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Abstract

Recent developments in very long baseline interferometry (VLBI) have made it possible for the Event Horizon
Telescope (EHT) to resolve the innermost accretion flows of the largest supermassive black holes on the sky. The
sparse nature of the EHT’s (u, v)-coverage presents a challenge when attempting to resolve highly time-variable
sources. We demonstrate that the changing (u, v)-coverage of the EHT can contain regions of time over the course
of a single observation that facilitate dynamical imaging. These optimal time regions typically have projected
baseline distributions that are approximately angularly isotropic and radially homogeneous. We derive a metric of
coverage quality based on baseline isotropy and density that is capable of ranking array configurations by their
ability to produce accurate dynamical reconstructions. We compare this metric to existing metrics in the literature
and investigate their utility by performing dynamical reconstructions on synthetic data from simulated EHT
observations of sources with simple orbital variability. We then use these results to make recommendations for
imaging the 2017 EHT Sgr A* data set.

Unified Astronomy Thesaurus concepts: Astrophysical black holes (98); Very long baseline interferometry (1769);
Aperture synthesis (53); Interferometry (808)

1. Introduction

Interferometric astronomical observations offer much larger
resolving power than do single telescopes, with the interferometric

resolution depending on the distance between the elements rather
than the diameters of the individual apertures. Since an
interferometer probes the Fourier transform of an on-sky source
(and not the source image itself), the placement, selection, and
availability of baselines to maximize coverage of the (u, v)-plane is
an important and open optimization problem inherent to the
interferometric image synthesis. For very long baseline inter-
ferometry (VLBI), which represents some of the most extreme
interferometric observations, the arrays are generally very sparse,

Original content from this work may be used under the terms
of the Creative Commons Attribution 4.0 licence. Any further

distribution of this work must maintain attribution to the author(s) and the title
of the work, journal citation and DOI.
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and optimized placement or selection of baselines becomes critical
to recovering reliable information about the source.

For any ground-based interferometric observations, includ-
ing VLBI, Earth rotation causes each individual baseline to
trace an elliptical path in the (u, v)-plane. Such “Earth rotation
aperture synthesis” can be used to improve the (u, v)-coverage
of sparse arrays. Standard VLBI imaging uses this additional
coverage under the assumption that the target source structure
remains unchanged for the duration of the observation. For the
cases of sources that vary on shorter timescales (e.g., the
Galactic center, X-ray binaries, microquasars), “snapshot
images” can be produced using only time intervals over which
the source can be considered static (e.g., Martí-Vidal et al.
2011; Massi et al. 2012; Miller-Jones et al. 2019). In the most
extreme scenarios, only instantaneous coverage may be suitable
for use in static image reconstructions, severely limiting the
(u, v)-coverage and resulting image quality. Such a case is the
main concern of this paper. Moreover, this limitation will
generally result in portions of an observation that are better
than others for imaging because the snapshot coverage is time
dependent.

In particular, directionally biased (u, v)-coverage results in a
nonisotropic resolution that complicates interpretation of the
reconstructed source geometry. The (u, v)-coverage of a given
array varies with the decl. of the source, due to its dependence
on the projected baseline lengths and orientations. The impact
of source decl. on the (u, v)-coverage varies throughout a night
of observation as the target rises and sets. A network of
baselines that produces an evenly distributed (u, v)-coverage of
an equatorial source will be east–west biased when targeting a
northern source. Observations where the source morphology
and orientation of the source are unknown cannot exploit
a priori knowledge to determine whether a directionally biased
(u, v) configuration will be able to reproduce source structure
reliably in an image. Therefore, for cases where the source
morphology is unknown, the optimal (u, v)-coverage for
producing high-quality image reconstructions will be those that
are approximately isotropic in angular distribution.

Periods of sustained isotropic (u, v)-coverage may allow
multiple high-quality image reconstructions on short timescales
to be strung together, resulting in “dynamical” reconstructions.
For instance, the most basic dynamical reconstruction can be
produced by joining a series of snapshot images. The quality of
such a reconstruction will be time dependent owing to the
evolving snapshot coverage, and it may be necessary to
exclude periods with poor (u, v)-coverage. In periods of time
where the (u, v)-coverage is optimal, the coverage used to
produce each snapshot of a dynamical reconstruction will be
sufficiently isotropic to reproduce source features on snapshot
timescales, allowing for the production of reconstructions that
adequately recover the evolution of highly time-variable sources.
By contrast, periods of suboptimal (u, v)-coverage may be unable
to provide high-quality reconstructions on snapshot timescales,
making the algorithmic detection and subsequent flagging of these
periods important for the production of meaningful dynamical
reconstructions.

The challenges of observing a variable source with a sparse
interferometer can be exacerbated by poor coverage geometry. In
particular, given the shortage of available facilities supporting
high-frequency radioastronomical observations, corresponding
VLBI arrays exhibit substantiantial variance in coverage quality
in time.

The Event Horizon Telescope (EHT) is a unique VLBI
network of telescopes that exploits the full diameter of Earth
and the performance at the challenging 1.3 mm (230 GHz)
wavelength to achieve the required angular resolution for
horizon-scale tests of general relativity for the largest black
holes on the sky (see, e.g., Johannsen & Psaltis 2010; Psaltis
et al. 2015; Psaltis 2019). The EHT operates in millimeter
wavelengths, the optimal range that enables the resolution of
the Sgr A* black hole shadow and reduces the impact of the
interstellar medium scattering effects dominant for longer
wavelengths, while still being observable and manageable in
the radio interferometric framework. Operating at 230 GHz, the
EHT achieved a resolution of ∼20–25 μas, which the EHT
Collaboration (EHTC) used to produce the first images of a
supermassive black hole (Event Horizon Telescope Collabora-
tion et al. 2019a, 2019b, 2019c, 2019d, 2019e, 2019f). These
data and the resulting images were used to estimate a mass of
M≈ 6.5× 109 Me for the supermassive black hole in M87
(Event Horizon Telescope Collaboration et al. 2019f), based on
an observed angular shadow diameter of∼ 42 μas (Event
Horizon Telescope Collaboration et al. 2019a, 2019d, 2019f).
During the 2017 campaign, the EHT also observed the radio

source Sgr A* in the Galactic center (Event Horizon Telescope
Collaboration et al. 2022a, 2022b, 2022c, 2022d, 2022e,
2022f), associated with a supermassive black hole with
M≈ 4.1× 106 Me (GRAVITY Collaboration et al. 2018a; Do
et al. 2019; Event Horizon Telescope Collaboration et al.
2022f). The expected mass-to-distance ratio (M/D) of Sgr A*

yields a predicted angular shadow diameter of ∼50 μas
(GRAVITY Collaboration et al. 2018b) and a minimum
variability timescale (light-crossing time) of GM/c3≈ 20 s.
The corresponding timescale for M87 is∼ 1600 times longer
owing to the larger mass. Indeed, structural variability of the
M87 shadow has been reported on timescales from ∼1 week
(Event Horizon Telescope Collaboration et al. 2019d) to
several years (Wielgus et al. 2020b). The rapid minimum
variability timescale of Sgr A*, combined with the extreme
sparsity of the EHT, presents an urgent and unique need to
characterize the effects of time-dependent instantaneous (u, v)-
coverage.
In this paper, we develop a procedure for selective imaging

of highly variable sources. In Sections 2 and 3, we summarize
the synthetic data generation and imaging methods used herein.
In Section 4, we show the limitations of imaging in sparse
and uneven coverage. In Section 5, we survey several metrics
capable of ranking (u, v)-coverage quality. Additionally, we
derive a novel isotropy-based metric that addresses the
limitations described in Section 4. In Section 6, we apply
these metrics to the 2017 EHT coverage of Sgr A*, validate
their ability to predict reconstruction quality from (u, v)-
coverage geometry, and make recommendations for selective
dynamical imaging of the 2017 EHT Sgr A* data set. In
Section 7, we briefly discuss the utility of coverage metrics in
ranking and selecting between different available observing
periods. Finally, in Section 8, we summarize our results.

2. Model Definition and Synthetic Data Generation

In order to test the ability of various EHT array configurations
to recover source variability in different observation periods, we
designed and generated synthetic data for three different models.
The models are chosen owing to their structural similarity (in
image and visibility domain) to expected images of Sgr A*.
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Similarity between the model and data was characterized as
either displaying time variability or producing a Bessel function
Fourier representation with nulls between 2 and 4 Gλ and
between 6 and 9 Gλ. The models are described in Section 2.1.
The synthetic data generation is expanded on in Section 2.2.

2.1. Models

Here we describe the suite of models used to test the effects
of coverage on reconstructions. Examples of each model with
CLEAN beam convolution can be seen in the first row of
Figure 1.

2.1.1. Rotating Elliptical Gaussian

The rotating elliptical Gaussian model is generated using a
bivariate exponential with major-axis FWHM Γa, minor-axis
FWHM Γb, and overall flux density A:
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G G
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The image is padded and rotated by polar angle j after the
model is generated. By default, the overall flux density A was
set to 1.0 Jy. Periods for the rotation ranged between 30 and
1000 minutes (longer than one night of observation).

2.1.2. Ring and Orbiting Hot Spot

The ring model is generated by the subtraction of two
concentric uniform-brightness disks, equivalent to the crescent

model described in Kamruddin & Dexter (2013), with the
parameters a= b= 0. The positive disk has a radius of 25 μas,
and the subtracted disk has a radius of 18 μas. All ring models
in this paper use these parameters with the exception of the ring
model in Figure 4, which has a subtracted disk radius of 20 μas.
The ring model is used with two synthetic data tests: the static
ring (with no hot spot) and the dynamic ring (a static ring plus
an orbiting hot spot, referred to as ring+hs). The underlying
ring has a diameter of 50 μas and a flux density of 1.0 Jy. A hot
spot total flux density of 0.25 Jy and an FWHM of 10 μas are
added to the image, centered on the ring. After construction, the
total flux density of each image is normalized to 1.0 Jy. In the
dynamic ring model, the orbiting hot spot is centered on the
ring and circularly orbiting at a distance of 21.5 μas with
periods of 30 and 270 minutes. The static ring model is a
special case of the ring+hot spot model with the flux density of
the hot spot set to zero.

2.2. Synthetic Data Generation

Synthetic data were generated based on April 7 of the 2017
EHT coverage using the eht-imaging library (Chael et al.
2018). A simulated observation corresponded to approximately
11.5 hr of observing on all available baselines. Snapshot
images from the simulated sources and the resulting amplitudes
and closure phases can be seen in Figure 1 and Appendix A.
Observation parameters (e.g., R.A. and decl. of the source,

observing frequency, bandwidth) were duplicated from the
2017 EHT survey of Sgr A*. The stations included in the
simulated observations were the Atacama Large Millimeter/
submillimeter Array (ALMA), the Atacama Pathfinder Experi-
ment (APEX), the Large Millimeter Telescope (LMT), the
James Clerk Maxwell Telescope (JCMT), the Submillimeter
Array (SMA), the IRAM 30 m telescope on Pico Veleta (PV),
and the South Pole Telescope (SPT). Weather complications
were ignored, and the simulated observations assumed that all
stations were observing the source for the chosen night.
All data were generated with thermal noise only. Realistic

values for the thermal noise power were based on estimates
from the real 2017 EHT data. No other noise, scattering,
leakage, or simulated gain errors were applied to the simulated
visibilities.

3. Imaging Approaches

Since the interferometric measurements are often incomplete
in the Fourier domain, the inverse problem of reconstructing an
image from the observed data set is usually underdetermined.
Consequently, the image reconstruction requires prior informa-
tion, assumptions, or constraints to derive a reasonable image
from the infinite number of possibilities that can explain the
measurements.
The two most popular categories of imaging methodologies

are inverse modeling (e.g., CLEAN) and forward modeling
(e.g., regularized maximum likelihood). See Event Horizon
Telescope Collaboration et al. (2019d) for a general overview
of the two methods. For time-variable sources, both approaches
may allow for more effective reconstructions of dynamic
structures than snapshot imaging by including assumptions or
constraints on temporal variations of the source structure in
addition to the spatial properties regularized in static imaging
(e.g., Event Horizon Telescope Collaboration et al. 2019d).
One such way imposes a temporal similarity constraint between

Figure 1. The three synthetic models detailed in Section 2 are displayed. The
first row shows each model as seen on-sky at 6 UT, just after the observation
begins. The second row shows the model convolved with an 18 μas diameter
CLEAN beam. The white circle in the lower right corner shows the size of the
beam. The third row shows the measured visibility amplitudes as a function of
baseline length for the entire observation. A static imaging routine would fit to
the full set of these amplitudes; however, a dynamical imaging routine only
attempts to fit to small chunks of the full data set at any one time.

5

The Astrophysical Journal Letters, 930:L18 (21pp), 2022 May 10 Farah et al.



images at different times and between each time snapshot and
the time-averaged structure. In the following subsections, we
briefly describe each dynamical reconstruction method used in
this paper. See Event Horizon Telescope Collaboration et al.
(2022c) for more details.

3.1. Inverse-modeling Approaches

Imaging of radio interferometric data is traditionally carried out
through CLEAN deconvolution algorithms (e.g., Högbom 1974;
Clark 1980). These inverse-modeling approaches iteratively
deconvolve the effects associated with the limited sampling of
the (u, v)-plane, corresponding to the interferometer’s point-source
response (the so-called “dirty beam”) to the inverse Fourier
transform of the measured visibilities, commonly referred to as the
“dirty image.” The source brightness distribution is modeled as a
collection of point sources, which are extracted at the location of
the peaks in the dirty image through an iterative process until
some specified stopping criterion is reached. In observations with
limited (u, v) sampling, such as those obtained with the EHT, it is
important to guide the CLEAN deconvolution process through the
inclusion of the so-called “cleaning windows,” restricting the sky
areas within which the point components are localized.

Mitigation of the a priori calibration uncertainties is commonly
carried out through multiple rounds of CLEAN deconvolution
followed by self-calibration, which solves for the station gains
that maximize consistency between the current model and the
measured visibilities (e.g., Wilkinson et al. 1977; Readhead et al.
1980; Cornwell & Wilkinson 1981; Pearson & Readhead 1984).
Amplitude self-calibrations are necessarily limited to intervals of
time larger than the expected variability in order to retain
information about source variability. The final image is obtained
by convolving the model components with a Gaussian CLEAN
beam that approximates the central lobe of the point-spread
function of the interferometer, with the addition of the last
residual image, which represents some unconvolved additional
structure and noise. In this paper we use the Difmap software
(e.g., Shepherd 1997 and M. Shepherd 2011, private commu-
nication) for CLEAN imaging.

Once the imaging procedure converges based on a specified
stopping criterion into an average static image, CLEAN

dynamic imaging is performed by first dividing the data set
into smaller portions with a time duration similar to that of the
expected source timescale variability (i.e., “snapshots”). Under
the assumption of small structural changes over time, the model
corresponding to the static image is used as an initial model,
upon which we look for structural changes by cleaning the
residual map corresponding to each data snapshot. To guide the
deconvolution with such a limited (u, v)-coverage, we limit the
extra cleaning to the imaging regions in which we have
emission in the averaged image by placing tight cleaning
windows. In addition, further self-calibrations in phase and
amplitude are performed to refine antenna gain corrections.

The CLEAN algorithms do not enforce similarity between
snapshots, other than the use of common initial image priors,
which facilitates tracking of rapid source structural changes at
arbitrarily separated spatial locations. However, these image
changes are restricted to occur within the tight cleaning
windows established around the emission found in the
averaged static image.

3.2. Forward-modeling Approaches

Unlike the inverse-modeling methods, which solve for a
sparse image on the image domain from the dirty map
transformed from the measurement sets, the forward-modeling
methods solve for an image by evaluating the data likelihood
derived from the consistency between actual measurements and
the model data set forward-transformed from the image. It
offers flexibility to the imaging through robust data products
(e.g., closure quantities that are not affected by station-based
calibration uncertainties) and incorporates various observing
effects into the observational equation used in the forward
transform.
Regularized maximum likelihood (RML) methods (see

Event Horizon Telescope Collaboration et al. 2019d, for an
overview) optimize a cost function composed of χ2 terms
(proportional to log-likelihood terms) of visibility components
and regularization terms that describe the prior assumptions for
images. Each regularization term is described by a product of
its relative weight (i.e., hyperparameter) and regularization
functions. These regularization functions include, e.g., max-
imum entropy (e.g., Narayan & Nityananda 1986; Chael et al.
2016), total variation and its variants (e.g., Akiyama et al.
2017; Kuramochi et al. 2018), and sparsity priors (e.g., Honma
et al. 2014). The cost function can be interpreted as a maximum
a posteriori (MAP) estimation by considering the regularization
terms as log prior distribution of the image, although
regularization functions do not always have a probabilistic
interpretation. The final reconstruction is convolved with the
CLEAN beam of the interferometer to remove the effects of
methodology-specific super-resolution.
The RML approach can be extended to dynamic reconstruc-

tion (henceforth RML dynamic imaging) in a conceptually
simple way (Johnson et al. 2017). The likelihood term can be
formulated by forward-transforming snapshots of a video,
instead of a single image, to data. One can add temporal
regularization terms that penalize temporal variations of the
source structure by defining a metric for the “distance” between
adjacent frames. A popular choice is a sum of squared pixel
differences between two adjacent snapshots, assuming that
snapshot-to-snapshot transition of the source brightness is
piecewise smooth (e.g., the RΔt regularizer in Johnson et al.
2017). Another widely used choice is a sum of squared
differences between the time-averaged image and each snap-
shot, based on an assumption conceptually similar to dynamic
CLEAN imaging (Section 3.1) that the deviations of each
snapshot from the mean image are small and sparse (e.g., RΔI

regularizer in Johnson et al. 2017). The temporal regularization
term necessarily suppresses intrinsic source variability if
weighted too high; however, what constitutes “too high” varies
depending on the source structure and variability timescale.
Popular image distance metrics include the Euclidean norm or a
relative entropy such as Kullback–Leibler divergence (Kull-
back & Leibler 1951).
StarWarps (Bouman et al. 2018) is another forward-

modeling method for dynamical imaging adopted in this work.
StarWarps, based on a probabilistic graphical model, solves for
snapshots of a video by solving its posterior probability
distribution defined as a product of three terms: data likelihood,
multivariate Gaussian distributions for each snapshot, and
transitional probabilities between adjacent snapshots effec-
tively working as spatial and temporal regularizations,
respectively. StarWarps allows for the exact inference of the
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video by computing a mean and covariance of the image, which
provides a complete description under Gaussian approximation.
By contrast, the RML dynamic reconstruction derives only a
MAP estimation. StarWarps requires an initial static image,
which can be either data driven (e.g., a best-fitting static image of
the entire data set being dynamically reconstructed) or prior
driven (e.g., a synthetic image of a ring).

In this paper, we use the RML dynamic imaging algorithms
implemented in eht-imaging (also referred to as ehtim)

and SMILI (Sparse Modeling Imaging Library for Interfero-
metry) and the StarWarps algorithm in eht-imaging. See
Event Horizon Telescope Collaboration et al. 2022c for more
details of regularization functions and other imaging para-
meters used in the reconstructions.

4. Limitations of Sparse (u, v)-coverage

In this section, we explore limitations of imaging with
limited and directionally biased (u, v)-coverage. In particular,
we will show that sparse (u, v)-coverage results in predictable
limitations (i.e., deviations from the true source morphology),
which are determined by the geometry of the (u, v)-coverage.

Figure 2 shows how imaging using directionally biased (u,
v)-coverage (column (a)) fails to properly recover the
orientation of an intrinsically noncircularly symmetric source
when the (u, v)-coverage does not sufficiently sample the
source structure in the relevant direction. By contrast, the same
baselines—oriented in a more isotropic way (column B)—are
capable of recovering the source profile in all directions. In
addition, reconstructions of circularly symmetric sources by
directionally biased (u, v)-coverage (column (a) of Figure 3)
can introduce a lack of circular symmetry that is not present in
the underlying source or in reconstructions performed on
nondirectionally biased coverage (column (b) of Figure 3). Due
to the minimization of the artifacts introduced into a
reconstruction via incomplete (u, v)-coverage, imaging algo-
rithms work better when applied to isotropic (u, v)-coverages.

In addition to angular inhomogeneity, radially inhomoge-
neous coverage also leads to ambiguous image reconstruction.
The Fourier transforms of various source types (e.g., rings,
crescents, Gaussians) are approximately degenerate when
observed using an interferometer that only marginally resolves
the image (e.g., Thompson et al. 2017; Issaoun et al. 2019).
More complex approximate degeneracies exist for radially
inhomogeneous interferometers that only probe short and long
but not intermediate baselines (e.g., Doeleman et al. 2008). For
the EHT observing a∼ 50 μas diameter ring, as expected for
Sgr A*, short baselines correspond to those with length <2 Gλ
and long baselines correspond to those with length> 6 Gλ.
Figure 4 demonstrates that a Gaussian model describes the
simulated EHT observation of a 50μas static ring nearly as well
as the static ring model itself if only particular subsets of the data
are fit. Even an infinitesimally thin ring model, when only fit to
medium and long baselines, can provide a high-quality fit while
misrepresenting the total intensity of the source. Without
sufficient radial homogeneity (i.e., coverage of short, medium,
and long baselines, as seen in column (c) of Figure 2), fitting and
interpreting a model confidently can be difficult.

Periods of (u, v)-coverage where these limitations are more
likely to occur can be identified by constructing a metric that
scores directional bias and radial homogeneity (i.e., coverage of
short, medium, and long baselines). The prevalence and severity
of reconstruction artifacts that result from coverage limitations

form a continuum that can be used to rank different (u, v)
configurations. A metric based on these limitations could be
applied to a full observation to distinguish different observing
periods (composed of many evolving (u, v) configurations) by
their ability to produce high-quality reconstructions.

5. Coverage Metrics

Multiple (u, v)-coverage metrics with different underlying
considerations exist in the literature. Here we summarize
several metrics and compare the way they score a given
observation. In addition, we develop a novel “isotropy metric”
that has been tailored to the specific vulnerabilities detailed in
Section 4.
Our “selective dynamical imaging” approach uses such a

metric to identify intervals during an observation where the
coverage is optimally configured for imaging. Importantly,
these intervals are chosen before image reconstruction is
attempted. In contrast, methods such as lucky imaging (e.g.,
Fried 1978) identify particularly useful images (e.g., with

Figure 2. Images from a snapshot RML reconstruction of a simulated 2017
EHT observation of a rotating elliptical Gaussian. The reconstructions, shown
in orange, are compared to the model images, shown in blue contours
corresponding to 5%, 20%, 40%, 60%, and 80% of the model maximum
brightness. The top row of panels are reconstructions of an approximately
horizontally oriented elliptical Gaussian, while the bottom row of panels are
reconstructions of an approximately vertically oriented Gaussian. The ellipse in
the lower left corner of each panel shows the elliptical CLEAN beam. The
middle row of panels show the snapshot coverages used to produce the
reconstructions shown. The coverage shown in column (a) is produced by the
simultaneous observing of ALMA, APEX, SPT, and LMT; in column (b),
ALMA, APEX, SPT, and PV; and in column (c), all sites except for PV.
Snapshots (a) and (b) have an identical number of baselines in their (u, v)-
coverage configuration but different angular isotropy. The (u, v)-coverage in
column (b) is relatively capable of resolving the source along the north–south
and east–west baselines and orients the reconstruction properly. By
comparison, the (u, v)-coverage in column (a) can only constrain flux in the
direction of the collimated coverage. As a result, it incorrectly recovers the
orientation of the Gaussian. The (u, v)-coverage in column (c) is a maximally
(u, v)-filling case for the 2017 array configuration, with baselines relatively
evenly distributed both radially and angularly. The result is an accurate
recovery of the model behavior.
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minimal distortion) after and on the basis of the reconstruction.
A single score computed directly from (u, v)-coverage known
a priori is preferable to an empirical approach (e.g., performing
a simulated observation of a synthetic model and comparing
reconstructions with the model), as it provides source-structure-
agnostic assessments with a substantially lower perfor-
mance cost.

Any metric capable of scoring different periods of (u, v)-
coverage would have demonstrable limitations. Within a single
observation, a comparison of (u, v)-coverage at two different
points in time is a reliable way of determining which time region
of the observation will produce superior image reconstructions.
However, certain reconstruction-impacting data quantities can
vary independently of the (u, v)-coverage. Sensitivity, calibra-
tion, and systematic uncertainty can also be important factors but
are not probed by coverage metrics.

5.1. Normalized Cross-correlation

The normalized cross-correlation between two images is a
measure of their similarity. By performing a dynamical
reconstruction on a simulated observation and comparing each
image of the dynamical reconstruction to the model, we can
heuristically identify which portions of the observation
produced the best reconstruction (i.e., the portions of the

reconstruction with the greatest similarity to the model). We
define the normalized cross-correlation ρNX(X, Y) of two
images X and Y in an identical fashion to Event Horizon
Telescope Collaboration et al. (2019d),
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A normalized cross-correlation between a model and the
associated reconstruction is the most straightforward way to
identify trustworthy periods of an observation, assuming that
the reconstruction on synthetic data will behave in a similar
fashion to a reconstruction on real data. This assumption is only
upheld if care is taken to ensure that the qualities of the
synthetic data match those of the real data. In addition, heuristic
tests such as the normalized cross-correlation can be biased
depending on the structure and inherent variability of the model
chosen. If the source randomly aligns with collimated (u, v)-
coverage at some point in the observation, it can result in a
misleadingly high normalized cross-correlation that cannot be
replicated for a different source model.

5.2. (u, v) Filling Fraction

Palumbo et al. (2019) propose a geometric scoring procedure
for the (u, v)-coverage based on the specification of a desired
array resolution qres and imaging field of view θFOV. qres sets an
outer boundary with radius q1 res in the (u, v)-plane within
which a “filling fraction” is computed, and it is typically taken
to be the nominal array resolution set by the longest baseline in
an observation. θFOV determines a convolution radius of
0.71/θFOV corresponding to the scale in the (u, v)-plane over

Figure 3. Images from a snapshot reconstruction of a simulated 2017 EHT
observation of an axisymmetric static ring. Panel (a) is chosen to represent a
portion of the observation where the (u, v)-coverage was heavily anisotropic,
and panel (b) is chosen to represent a portion of the observation where the (u,
v)-coverage was approximately isotropic and radially dense. The reconstruction
is demonstrably and predictably affected by the angular homogeneity of the
instantaneous (u, v)-coverage, shown as a set of white circles. The white ellipse
corresponds to the CLEAN beam and is directly linked to the (u, v)-coverage.
The predictability of the image artifacts resulting from (u, v)-coverage is
exemplified by the bottom panels, which show the model ring convolved with
the CLEAN beams shown in the top row. Simple convolution with the CLEAN
beam is enough to reproduce the salient artifacts.

Figure 4. Visibility amplitudes of a simulated 2017 EHT observation of a ring
(25 μas radius, 5 μas width, convolved with 10 μas circular Gaussian) are
shown as a function of radial baseline length ρ. Short ( � 2 Gλ), medium (2
Gλ < ρ < 6 Gλ), and long ( � 6 Gλ) baselines are displayed in green, red, and
blue, respectively. Continuous fits of different (but equally well-fitting) models
are overlaid. Fitting a ring model with infinitesimal thickness (denoted by J0,
representing a zeroth-order Bessel function of the first kind) to only medium
and long baselines accurately represents the source shape and size but poorly
constrains the total intensity of 1 Jy. In addition, an equally good fit can be
obtained with a simple Gaussian fit to only short and long baselines. Data from
all three baseline types are required to correctly constrain key properties of the
source. This result highlights how model misspecification can lead to severe
systematic errors, especially when working with limited baseline coverage.
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which the Fourier response to a filled disk on the sky of
diameter θFOV would decay to half of its maximum amplitude;
we use θFOV= 100 μas for the filling fraction computation in
Figure 6. Intuitively, the largest image feature considered in the
optimization of coverage sets the smallest scale of interest in
the (u, v)-plane; thus, convolving a proposed set of (u, v) points
by 0.71/θFOV yields a measure of what region in the (u, v)-
plane is sampled by measured visibilities. The fraction of the
bounding circle sampled by the convolved coverage is the
filling fraction.

Increasing the specified resolution (perhaps by increasing
observation frequency) extends the bounding circle, decreasing
the filling fraction unless θFOV is correspondingly decreased. In
this way, the filling fraction captures some features of the
“spatial dynamic range” discussed in Lal & Lobanov (2007).
As shown in Figure 7 of Palumbo et al. (2019), the filling
fraction metric is a successful and nearly linear predictor of
image fidelity until the filling fraction reaches values near 0.9,
at which point imaging techniques are limited by methodology-
specific super-resolving scales, which for many imaging
algorithms is at approximately half of the diffraction-limited
CLEAN beamwidth in the case of the EHT (Event Horizon
Telescope Collaboration et al. 2019d).

5.3. Largest Coverage Gap

An alternative metric probing the coverage isotropy is based
on identifying the largest gap in the (u, v)-coverage; hence, we
refer to it as the largest coverage gap (LCG) metric (Wielgus
et al. 2020a). In this approach we consider the coverage as a set
of sampled (u, v)-plane locations, to find the largest circle that
can be drawn within the limits of the coverage that does not
contain a coverage point in itself. Such a largest circular gap
can be efficiently calculated with Delaunay triangulation of the
coverage set (Barber et al. 1996). Then, the diameter of the gap
dmax can be turned into a metric coefficient with

r= - ( )m d1 , 3LCG max max

where rmax is the longest projected baseline length. If we
demand that the (u,v) distance corresponding to the center of
the circle is less than rmax, then we have 0�mLCG� 1, with
mLCG= 1 corresponding to the limit of a complete continuous
coverage. A coverage consisting of a single detection would
correspond to mLCG= 0. Unlike the filling fraction metric, the
LCG metric is independent of the assumed field of view.

5.4. Isotropy and Radial Homogeneity

We propose a novel metric of (u, v)-coverage isotropy and
radial homogeneity (hereafter referred to as the “isotropy
metric”) based on the limitations described in Section 4.
Similarly to the LCG metric, the isotropy metric penalizes
anisotropy of the coverage, although the two approaches differ
appreciably. In this approach, we treat the distribution of
baselines in the Fourier plane as a mass distribution and
quantify the radial and angular homogeneity using the second
moments of inertia. We define the isotropy metric coverage
parameter  for a given snapshot as
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where 〈u2〉, 〈v2〉, and 〈uv〉2 are the second moments of the
baseline distribution,  is the Kolmogorov–Smirnov (K-S)

distance of the radial distribution of baseline lengths from
uniform, and max is the maximum value of  at any point in
time during the observation (or an arbitrary value for the
purpose of cross-observation comparisons). The isotropy
metric has the benefit of being fully analytic and automatically
normalized between 0 and 1. A full derivation of the isotropy
metric is presented in Appendix B.

5.5. Discussion of Metrics

Despite differences in methodology and implementation, the
metrics we examined found similar fluctuations in (u, v)-
coverage quality and identify similar candidate time regions for
high-quality imaging. A comparison of the metrics detailed in
Sections 5.1–5.4 applied to the 2017 EHT (u, v)-coverage of
Sgr A* is shown in Figure 6. In general, the second half of the
observation has superior (u, v)-coverage as indicated by the
metrics, and the period from ∼01:00 GMST to ∼03:30 GMST
maximizes the various metrics.
The (u, v) filling fraction and LCG metric generally produce

results similar to the isotropy metric. Disagreements between the
metrics can be seen especially at the beginning of the observation
(e.g., 17–19 GMST) and in the middle (e.g., 21–23 GMST).
These are periods where the (u, v)-coverage is extremely sparse
and not suitable for imaging, though the degree to which these
periods are determined to be unsuitable varies depending on the
specific considerations of the individual metrics.
The normalized cross-correlation metric, while the most

direct measurement of time-varying reconstruction quality,
lacks source structure agnosticism. If the source structure is
known, the normalized cross-correlation metric can be a useful
method of determining what periods of an observation are most
advantageous for imaging that particular source structure.
However, if the source structure is unknown, then a wide suite
of representative source models must be tested to mitigate
possible biases. Additionally, the normalized cross-correlation
method will be tied to the particular imaging algorithm and
hyperparameters used, making this metric less robust than the
others considered.
The particular constructions of the metrics can lead directly

to unintuitive or undesirable behavior. One example of
undesirable behavior is a metric punishing a coverage for
adding data points. Intuitively, more baselines lead to better
coverage of the Fourier plane and therefore more information
about the source. However, if these additional baselines are
placed strategically, they can result in an unintuitive score
assignment. A trivial example of this can be generated for the
LCG metric. Consider a coverage with maximum baseline
length less than ρ that achieves mLCG≈ 1. By placing a single
baseline of length L far outside the initial coverage (i.e.,
L? ρ), r = Lmax and dmax goes as∼ L− ρ. This drives mLCG

to zero and seems to indicate that the coverage has become
demonstrably worse, when in reality the coverage quality has
largely stayed the same, with the improvement of a single
ultralong baseline. This type of array pathology does not occur
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in the 2017 EHT coverage but may present an issue if the EHT
goes to ultralong space baselines.

The isotropy metric exhibits similar misbehavior, as
demonstrated in Figure 5. Given an isotropic coverage with a
low number of baselines, adding just two baselines strategically
can decrease the isotropy metric value by a substantial amount.
With so few baselines, the addition of new baselines would
intuitively be considered an improvement. However, the metric
detects a decrease in isotropy and reports accordingly. This
problem is only present for arrays with small numbers of
baselines—it is difficult or impossible to significantly alter the
isotropy of an array configuration for larger arrays using only a
few baselines without resorting to ultra–long-baseline place-
ment as in the LCG example.

An additional limitation that any metric based purely on
coverage possesses results from unusual source structure. The
metrics described above attempt to predict reconstruction
quality by analyzing the coverage available, but this prediction
is performed under the assumption of “reasonable” source
structure (i.e., source structure with smooth, continuous Fourier
representation). However, we can construct simple examples
that would render these metrics unhelpful by violating the
assumption of reasonable source structure. Consider a source
whose Fourier transform has zero flux density everywhere an
array has (u, v)-coverage, and nonzero flux density everywhere
else. Regardless of how good the coverage itself is (and
therefore how well a given metric may score the coverage),
there is no way to produce an accurate reconstruction of the
source. This limitation is not likely to be an issue, as the

restriction that source emission be nonnegative induces
sufficient correlation in the Fourier domain that the possibility
for arbitrary pathologies to “hide” in coverage-deficient
swathes of the plane is severely limited.
The isotropy metric offers substantial performance (i.e., time

and overhead cost) benefits over the other metrics considered,
while reporting similar results. We test the performance of each
metric by computing the per-snapshot score for a full 12 hr
observation five times, resulting in ∼10,000 snapshots
available for scoring. We run the performance assessments
on an i5-1038NG7 10th-generation Intel x86_64 processor
with 16 GB of RAM. The normalized cross-correlation, which
must reconstruct hundreds of images and compare them to
model images, takes several hours to complete. The isotropy
metric performs∼ 105 times faster than the full normalized
cross-correlation, ∼ 20 times faster than the (u, v) filling
fraction, and∼ 10 times faster than the LCG metric, while
producing similar assessments of coverage. The substantial
performance differences between the metrics will become more
pronounced with larger arrays, such as the next-generation
EHT (ngEHT) coverage. The low overhead generated by the
isotropy metric in comparison to the other metrics examined
makes the isotropy metric a more optimized method of scoring
(u, v)-coverages in important contexts, such as real-time track
selection and long-term ngEHT site placement (Raymond et al.
2021), which is expanded on in Section 7.

6. Application of Metric to 2017 EHT Array

We apply the coverage metrics discussed in Section 5 to the
EHT (u, v)-coverage of Sgr A* corresponding to 2017 April 7.
The instantaneous metric values for each snapshot of the
observation are shown in Figure 6. This method of scoring the
observation clearly identifies distinct periods of varying
coverage quality. The time region from ∼01:30 GMST to
∼03:10 GMST (denoted as “Region II” in Figure 6) has the
highest overall isotropy and baseline density of the observation.
We select this period as a candidate time region for high-
quality imaging (a “good” time region, i.e., one where the
typical metric score is high). In contrast, the time region from
∼19:45 GMST to ∼21:00 GMST (denoted as “Region I” in
Figure 6), while relatively stable, displays substantially lower
coverage quality. We select this time region to examine the
behavior of reconstructions in periods of ambiguous coverage
quality. Exact time stamps for these time regions are given in
Table 1.
By performing reconstructions in these time periods, we can

validate the capability of the (u, v)-coverage metrics to predict
reconstruction quality based on coverage alone. We reconstruct
four configurations of the ring+hs toy model detailed in
Section 2: a 270-minute orbital period clockwise and counter-
clockwise, and a 30-minute orbital period clockwise and
counterclockwise. The reconstructions in each time region are
produced according to the RML and CLEAN imaging methods
in Section 3, and we perform feature extraction on each image
using the REX module of eht-imaging (Event Horizon
Telescope Collaboration et al. 2019d) to recover the position
angle of the hot spot at each moment in time. The extracted hot
spot angles and the model orbits for Regions I and II are shown
in Figures 7 and 8, respectively. Images sampled from
dynamical reconstructions generated by each method are
displayed in Section C. The “success” of a reconstruction is

Figure 5. A pathological case for the isotropy metric that demonstrates an
undesirable behavior. The isotropic coverage shown (blue) results in an
isotropy metric value of ≈ 0.3 ( 1 , shown in blue). Adding two data points
(red) strategically (i.e., in an anisotropic configuration) decreases the overall
isotropy of the array and lowers the metric score by a factor of ≈ 1/2 ( 2 ,
shown in red+blue=purple). This change makes sense given the considerations
of the metric—the new array is more anisotropic and therefore has a lower
score. However, this behavior is undesirable since, intuitively, we expect that
an array with more baselines will perform better than an array with fewer
baselines. Note: in order to compute the isotropy metric as defined in
Section 5.4, the example coverages shown above are assumed to be part of the
2017 April 7 EHT coverage of Sgr A*, and the corresponding value of max is
adopted (see Appendix B).
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determined by the successful extraction of the hot spot position
angle.

We find that Region II produces reconstructions that
facilitate accurate recovery of dynamical variability. The
reconstructions show a ring of approximately 50 μas in
diameter with a distinct hot spot. The recovered hot spot
orientations are shown in Figure 8, along with a comparison to
the model values. To compare the N recovered position angles
jg
r with the model angle jg

m, we use a phase-adjusted rms ,

defined as
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Overall, the Region II reconstructions successfully recover the
dynamical variability in the model, with rms of the recovered
angles and model varying between 0.16 and 0.20 rad. Decreases in
coverage quality as measured by the metrics (indicated pointwise
in Figure 8 by increases in transparency, using the isotropy metric
as an example) correlate with lower-quality recovery of the hot
spot position angle. These low-quality angle recoveries are most
obvious in the RML reconstructions of the counterclockwise
T= 30-minute case. The CLEAN algorithm appears to be more
resistant to the sudden loss of coverage and maintains reconstruc-
tion quality even through drops in metric score. Excluding these
lapses in coverage quality, Region II clearly facilitates the
recovery of source structure and at least one kind of dynamical
variability, covering a wide range of periods and directions.
By contrast, a comparatively low scoring time region (Region

I) does not produce reconstructions capable of accurately
recovering dynamical variability. Dynamically reconstructed
images show a ring-like feature, but the time variation of the
brightness asymmetry does not match the model. Overall, the
Region I reconstructions fail to recover the dynamical variability
in the model, with rms of the recovered angles and model varying
between 1.21 and 1.73 rad. The rms on the recovery in Region I is

Figure 6. The application of all metrics (top left: isotropy; top middle: LCG; top right: (u, v) filling fraction) described in Section 5 to the 2017 EHT coverage of
Sgr A*. The observation begins on April 7, and the 00:00 GMST indicates the day change to April 8. The red time region corresponds to Region I, and the blue time
region to Region II, as described in Section 6. The normalized cross-correlation (green, representing the comparison between a snapshot reconstruction of a static ring
and the model) is shown as a reference for all metrics, as it is the only direct measure of instantaneous reconstruction quality. All three (u, v)-coverage-based metrics
show high-quality coverage in the time region from ∼01:30 GMST to ∼03:10 GMST (Region II). The bottom row of the figure shows the coverage of Region I
(bottom right) and Region II (bottom left) along with a representative snapshot.

Table 1

Time Stamps for the Observation and Beginning and End of the Time Regions
of Interest in the 2017 April 7 EHT Coverage of Sgr A*.

Start Time End Time

UT GMST UT GMST

Observation 4.0458 17.087 15.598 4.6721 Apr 8

Region I 6.7766 19.825 7.9763 21.028

Region II 12.618 1.6834 Apr 8 14.046 3.1155 Apr 8
LMT drop 13.435 2.5045 Apr 8 13.737 2.8058 Apr 8

Note. Regions I and II correspond to the time regions identified in red and blue,
respectively, in Figure 6. The LMT dropout corresponds to the sudden loss of
coverage that occurs partway through Region II. All time stamps correspond to
2017 April 7 unless otherwise noted. In UT, the observation begins and ends on
April 7; however, when converted to GMST, Region I lies on 2017 April 7
while Region II lies on 2017 April 8.
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between 7 and 10 times higher than in Region II. For all tests, the
scatter around the model is substantially larger than the scatter in
Region II, rendering the accurate extraction of a period difficult or
impossible. Reconstructions in periods outside of Regions I and II

cannot recover even basic source structure without significant
a priori information.
Based on these results, we expect that reconstructions on real

data will produce the most accurate and robust recoveries of

Figure 7. SMILI (green circles), ehtim (yellow triangles), and CLEAN (red squares) position angle reconstructions in Region I of a ring+hs model for orbits of
various periodicities and directions. Comparing the resulting hot spot position angle to the model angle (blue dashed line) clearly demonstrates that Region I provides
a poor reconstruction of time variability.

Figure 8. SMILI (green circles), ehtim (yellow triangles), and CLEAN (red squares) position angle reconstructions in Region II of a ring+hs model for orbits of
various periodicities and directions. The transparency of each data point corresponds to the isotropy of the snapshot observation used to reconstruct it. Comparing the
resulting hot spot position angle to the model angle (blue dashed line) clearly demonstrates that Region II provides excellent conditions and coverage for meaningful
recovery of periodicity given reasonable imaging assumptions.
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orbital dynamical variability in Region II of April 7 of the 2017
EHT observations of Sgr A*. Reasonable imaging and feature
extraction procedures failed to produce meaningful results in
Region I. This ranking is consistent with the predictions of the
coverage metrics described in Section 5 and Appendix B. A
wide array of factors impact reconstructions, and the tests
presented here do not compose a realistic synthetic data suite
for assessing whether or not Region II can accurately recover
dynamical variability for Sgr A*. The tests provided here solely
demonstrate that Region II is the best time region for performing
dynamical reconstructions based on coverage considerations.
Additional testing on more complex source types with realistic
data corruptions can be found in Event Horizon Telescope
Collaboration et al. (2022c).

7. Metric-based Array Comparisons

Go/no-go decisions about whether to proceed with an
observing run are often made with limited information about
the readiness or weather conditions at particular sites.
Simulating (and scoring) array configurations with different
dropouts—and characterizing changes in the size and quality of
the identified candidate temporal regions—can facilitate those
go/no-go choices while incorporating uncertainties about
station status. One observation configuration can be considered
“better” than another if it provides a candidate time region with
a higher metric score, or a similar metric score for a longer
duration. Figure 9 shows an example of this kind of analysis
performed with a hypothetical ngEHT array. The top panel
shows the isotropy metric (see Section 5.4) score per snapshot
for the full array during a night of observation in which every
station is observing, which represents the ideal scenario. The
middle and bottom panels reproduce the metric score per
snapshot assuming that four sites are unable to observe. By
identifying a candidate time region and characterizing its
quality (based on, e.g., average metric score in the time region)
and duration (denoted as Δτ in Figure 9), we can track these
characterizations through different combinations of site drop-
outs and estimate how critical the sites are to the array. Based
on the computations in Figure 9, ALMA, JCMT, LMT, and
SMA dropping out would be catastrophic to the array
performance, as the optimal time region for dynamical imaging
reduces in duration by ≈80% and reduces in quality by ≈50%.
By comparison, the combined dropout of PV, PDB, CARMA,
and LMT does not substantially change the duration or quality
of the identified candidate time region.

A metric-based comparison additionally provides a natural and
quantitative ranking for identifying which day of an observation
campaign produced the most optimal coverage for dynamical
imaging. We can rank observations on separate days in a similar
fashion to the dropout scenarios visualized in Figure 9 by
comparing the duration and quality of the identified candidate
time regions for each day. An example of such a comparison
between the April 7 and April 10 runs of the 2017 EHT
observation campaign is shown in Figure 10. Instantaneous metric
scores are computed for each scan of both days, and candidate
time regions for dynamical imaging (green) are identified. While
both candidate time regions are of approximately the same
duration, the candidate time region associated with April 7
displays substantially better coverage, making April 7 a better
choice for dynamical imaging than April 10.

8. Conclusions

We have demonstrated that limitations of imaging associated
with sparse baseline distribution can be inferred from the
specific geometric properties of the (u, v)-coverage. Highly
anisotropic coverage produces artifacts in reconstructions that
distort the image in a direction consistent with stripes in the
dirty beam. Additionally, an uneven radial distribution of the
Fourier plane (u, v)-coverage tends to result in ambiguous
image reconstruction. These limitations can be partially
avoided by imaging in radially and angularly homogeneous
coverage. The reconstruction issues associated with sparse
coverage are exacerbated by rapid short-timescale variability,
as seen in a wide array of astrophysical sources, including
Sgr A* and the precessing jets of X-ray binaries.

Figure 9. Isotropy metric scores for a hypothetical ngEHT array with different
dropout scenarios. The full array has all of the sites in the 2017 EHT array (see
Section 2), with the addition of the Northern Extended Millimeter Array
(PDB), the Combined Array for Research in Millimeter-wave Astronomy
(CARMA), and the Kitt Peak National Observatory (KP). A universal value of

» 0.513max was used to perform the computation (see Appendix B).
Generally, dropouts will impact the maximum coverage score achieved
throughout the observation and the duration (shown as Δτ) of the most optimal
time region. Characterizing a site’s importance to the observation is a useful
way of informing a go/no-go decision, which takes into account station
readiness and probability of dropout. For the above observational scenario, the
loss of, e.g., ALMA, JCMT, and SMA would likely motivate a “no-go”
decision, whereas the loss of, e.g., CARMA and PV would not motivate
canceling the night of observation.
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Next, we surveyed and compared existing geometric
measures of (u, v)-coverage, in addition to deriving a novel
isotropy-based metric that addressed the specific limitations
demonstrated in Section 4. The examined metrics included the
normalized cross-correlation (2), the (u, v) filling fraction (see
Palumbo et al. 2019), and the LCG metric (Equation (3); see
Wielgus et al. 2020a). The isotropy metric treats the
distribution of baselines as a mass distribution and examines
the second moment to rank coverages by homogeneity in the
Fourier plane. The isotropy metric gives similar results to other
(u, v)-coverage-based metrics while being more computation-
ally efficient.

These metrics were applied to the April 7 data of the 2017
EHT coverage of Sgr A*

(Event Horizon Telescope Collabora-
tion et al. 2022a, 2022b, 2022c, 2022d, 2022e, 2022f) and used
to select candidate time regions for high-quality dynamical
imaging. All metrics identify a period from ∼01:30 GMST to
∼03:10 GMST (“Region II”) that minimizes the coverage
limitations each metric addresses. We also select a period from
∼19:45 GMST to ∼21:00 GMST (“Region I”) with recon-
struction capability. Reconstructions of time-variable sources
allowed successful recovery of the characteristic source
variability in Region II. In contrast, reconstructions in Region
I were unable to recover the characteristic motion. The ranking
determined by the suite of reconstructions performed on
synthetic data verifies the predictions made by the examined
coverage metrics. We expect that attempts to recover variability
in real EHT observations of the Galactic center will produce the
most robust and accurate recoveries in Region II of the 2017
April 7 data set, and therefore we recommend performing
dynamical imaging procedures in that time region.

Coverage metrics have additional utility for ranking inter-
observation comparisons based on their ability to recover
dynamical variability, which has a variety of applications to the
broader field of interferometery. These metrics provide the
ability to make select observation time slots based on the
capability of available antennas to recover particular dynamical
evolution in the target. Such a scored assessment of coverage
could well prove of use to other VLBI arrays both as they make
go/no-go decisions about whether to observe on a particular
night and then when identifying the periods of best coverage to
perform static and dynamic imaging.
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Appendix A
Sample Synthetic Data Products

Here we present representative samples of the visibility
amplitudes and closure phases that are generated from the
synthetic data described in Section 2.1. Sample amplitudes are
shown in Figure 11, and sample closure phases are shown in
Figure 12.

Figure 11. Example amplitudes for the three main synthetic data types described in Section 2.1. The time-variable models have periods of 270 minutes. The
amplitudes recorded during Regions I and II (see Table 1) are shown in red and blue, respectively. Region II has higher radial homogeneity in (u, v) distance, which
contributes to its higher metric score and increased dynamical imaging capability. Error bars show 1σ thermal noise.
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Appendix B
Derivation of Isotropy-based Coverage Metric

Section 4 demonstrated that quantifying the isotropy of a (u,
v)-coverage configuration can indicate whether it is suitable for
producing accurate reconstructions of a dynamic source. We
adopt a coverage metric of the form

= ({ }) ({ }) ( )I u R u , B1i i
 

where ={ } {( )}u u v,i i i


is the set of 2N baselines (including
their Hermitian conjugates), I is a measure of the isotropy of
the coverage, and R is a measure of the radial homogeneity of
the coverage.

To estimate the radial homogeneity, we compare the
cumulative distribution function (CDF) of the distribution of
baseline lengths against the uniform CDF via the K-S test. The
uniform distribution examined for this test ranges from 0 Gλ to
the maximum baseline length achieved in the observation. This
test returns a “distance”  between the distributions, which
increases as the distribution becomes less radially homoge-
neous, making use of the test in this context a measure of radial
inhomogeneity. To convert the result of the K-S test into a
measure of radial homogeneity, we select an upper bound max
corresponding to the maximum distance from uniform any
individual baseline distribution obtains throughout the observa-
tion. We then subtract the result of the K-S test from this
maximum, i.e.,

¢ =
-

= - ( )1 , B2
max

max max


 






where = ¢({ })R ui


 is our new metric of homogeneity. This
metric is conveniently bounded between 0 and 1. To make this
metric absolute, a fixed value of max can be chosen arbitrarily
and applied to multiple observations. For the absolute
comparisons in this paper (see, e.g., Section 7) a value of

= »0.513338437261774 0.513max is adopted. This value
of max is chosen to be the maximum value of  achieved
during the April 7 observation.

In order to measure the isotropy of the coverage, we examine
the second moment (moment of inertia) of the distribution of
baselines. As a spatial configuration of points with uniform
weighting, the (u, v)-coverage can be treated as a mass distribution.

For a two-dimensional mass distribution, a disk is considered
isotropic, a rod is considered anisotropic, and the spectrum
between the two cases can be probed using the moment of inertia
tensor. Given 2N baselines and conjugate baselines with
coordinates ={ } {( )}u u v,i i i


, we can compute the second

moments of the distribution as
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The principal moments of inertia can be computed from the
eigenvalues λ1 and λ2 of . From these, we can derive the
following orientation-independent measure of isotropy:
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can also be written in terms of the FWHM of
the dirty beam,
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This measure of isotropy is naturally normalized between 0
and 1. Substituting this expression and Equation (B2) into
Equation (B1) gives the following expression for a coverage

Figure 12. Example closure phases on two triangles for the three main synthetic data types described in Section 2.1. The time-variable models have periods of 270
minutes. Closure phases are useful for identifying and constraining asymmetry and time variability in the source.
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quality metric:
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This measure of coverage quality can be applied to partition an
arbitrary VLBI observation into time regions ranked by their
ability to accurately reconstruct dynamical sources.

Appendix C
Sampled Results from Synthetic Data Reconstructions

In Section 6, we test the coverage metrics examined in
Section 5 by performing reconstructions of synthetic observa-
tions in selected time regions of the 2017 EHT observational
coverage of Sgr A*. Here we provide representative snapshot
images from each of the time regions. Sampled snapshot

images from Region I are shown in Figure 13, and sampled
snapshot images from Region II are shown in Figure 14.
Reconstructions in both Region I and Region II demonstrate

clear recovery of a ring-like feature of approximately 50 μas in
diameter, as both sufficiently probe the radial distribution of the
source Fourier transform to constrain the overall size of the
source. However, the directionally biased coverage of Region I
produces incorrect reconstructions of hot spot location. By
contrast, reconstructions in Region II repeatedly recovery the
correct hot spot location across all periods, directions, and
imaging algorithms.
Though both time regions recover a ring-like feature of the

approximately correct size, the Region II reconstructions
provide a more accurate ring-to-central-depression flux density
ratio. The increased accuracy is present in both the CLEAN and
RML reconstructions. By contrast, reconstructions in Region I
fail to consistently provide a visually distinctive depression and
misrepresent the angular brightness profile of the source.

Figure 13. Sampled reconstructions from Region I. The top row shows the true model image for each configuration. All panels show model images and
reconstructions at ∼21:00 GMST on April 7. The white circle in the lower right corner of each panel corresponds to an 18 μas diameter CLEAN beam. Even with
substantial prior assumptions that facilitate ring reconstruction, the hot spot is frequently placed incorrectly, rendering this time region unsuitable for recovery of
orbital angular variability.

18

The Astrophysical Journal Letters, 930:L18 (21pp), 2022 May 10 Farah et al.



ORCID iDs

Joseph Farah https://orcid.org/0000-0003-4914-5625
Peter Galison https://orcid.org/0000-0002-6429-3872
Kazunori Akiyama https://orcid.org/0000-0002-9475-4254
Katherine L. Bouman https://orcid.org/0000-0003-
0077-4367
Geoffrey C. Bower https://orcid.org/0000-0003-4056-9982
Andrew Chael https://orcid.org/0000-0003-2966-6220
Antonio Fuentes https://orcid.org/0000-0002-8773-4933
José L. Gómez https://orcid.org/0000-0003-4190-7613
Mareki Honma https://orcid.org/0000-0003-4058-9000
Michael D. Johnson https://orcid.org/0000-0002-4120-3029
Daniel P. Marrone https://orcid.org/0000-0002-2367-1080
Kotaro Moriyama https://orcid.org/0000-0003-1364-3761
Ramesh Narayan https://orcid.org/0000-0002-1919-2730
Dominic W. Pesce https://orcid.org/0000-0002-5278-9221
Paul Tiede https://orcid.org/0000-0003-3826-5648
Maciek Wielgus https://orcid.org/0000-0002-8635-4242
Guang-Yao Zhao https://orcid.org/0000-0002-4417-1659
Antxon Alberdi https://orcid.org/0000-0002-9371-1033
Juan Carlos Algaba https://orcid.org/0000-0001-6993-1696
Richard Anantua https://orcid.org/0000-0003-3457-7660
Rebecca Azulay https://orcid.org/0000-0002-2200-5393
Anne-Kathrin Baczko https://orcid.org/0000-0003-
3090-3975
Mislav Baloković https://orcid.org/0000-0003-0476-6647
John Barrett https://orcid.org/0000-0002-9290-0764
Bradford A. Benson https://orcid.org/0000-0002-
5108-6823
Lindy Blackburn https://orcid.org/0000-0002-9030-642X
Raymond Blundell https://orcid.org/0000-0002-5929-5857
Hope Boyce https://orcid.org/0000-0002-6530-5783

Christiaan D. Brinkerink https://orcid.org/0000-0002-
2322-0749
Roger Brissenden https://orcid.org/0000-0002-2556-0894
Silke Britzen https://orcid.org/0000-0001-9240-6734
Avery E. Broderick https://orcid.org/0000-0002-
3351-760X
Thomas Bronzwaer https://orcid.org/0000-0003-1151-3971
Do-Young Byun https://orcid.org/0000-0003-1157-4109
Chi-kwan Chan https://orcid.org/0000-0001-6337-6126
Koushik Chatterjee https://orcid.org/0000-0002-2825-3590
Shami Chatterjee https://orcid.org/0000-0002-2878-1502
Ilje Cho https://orcid.org/0000-0001-6083-7521
Pierre Christian https://orcid.org/0000-0001-6820-9941
John E. Conway https://orcid.org/0000-0003-2448-9181
James M. Cordes https://orcid.org/0000-0002-4049-1882
Thomas M. Crawford https://orcid.org/0000-0001-
9000-5013
Geoffrey B. Crew https://orcid.org/0000-0002-2079-3189
Alejandro Cruz-Osorio https://orcid.org/0000-0002-
3945-6342
Yuzhu Cui https://orcid.org/0000-0001-6311-4345
Jordy Davelaar https://orcid.org/0000-0002-2685-2434
Mariafelicia De Laurentis https://orcid.org/0000-0002-
9945-682X
Roger Deane https://orcid.org/0000-0003-1027-5043
Jessica Dempsey https://orcid.org/0000-0003-1269-9667
Gregory Desvignes https://orcid.org/0000-0003-3922-4055
Sheperd S. Doeleman https://orcid.org/0000-0002-
9031-0904
Ralph P. Eatough https://orcid.org/0000-0001-6196-4135
Heino Falcke https://orcid.org/0000-0002-2526-6724
Vincent L. Fish https://orcid.org/0000-0002-7128-9345

Figure 14. Sampled reconstructions from Region II. The top row shows the true model image for each configuration. The white circle in the lower right corner of each
panel corresponds to an 18 μas diameter CLEAN beam. All panels show model images and reconstructions and reconstructions at ∼1:50 GMST on April 8.

19

The Astrophysical Journal Letters, 930:L18 (21pp), 2022 May 10 Farah et al.



Ed Fomalont https://orcid.org/0000-0002-9036-2747
H. Alyson Ford https://orcid.org/0000-0002-9797-0972
Raquel Fraga-Encinas https://orcid.org/0000-0002-
5222-1361
Per Friberg https://orcid.org/0000-0002-8010-8454
Charles F. Gammie https://orcid.org/0000-0001-7451-8935
Roberto Garc’a https://orcid.org/0000-0002-6584-7443
Ciriaco Goddi https://orcid.org/0000-0002-2542-7743
Roman Gold https://orcid.org/0000-0003-2492-1966
Arturo I. Gómez-Ruiz https://orcid.org/0000-0001-
9395-1670
Minfeng Gu (顾敏 峰) https://orcid.org/0000-0002-
4455-6946
Mark Gurwell https://orcid.org/0000-0003-0685-3621
Kazuhiro Hada https://orcid.org/0000-0001-6906-772X
Daryl Haggard https://orcid.org/0000-0001-6803-2138
Ronald Hesper https://orcid.org/0000-0003-1918-6098
Luis C. Ho (何子 山) https://orcid.org/0000-0001-
6947-5846
Chih-Wei L. Huang https://orcid.org/0000-0001-5641-3953
Lei Huang (黄磊) https://orcid.org/0000-0002-1923-227X
Shiro Ikeda https://orcid.org/0000-0002-2462-1448
Sara Issaoun https://orcid.org/0000-0002-5297-921X
David J. James https://orcid.org/0000-0001-5160-4486
Michael Janssen https://orcid.org/0000-0001-8685-6544
Britton Jeter https://orcid.org/0000-0003-2847-1712
Wu Jiang (江悟) https://orcid.org/0000-0001-7369-3539
Svetlana Jorstad https://orcid.org/0000-0001-6158-1708
Taehyun Jung https://orcid.org/0000-0001-7003-8643
Mansour Karami https://orcid.org/0000-0001-7387-9333
Ramesh Karuppusamy https://orcid.org/0000-0002-
5307-2919
Tomohisa Kawashima https://orcid.org/0000-0001-
8527-0496
Garrett K. Keating https://orcid.org/0000-0002-3490-146X
Mark Kettenis https://orcid.org/0000-0002-6156-5617
Dong-Jin Kim https://orcid.org/0000-0002-7038-2118
Jae-Young Kim https://orcid.org/0000-0001-8229-7183
Jongsoo Kim https://orcid.org/0000-0002-1229-0426
Junhan Kim https://orcid.org/0000-0002-4274-9373
Motoki Kino https://orcid.org/0000-0002-2709-7338
Jun Yi Koay https://orcid.org/0000-0002-7029-6658
Patrick M. Koch https://orcid.org/0000-0003-2777-5861
Shoko Koyama https://orcid.org/0000-0002-3723-3372
Carsten Kramer https://orcid.org/0000-0002-4908-4925
Michael Kramer https://orcid.org/0000-0002-4175-2271
Thomas P. Krichbaum https://orcid.org/0000-0002-
4892-9586
Cheng-Yu Kuo https://orcid.org/0000-0001-6211-5581
Tod R. Lauer https://orcid.org/0000-0003-3234-7247
Sang-Sung Lee https://orcid.org/0000-0002-6269-594X
Aviad Levis https://orcid.org/0000-0001-7307-632X
Yan-Rong Li https://orcid.org/0000-0001-5841-9179
Zhiyuan Li (李志 远) https://orcid.org/0000-0003-0355-
6437
Rocco Lico https://orcid.org/0000-0001-7361-2460
Greg Lindahl https://orcid.org/0000-0002-6100-4772
Michael Lindqvist https://orcid.org/0000-0002-3669-0715
Jun Liu (刘俊) https://orcid.org/0000-0002-7615-7499
Kuo Liu https://orcid.org/0000-0002-2953-7376
Elisabetta Liuzzo https://orcid.org/0000-0003-0995-5201
Laurent Loinard https://orcid.org/0000-0002-5635-3345

Ru-Sen Lu (路如 森) https://orcid.org/0000-0002-7692-
7967
Nicholas R. MacDonald https://orcid.org/0000-0002-
6684-8691
Jirong Mao (毛基 荣) https://orcid.org/0000-0002-7077-
7195
Nicola Marchili https://orcid.org/0000-0002-5523-7588
Sera Markoff https://orcid.org/0000-0001-9564-0876
Alan P. Marscher https://orcid.org/0000-0001-7396-3332
Iván Martí-Vidal https://orcid.org/0000-0003-3708-9611
Satoki Matsushita https://orcid.org/0000-0002-2127-7880
Lynn D. Matthews https://orcid.org/0000-0002-3728-8082
Lia Medeiros https://orcid.org/0000-0003-2342-6728
Karl M. Menten https://orcid.org/0000-0001-6459-0669
Izumi Mizuno https://orcid.org/0000-0002-7210-6264
Yosuke Mizuno https://orcid.org/0000-0002-8131-6730
James M. Moran https://orcid.org/0000-0002-3882-4414
Monika Moscibrodzka https://orcid.org/0000-0002-
4661-6332
Cornelia Müller https://orcid.org/0000-0002-2739-2994
Alejandro Mus Mejas https://orcid.org/0000-0003-
0329-6874
Gibwa Musoke https://orcid.org/0000-0003-1984-189X
Hiroshi Nagai https://orcid.org/0000-0003-0292-3645
Neil M. Nagar https://orcid.org/0000-0001-6920-662X
Masanori Nakamura https://orcid.org/0000-0001-
6081-2420
Iniyan Natarajan https://orcid.org/0000-0001-8242-4373
Joey Neilsen https://orcid.org/0000-0002-8247-786X
Roberto Neri https://orcid.org/0000-0002-7176-4046
Chunchong Ni https://orcid.org/0000-0003-1361-5699
Aristeidis Noutsos https://orcid.org/0000-0002-4151-3860
Michael A. Nowak https://orcid.org/0000-0001-6923-1315
Hiroki Okino https://orcid.org/0000-0003-3779-2016
Gisela N. Ortiz-León https://orcid.org/0000-0002-
2863-676X
Feryal zel https://orcid.org/0000-0003-4413-1523
Daniel C. M. Palumbo https://orcid.org/0000-0002-
7179-3816
Jongho Park https://orcid.org/0000-0001-6558-9053
Ue-Li Pen https://orcid.org/0000-0003-2155-9578
Richard Plambeck https://orcid.org/0000-0001-6765-9609
Oliver Porth https://orcid.org/0000-0002-4584-2557
Felix M. Pötzl https://orcid.org/0000-0002-6579-8311
Ben Prather https://orcid.org/0000-0002-0393-7734
Jorge A. Preciado-López https://orcid.org/0000-0002-
4146-0113
Dimitrios Psaltis https://orcid.org/0000-0003-1035-3240
Hung-Yi Pu https://orcid.org/0000-0001-9270-8812
Venkatessh Ramakrishnan https://orcid.org/0000-0002-
9248-086X
Ramprasad Rao https://orcid.org/0000-0002-1407-7944
Mark G. Rawlings https://orcid.org/0000-0002-6529-202X
Alexander W. Raymond https://orcid.org/0000-0002-
5779-4767
Luciano Rezzolla https://orcid.org/0000-0002-1330-7103
Bart Ripperda https://orcid.org/0000-0002-7301-3908
Freek Roelofs https://orcid.org/0000-0001-5461-3687
Eduardo Ros https://orcid.org/0000-0001-9503-4892
Mel Rose https://orcid.org/0000-0002-2016-8746
Alan L. Roy https://orcid.org/0000-0002-1931-0135
Chet Ruszczyk https://orcid.org/0000-0001-7278-9707

20

The Astrophysical Journal Letters, 930:L18 (21pp), 2022 May 10 Farah et al.



Kazi L. J. Rygl https://orcid.org/0000-0003-4146-9043
David Sánchez-Arguelles https://orcid.org/0000-0002-
7344-9920
Mahito Sasada https://orcid.org/0000-0001-5946-9960
Tuomas Savolainen https://orcid.org/0000-0001-6214-1085
Lijing Shao https://orcid.org/0000-0002-1334-8853
Zhiqiang Shen (沈志强) https://orcid.org/0000-0003-3540-
8746
Des Small https://orcid.org/0000-0003-3723-5404
Bong Won Sohn https://orcid.org/0000-0002-4148-8378
Jason SooHoo https://orcid.org/0000-0003-1938-0720
He Sun (孙赫) https://orcid.org/0000-0003-1526-6787
Fumie Tazaki https://orcid.org/0000-0003-0236-0600
Alexandra J. Tetarenko https://orcid.org/0000-0003-
3906-4354
Remo P. J. Tilanus https://orcid.org/0000-0002-6514-553X
Michael Titus https://orcid.org/0000-0002-3423-4505
Kenji Toma https://orcid.org/0000-0002-7114-6010
Pablo Torne https://orcid.org/0000-0001-8700-6058
Efthalia Traianou https://orcid.org/0000-0002-1209-6500
Sascha Trippe https://orcid.org/0000-0003-0465-1559
Ilse van Bemmel https://orcid.org/0000-0001-5473-2950
Huib Jan van Langevelde https://orcid.org/0000-0002-
0230-5946
Daniel R. van Rossum https://orcid.org/0000-0001-
7772-6131
Jan Wagner https://orcid.org/0000-0003-1105-6109
Derek Ward-Thompson https://orcid.org/0000-0003-
1140-2761
John Wardle https://orcid.org/0000-0002-8960-2942
Jonathan Weintroub https://orcid.org/0000-0002-4603-5204
Norbert Wex https://orcid.org/0000-0003-4058-2837
Robert Wharton https://orcid.org/0000-0002-7416-5209
Kaj Wiik https://orcid.org/0000-0002-0862-3398
George N. Wong https://orcid.org/0000-0001-6952-2147
Qingwen Wu https://orcid.org/0000-0003-4773-4987
Doosoo Yoon https://orcid.org/0000-0001-8694-8166
André Young https://orcid.org/0000-0003-0000-2682
Ken Young https://orcid.org/0000-0002-3666-4920
Ziri Younsi https://orcid.org/0000-0001-9283-1191
Feng Yuan (袁峰) https://orcid.org/0000-0003-3564-6437
J. Anton Zensus https://orcid.org/0000-0001-7470-3321
Shan-Shan Zhao https://orcid.org/0000-0002-9774-3606

References

Akiyama, K., Kuramochi, K., Ikeda, S., et al. 2017, ApJ, 838, 1
Barber, C. B., Dobkin, D. P., & Huhdanpaa, H. T. 1996, ACM Transactions on

Mathematical Software, 22, 469
Bouman, K. L., Johnson, M. D., Zoran, D., et al. 2016, in IEEE Conf. on

Computer Vision and Pattern Recognition (CVPR), Computational Imaging
for VLBI Image Reconstruction (Piscataway, NJ: IEEE), 913

Chael, A. A., Johnson, M. D., Bouman, K. L., et al. 2018, ApJ, 857, 23
Chael, A. A., Johnson, M. D., Narayan, R., et al. 2016, ApJ, 829, 11
Clark, B. 1980, A&A, 89, 377
Cornwell, T. J., & Wilkinson, P. N. 1981, MNRAS, 196, 1067
Do, T., Hees, A., Ghez, A., et al. 2019, Sci, 365, 664
Doeleman, S. S., Weintroub, J., Rogers, A., et al. 2008, Natur, 455, 78
Event Horizon Telescope Collaboration, Akiyama, K., Alberdi, A., et al.

2019a, ApJL, 875, L1
Event Horizon Telescope Collaboration, Akiyama, K., Alberdi, A., et al.

2019b, ApJL, 875, L2
Event Horizon Telescope Collaboration, Akiyama, K., Alberdi, A., et al.

2019c, ApJL, 875, L3
Event Horizon Telescope Collaboration, Akiyama, K., Alberdi, A., et al.

2019d, ApJL, 875, L4
Event Horizon Telescope Collaboration, Akiyama, K., Alberdi, A., et al.

2019e, ApJL, 875, L5
Event Horizon Telescope Collaboration, Akiyama, K., Alberdi, A., et al. 2019f,

ApJL, 875, L6
Event Horizon Telescope Collaboration, Akiyama, K., Alberdi, A., et al.

2022a, ApJL, 930
Event Horizon Telescope Collaboration, Alkiyama, K., Alberdi, A., et al.

2022b, ApJL, 930
Event Horizon Telescope Collaboration, Akiyama, K., Alberdi, A., et al.

2022c, ApJL, 930
Event Horizon Telescope Collaboration, Akiyama, K., Alberdi, A., et al.

2022d, ApJL, 930
Event Horizon Telescope Collaboration, Akiyama, K., Alberdi, A., et al.

2022e, ApJL, 930
Event Horizon Telescope Collaboration, Akiyama, K., Alberdi, A., et al. 2022f,

ApJL, 930
Fried, D. L. 1978, JOSA, 68, 1651
GRAVITY Collaboration, Ganci, V., Labadie, L., et al. 2018a, A&A, 615,

L15
GRAVITY Collaboration, Ganci, V., Labadie, L., et al. 2018b, A&A, 618, L10
Högbom, J. A. 1974, A&ASS, 15, 417
Honma, M., Akiyama, K., Uemura, M., & Ikeda, S. 2014, PASJ, 66, 95
Issaoun, S., Johnson, M., Blackburn, L., et al. 2019, ApJ, 871, 17
Johannsen, T., & Psaltis, D. 2010, ApJ, 718, 446
Johnson, M. D., Bouman, K., Blackburn, L., et al. 2017, ApJ, 850, 172
Kamruddin, A. B., & Dexter, J. 2013, MNRAS, 434, 765
Kullback, S., & Leibler, R. A. 1951, Ann. Math. Stat., 22, 79
Kuramochi, K., Akiyama, K., Ikeda, S., et al. 2018, ApJ, 858, 56
Lal, D. V., & Lobanov, A. P. 2007, PoS, 52, 110
Martí-Vidal, I., Marcaide, J. M., Alberdi, A., et al. 2011, A&A, 533, 16
Massi, M., Ros, E., & Zimmermann, L. 2012, A&A, 540
Miller-Jones, J. C., Tetarenko, A., Sivakoff, G., et al. 2019, Natur, 569, 374
Narayan, R., & Nityananda, R. 1986, ARA&A, 24, 127
Palumbo, D. C., Doeleman, S. S., Johnson, M. D., et al. 2019, ApJ, 881, 62
Pearson, T. J., & Readhead, A. C. S. 1984, ARA&A, 22, 97
Psaltis, D. 2019, GReGr, 51, 137
Psaltis, D., Özel, F., Chan, C. K., & Marrone, D. P. 2015, ApJ, 814, 115
Raymond, A. W., Palumbo, D., Paine, S., et al. 2021, ApJS, 253, 5
Readhead, A. C., Walker, R. C., Pearson, T. J., & Cohen, M. H. 1980, Natur,

285, 137
Shepherd, M. C. 1997, adass, 125, 77
Thompson, A. R., Moran, J. M., & Swenson George, W. J. 2017,

Interferometry and Synthesis in Radio Astronomy (New York: Springer)
Wielgus, M., Palumbo, D., & Hamilton, L. 2020a, LCG metric, https://github.

com/wielgusm/mwtools/blob/master/LCG_metric.py
Wielgus, M., Akiyama, K., Blackburn, L., et al. 2020b, ApJ, 901, 67
Wilkinson, P. N., Readhead, A. C., Purcell, G. H., & Anderson, B. 1977,

Natur, 269, 764

21

The Astrophysical Journal Letters, 930:L18 (21pp), 2022 May 10 Farah et al.


	1. Introduction
	2. Model Definition and Synthetic Data Generation
	2.1. Models
	2.1.1. Rotating Elliptical Gaussian
	2.1.2. Ring and Orbiting Hot Spot

	2.2. Synthetic Data Generation

	3. Imaging Approaches
	3.1. Inverse-modeling Approaches
	3.2. Forward-modeling Approaches

	4. Limitations of Sparse (u, v)-coverage
	5. Coverage Metrics
	5.1. Normalized Cross-correlation
	5.2.(u, v) Filling Fraction
	5.3. Largest Coverage Gap
	5.4. Isotropy and Radial Homogeneity
	5.5. Discussion of Metrics

	6. Application of Metric to 2017 EHT Array
	7. Metric-based Array Comparisons
	8. Conclusions
	Appendix ASample Synthetic Data Products
	Appendix BDerivation of Isotropy-based Coverage Metric
	Appendix CSampled Results from Synthetic Data Reconstructions
	References

