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Abstract—False alarms generated by physiological monitors
can overwhelm clinical caretakers with a variety of alarms. The
resulting alarm fatigue can be mitigated with alarm suppression.
Before being deployed, such suppression mechanisms need to
be evaluated through a costly observational study, which would
determine and label the truly suppressible alarms. This paper
proposes a lightweight method for evaluating alarm suppression
without access to the true alarm labels. The method is based
on the data programming paradigm, which combines noisy and
cheap-to-obtain labeling heuristics into probabilistic labels. Based
on these labels, the method estimates the sensitivity/specificity
of a suppression mechanism and describes the likely outcomes
of an observational study in the form of confidence bounds. We
evaluate the proposed method in a case study of low SpO2 alarms
using a dataset collected at Children’s Hospital of Philadelphia
and show that our method provides tight and accurate bounds
that significantly outperform the naive comparative method.

I. INTRODUCTION

Alarm fatigue is a pervasive problem associated with physi-
ologic monitoring in the hospital setting [1]. Bedside monitors
continuously measuring heart rhythm, heart rate, respiratory
rate, blood oxygen, and other parameters often overwhelm
clinicians with very frequent non-actionable alarms. The end
result is that clinicians react slowly, if at all, to alarms that
have a small but nonzero probability of representing a critical
patient need [2]. Ideally, the clinicians should only be alerted
by the alarms that they will find informative or actionable (we
call such alarms non-suppressible), whereas the rest of the
alarms are deemed suppressible.

Alarm fatigue can be mitigated by reducing the number of
suppressible alarms through threshold tuning, customization,
integration, and other methods [3]. Researchers have proposed
novel algorithms for monitoring and suppressing unnecessary
alarms based on advanced data processing [4], [5], [6]. Such
improvements need to be carefully balanced with the possibil-
ity of missing non-suppressible alarms. Ultimately, algorithmic
methods and tuning can be seen as a suppression system
targeting a particular type of alarm.

The clinical investigation and deployment of suppression
systems is predicated on their expected performance. For ex-
ample, when deploying an alarm suppression system, hospital
policy makers need to confirm that its specificity to non-
suppressible alarms is above certain bounds, to be confident
that most non-suppressible alarms will continue to be reported.

This work was supported in part by NSF-1915398 and NIH R18 HS026620.

Measuring the performance of a suppression system typically
requires a representative dataset of alarms labeled with their
suppressibility.

It is time-consuming and expensive to create highly accurate
labeled datasets for evaluation and tuning of suppression sys-
tems. A common way to do so is to perform an observational
study [7] of many patients and manually label each time when
an alarm would be non-suppressible. Such a study is a major
commitment when it comes to an initial deployment of a novel
suppression system, in part due to the significant effort of
manual labeling. Furthermore, it is impractical to perform an
observational study for every adjustment of the settings of a
physiological monitor throughout its lifecycle. This cost can be
reduced with patient simulations [8], but precise and realistic
simulations of human physiology are notoriously difficult and
expensive to construct.

This paper introduces a cheap and rapid method of estimat-
ing the performance of a suppression system in the absence of
a dataset with highly accurate labels. This method can support
early-stage low-cost investigations of suppression systems in
a variety of ways. For example, it can prioritize observational
studies of systems with higher potential to alleviate alarm fa-
tigue so that the effort of manually labeling is spent optimally.
It can also guide the tuning of the system’s settings towards
effective alarm suppression, reducing the risk of missing non-
suppressible alarms.

A key element of our method is to probabilistically label
patient data according to the recently emerging paradigm of
data programming [9]. We start with a dataset of unlabeled
patient data, typically abundant in most clinical settings, and a
suppression system for some alarm type with tunable settings.
We then collect clinical intuitions about this alarm type and
encode them as labeling functions — weak classifiers of
suppressible/non-suppressible alarms that can abstain and need
not be comprehensive or non-contradictory. The data and the
labeling functions are put together via a generative model,
resulting in labels of varied confidence for each data point. Fi-
nally, the high-confidence subset of those labels is used to esti-
mate the sensitivity and specificity of the suppression system.

To appropriately communicate the uncertainty of our esti-
mates, we mathematically develop confidence bounds on the
sensitivity and specificity on the suppression system. These
bounds indicate, for a given level of confidence, the interval
of possible sensitivity/specificity values that one could obtain



if they performed an observational study of a given size. These
bounds account for the uncertainty of the labeling process, the
randomness in the sampling of the dataset, and the amount of
data available for different clinical situations.

We validated our method through a case study of low
SpO2 alarms on a 551-hour labeled dataset from Children’s
Hospital of Philadelphia. The proposed method was used to
estimate the alarm performance for different values of the
SpO2 threshold. Our method’s estimated confidence bounds
almost always contain the true-label-based specificity and
sensitivity — and substantially outperform the naive estimates
based on each labeling function voting with an equal weight.
This study demonstrated how to negotiate the sensitivity-
specificity trade-off in an suppression system without investing
hundreds of hours into labeling the alarm data.

In summary, this paper makes three research contributions:
• A data programming-based method for estimating the

performance of alarm suppression,
• Confidence bounds on the performance estimates from

the above method,
• A successful application of the above method to a case

study of tuning the SpO2 alarm threshold.
The rest of the paper is organized as follows. The next

section presents the detailed motivation for low-cost estimation
of alarm suppression. Section III discusses the existing ways
to evaluate suppression systems. Section IV formulates the
mathematical problem at the heart of our method, which is
described in the following section. The case study of low
SpO2 alarms is described in Section VI, and its results are
found in Section VII. The paper concludes with Section VIII.

II. MOTIVATING SCENARIOS

This paper focuses on clinical alarms produced by physi-
ological monitors in a hospital setting. A monitor takes in a
combination of static inputs (e.g., demographic information)
and dynamic inputs (e.g., 5 seconds of vital sign waveforms),
and we refer to their combination as patient data. The alarm-
generating device implements an algorithm that responds to
patient data by either raising an alarm or not. All the inputs
where the device raises an alarm are referred to as alarm-
generating inputs, or alarms for short. The scope focuses on
alarm suppression systems that deactivate the raised alarms;
thus, the inputs that did not trigger any alarms in the first place
are not considered because their relevance is nearly impossible
to establish in most practical settings. Our concept of a
suppression system describes both standalone algorithms de-
ployed alongside alarm devices and any adjustments to the ex-
isting alarm device (e.g., reducing the SpO2 alarm threshold).

Suppose that some patient data is measured by or input into
an alarm device, and it generates a number of alarms. Any such
alarm belongs to one of the two mutually exclusive classes. A
suppressible alarm is one that can be disregarded by the clini-
cians without missing any important or actionable information.
The overabundance of suppressible alarms is both a cause of
alarm fatigue and an opportunity for alarm suppression. A non-
suppressible alarm is one that communicates valuable informa-

tion to the clinicians and should not be missed, regardless of
whether it is immediately actionable. Thus, when addressing
alarm fatigue, policy makers need to carefully balance the risk
versus reward of silencing suppressible alarms and missing
non-suppressible alarms.

Alarm suppression systems are typically evaluated in the
context of a labeled alarm dataset. The two key performance
characteristics of alarm suppression are
• The sensitivity of alarm suppression: the proportion of

suppressible alarms that were suppressed, also known as
the false alarm suppression rate.

• The specificity of alarm suppression: the proportion of
the non-suppressible alarms that were preserved (not
suppressed), which can also be calculated as one minus
the true alarm suppression rate.

Let us consider two clinical scenarios that motivate the
problem addressed in this paper.
Scenario 1: Pre-Trial Evaluation of Suppression System. Hos-
pital A, serving population P, is considering the deployment
of an alarm suppression system that has been successful at
Hospital B, which serves population Q. The system’s settings
can be transferred between the hospitals; however, the patient
data from population Q cannot be shared. Consequently, it is
unknown how well the system would perform on population P,
and it is likely to require alarm suppression. Before embarking
on a time-consuming and expensive clinical trial of that
system, Hospital A wants to estimate whether it can plausibly
deliver a sizeable fraction of the useful, non-suppressible
alarms while not significantly contributing to the alarm fatigue.
Hospital A executes the system on the representative patient
data from population P. Ideally, Hospital A would need to
label the produced alarms, but it is prohibitively expensive to
construct these labels manually. In other words, Hospital A
seeks to estimate the performance of a suppression system
given unlabeled alarms.
Scenario 2: Tuning of Deployed Suppression System. A hospi-
tal uses an alarm device in its ICU. The device’s operation is
configured with several tunable settings such as the acceptable
interval for each vital sign and the minimum time spent outside
of that interval to trigger the alarm. Due to reports of alarm
fatigue, the hospital considers a manual adjustment of the
device settings to reduce suppressible alarms. However, there
is a serious risk of missing important, non-suppressible alarms
as a result. To proceed with this adjustment, the hospital needs
to estimate the effects of various settings: what fraction of the
suppressible alarms would be silenced and what fraction of
the non-suppressible alarms will continue to be raised? The
hospital has abundant patient data but insufficient resources
to construct a representative labeled dataset of alarms. In this
situation, the hospital aims to predict the effects of a device’s
settings on its performance given only patient data and no
precise information whether an alarm is suppressible.

In both scenarios, the task is to evaluate a suppression
system, as illustrated in Figure 1. We are given an alarm
device and can collect a dataset of representative unlabeled
alarms. In an ideal situation, this data collection would be
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Fig. 1: A motivating scenario for this paper: a suppression system needs to be evaluated without true labels of alarms.

accompanied by patient observation, and each alarm would be
annotated with a suppressible/non-suppressible label based on
the clinical interpretation of the patient’s circumstances. As
the next section details, in practice, creating such annotations
is prohibitively time-consuming and expensive. Thus, there is
a need for lightweight means of predicting the performance of
alarm suppression.

The next section describes the existing ways of addressing
the motivating scenarios.

III. RELATED WORK

There exists a vast literature on clinical alarm suppression
and unsupervised/weakly-supervised learning. We focus on the
areas particularly relevant to our setting.

Alarm fatigue is a serious and well-known problem of phys-
iological monitors [1], [2]. A variety of approaches to suppress
unnecessary alarms have been proposed based on techniques
from signal processing, statistics, and machine learning [4],
[5], [6]. Many of such approaches need patient data labels to be
designed or trained, and all of them need the labels to be eval-
uated. This paper introduces a lightweight way of performing
these evaluations without investing in high-quality labels. Note
that the proposed method is not specific to any physiological
input, unlike many alarm suppression techniques.

The gold standard for evaluating the clinical effectiveness
of an alarm suppression system is an interventional study,
in which the researchers deploy the system and measure its
effects compared to a control group. To estimate the sensitivity
and specificity of suppression, a controlled observational study
would be sufficient: patient data is fed into a physiological
monitor with and without suppression, the results are observed
separately from the clinical context, and a comparison is made
based on the desired alarms (as defined by the clinical experts).
Both types of studies require substantial time and effort, in
part due to the need to label the suppressibility of alarms. For
example, nurses can review video feeds of patients as part of
the labeling process [10]. Our work is not meant to replace
either type of studies; instead, we aim to prioritize, guide, and
reduce the risk of observational studies by providing an early
and cheap estimation of the expected suppression performance.

High-precision methods of labeling alarm data include
patient simulations and computer-aided clinical trials [11].
To provide realistic data, these methods require detailed
physiological models, building which is a large investment.
For clinical alarms, an appropriate model is rarely available.
Our method is related to observational studies in the same
way as computer-aided clinical trials are related to traditional
clinical trials. That is, we perform a virtual algorithmic
evaluation of suppressibility. After that, our results can
provide the basis for an observational study of suppression
or a clinical trial of an alarm device.

Recently, a quick and inexpensive way of labeling data has
emerged, known as data programming [9]. A key element
of data programming is a set of quantitative intuitions about
how the data corresponds to labels. For example, a clinician
might say, “when a patient over 60 years old has had a heart
rate over 120 beats for over a minute, such an alarm is not
suppressible.” These intuitions, algorithmically represented as
labeling functions, are allowed to be incomplete, sometimes
incorrect, and contradictory. A labeling function returns a class
label or an “abstain” verdict for any input. Given a diverse
combination of many labeling functions and an unlabeled
dataset, data programming algorithms produce probabilistic
labels — a label and a confidence between 0 and 1 — for
each sample in the dataset. A prominent data programming
tool Snorkel [12] estimates an optimal weight for each labeling
function by using a generative graphical model. Our approach
encodes clinical intuitions about suppressible/non-suppressible
alarms as labeling functions, feeds them along with alarm data
into Snorkel, and relies on the resulting probabilistic labels to
quantify the uncertainty in the suppression of an alarm device.

IV. PROBLEM FORMULATION

This section states the problem addressed in this paper —
first at a high-level, and then mathematically.

A. High-Level Problem Statement

A suppression system takes an alarm as input and decides
whether to suppress it. The system can be configured with
various settings: thresholds, timeouts, and so on. The hospital
policy makers want to estimate the sensitivity and specificity of



this suppression system at various settings. For this estimation,
they have collected a sample dataset of alarms; however,
they do not know which of those alarms should actually be
suppressed. Ideally, this information would be obtained from
an observational study, but it is not carried out for various
practical reasons.

The problem considered in this paper is to predict the
sensitivity/specificity of a suppression system that would result
from an observational study with perfect alarm annotations.
We aim to make that prediction in the form of tight sensi-
tivity/specificity bounds that would contain the observational
study’s estimates with high probability.

B. Technical Problem Statement

Given a set B, we write |B| to be the set’s cardinality and
Bm to be a Cartesian product of m sets B. We write 1 (C)
to be the indicator function for condition C.

Let X be the feature space of all possible alarms, Y =
{0, 1} be the label space for alarm suppression where 1
denotes suppressible and 0 denotes non-suppressible. A single
alarm is denoted as x ∈ X , and we consider a finite
dataset of alarms X ⊂ X generated by random variables
X̃ = {x̃ | x ∼ x̃, x ∈ X}. These alarms have respective
unknown true suppressibility labels Y ⊂ {y ∈ Y}.

A suppression system S : X → Y decides whether an alarm
is suppressible. For its evaluation, suppose the alarms are
indexed by an index set I ⊆ {1, 2, . . . }. The suppression ac-
curacy Rj of system S on class j evaluated on I is defined as

Rj(I) =

∑
n∈I 1 (yn = j ∧ S(xn) = j)∑

n∈I 1 (yn = j)
(1)

The above expression is the true rate of the suppression
system S on |I| samples with true label j. R1 is the sensitivity
of S, and R0 is the specificity of S, as described in Section II.

A labeling function (LF) λ : X → Ŷ produces a label in
the weak label space Ŷ = Y ∪ {−1} where −1 denotes an
abstain. Given a finite set of labeling functions, Λ ⊂ {λ : X →
Ŷ}, we denote a labeling outcome as a tuple of labels on a
given datapoint x by LΛ(x) =

(
λ1(x), . . . , λ|Λ|(x)

)
. The set

of all possible labeling outcomes for functions Λ is denoted
as LΛ = Ŷ |Λ|. Thus, LΛ : X → LΛ.

We will rely on a class of generative models H = {h :
LΛ → P(Y)}, where P(Y) is a space of all probability
distributions over Y . Each such model can be understood as
a pair of functions, a predictor f : LΛ → Y and confidence
estimator g : LΛ → [0, 1], by setting

f := argmaxh(LΛ(X)) g := maxh(LΛ(X)) (2)

such that, for a datapoint x, (f(x), g(x)) = (ŷ, p̂) is the label
prediction ŷ with confidence p̂. In the event that the produced
distribution over Y is uniform, f returns the suppressible label
(i.e., 1) and g assigns confidence of 0.5. 1

1In practice, alarm datasets are heavily skewed with suppressible alarms.
Therefore, assigning samples on which the model is uncertain to the majority
class does not significantly impact results.

In our method, we will consider subsets of our data X that
have high confidence g of labels f . Suppose that for class
j ∈ Y , we are willing to tolerate the label uncertainty of εj ;
in other words, for that class, we only use probabilistic labels
with confidence of at least 1 − εj . We denote some set of
indices with high confidence in label j as Ij and define it as

Ij ⊆ {n ∈ I | f(xn) = j ∧ g(xn) ≥ 1− εj} (3)

Analogously, a hypothetical observation study would manu-
ally label some samples in X and exactly determine their true
labels. We refer to these samples with a true-label index set
I∗j for class j:

I∗j ⊆ {n ∈ I | yn = j} (4)

Note that the sizes of sets I∗j determine the desired numbers
of samples of each class. These numbers are crucial to
observation studies and are computed up-front based on power
analysis and resource limitations.

We now formally state this paper’s technical problem.

Problem Statement 1 (Confidence Interval Estimation):
Given the following:
• Unlabeled alarms X , which have unknown true labels Y ,
• Predictor f : LΛ → Y and confidence estimator g :
LΛ → [0, 1], which operate over labeling functions Λ.

• The sizes of index sets |I∗j | for a hypothetical observation
study for j ∈ Y .

Our goal is, for any class j ∈ Y and confidence level pj , to
find the tightest interval Cj containing, with probability at least
pj , the observation-study estimate Rj(I∗j ) of the suppression
accuracy on class j; that is,

min
Cj
|Cj | subject to P(Rj(I∗j ) ∈ Cj) ≥ pj

V. ESTIMATION OF SUPPRESSION ACCURACIES

In this section we describe our approach for producing
confidence bounds for the sensitivity and specificity of a sup-
pression system. Figure 2 summarizes the steps our approach:

A. Collect unlabeled alarm and patient data
B. Elicit heuristic labeling functions from clinicians
C. Produce probabilistic labels for the alarm data
D. Estimate the suppression accuracies of the system
E. Quantify confidence bounds around those estimates

A. Unlabeled Data Collection

Our initial step is to collect a dataset of representative alarms
and the corresponding patient data, on which the suppression
system will be evaluated. The patient data includes the static
data (demographics, disease history, etc.) and the vital signals
that contextualize a raised alarm. Thus, there are two key
aspects of data: determining which alarm instances to use
and collecting the relevant vitals data. More formally, we
produce a set of representative unlabeled alarms and patient
data X = (x1, x2, . . . ) with indices I, with each datapoint
corresponding to the features of an alarm from X .
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Fig. 2: Our approach of estimating the performance of suppression systems.

When choosing the alarms, our goal is to get a sample
from the representative distribution in a particular clinical
setting. We use the state-of-the-art approaches for appropriate
sampling. Typically, alarms would be sampled from the sub-
types targeted by the suppression system (e.g., technical or
clinical, discussed in Section VI), based on their frequency
during different times of the day, and appropriately from the
target patient demographics.

The collection of patient and alarm data should be fully
automated and cheap as a result. Given full automation, we
aim for the data to be as complete as possible in a given
clinical context. More complete datasets, such as those that
include more patient information and diverse vitals, allow for
richer labeling functions in the next step, ultimately improving
the outcomes of our approach.

B. Eliciting Labeling Functions

We ask clinical experts (e.g., physicians and nurses) working
in the targeted alarm suppression context to describe the guide-
lines that they use to make decisions on whether an alarm is
suppressible or non-suppressible. Specifically, we seek quanti-
tative guidelines for determining alarm suppressibility (e.g., if
heart rate is above 200 then non-suppressible), as opposed to
qualitative guidelines (e.g., if a child is kicking/moving then
suppressible) which are often used by clinicians. Qualitative
guidelines are difficult to encode into our data-driven approach
and, hence, are excluded from this study — but may be
explored in future work. Intuitively, guidelines are not perfect;
they output noisy labels. However, very inaccurate labeling
functions can negatively affect performance down the line.
To address this, we ask clinicians stick to guidelines that,
in their expert opinion, are better than random chance at
identifying a suppressible or non-suppressible alarm. Better-
than-random labeling functions are a common requirement in
data programming [9].

Each guideline is implemented as one or more labeling
functions. Each labeling function takes patient data as input
and either emits a label (suppressible/non-suppressible) or
abstains for each sample in the unlabeled alarm dataset.
Formally, the labeling functions Λ are elicited and applied
to the data X to obtain the weak labels LΛ(X).

C. Probabilistic Labeling

In this step, we combine the weak labels from the labeling
functions into a single “strong” label. This strong label is
characterized by a confidence value, indicating the level of
certainty regarding the label’s accuracy. Mathematically, we
combine the weak labels LΛ(x) of each alarm x into a proba-
bilistic strong label f(x) with confidence g(x). Generally, this
can be achieved with a weighted combination over the weak
labels with a fixed vector of weights w.

We model the weighted combination as a generative graph-
ical model. Generative models are popular in state-of-the-
art data programming literature [9]. This model leverages
the agreements and disagreements of the labeling functions
to estimate their accuracies. The accuracies then inform the
weights (i.e., relative priorities) of labeling functions.

Our goal in this step is to train a generative model from
class H that represents a joint distribution Pw(LΛ(X̃), y)
between the random alarm variables X̃ and their hypothesized
true labels y — without any samples of the true labels. A
weighting scheme w is a function of the accuracy of each
labeling function, and thus unknown. This model also takes
into account the prior probability of each label occurring in
the data. Prior probabilities P(Y) over classes Y can either be
specified if known or estimated from the labeling functions.
Training this model is equivalent to learning w, which is
estimated by maximizing the log-likelihood of the observed
labeling function outputs LΛ(X):

ŵ = argmax
w

log
∑

y∈Y|Λ|
Pw(LΛ(X̃), y)

Using this learned weight vector w, we can use the probabilis-
tic distribution over the labels output by the generative model,

hy(LΛ(x)) = Pŵ(y | LΛ(x))

to encode a predictor f and confidence estimator g according
to Equation 2.

D. Estimation of Accuracies

Now we estimate the sensitivity and specificity of the sup-
pression system using the probabilistic labels. In this subsec-
tion, we are interested in finding a pair of numbers for one



suppression system as its sensitivity/specificity estimates given
the probabilistic labels. Formally, for each j ∈ Y , we compute
point estimates of Rj(X,Y ) for suppression system S given
the data X , predictor f , and confidence estimator g. The main
challenge here is to balance the labeling uncertainty in g with
the sampling uncertainty related to the size of X .

First, we need to pick the data that was labeled in a
trustworthy manner. In our experience, using the whole dataset
X is inadvisable because low-accuracy/low-confidence labels
would bias the outcome. Therefore, intuitively, we place more
trust in samples that we label with high confidence (i.e., with
low uncertainty about their true label). Suppose that for label
j ∈ Y , we tolerate at most εj labeling uncertainty and, thus,
only select samples with confidence at least 1− εj . This leads
us to consider high-confidence index sets Ij parameterized by
εj as defined in Equation 3.

We can pick an arbitrary subset of high-confidence samples.
We cannot, however, pick an arbitrarily small εj : very few
samples would be available, and that would significantly in-
crease the sampling uncertainty of our estimates. In short, there
is a trade-off between the labeling and sampling uncertainties
(demonstrated in Appendix A). We resolve this trade-off by
searching for the value of εj that minimizes a combination of
those uncertainties as explained in the next subsection.

Then, given sets Ij , we estimate the suppression accuracy
on each class j by applying Equation 1 to the high-confidence
labels in place of yn:

Rj(Ij) =

∑
n∈Ij 1 (S(xn) = j)

|Ij |
(5)

This formula gives us a point estimate of sensitivity (for
j = 1) and specificity (for j = 0) of the suppression system.

E. Confidence Bounds

Our accuracy estimates from the previous subsection rely on
noisy labeling functions and, as a result, can be unreliable.
We quantify their reliability by providing confidence bounds
around our estimates — the intervals where the accuracy
estimated from true labels would be found with some given
confidence. More precisely, we interpret a confidence bound
as follows: it is an interval of likely estimates of suppres-
sion accuracy of some class using the true labels of that
class (from a gold-standard observation study) instead of our
high-confidence probabilistic labels. That is, for class j, we
aim to create an interval Cj = [Rj(Ij)− cj , Rj(Ij) + cj ]
containing, with probability of at least pj , the suppression
accuracy Rj(I∗j ) estimated from manually labeled samples in
I∗j . Notice that pj can differ between the classes and, hence,
reflect the acceptable clinical risks.

The interval size cj depends on two factors: the sam-
pling randomness between Ij and I∗j and the quality of
the probabilistic labels in Ij . The former will be estimated
as a function the sizes of Ij and I∗j using the standard
statistical bounds. For the latter, in our experience, with
appropriate labeling functions discussed Section V-B, high-
confidence labels correspond to the low-uncertainty situations

in which the suppression mechanisms are relatively consistent.
We formalize this intuition with the following assumption.

Assumption 1 (Consistent Accuracy across Datasets): Sup-
pression accuracies on high-confidence sets Ij do not differ
in expectation from those on the manually labeled sets I∗j by
more than the average uncertainty of the labels in Ij :∣∣∣∣∣∣ 1

|I∗j |
∑
m∈I∗j

E [S(x̃m) = j]− 1

|Ij |
∑
n∈Ij

E [S(x̃n) = j]

∣∣∣∣∣∣ ≤ 1− ηj ,

where ηj =
1

|Ij |
∑
n∈Ij

g(xn) is the average label confidence in Ij .

Leveraging the above assumption, we can derive the desired
bound cj on the difference between the estimates based on
our probabilistic labels and the potential observation-study
labels. The probability of exceeding that bound is given in
the following theorem.

Theorem 1 (Bounded Difference of Accuracy Estimates): For
any class j ∈ Y , the difference between the probabilistic and
manual estimates of suppression accuracy on j exceeds bound
cj with a bounded probability for any free parameter γj :

P
[∣∣Rj(Ij)−Rj(I∗j )

∣∣ ≥ cj] ≤
2 exp

(
−2|I∗j |(cj + ηj − 1− γj)2

)
+ 2 exp

(
−2|Ij |γ2

j

)
The proof can be found in Appendix B. This result means

that the chance of our estimates disagreeing with gold-standard
estimates by more than cj decreases with the increasing
number of samples in Ij and I∗j , larger cj , and the higher
confidence of our estimates ηj . The parameter γj can be cho-
sen as any value. This bound is contingent on the satisfaction
of Assumption 1 about probabilistic labeling.

We want to guarantee that the manually labeled estimate
Rj(I∗j ) is within cj of our estimate Rj(Ij) with probability
pj . Then, by equating pj with the bound and expressing cj in
terms of pj , we obtain the desired interval size cj exactly.

Corollary 1: For any desired confidence pj and any admis-
sible γj , the interval width cj can be chosen as

1− ηj + γj +

√
ln(2)− ln(pj − 2 exp(−2|Ij |γ2

j ))

2|I∗j |

Now we return to the problem formulation from the end of
Section IV: our goal is to minimize the size of the interval cj
given a fixed confidence pj . So we optimize for the smallest
interval over the values γj and the choice of samples in Ij
(by changing εj in Equation 3), which then determines the ηj .
Thus, we pick the interval size cj as follows:

min
γj∈R, Ij⊆I

1− ηj + γj +

√
ln(2)− ln(pj − 2 exp(−2|Ij |γ2

j ))

2|I∗j |

In summary, the presented results give us a way to produce
uncertainty bounds for the accuracies of the suppression
system by putting a confidence bound around the accuracy
estimates from Section V-D. We pick the tightest interval given
Theorem 1. This interval captures both the uncertainty of our
probabilistic labels and the sampling uncertainty.



VI. CASE STUDY: LOW SPO2 ALARM DATASET

To evaluate the performance of our method, we conducted
a case study for low SpO2 alarms. We consider an alarm
suppression system that suppresses a low SpO2 alarm if the
SpO2 measurement at the time of alarm is above a specified
threshold, otherwise it does not suppress the alarm. Our goal is
to establish and visualize the connection between the system’s
SpO2 threshold and its specificity/sensitivity, given a dataset
of patient vitals data and manually-annotated low SpO2 alarm
data. In this section, we overview the dataset and data prepro-
cessing approach, introduce the labeling functions collected for
labeling low SpO2 alarms, describe method implementation
details, and present a comparative approach for our analysis.

A. Data

We used a deidentified dataset originally collected as part
of a study approved by the Institutional Review Board of
the Children’s Hospital of Philadelphia (IRB #14-010846).
Researchers video-recorded 551 hours of patient care on a
medical unit at Children’s Hospital of Philadelphia during
July 2014 to November 2015 from 100 children whose fam-
ilies and nurses consented. In addition, the following data
was collected: patient background information, all physiologic
monitoring alarms with corresponding timestamps, and contin-
uously recorded vital signs:
• Blood oxygen saturation (SpO2 ) measured by a pulse

oximeter,
• Pulse rate measured by a pulse oximeter,
• Heart rate measured by a 3-lead electrocardiography

(ECG),
• Cardiac rhythm measured by a 3-lead ECG
• Respiratory rate measured by a 3-lead ECG,
• Noninvasive blood pressure (NBP) measured by a cuff,

from the physiologic monitoring network.
After the study, the alarms were reviewed along with

the video recordings and then annotated with three alarm
distinctions in mind: technical versus clinical alarms, valid
versus invalid alarms, and actionable versus non-actionable
alarms [10]. Technical alarms indicate an issue with a physi-
ologic monitor or its sensors, whereas clinical alarms indicate
an issue with a patient’s physiologic status (e.g., heart rate
is too high). Valid alarms are those that correctly identify
the physiologic status of a patient. Conversely, alarms that
are false are considered invalid. A valid clinical alarm that
results in or warrants clinical intervention or consultation can
be further classified as actionable, otherwise non-actionable.
Hence the alarms have the following annotations: technical
alarms, invalid clinical alarms, valid actionable clinical alarms,
and valid non-actionable clinical alarms.

A total of 9547 clinical alarms of 26 different types are in
the dataset. Low SpO2 generated the largest number of alarms
(34% of total alarms) and the largest number of invalid alarms
(81% of the low SpO2 alarms). Hence, adjusting the settings of
a low SpO2 alarm suppression system can help reduce alarm
fatigue, and we focus on these alarms in our case study.

B. Data Preprocessing

Our analysis only considers a subset of the original dataset:

• Patient age group: less than one month old, from one
month to less than two month, from two month to less
than six month, and six months and older;

• Patient vital signs: blood oxygen saturation, respiratory
rate, heart rate measured by an ECG, and heart rate mea-
sured by a pulse oximeter — all measured at maximum
sampling rate of 0.2 Hz;

• Annotated low SpO2 alarms with corresponding times-
tamps and durations.

The alarms data is annotated in terms of technical/clinical,
valid/invalid, and actionable/non-actionable alarms. We inter-
pret these labels with respect to suppressibility as follows.
Technical alarms, valid non-actionable clinical alarms, and
invalid alarms are interpreted as suppressible, whereas only
valid actionable clinical alarms are non-suppressible.

C. Labeling Functions for Low SpO2 Alarms

In unstructured interviews with two pediatric physicians, we
collected eighteen guidelines for deciding whether a low
SpO2 alarm is suppressible or non-suppressible. Six of the
guidelines are excluded from this study because the dataset
does not have sufficient information to implement them. The
guidelines are as follows.

1) Long alarm: If the alarm duration is longer than t
seconds, then the alarm is likely non-suppressible.

2) SpO2 below threshold for duration: If SpO2 is below
threshold x for longer than t seconds since the alarm
sounded, then the alarm is likely non-suppressible.

3) Heart rate above threshold for duration: If heart rate is
above threshold x for longer than t seconds since the
alarm sounded, then the alarm is likely non-suppressible.

4) Heart rate below threshold for duration: If heart rate is
below threshold x for longer than t seconds since the
alarm sounded, then the alarm is likely non-suppressible.

5) Respiratory rate below threshold for duration: If respira-
tory rate is below threshold x for longer than t seconds
since the alarm sounded, then the alarm is likely non-
suppressible.

6) Repeat alarms: If more than n alarms occurred within
t seconds of the alarm, then the alarm is likely non-
suppressible.

7) Short alarm: If the alarm duration is less than t seconds,
then the alarm is likely suppressible.

8) Immediate recovery: If SpO2 recovers to x within t
seconds after the alarm sounds, then the alarm is likely
suppressible.

9) Heart rate technical error: If the difference between ECG
heart rate and pulse oximeter heart rate is greater than
x at the time of the alarm, then the alarm is likely
suppressible.



10) Bad SpO2 waveform: If the SpO2 waveform contains
anomalies 2, then the alarm is likely suppressible.

11) Bad heart rate waveform: If the ECG heart rate waveform
contains anomalies, then the alarm is likely suppressible.

12) Bad respiratory rate waveform: If the respiratory rate
waveform contains anomalies, then the alarm is likely
suppressible.

From these guidelines, we instantiated sixty-two total label-
ing functions for different values of parameters x, t, n, picked
in consultation with the two aforementioned physicians (see
Appendix C). Forty of them produce only suppressible labels,
and the rest produce only non-suppressible labels.

D. Implementation

We implement the labeling functions as Python functions,
taking in an alarm from the dataset and returning either a
label or an abstain. To generate probabilistic labels for the low
SpO2 alarms in the dataset we use a tool called Snorkel for
the generative model [12]. Snorkel is the state-of-the-art tool
for weak label combination and has been applied to several
applications. We use the current version at the time of this
publication, version 0.9.7 (www.snorkel.org). The only hyper-
parameter we specify within Snorkel are the prior probabilities
of labels. In interviews with physicians, it was determined that
80%/20% for suppressible/non-suppressible alarms, respec-
tively, is a reasonable default for alarm suppression (and is also
approximately consistent with our dataset). If the prior was un-
known, it could be estimated from the labeling functions [13].

Estimates of sensitivity and specificity of the low
SpO2 alarm suppression system are computed on the pulse
oximetry data. We consider only the timestamps for which an
SpO2 measurement is present (11300 samples in total). Then
we map the labels assigned to the known low SpO2 alarms
onto these samples. For each alarm, we assign all timestamps
that occur during this alarm with its own labels (true and prob-
abilistic). Lastly, we simulate applying the alarm suppression
system to the samples for SpO2 thresholds of 0 to 100, and
save the result as a label. Thus for each sample we have,
• A timestamp,
• A SpO2 measurement,
• A ground-truth label (from the original annotations),
• A label and its confidence from the generative model,
• A label from the suppression system for each

SpO2 threshold.
For the optimization problem for finding the best confidence

bounds, we use the SciPy Python library (www.scipy.org).We
minimize a closed-form function with bounded parameters.

E. A Comparative Approach

We compare the performance of the confidence bounds pro-
duced by our approach with a majority vote approach. Ma-
jority vote is a widely-used and straightforward method for
combining multiple discrete signals into one. In this case we

2Waveforms with artifacts are generally unreliable. We look for anomalies
(e.g., spikes and outliers) in the waveform to determine if it is bad or not.

apply it to weak labels produced by labeling functions. In this
method, each labeling function is assigned equal weight and
thus has equal influence on the label prediction. The label
prediction is determined as the weak label that received the
most votes. The confidence of a particular label is computed as
the fraction of non-abstaining labeling functions that voted for
this label. We assume that Assumption 1 holds for majority
vote since, intuitively, as more labeling functions agree on
a particular label, the more we trust that that label reflects
the true unknown label. Hence in this comparative approach,
steps A, B, D, and E are performed exactly as described in
Section V, while step C is replaced with probabilistic labeling
via majority vote.

A primary challenge of the majority vote approach is, if
many of the labeling functions are inaccurate, the label pre-
diction can often be incorrect but still have a high confidence.
Since the labeling function accuracies cannot be known a
priori due to the absence of true labels, there is no clear
way of preventing this situation. Due to this challenge, we
use the majority vote approach only for comparison and do
not recommend using it in practice.

VII. RESULTS

In this section we present the results of our case study for
low SpO2 alarms. Specifically, we evaluate the performance
of the confidence bounds for suppression accuracies of a low
SpO2 alarm suppression system produced by our approach.
A successful application of our approach would result in tight
confidence bounds that contain the true suppression accuracies
that would be produced in an observational study.

We consider a 5%, 10%, and 20% chance of the confi-
dence bounds not containing the true suppression accuracies,
i.e., pj ∈ {0.05, 0.10, 0.20}. Label uncertainty εj determines
which samples are used to estimate the suppression accuracies
and compute the confidence bounds, and hence is an important
parameter of our approach. We considered the uncertainty of
at most 10% to avoid violating Assumption 1. Now, for each
pj , we perform an optimization to find the tightest bounds
with constraints εj ∈ [0.01, 0.1] and γj ∈ [0, 1].

The confidence bounds for sensitivity and specificity us-
ing our approach are depicted in Figure 3 and using the
comparative approach in Figure 4. We also illustrate the
estimated trade-off between sensitivity and specificity in Fig-
ure 5. To draw the bounds in this figure, for each confi-
dence level pj , then for each SpO2 threshold, we plot the
(specificity + c0, sensitivity + c1) for the upper-bound and
(specificity − c0, sensitivity − c1) for the lower-bound. Since
we have access to true labels (i.e., the labels extracted from
the alarm annotations), we use them to plot the true curve
for the sensitivity/specificity/trade-off, which represents the
results of an observational study. Table I presents the average
width of the sensitivity and specificity confidence bounds.
Table II summarizes the percentage of these true curves that
are contained in each of the confidence bounds. We note that
only SpO2 thresholds between 80 and 95 can plausibly be



adopted into a clinical setting, and hence only portions of these
curves are clinically relevant.

We observe that our approach successfully produced
narrow confidence bounds with high containment, whereas
the comparative approach produced narrow bounds that
suffer from low containment. Our approach’s confidence
bounds for sensitivity are tighter than that of the comparative
approach (4-5% and 5-7% in average width, respectively).
Furthermore, our bounds contain all of the true curve (with
the exception of 6% of the curve’s length for pj = 0.2),
whereas the comparative bounds contain only 80-81%. For
specificity, our approach produced looser bounds (18-21%
average width) than the comparative approach (6-8% average
width). However, our approach achieved full containment
of the true specificity curve as opposed to the comparative
approach which contained 76-78%. The difference in true
curve containment between the approaches is even more
exaggerated in the clinically relevant region. Most of the
true sensitivity and specificity curves in this region are not
contained by the comparative approach’s bounds.

In practice, hospital policy makers would select an
SpO2 threshold for this suppression system based on the
trade-off between its sensitivity and specificity (illustrated in
Figure 5). The advantage of using our approach over the
comparative approach is clear here. While the comparative
approach’s bounds are tighter than our approach’s bounds, they
contain less than 12% of the true trade-off curve, which can
lead to a misguided policy. On the other hand, the bounds
from our approach have low-to-moderate width (which appro-
priately indicates the uncertainty) and contain the entire true
curve. The region of the plot where specificity is greater than
50% corresponds to the clinically relevant region, and even
here, our approach outperforms the comparative approach.

Since the bounds from our approach effectively capture the
true sensitivity/specificity trade-off of the suppression system,
a policy maker could use our bounds to select the system’s
SpO2 threshold. A good SpO2 threshold would produce speci-
ficity close to one (i.e., not suppress any non-suppressible
alarms) while maximizing sensitivity (i.e., silence as many
suppressible alarms as possible). This corresponds to the
lower-right region of Figure 5a. Suppose policy makers decide
to allow a minimum of 90% specificity. Our approach deter-
mines that an SpO2 threshold of at least 92 is required which
can suppress up to 6% of false alarms (based on the sensitivity)
Using the true curve, a minimum SpO2 threshold of 91 is
required and at most 3% of false alarms would be suppressed.

Trade-off curves generally bow inward, but we observe in
Figure 5b that the comparative approach’s confidence bounds
bow outward. If we consider flipping the labels that majority
vote outputs in our comparative approach, the bounds would
go inward and exhibited slightly improved containment of the
true curve. This implies that majority vote, on the samples
it labeled suppressible/non-suppressible, was mostly incorrect
with high-confidence.

Limitations: our confidence bounds are accurate when sup-
pression accuracy is relatively consistent on different high-

pj Sensitivity Specificity

Our Approach 0.05 0.049 0.211
0.10 0.045 0.201
0.20 0.041 0.187

Comparative Approach 0.05 0.065 0.078
0.10 0.060 0.072
0.20 0.054 0.065

TABLE I: Average width of the confidence bounds.

pj Sensitivity Specificity Trade-off

Our Approach 0.05 1.0 1.0 1.0
0.10 1.0 1.0 1.0
0.20 0.940 1.0 1.0

Comparative Approach 0.05 0.810 0.780 0.115
0.10 0.800 0.780 0.115
0.20 0.800 0.760 0.109

TABLE II: Percentage of the true sensitivity/specificity/trade-
off curve contained in the confidence bounds.

confidence labels, as stated in Assumption 1. This assumption
may be violated in contexts with few available samples or
when high-confidence labeling is particularly biased/inaccurate
— and then our theoretical guarantees might not hold. Our
case study has been performed on a dataset collected from
pediatric patients on a medical floor in a hospital, and the
alarms were labeled for being actionable. To apply our method
to a different setting, one may need to elicit different/more
labeling functions, and so the tightness and accuracy of the
confidence bounds may vary.

VIII. CONCLUSION

In this paper, we proposed an approach for estimating the
performance of a physiologic alarm suppression system with
access only to unlabeled data. Generative modeling is used to
produce probabilistic labels that serve as proxy to the unknown
ground-truth labels when computing suppression accuracy es-
timates. We then provide a confidence bound on these accuracy
estimates. Finally, we evaluated our method in a case study
for low SpO2 alarms and showed that we find mostly tight
confidence bounds that contain the true curve almost always.

This work suggests a handful of directions for future work.
First, we plan to automate the extraction of weak labeling
functions to satisfy the consistency assumption of generative
models, which will likely require explicitly encoding the de-
pendencies between labeling functions. Second, over-confident
(poorly-calibrated) probabilistic labels can have adverse effects
on the results of our method, hence we plan to explore
unsupervised calibration for data programming and/or develop
alternative approaches to producing probabilistic labels. Fi-
nally, we also seek to validate our approach on other alarm
types (e.g., tachycardia and high/low respiratory rate).
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“Training complex models with multi-task weak supervision,” 2018.

[14] C. Guo, G. Pleiss, Y. Sun, and K. Q. Weinberger, “On calibration
of modern neural networks,” in International Conference on Machine
Learning. PMLR, 2017, pp. 1321–1330.

[15] S. Jang, R. Ivanov, I. lee, and J. Weimer, “Confidence calibration
with bounded error using transformations,” 2021. [Online]. Available:
https://arxiv.org/abs/2102.12680

APPENDIX A
OVER-CONFIDENT PROBABILISTIC LABELS

Neural networks have been shown to be over-confident on
their predictions [14]. This is problematic, especially in safety-
critical applications like medicine, because the predictor can be
wrong with high confidence. Our preliminary analysis shows
that state-of-the-art data programming is also generally over-
confident in its probabilistic labels. High-confidence, misla-
beled samples have the potential to negatively impact our
suppression accuracy estimates and confidence bounds.

We demonstrate miscalibration in data programming on the
low SpO2 alarm dataset from our case study. Figure 6 shows
the average confidence and actual accuracy of high-confidence
alarm subsets of the dataset generated via a generative model.
For suppressible alarms, we observe over-confidence in the
labels of approximately 10% for ε less than 0.42, and under-
confidence of approximately 2% for ε greater than 0.44.
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Fig. 6: Average confidence versus accuracy for high-
confidence data subsets of varying label uncertainty epsilon.

For non-suppressible alarms, we observe significant over-
confidence for all choices of ε.

While there exist state-of-the-art methods to calibrate super-
vised models like neural networks [14], [15], there are no well-
established calibration techniques for unsupervised or even
weakly-supervised models. We aim to explore this direction
in future work.

APPENDIX B
THEOREM AND COROLLARY PROOF

We start with some indices I of datapoints X . We pick some
subsets of true-labeled indices and high-confidence indices:

I∗j ⊆ {n ∈ I | yn = j}
Ij ⊆ {n ∈ I | f(xn) = j ∧ g(xn) ≥ 1− εj}

Recall our assumption of consistent suppression accuracy:∣∣∣∣∣∣ 1
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|Ij |

∑
n∈Ij

1 (S(xn) = j)

∣∣∣∣∣∣∣ ≥ γj




= P


∣∣∣∣∣∣∣∣

1

|I∗
j
|

∑
m∈I∗

j

1 (S(xm) = j) − E

 1

|I∗
j
|

∑
m∈I∗

j

1 (S(x̃m) = j)


∣∣∣∣∣∣∣∣ ≥ cj − δj − γj



+ P


∣∣∣∣∣∣∣

1

|Ij |

∑
n∈Ij

1 (S(xn) = j) − E

 1

|Ij |

∑
n∈Ij

1 (S(x̃n) = j)


∣∣∣∣∣∣∣ ≥ γj


≤ 2 exp

(
−2|I∗j |(cj − δj − γj)

2
)

+ 2 exp

(
−2|Ij |

(
γj

)2)

The steps taken above are justified as follows:
• The first step rewrites the expression based on the defi-

nition of Rj .
• The second step equivalently adds and subtracts several

expressions.
• The third step uses a triangle inequality:

P [|A+B + C| ≥ a+ b+ c] ≤
P [|A| ≥ a] +P [|B| ≥ b] +P [|C| ≥ c]

• The fourth step eliminates the second probability due to
our consistency assumption.

• The fifth step applies the Hoeffding’s inequality twice to
sums of Bernoulli variables and their expectations.

For the corollary, we are given a desired confidence pj :

pj = 2 exp
(
−2|I∗j |(cj − 1 + ηj − γj)2

)
+ 2 exp

(
−2|Ij | (γj)2

)
We solve the above in terms of cj , obtaining the expression

for the bound size:

cj = 1− ηj + γj +

√
ln(2)− ln(pj − 2 exp(−2|Ij |γ2

j ))

2|I∗j |

APPENDIX C
CASE STUDY LABELING FUNCTIONS

In this section, we describe how the guidelines from our
case study are encoded as sixty-two labeling functions.

1) LF-long-alarm-T labels non-suppressible if the
alarm duration is at least T seconds, otherwise it abstains.
LFs 1 to 3 use T = 60, 65, and 70 respectively.

2) LF-spo2-aboveX-belowY-overT labels non-
suppressible if SpO2 is in range (X,Y ] for longer
than T seconds since the alarm start, otherwise it
abstains. LFs 4 to 9 use parameter tuples (X,Y, T ) =
(80, 85, 120), (0, 80, 120), (70, 80, 100), (60, 70, 90),
(50, 60, 60), and (0, 50, 30) respectively.

3) LF-hr-aboveX-overT labels non-suppressible if
heart rate is above X for longer than T seconds, otherwise
it abstains. LF 10 uses X = 220 and T = 10.

4) LF-hr-aboveX-belowY-overT labels non-
suppressible if heart rate is in range (X,Y ] for
longer than T seconds, otherwise it abstains. LFs 11 to
14 use parameter tuples (X,Y, T ) = (0, 50, 10), (40 ·
α, 50 · α, 120), (30 · α, 40 · α, 60), and (0, 30 · α, 0)
respectively, where α is a scaling age factor taking value
of 3.833 for less than one month, 3.766 for one month
to less than two month, 3.733 for two month to less than
six month, 3.533 for six months and older.

5) LF-rr-aboveX-belowY-overT labels non-
suppressible if respiratory rate is in range (X,Y ]
for longer than T seconds, otherwise it abstains. LFs 15
to 18 use parameter tuples (X,Y, T ) = (0, 10, 120), (40·
α, 50 · α, 120), (30 · α, 40 · α, 60), and (0, 30 · α, 0)
respectively, where α is a scaling age factor taking value
of 0.933 for less than one month, 0.9 for one month to
less than two month, 0.866 for two month to less than
six month, 0.8 for six months and older.

6) LF-repeat-Xalarms-inT labels non-suppressible if
there has been at least X other low SpO2 alarms
within T seconds of the alarm, otherwise it ab-
stains. LFs 19 to 22 use parameter pairs (X,T ) =
(1, 15), (1, 30), (1, 60), and (10, 300) respectively.

7) LF-short-alarm-T labels suppressible if the alarm
duration is at most T seconds, otherwise it abstains. LFs
23 to 25 use T = 5, 10, and 15 respectively.

8) LF-recoverX-inT labels suppressible if
SpO2 recovers by more than X points within T
seconds of the alarm, otherwise it abstains. LFs 26 and
27 use parameter pairs (X,T ) = (20, 10) and (20, 15)
respectively.

9) LF-hr-tech-error-X labels suppressible if the ab-
solute difference between ECG heart rate and pulse
oximeter heart rate is greater than X at the time of alarm,
otherwise it abstains. LFs 28 and 29 use X = 20 and 30
respectively.

10) LF-bad-spo2-waveform-X-T labels suppressible
if there exists an outlier with value larger than
X within a T seconds window of the alarm in
the SpO2 waveform matrix profile, otherwise it ab-
stains. 3 LFs 30 to 40 use parameter pairs (X,T ) =
(8.4, 120), (7.8, 110), (7.2, 100), (6.6, 90), (6.0, 80),
(5.3, 70), (4.6, 60), (3.8, 50), (2.9, 40), (2.1, 30),
and (1.0, 20) respectively.

11) LF-bad-hr-waveform-X-T labels suppressible
if there exists an outlier with value larger
than X within a T second window of the
alarm in the heart rate waveform matrix profile,
otherwise it abstains. LFs 41 to 51 use (X,T ) =
(9.0, 120), (8.5, 110), (7.8, 100), (7.3, 90), (6.7, 80),
(6.0, 70), (5.4, 60), (4.7, 50), (3.9, 40), (3.1, 30),
and (2.1, 20) respectively.

12) LF-bad-rr-waveform-X-T labels suppressible
if there exists an outlier with value larger than
X within a T second window of the alarm
in the respiratory rate waveform matrix profile,
otherwise it abstains. LFs 52 to 62 use (X,T ) =
(8.7, 120), (8.1, 110), (7.6, 100), (7.1, 90), (6.5, 80),
(6.0, 70), (5.4, 60), (4.7, 50), (3.9, 40), (3.0, 30),
and (2.0, 20) respectively.

3To find anomalies in time-series (waveform) data we analyze their matrix
profiles. At a high-level, a matrix profile represents the dissimilarity between
each vital sign measurement in the data and the rest of the data. Hence large
values in the matrix profile correspond to outliers. We use the matrixprofile-ts
Python library (github.com/matrix-profile-foundation/matrixprofile).


