeric to some other molecule from the target database. Additionally, besides
isomeric matches between underivatized and derivatized molecular formulas, there can be also
isobaric matches within the 3 ppm tolerance used in METASPACE. In manual untargeted

derivatization annotations (Figure 1a), step 2 extracts only unique derivatized features by
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comparing derivatized and underivatized datasets, typically done manually using an Excel sheet

or semi-automatically using an in-house Python code.

Chemical Derivatization
Derivatization Search
Maize Root Derivatized Mass BraChem/CornCyc
Tissue Spectrometry Database
Data True
gnnotation
Dihexose | |Reacted | | Dihexose +GT §|- GT
C1,H3;01, Cy7H3,N30,,° C1,H5,0;,
False
Un- annotation
Arginine reacted Arginine - GT |} Nitromethane
CeH1,N,0, [CeH 4N, 0, +H'] CH;NO,

Figure 2. Illustration of derivatized annotations. Schematic for annotation of true and false
derivatized annotations. Dihexose is present in maize root tissue, derivatized and annotated
correctly. Arginine is not derivatized but results in a false derivatized annotation after matching to

a database compound, nitromethane, after the derivatized search.

The chemical modification tool of METASPACE cannot solve this issue by analyzing the
derivatized dataset alone; however, the same unreacted metabolites are also present in the control
and the corresponding false annotation can be removed by analyzing the underivatized control
samples as if they are derivatized. Figure S3 further illustrates this process. If there is no matching
in derivatization search of non-reacted compounds, they will result in only true derivatized
annotations (Figure S3a). However, false derivatized annotation can occur when there happen to
be a matching such as in arginine in search for GT derivatization (Figure S3b). To remove the
false derivatized annotations, underivatized control data can be analyzed as if it is derivatized
(Figure S3c¢). Any formula matches thus detected are all false derivatized annotations as there is
no derivatization and can be removed from the derivatized dataset. In this work, this was
accomplished by downloading annotations from METASPACE and comparing them in Excel and
removing any overlap between the derivatized dataset and the derivatized search in the

underivatized dataset.

This approach is expected to remove almost all of the false derivatized annotations. Figure
3 shows the percentage of peaks filtered out as false derivatized annotations for each derivatization
reagent when searched against three metabolite databases. FDR 20% was used for all annotations.

PA has a lower false derivatized annotation rate than the other three derivatization reagents when
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searched against the largest database (ChEBI), likely due to the unique structure (i.e., pyridine
ring). However, there are more false annotations (16.3%) in plant database (BraChem/CornCyc)
than in a more general database such as ChEBI (5.3%). It may be due to plants have many more
metabolites containing similar chemical formula with PA. CA has a very high false derivatized
annotation rate when searched against LipidMaps (25%) than other databases because of the lack
of tentative positives, only 18. This analysis gives an insight on how to improve true annotations
in untargeted analysis using chemical derivatization; the use of derivatization reagents with unique

formulas or functionality would alleviate false derivatized annotations from the start.

BraChem

CornCyc
LipidMaps )
%FA = 13.2
-
. 34
¢ 231
ChEBI
%6FA =12.8
-
B Tentative I False o%Fa False Annotations
Positives Derivatized Removed / Total

Annotations Annotations

Figure 3. Pie chart for the number of true and false derivatized annotations in METASPACE

analysis of derivatized maize root sections at 20% FDR.

The number of matches from the BraChem/CornCyc database after false derivatized
annotation removal are shown in Figure 4a. The matches for underivatized control samples in
positive and negative mode with DHB and DAN matrix, respectively, are compared with the
derivatized sample sets. GP and GT have much higher numbers of matching at low FDR than the
control, CA or PA modification. When using BraChem/CornCyc database with FDR 10% (Figure
4a), for example, the number of matches is 248 and 302 for GP and GT, respectively, but it is only
39, 84, 43, and 24 for positive control, negative control, CA, and PA, respectively. It is because
GP and GT dramatically improved derivatized ion signals compared to CA and PA, which not
only allowed for annotation but also improved quality of molecular signals (and thus higher
numbers of annotations at the same FDR) due to high-quality isotope images. An example is

C28H460 and C29Ha60O, matched to campest-4-en-3-one and avenastenone in the CornCyc database,

10
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in which they have a ~1,000 times signal increase for GT and ~200 times signal increase for GP
compared to the control. Low matching with the CA modification at a low FDR is attributed to
fewer compounds with primary amines in maize roots and less ion signal improvement with CA.
Fewer high-quality matches for CA and PA can also be attributed to the lack of a permanent
positive charge limiting the signal improvement compared to GP and GT. Figure S4 shows
matches for all three databases before and after false derivatization removal. As expected, ChEBI
has the most matches at 20% FDR as it is the largest database (Figure S4); however,
BraChem/CornCyc, the only plant specific database, has high-quality matching with comparable
or higher number of matches at 5 or 10% FDR, especially for GP and GT.

BraChem/CornCyc
500
a. 20%
400
»10%
300
m5%
200 I
100
0 || . - ||
DHB (+) DAN(-) CA GP GT PA
J L J
Control Derivatized
GP/GT PA
b. control 427 CA
38
174 89

16

Figure 4. (A) Number of annotations after the removal of false derivatized annotation for the
BraChem/CornCyc database at the FDR cutoffs of 5%, 10%, and 20%. (B) A Venn diagram
showing the overlap in unique formulas annotated from the BraChem/CornCyc at 20% FDR.

Girard’s T and Girard’s P were combined as they both target carbonyls.

Figure 4b shows a Venn diagram comparing the METASPACE annotated metabolite
features between the data sets when searched against BraChem/CornCyc database at 20% FDR.
There is only a little overlap in matches between underivatized and derivatized data highlighting

the number of new features observed through derivatization. Combining both positive and negative

11
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mode, a total of 261 annotations are made in control whereas 450, 52, and 105 additional
annotations are made by the derivatization with GP/GT, PA, and CA, respectively, resulting in a
total of 578 annotations uniquely found only in chemical derivatization. The overlap between each
derivatization is relatively small, suggesting the benefits of targeting multiple chemical
functionalities. For example, 27% and 11% of PA derivatized annotations are also detected in
GP/GT and CA annotations, respectively, and 16% and 6.1% of CA derivatized annotations are
also found in GP/GT and PA annotations, respectively. There are 21 compounds which are
annotated in both the CA dataset and either the PA or GP/GT datasets. It is possible that some of
them might be due to side reactions. This highlights a challenge with chemical derivatization that
highly reactive derivatization reagents, such as CA, may partially react with untargeted functional
groups. We are systematically investigating potential side reactions of CA (work in progress).
Further study is necessary to identify side reactions for each derivatization reagent as we have
previously done for on-tissue boronic acid modifications®®, in which the METASPACE chemical

derivatization tool will be useful to annotate side reactions.

Amino Acids and Other Tentative Matches with METASPACE.

Amino acids, being amphiprotic, have low ionization efficiency in MALDI-MS; however,
CA works well to derivatize and increase the signal of amino acids. In this work, nineteen
derivatized amino acids including gamma-aminobutyric acid (GABA) have sufficient signals to
be visualized (Figure 5) compared to three in the underivatized control. Of the 19 amino acids,
sixteen were matched in all three replicates and three were detected in two replicates. Fourteen of
them have a low FDR, eight 5% and six 10% FDR, respectively. Two have a medium FDR of
20%, and three have high FDR of 50%. This wide range of FDR is due to the abundance difference
of amino acid ion signals (Figure SS5A), making amino acids a good system to investigate the
efficiency of derivatization, how it contributes to the detection, and to annotation by
METASPACE. Tyrosine was annotated as protonated and potassiated ions; however, the
protonated ion is removed by METASPACE’s on-sample algorithm as it is largely delocalized and
likely isomeric or isobaric by a background signal (not shown). The MSM score, a primary score
to calculate FDR, is a product of three different scores: pChaos quantifies the level of spatial chaos

(versus structure) in the monoisotopic ion image, pSpatial quantifies the spatial co-localization

12
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between isotopic ion images, and pSpectral quantifies the similarity of the relative isotopic
intensities to the theoretically predicted isotope intensities for a molecule of interest. Figure S5B
presents each of the scores composing MSM for Asn, an amino acid detected with 5% FDR, and
Phe, an amino acid detected with 50% FDR. Asn has a much higher MSM (0.908) than Phe
(0.2145), but their pSpectral and pChaos scores are both above 0.95, indicating pSpatial as the
major determinant for the MSM score (0.914 vs 0.225). While pSpectral also measures the
likelihood of chemical formula and affected by ion signals, pSpatial is more affected by the
detected molecular intensities. This is explained by the fact that isotopic ion images for low-
intensity molecules have low signal-to-noise ratio thus leading to a decrease in spatial co-
localization between isotopic ion images (calculated across all pixels). Some isotopes may even
become below the limit of detection in some pixels and nullified altogether. Generally, lower
abundance metabolites have higher FDRs and lower MSMs, primarily due to the pSpatial score.
However, like Phe, some low-scoring metabolite annotations which are expected to be present may
require additional investigation as they may be missed with too strict of an FDR filter. For the rest
of this manuscript, we will restrict the discussion to 20% FDR as a cutoff searched against
BraChem/CornCyc database as summarized in Figure 4, providing a higher sensitivity in

annotation compared to 10% FDR yet excluding more false positives compared to 50% FDR.

13
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Figure 5. Heatmap images of 18 amino acids including GABA annotated with METASPACE in
maize root sections. Tyrosine is significantly overlapping with a background ion signal and not
shown. The names of amino acids are colored according to the FDR they were annotated with:
blue for 5% FDR, green for 10% FDR, violet for 20% FDR, and red for 50% FDR. Maize root
morphology is included for reference: ep, epidermis; ¢, cortex; p, pith; en, endodermis; ph, phloem;

x, xylem. Scale bar is 200 pm.

Interpreting the spatial localizations of the detected amino acids, we focus on the two
morphological regions of the root: cortex and pith (see maize root morphology in Figure 5)'°.
Previously, we studied the genotypic difference of B73 and Mo17 species of maize as well as their
hybrids. In this work we use B109 which is a cross of B73 and another lowa strain, BS20(S)Cl-
73-1-1, and is phenotypically similar to B73%’. Comparing the amino acid localizations between
B109 (this work) and B73 (previous study) leads to the following observations. It should be noted
that the compounds in xylem or phloem are often difficult to differentiate from those in pith due

to the delocalization during the sample prep or their low abundance. As they are all involved in

14
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amino acid transportation or storage, we will combine them as pith in the following discussion. In
contrast, cortex is more involved in amino acid synthesis. The ion images for Gln and Leu/Ile are
similar between B73 and B109 in that they are mostly present in pith. Gly is also similar for being
present mostly in cortex. In contrast, Ala, Val, and Asn differ in their localization between B109
and B73. In B109, all three show localization in cortex. In B73, Ala and Val are localized mostly
in pith and Asn shows a homogeneous distribution. Further study would be necessary to interpret
these differences, but it may be explained by the hypothesis that B73 relies more on the transport
from seeds through pith. A few other amino acids have interesting localizations in B109 that we
could not detect in our previous work in B73 or Mo17, thanks mostly to higher ion signals in this
work achieved by using a better instrument and more optimized protocol; a total of 16 amino acids
were detected in the previous work compared to 19 detected in this work. Among the newly
detected amino acids, Lys is primarily localized in the epidermis and endodermis whereas Met,

Arg, and Trp are present in high abundance in the pith.

In addition to amino acids, numerous other metabolites were annotated by METASPACE.
Figure S6 shows examples of ion images for each derivatization agent, obtained when using the
BraChem/CornCyc database with 20% FDR. A few of the unique localizations include m/z
281.150 in PA which is localized to the epidermis and endodermis. m/z 426.333 in GT and m/z
428.291 in GP are localized mostly to the endodermis. m/z 262.102, m/z 321.160, and m/z 481.101
in CA and m/z 596.442 in GP are all localized to the pith. m/z 385.139 and m/z 467.085 in CA, and
m/z 307.140 and m/z 443.155 in GT are all localized to the cortex. Finally, m/z 524.457 in GT and
m/z 544.426 in GP are localized to the phloem. Diverse localizations detected by several different
derivatization reactions further support the usefulness of adopting multiple chemical derivatization

strategy.

To cross-validate some of the annotated compounds, we performed an untargeted LC-MS
and LC-MS/MS analysis with a quadrupole-time of flight mass spectrometer for the solvent-based
extracts of roots grown in the same condition as the sectioned root. The accurate mass matching
was performed for LC-MS data using the MassProfiler software and searched against the
BraChem/CornCyc database. MassProfiler matches the accurate masses as well as isotope
abundances, similar to the pSpectral score used in METASPACE. LC-MS/MS data was analyzed
using MS-DIAL and matched against the MONA spectral library. A total of 257 annotations were
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obtained for LC-MS/MS and 2078 annotations for LC-MS combining both polar and non-polar
extracts in positive and negative mode at the cutoff score of 60 and 80, respectively. We expect
the overlap in annotated compounds is limited between LC-MS(/MS) and MALDI imaging due to
the differences in sample processing and ionization mechanisms, and more importantly the fact
there is no derivatization used for LC-MS(/MS). Overall, coverage of 24-29% is obtained in LC-
MS MassProfiler data analysis among the METASPACE matches with 20% FDR (Figure S7A);
94 out of 322 in GT, 100 out of 401 in GP, 27 out of 101 in CA, 18 out of 76 in PA. There are
fewer matches in LC-MS/MS (Figure S7B), likely due to the difference in the database and
insufficient MS/MS signals. In Supplementary Table 2, the LC-MS/MS matches are shown for

each derivatization reagent.

CornCyc Annotations.

The METASPACE annotations when using the CornCyc database can give information
about the compound coverage and biological value of our derivatized data. As expected,
derivatization increased the number of tentatively identifiable metabolites. Within the CornCyc
database, 75 molecular formulas were matched to known maize metabolites within the positive
and negative mode control data. With the addition of each derivatization reagent an additional 178
compounds are matched in the database for a total of 253 compounds. This number is much smaller
than a total of 578 when we used the combined database of CornCyc/Brachem, which is attributed
to the smaller number of compounds in the CornCyc database (only ~1,750 unique formulas). The
value of using this database is the pathway annotation available using the Plant Metabolic Network
pathway tools.?® In total, metabolites from 195 pathways were annotated in the control data while

using derivatization allowed to detect metabolites from 343 pathways.

To determine the specific classes of metabolites and pathways where derivatization
provided improvement, enrichment analysis was performed on each derivatization reagent and the
results are shown in Figure S8. Enrichment provides an interesting interpretation of derivatized
data that shows where improvement in compound coverage is gained due to derivatization. As the
number of matches is limited (Figure 4b), PA did not give valuable results (not shown). Molecules
detected when using CA, as expected, demonstrated a high enrichment in the amino acid

biosynthesis (p = 1.9e-15) and other amino acid related pathways as well as ethene and ethylene
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biosynthesis pathways. GP and GT have similar enrichment results, which is expected as they have
the same derivatization target. Many of the terpenoids and sterols have a carbonyl group and their
biosynthesis are highly enriched in both GP and GT. The phytosterol biosynthesis is a subclass
pathway of both terpenoid and sterol biosynthesis. As a result, it is most highly enriched among
the subclass pathways, also partially due to its importance in developing roots*>*°. As shown in
Figure 6 for its simplified pathways, all five metabolites containing a ketone or aldehyde were
annotated in this pathway, with GT and GP derivatization covering 100% of compounds in the
pathway. Overall, they are abundant in cortex where their biosynthesis might be occurring but
avenastenone and episterone are also localized to the phloem, possibly indicating transportation
through the developing root.

S ecrcant

Cycloartenol

4u-frmy| -erl’gosta-7,24-dien-3[3-ol
C36H460;

Brassicasterol

o

Crinosterol "
Stigmasterol Episterone, C,3H,,0

Figure 6. Plant phytosterol biosynthesis pathway annotated using METASPACE analysis of GT
data with the CornCyc database. All five compounds were also identified in the GP dataset in high
confidence with 5% FDR. The five compounds annotated are the only compounds containing a

ketone or aldehyde in the pathway. Scale bar is 200 micron.

The brassinosteriod pathway is another highly enriched subclass pathway, especially in
GP-derivatization. Brassinosteroids are important plant growth hormones that are known to be

biosynthesized in the roots, especially during root development. Eight unique formulas were
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annotated with the GP data in this pathway, compared to seven in the GT data (Figure S9),
including a few previously identified in GC-MS studies*'. Only 2 of these carbonyl containing
compounds are annotated in the underivatized datasets with 20% FDR in plant phytosterol and
brassinosteroid pathways, further confirming on-tissue chemical derivatization greatly increases
the compound coverage in an untargeted spatial metabolomics study. Recently, MALDI-2 is
demonstrated for its ability to enhance ion signals for native sterols in MS imaging*? without any
derivatization. The two techniques, MALDI-2 and derivatization with GP or GT, are expected to
be complimentary each other as MALDI-2 detects sterols mostly as a water-loss, [M-H2O+H]",

while GP or GT can only derivatize ketone or aldehyde group.

Conclusions

Using chemical derivatization in spatial metabolomics provides enhanced sensitivity yet
previously required extensive manual data analysis. We present a publicly available workflow for
annotation of derivatized metabolites implemented in METASPACE. As compared to laborious
manual data analysis and interpretation as well as subjective annotation, METASPACE provides
a fast, automated platform that robustly annotates and scores derivatized annotations. Moreover,
using METASPACE provides confidence in those annotations in the form of their FDR scoring.
Using this tool, the analysis of large datasets including multiple derivatization reagents and
replicates could be performed in a systematic manner yet achievable in hours rather than days.
This makes derivatization far more amenable in large untargeted spatial metabolomics studies. As
demonstrated with the search against the BraChem/CornCyc database, the use of multiple
derivatization reagents in parallel dramatically increases the compound coverage and improves the

understanding of spatial metabolism and enriched metabolic pathways.

False derivatized annotations represent a challenge with any derivatization method in
spatial metabolomics because of potential isomeric or isobaric relationships between underivatized
metabolites and other derivatized metabolites. We addressed this issue by searching for each
chemical modification in the underivatized dataset to identify and remove potential false
annotations. Moreover, we learned the following lessons that can be helpful in designing novel
strategies for chemical derivatization in the future. First, the structure and formula of the

derivatization reagent is important; the more unique the formula, the less likely derivatized and
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underivatized molecules will be isomeric. For example, a derivatization reagent with a rare atom
in biological system (e.g., F or Cl) or isotope labels would be much less likely to result in a random
isomeric match. Second, the use of a smaller, more targeted database leads to fewer randomly
annotated compounds, which minimizes false positive annotations and improves annotation of real
metabolites. Unexpected side reactions are a potential pitfall when using chemical derivatization
in untargeted spatial metabolomics. Systematic studies should be performed to better understand
possible side reactions and their reaction efficiencies to avoid such pitfalls. Further development
of derivatization reagents focused on MS imaging will lead to the expansion of untargeted spatial
metabolomics, especially improving reaction efficiencies, reducing false positives, and increasing
molecular coverage. The METASPACE chemical derivatization tool as well as the methods
described herein are applicable to any derivatization reaction, currently available or to-be newly

developed, and would accelerate applications of MS imaging by robust high-throughput analysis.
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