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Abstract

This article is concerned with Whittaker models in geometric representation theory,
and gives applications to the study of affine W-algebras. The main new innovation con-
nects Whittaker models to invariants for compact-open subgroups of the loop group.
This method, which has a counterpart for p-adic groups, settles a conjecture of Gaits-
gory in the categorical setting. This method shows that Whittaker sheaves in geometric
representation theory admit #-structures, as had previously been observed in some spe-
cial cases. We then apply this method to the setting of affine W-algebras. We study a
new family of modules for affine W-algebras, which can be thought of as analogues
of certain tautological (“generalized vaccuum”) modules over the Kac-Moody alge-
bra. Using the above 7-structure, we obtain an affine analogue of Skryabin’s theorem
that connects affine W-algebras and Whittaker models. This theorem allows various
geometric methods to be used to study affine W-algebras. As one such application,
we offer a new proof of one of Arakawa’s foundational results in the theory.
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1 Introduction

1.1. Overview This paper is about generalizing Skryabin’s theorem, a simple result
about finite W-algebras,! to the more subtle setting of affine W-algebras.

The main new construction of the paper is of a more general nature. It provides
a compact approximation to the Whittaker model, which corresponds under the con-
jectural local geometric Langlands correspondence to the stratification of the moduli
space of de Rham local systems by slope. This method, which we call the adolescent
Whittaker construction, is a new one, though closely related to [53]. It appears to
be fundamental in geometric Langlands, and may be of interest to specialists in the
Langlands program without an interest in W-algebras.

But in what follows, we emphasize the role of W-algebras, which are ultimately
the main players in this paper. We provide a survey of the subject below. The reader
with no interest in this part of the paper can safely skip that material.

1.2 Some notation

We work over a ground field k of characteristic O throughout the paper.

Let G be a split reductive group over k, let N be the radical of a Borel subgroup
B of G, and let T be the Cartan B/N. As usual, we let g, n, b, and t denote the
corresponding Lie algebras. We let A (resp. A) denote the lattice of weights (resp.
coweights). We fix Chevalley generators e; € n. Lety : n — k be the non-degenerate
character with 1 (e;) = 1 for all i.

Throughout the paper, notation is a/lways assumed derived (see Sect. 1.5.6 for an
explanation why). Our derived categories are considered as DG categories.” They
all admit arbitrary (small) colimits (equivalently, arbitrary direct sums), i.e., they are

! There are competing stories in the literature for the origins of this peculiar name.

That the “W” is taken from the analogy with Whittaker models in harmonic analysis has been suggested
repeatedly, e.g. in [17]. As the subject was started in [44], this seems quite reasonable. (We remark that the
word “Whittaker” in the title of this paper is explicitly meant to evoke exactly this meaning.)

Arakawa [3] suggests the name comes because affine W-algebras generalize the Virasoro algebra, and W
succeeds V in the alphabet.

De Sole and Kac also suggest in [17] §0.2 that because W-algebras quantize functions on the space of
invariant polynomials of the group, which can be thought of as invariant polynomials for the Weyl group
considered as a Chevalley group, that the name derives from Weyl.

I tried to hunt the answer down in the literature, with limited success. For sl3, the affine W-algebra has
two 1-parameter families of generators; one family has to do with Virasoro, so is denoted L, by standard
tradition. In Zamolodchikov’s first paper [55] on the subject, which introduced the affine W-algebra for sl3,
he denotes the other family by V,,. However, in his second paper [31] on the subject, joint with Fateev, the
second family is denoted by W,.

As far as I could tell, the name originates from this choice of notation in the second paper. I do not know
what this choice was made. The connection to Virasoro was transparent at that time, but I am not sure about
the connection to Whittaker models and Kostant’s work. I am not even sure that the connection to sl3 would
have been clear yet.

2 This means that they are enriched over chain complexes of vector spaces (and satisfy a few additional

hypotheses). However, this notion should be considered in the homotopic sense, i.e., as co-categories in the
sense of Lurie, cf. [35].
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cocomplete. They are considered as objects of DGCat,,,;, the co-category of pre-
sentable® DG categories and continuous functors (i.e., functors preserving all colimits).
E.g., Vect means the DG category of chain complexes of (k-)vector spaces. Simi-
larly, g—mod denotes the DG category of chain complexes of g-modules. We use the
notation Vect®, g—modo, etc. to refer to the usual abelian categories (since these are
the hearts of standard ¢-structures on the DG categories).
We use Hom(—, —) to denote the chain complex of maps in a DG category.

1.3 Finite W-algebras

1.3.1.  We begin by describing what W-algebras are in the finite-dimensional setting,
and what about them we wish to generalize.

1.3.2. 'We have the finite Drinfeld-Sokolov functor
W/ g-mod — Vect
defined by:
M— C*(n, M Q@ —1r)

where C*® indicates the cohomological Chevalley complex (i.e., Lie algebra coho-
mology), and — is abusive notation for the 1-dimensional n-module defined by the
character —1 (the reason for the sign will be apparent later).

The non-derived version of this functor was introduced in [44], where its basic
properties were established.*

Define the DG algebra W/ as the endomorphisms of this functor.> One has:

Theorem 1.3.1 (=~ Kostant [44])

(1) W/ is concentrated in cohomological degree 0, i.e., W/ = HO(W/Tim),

(2) W/ carries a canonical filtration whose associated graded is slightly non-
canonically isomorphic to the algebra of functions on the Kostant slice f + b° ~
f+b/N ~g//G. Here f is a principal nilpotent element related to s, e fits into
a principal sl with f with [e, f] € b. We use the quotient symbol / to indicate
the stack quotient (which happens to be an affine scheme in this case), and /] to
indicate the GIT quotient.

3 We remind that presentable means cocomplete and accessible, where the latter is a mild set-theoretic
condition.

4 Almost established, in any case. One often finds this source cited for results which are not proved there,
but whose proofs can readily be extracted from it.

5 Explicitly, this means we take Mg_mod(\l—'ﬂ”(U(g))), where \Ufi”(U(g)) is regarded as a g-module
through the bimodule structure on U (g).

More explicitly still, note that Ce (n, —) = C*®(n, —)[dim n]®det(n) (with C, being Lie algebra homology),
so W/ i"(U (9) = indﬂ(—z//)[— dimn] ® det(n)" (the sign occurs in switching between right and left
actions). So we compute that End 04 /i (g))) is C'(n, Ce(n,U(g) ® —Y) ® 1#).
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This isomorphism is completely determined by a choice of Ad-invariant isomor-
phism g ~ g". Then for w : g — g* — nY, f should be the unique nilpotent
element in ™! ).

The proof is quick using Kazhdan-Kostant filtrations, cf. [44] §1-2, [40] §4, or
Sect. A.1 from the Appendix of the present paper.

Remark 1.3.2 In fact, it is straightforward to show using these methods that the canon-
ical map Z(g) — W/" is an isomorphism; in particular, W/?” is commutative. (This
is also all but proved in [44]).

We encourage the reader to forget this fact as much as possible. The affine 'W-
algebras are not (usually) commutative. There is a more subtle point as well: this
identification is not true derivedly, i.e., there are non-vanishing higher Hochschild
cohomology groups for U (g). (From this perspective, the algebra W/ can be thought
of as a construction of the usual (non-derived) center of U(g) adapted to derived
settings.)

1.3.3 Skryabin’s theorem

One has the following description of the category of modules over W/i",

Let g—modN voc g-mod denote the full subcategory consisting of twisted
Harish-Chandra modules, i.e,. the full subcategory consisting of complexes on whose
cohomologies the operators x — v/ (x) act locally nilpotently for every x € n.°

Theorem 1.3.3 (Skryabin’s theorem) There is a canonical t-exact equivalence of DG

categories g—modN VS WSin_mod fitting into a commutative diagram:

g-mod™-V = Wi _mod

Vect.

Here Oblv denotes the forgetful functor.

The proof is easy: the induced module ind§ (/) € g-mod" ¥ isa compact generator
of this DG category (it generates because N is unipotent), so by general DG category
principles, we have an equivalence:’

Hom _oqvv (ind} (¥), =) : g-mod™¥ =~ End__ .y (ind} () P~mod.

By definition, this functor is w/fin and W/i" was defined as these endomorphisms.
We remark that 7-exactness of the functor follows as g-mod™:¥: =0js generated under
colimits by indj () while W/"—mod is generated under colimits by W/

6 To be clear: this is not the general notion of Harish-Chandra module, but is equivalent in this case because
N is unipotent.

7 The superscript op here indicates that we take the opposite algebra structure, i.e., take right modules over
this DG algebra. (A posteriori, this is irrelevant by commutativity.)
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Remark 1.3.4 In particular, we see that the only role played by the non-degeneracy of
the character v here is to make W/ a classical (i.e., non-DG) associative algebra.
The result remains true in general, as long as we systematically work in the DG setting.
This will not be the case anymore once we pass to the affine setting.

1.3.4 Some references

There are a many good places to learn more about finite W-algebras, and we name
just a few here for the reader’s convenience. However, we note that many authors
are interested in a more subtle generalization taking an arbitrary (i.e., possibly non-
principal) nilpotent element in g as input.

The original source is [44], as noted above, and it contains most of the ideas indicated
above. The general definition may be found in [46], whose appendix by Skryabin
contains the original proof of Theorem 1.3.3.

There are many convenient surveys, e.g. [45,54]. See also [5,17] for treatments that
emphasize the affine point of view as well.

1.4 Affine W-algebras

1.4.1. Here g is replaced by the loop algebra g((¢)):=g ®x k((1)).

More generally, recall that an Ad-invariant bilinear form « defines the affine Kac-
Moody algebrag,, which is a central extension of g((¢)) by the abelian 1-dimensional
Lie algebra k. The form « is called the level. We recall that the Kac-Moody cocycle
vanishes on g[[#]] and n((z)). When we speak of modules for the loop/Kac-Moody
algebras, we agree that they are discrete (or smooth), i.e., every vector is annihilated
by tV g[[¢]] for some N (depending on the vector), and that the generator of the central
k in the Kac-Moody algebra acts by the identity.

Remark 1.4.1 The reader may ignore the level «, reading g, as g((¢)) everywhere, and
not miss out on much fun in this paper. The major downside is that the level plays a
key role in Feigin—Frenkel duality, which is a major source of motivation here.

In the affine theory, the role of n is then replaced by n((¢)), and the character
¥ :n — kis replaced by the (conductor 0) Whittaker character:

n((1)) — n/[n, n]((1) = Bz k(1)) Z ) Bk

where Res is the residue with respect to dr® and Zg is the set of simple roots (alias:
vertices of the Dynkin diagram of G). Abusing notation, we let ¢ : n((t)) — k denote
the corresponding character.

Remark 1.4.2 Affine W-algebras were introduced in mathematical physics by Zamolod-
chikov [55] in the case g = sl3. (The above perspective via Lie algebras and quantum

8 In more general settings relevant for global geometric Langlands, it can be important to remove the choice
of 1-form by incorporating twists. cf. [27] or [48].
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Hamiltonian reduction is found in Feigin—Frenkel [19] and its antecedents, which
include [13,16] and others.) We refer to [14] for further discussion of the role of
‘W-algebras in physics.

Remark 1.4.3 The relevance in local geometric Langlands is that for K = k((¢)), the
loop group’ G(K) plays the role of the p-adic reductive group in usual harmonic
analysis. Then g((z)) is its Lie algebra, and it is not surprising that one accesses the
group through its Lie algebra. In fact, in the Frenkel-Gaitsgory philosophy [22,30],
the DG category of modules g((¢))—mod (or in truth, the Kac-Moody representations
of critical level) is regarded as an important canonical categorified representation of
G (K). The goal of the affine Skryabin theorem below is to explain that its Whittaker
model is closely tied to affine W-algebras.

1.4.2. Below, we use g((t))-mod and g,—mod to denote the DG categories of
modules over the loop and Kac-Moody algebras. These categories are defined in [24],
and there are subtle points that we discuss in Sect. 1.5.6.

However, for now the reader may ignore these points, and we will discuss them in
what follows. It is enough to know that they have z-structures with hearts the relevant
abelian categories of (discrete) modules, and that they are almost-but-not-quite the
derived categories of these abelian categories.

1.4.3. We have not actually defined the affine W-algebra above, and we will not

quite do this below. It is not so easy as in the finite situation because of the use of

topological algebras, which are well-adapted to abelian categories but not so well to

DG categories. Because (semi-infinite) Lie algebra cohomology plays such a key role,

(even in the finite case), one has to be careful balancing abelian and derived categories.

(This is one of the major technical issues settled by the affine Skryabin theorem.)
But still, let us review the major features in what follows.

1.4.4 Semi-infinite cohomology

One has the semi-infinite cohomology functor:
HZ (n((1)), nl[£1], —) : n((r))-mod — Vect.

We refer to Sect. A.1.2 in the appendix for a simple construction via Lie algebra coho-
mology. We simply remark that it can be thought of as mixing Lie algebra cohomology
for n[[¢]] with Lie algebra homology for n((¢))/n[[#]], except that the latter does not
make sense. (Properly, one takes a direct limit over cohomologies for an increasing
sequence of compact open subalgebras).

We obtain the (quantum) Drinfeld-Sokolov functor:

U = H? (n((t)), n[[t]], (=) ® =) : Ge—mod — Vect.

9 The author prefers to denote loop Lie algebras as g((¢)) and loop Lie groups as G(K).
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(Here we recall that there is a forgetful functor g,—mod — n((¢))-mod because the
Kac-Moody cocycle vanishes on n((¢)) € g((¢)).)

1.4.5. The W-algebra at level « comes in two guises: as a vertex algebra W, and as
a topological associative algebra (in the sense of [8]) W4°. We remind that whatever a
vertex algebra structure is, it allows one to construct a topological associative algebra,
and this is the relationship between the two constructions above. The algebra Wi* is
analogous to the completion of the enveloping algebra of g((¢)) defined by the left
ideals generated by ™ g[[¢]] over all N > 0; note that discrete modules for this algebra
are the same as discrete modules for g((z)) as defined before, and there is a similar
relationship here.

The vertex algebra Wy is easier to define: W, = W (V) (= HOW(V,)), where
Ve = indg’[‘[l]](k) € ﬁ,(—modo is the vacuum representation, which we remind is a
vertex algebra with the same abelian category of modules as the Kac-Moody algebra
itself.

Either perspective defines the same abelian category of modules, and we denote it
by W,—mod”. The relationship to the above is that the cohomologies of W (M) for
any M € g,—mod are acted on by the W-algebra (at level «).

Remark 1.4.4 We refer to [18] §15 and [8] §3.8 for more complete discussion on the
constructions. See also Sect. 4.4 below.

1.4.6. We now review the major properties of affine W-algebras for the reader’s
convenience. Note the parallel with Theorem 1.3.1.

Theorem 1.4.5 (1) W, is concentrated in cohomological degree 0, i.e., W, =
HOW(V,).

(2) W, and W carry canonical filtrations whose associated graded are slightly
non-canonically isomorphic to the algebra of functions on the affine Kostant
slices f + 6[[1]] = f + b[[{]I/N(0) = (3//G)(0) and f + b*((1)) =~
f+0b6(1)/N(K) >~ (g//G)(K) respectively.

These isomorphisms are completely determined by a choice of Ad-invariant iso-
morphism g >~ g" and the non-vanishing 1-form dt on the formal disc.

(3) (Feigin—Frenkel duality, [20]) There is a canonical vertex algebra isomorphism:

Wg’,( >~ Wﬁ;?

where the notation indicates the affine W-algebras for g and for the Langlands
dual Lie algebra. The construction of the dual level K is reviewed in Sect. 7.3.
(Note Warning 7.3.1).

Remark 1.4.6 The proofs of the first two results are similar to the finite-dimensional
case up to a subtlety about the convergence of a spectral sequence. See [18] Chapter
15 and [5] for details; the arguments are due originally to [15] (at least in the case
of sl,,). (Below, Sect. 4 provides a slightly non-standard approach to dealing with the
convergence of the spectral sequence.)
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Remark 1.4.7 The vertex algebra W, is filtered as a vertex algebra, and the associated
graded is commutative here, so it makes sense to speak of an algebra structure on it.
Remark 1.4.8 For k = ki critical, i.e., —% times the Killing form for g,
Werir:=Wh,,,;, (resp. W' ) is commutative and coincides with VCGr(ito) (resp. the cen-
ter of the topological enveloping algebra of g.i;). Here the Feigin-Frenkel duality
relates the center with opers for the Langlands dual group.

At other levels, the affine W-algebra is non-commutative (e.g., it contains a copy
of the Virasoro algebra).

Remark 1.4.9 The Feigin—Frenkel duality is highly suggestive in local geometric Lang-
lands. We refer to [22,30] for a discussion of its role in the traditional subject, and
to [33] for a formulation of quantum local geometric Langlands, which is a general
conjectural framework that helps to explain the meaning of the Feigin—Frenkel result.

1.5 Affine Skryabin, group actions, and Whittaker

1.5.1. Frenkel-Gaitsgory proposed a framework for local geometric Langlands based
on the idea of group actions on categories for group indschemes like G (K). Atacertain
point, it became clear that the natural class of categories to be acted on are cocomplete
DG categories.

For derived categories of abelian categories, an appropriate substitute for the general
theory was developed in the appendices to [22]. But this theory is inadequate for the
general local Langlands framework, and Gaitsgory and his collaborators have spent
a number of years and expended a great deal of energy developing the necessary
language and methods here.

His ideas about actions of group indschemes (such as G(K) or N(K)) on DG
categories were developed in detail in [10], and we refer the reader there to learn this
material. In particular, for ¢ € DGCat,,,; acted on (strongly) by G(K) (or the twisted
version of this notion incorporating the level «), one can form the Whittaker category
Whit(C) € DGCat,,y; as invariants (or coinvariants: see Sect. 1.5.4) for N(K) with
respect to the character ¢ : N(K) — G.

Although the definitions in this theory are simple, the idea to take this very infinite-
dimensional (and potentially quite pathological) construction seriously was a quite
nontrivial one. This breakthrough was made by Gaitsgory in his notes [34], where
he showed several quite nontrivial results, including a comparison with an ad hoc
definition with good properties used in [28]. These ideas were further advanced by
Beraldo in [10], who extended Gaitsgory’s results and thereby gave more evidence that
the Whittaker construction is a good one. (The most psychologically difficult points
about this formalism are highlighted below in Sect. 1.5.6).

We comment more on the Whittaker construction in Sect. 1.5.4. For now, we merely
state:

e Basic examples of € acted on by G(K) are D-modules on a suitably nice space
acted on by G(K), or more relevantly for us, g,—mod.

e One can fairly write Whit(C) = @N5)-¥ in such a way that the general formalism
in the finite-dimensional setting would produce g—modN ¥ from Sect. 1.3.3.
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e There are canonical functors Whit(C) — € and € — Whit(C).

However, they do not satisfy any adjunction. This reflects of the infinite-dimensional
nature of N(K), specifically that it is an indscheme but not a scheme. The functor
Whit(€) — € should be regarded as the forgetful functor. The functor ¢ — Whit(C)
can be informally thought of as “AV*I'[[ plus an infinite cohomological shift,” although

neither Avf nor the infinite cohomological shift make sense.

1.5.2.  'We can now formulate the main theorem of this paper:

Theorem (Affine Skryabin theorem, Theorem 5.1.1) There is a canonical equivalence
Whit(g,,—mod) ~ W,—mod such that:

9«—mod — Whit(g,—mod) — W,—mod — Vect

is computed by the Drinfeld-Sokolov functor V.
As a consequence'? of affine Skryabin and Feigin—Frenkel duality, we obtain:

Theorem (Categorical Feigin—Frenkel duality, Theorem 7.3.2) There is a canonical
equivalence of categories:

Whit(§e—mod) ~ Whit(g§;—mod).

At critical level, this identifies Whit(g.,;;—mod) with QCoh(Opg; (D)), i.e., the DG

category of quasi-coherent sheaves on the indscheme of opers for the Langlands dual
group.
Remark 1.5.1 Categorical Feigin—Frenkel duality, especially at the critical level, was
the initial motivation for the present paper. Although it was anticipated for a long time,
it does not seem that there is a more straightforward approach than the one given in
this paper.

Although it may seem quite formal given usual Feigin—Frenkel duality, it allows one
to easily convert results about the Whittaker model from local geometric Langlands to
statements about Kac-Moody algebras. This allows for simpler arguments (and many
extensions) of the Frenkel-Gaitsgory work at critical level.

Remark 1.5.2 Each of the above theorems will come as no surprise to experts in the
area. It has long been known that something like this must be true. For example,
immediately after the relevant definitions were given in [24,34], Gaitsgory explicitly
postulated both results in [33].11.12

10" At this point, we should note that the category W,,—mod has not been properly defined: the issues are
discussed in Sects. 1.5.6 and 1.5.9. For this reason, Theorem 7.3.2 requires somewhat more input than just
Theorem 5.1.1: this is the content of Sect. 6.

11 However, we note that away from the commutative cases, Theorem 5.1.1 could not have been formulated
as an honest conjecture because it was not known how to define the full derived category W,—mod, cf.
Sect. 1.5.9.

12 Perhaps each of the results above should be attributed to Gaitsgory as conjectures. I learned this circle
of ideas as his graduate student, and am not completely sure where the boundary between folklore and his
ideas is on this particular point. In any case, the necessary language to formulate such a result was developed
by him and his collaborators explicitly so that such theorems could be formulated and proved.
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1.5.3 Why was this result not proved sooner?

There are several reasons, discussed in more detail in what follows:

e The Whit notation is a priori ambiguous. (See Sect. 1.5.4).

e Representation theorists have not encountered objects of Whit(g,—mod) before.
(See Sect. 1.5.6).

e In the proof of the classical Skryabin theorem, we compared both sides by
matching Exts (as Axo-algebras) between compact generators. How can we find
compact generators of Whit(g,—mod)? How can we find compact generators of
W,—mod?!3 (See Sect. 1.5.9).

Remark 1.5.3 The difference between the finite and affine Skryabin theorems can be
appreciated by analogy with the following finite-dimensional picture.

The proof of Theorem 1.3.3 given above shows the following more general result.
Suppose H is a (finite-dimensional) algebraic group with Lie algebra fj, and A is an
algebra with an action of H of Harish-Chandra type datumi : h — A (cf. [12] §1.4).
Then H acts on A—mod, and one can show that modules over the BRST reduction
BRST(H, A) (derived H-invariants in the derived h-coinvariants of A) embed fully-
faithfully into A-mod” . To say that the induced functor is an equivalence means
that Harish-Chandra modules for the pair (A, H) are generated by their H-invariant
vectors; in particular, this is automatic for unipotent H.

It is reasonable to expect a similar picture to hold in the infinite-dimensional setup.
However, by [41], representations of a unipotent group indscheme (e.g., G, (K)) may
not be generated by their invariants in any sense. So in the above analogy, N (K) may
be taken to be more analogous to a non-unipotent finite-dimensional group, and we
cannot expect some general such considerations to be sufficient in proving this affine
Skryabin theorem.

The special feature we use in this setup is the adolescent Whittaker construction,
which is briefly discussed in Sect. 1.6 below and in more detail in Sect. 2. Informally,
this construction shows that Whittaker invariants (in the presence of a G (K )-action)
behave like invariants for prounipotent group schemes (not indschemes).

1.5.4 What is the Whittaker category?

The discussion here follows [10,34]. We refer to the latter for details on the definitions
and constructions.

There are two a priori candidates for Whit(C): invariants and coinvariants, denoted
by @GNV and @ N(K),y respectively. The invariants are equipped with a tautological
fully-faithful functor to C, and the coinvariants receive a canonical functor from C.
Each satisfy natural universal properties in the language of group actions on categories.

In the formalism of group actions on categories, invariants and coinvariants coincide
when taken with respect to a group scheme, such as N(O) (or G(O)). Butsince N(K)
is a group indscheme, it is easy to see that there is no such equivalence in general.

13 Here the fact that Wi is a topological algebra and not a discrete one is key. For a usual algebra, A is
a compact generator of A—-mod. For a topological algebra, A does not make sense as an object of A—-mod
(which is not even a clearly defined DG category in all cases, as we discuss below).
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So there is a serious question: do we mean Whittaker invariants or coinvariants?

1.5.5.  There is a canonical functor Cy k) y — CVE)V constructed by Gaitsgory
[34] (it is denoted by ® in [10]). Gaitsgory conjectured that for C acted on by G (K)
(as opposed to merely by N (K)), this functor is an equivalence, meaning that Whit(C)
could be understood unambiguously. This conjecture was shown by Gaitsgory for
G = GL; and by Beraldo for G = GL,,.

The first major result of this paper settles Gaitsgory’s conjecture for general reduc-
tive G:

Theorem (Theorem 2.1.1) For any reductive G and any C acted on by G (K ) (possibly
with level k), Gaitsgory’s functor yields an equivalence Cy k), y >~ eNUY

So we unambiguously have Whit(C), and we have the canonical functors Whit(C) ~
CNK)LY 5 Cand C — GN(K),I// >~ Whit(C).

Remark 1.5.4 This result is obviously of a technical nature, and may not especially
excite the reader more interested in W-algebras than in Whittaker categories. But in
fact, the proof, which uses the adolescent Whittaker construction, is more interesting,
and has significant implications for affine W-algebras. This is discussed further in
what follows (and in Sect. 4).

1.5.6 Where are these Whittaker modules?

Recall that the heart of the ¢-structure on g—modN V¥ consisted of g-modules M €
Vect” such that x — (x) act locally nilpotently for every x € n. Moreover, g-mod™¥
is the derived category of this abelian category.

We might expect to interpret Whit(g,—mod) similarly. However, there are no dis-
crete modules of @, for which x — (x) acts locally nilpotently for every x € n((t)).

1.5.7.  How does this not contradict the affine Skryabin theorem?

The mechanism lies in subtleties of the DG category g,—mod. We use the (renor-
malized) version of this DG category defined in [24]. We refer to the notes [37]
for a more detailed treatment. The point is that g,—mod has a ¢-structure such that
the bounded below derived category gc—mod™ is the bounded below derived (DG)
category of the abelian category F—mod”. However, there are “many”’ objects “in
cohomological degree —00,”1* and in fact, all Whittaker objects (for g nonabelian)
have this property.

So, somewhat remarkably, the affine Skryabin theorem finds all of the representa-
tions of the W-algebra in the “invisible” part of the DG category.

Remark 1.5.5 That Whittaker D-modules lie in cohomological degree —oo should not
come as a surprise, as this happens geometrically as well. Indeed, e.g., the Whittaker
D-module on Gry = N(K)/N(O) is the dualizing D-module twisted by the expo-
nential character. Since Gry is isomorphic to (ind-)infinite-dimensional affine space,
its dualizing D-module unsurprisingly lies in cohomological degree —oo.

14 Formally, this means the object lies in ﬁK—modS_N forall N.
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1.5.8. Let us offer a few more words on how to think about objects of g,—mod. We
are used to thinking of A-modules as abelian groups with an action of A. How should
we think about objects of g,—mod?

The answer is that for M € g,—mod, and for every N > 0, we have the ability to
form:

C*(tVg[[1]], M) € Vect

where this notation indicates the Lie algebra cohomology of N g[[#]] with coefficients
in M. Understanding this properly: that these functors should be continuous in the
variable M and should satisfy certain functoriality properties, one obtains the definition
from [24].

Note that one recovers the vector space underlying M as:

colim c (N gllt1], M).

So the mechanism for non-zero objects to exist in cohomological degree —oo is that
they have non-vanishing Lie algebra cohomologies with respect to some ¥ g[[#]], but
in the direct limit this cohomology dies.

Remark 1.5.6 1t will be helpful in what follows to have formally reviewed one con-
struction of Ge—mod. One takes D (§c—mod®) the (DG) bounded below derived
category, takes the full subcategory generated under cones by the induced modules
indfﬁg[m] (k), and then forms the ind-category of this. According to [24] §23, this has
a t-structure with the anticipated bounded below part.

We mention this definition to highlight the key role played by the family of modules
N g[[#]] in the definition.

1.5.9 Compact generators

A more serious problem is to identify compact generators on both sides. Because N (K)
is a group indscheme (not a group scheme), it is not at all clear that Whit(g,—mod) is
compactly generated.

As far as I know, even the compact generators in W,—mod were not previously
constructed, even though this basic problem about affine W-algebras can be understood
without any categorical formalism. The natural expectation is that there are modules
W e W,—mod® similar to the modules ind?,f (1 k e ﬁ,(—modo. (So forn = 0,
we should have the “vacuum” representation V\%{, and for the Virasoro algebra, the
construction is clear; at critical level, there is a theory of opers with singularities due
to [7] that settles the issue; for higher rank g and n > 0, the construction is not so
clear.)

We refer the interested reader to the beginning of Sect. 4 where the naive expecta-
tions are formulated in detail; this material does not require having read the preceding
parts of the paper except, at a certain point, needing some elementary Lie theoretic
notation from Sect. 2.
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Remark 1.5.7 As in Remark 1.5.6, the modules W¢ actually play an essential role in
defining the DG category W,—mod. That is, W,—mod has a ¢-structure for which
W,—mod™ is the bounded below derived category of W,—mod", but the actual defi-
nition of the full derived category takes the modules W7 as input.

1.6 The adolescent Whittaker construction

1.6.1. Each of the problems above are naturally solved using the adolescent Whit-
taker construction, which shows that the Whittaker category is more highly structured
than was previously known. This construction gives a stratification of the Whittaker
category by simpler pieces. We refer to Sect. 2, most notably Theorem 2.3.1, where
the results and constructions are formulated in detail. Here we give a more tactile
description.

Example 1.6.1 (cf. Corollary 7.3.5) Recall from categorical Feigin—Frenkel dual-
ity that Whit(g.,i;—mod) is equivalent to QCoh(Opé(ZoD)). For n > 0, define
Whit="(g.,i;;—mod) < Whit(g,,;;—mod) to be the full subcategory corresponding
to the subcategory of quasi-coherent sheaves set-theoretically supported on Opé” -

Opé (109), the subscheme of opers with singularity < n (in the sense of [7] §3.8, see
also [22]).

The surprising fact is that the above construction makes sense for every C acted
on by G(K) (possibly with level «). Namely, we define categories Whit="(C) for all
n > 0. These are connected by adjoint functors:

Whit="(€) 2 Whit="*!(€) € DGCat,py.

The direct limit over n (formed in DGCat,ypr) is Whit(C). For n > 0, the induced
functor Whit="(€) — Whit(C) is fully-faithful.
For low values of n, this construction was previously known:
e Forn =0, Whit=0(€) = G(),
e Forn =1, Whit=! (@) is the baby Whittaker category of [1,6]. (This is the reason
for the terminology adolescent.)
Also, for G = T a torus, we have:

e Whit(€) = € (tautologically) and Whit="(€) = CX for K, € T(0) the nth
congruence subgroup.

Remark 1.6.2 For k integral, local geometric Langlands predicts that Whit(C) is a cat-
egory over LocSysé(ﬁ) (see [50] for a discussion of this notion). Motivated by the
case of critical level Kac-Moody representations and the Frenkel-Gaitsgory philoso-
phy, we expect Whit="(€) to be the base-change of Whit(C) along LocSys(Sv;”*] —

LocSysé(ZoD), where LocSysgn_1 is the locus of local systems with slope < n — 1; by
definition, the map LocSys(fv;"_1 — LocSysé(YoD) is formally étale for n # 0, and for

n = 0 we agree LocSys(—f;1 =BG, i.e., the trivial local system.
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This gives a conceptual explanation for the use of the baby Whittaker category in
[1]: they are working with regular singular (alias: slope 0) local systems, so the baby
Whittaker category Whit=! is enough.

Remark 1.6.3 In the classical framework of p-adic groups, a similar construction was
given by Rodier [53] (although his normalizations meaningfully differ for rank(G) >
1).

1.6.2. In general, Whit="(C) is defined as invariants with respect to a compact open
subgroup of G(K). Since the functors Whit="(€) — Whit(C) admit continuous right
adjoints, this means in practice that Whit(C) is as good as invariants with respect to a
group scheme. E.g., these functors preserve compact objects, So compact generation
with respect to congruence subgroups implies it for the Whittaker category. This is true
for € = D(X) for G(K) acting on X a reasonable indscheme, or for € = g,—mod.

Since the functor ¥ : Whit(g,—mod) — W,—mod is supposed to preserve com-
pacts (being an equivalence), we obtain candidates for the modules W¢. This idea
turns out to be fruitful, and is pursued in Sect. 4.

As an another instance of the above idea, the comparison Theorem 2.1.1 between
invariants and coinvariants falls out immediately from the adolescent formalism, as
does Gaitsgory’s functor between them.

Example 1.6.4 For instance, replacing G by G x G, we find that the DG category of
D-modules on G(K) with both left and right Whittaker equivariance is compactly
generated. Local geometric Langlands predicts that at integral level, this category
is equivalent to QCoh(LocSys (D). The corresponding compact generation on the
spectral side was obtained in [50].

1.6.3 Key construction: t-structures on Whittaker categories

In the proof of Theorem 5.1.1, we use a general construction of ¢-structures on Whit-
taker categories, which we highlight here because it may be of interest outside of the
theory of W-algebras.

The point is that (up to shift) the canonical functors Whit="(C) — Whit="*1(€) are
t-exact essentially whenever € has a ¢-structure compatible with the action of G(K).
Roughly, this is because by Theorem 2.3.1, this functor may be realized either as the
top possible cohomology of a x-averaging functor, or the bottom possible cohomology
of a !-averaging functor, and therefore is exact.!’

Ultimately, this is what allows us to prove Theorem 5.1.1: being topological alge-
bras, W-algebras are of abelian categorical nature (as remarked above), and we analyze
Whit(g,—mod) with abelian categories via this ¢-structure.

1.6.4. In particular, if D(X) is a reasonable indscheme with X acted on by G(K),
then Whit(D (X)) has a canonical ¢-structure.

15N aively, the argument here is standard: see e.g. [6]. We refer to “Appendix B” for a discussion of technical
points.
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For instance, in the setting of Example 1.6.4, one finds that the category of bi-
Whittaker equivariant D-modules on G (K) has a canonical t-structure. !0

Therefore, we should anticipate there being a canonical ¢-structure on
QCoh(LocSys (D)). Can it be constructed independently of local geometric Lang-
lands? This would generalize the perverse coherent z-structure on the nilpotent cone
constructed in Bezrukavnikov [11], but to a much more complicated setting.

Remark 1.6.5 More generally, QCoh(LocSysé(f))) can be regarded as the x — oo

limit of the categories Tj,(—modG(K)’w of Harish-Chandra bimodules for the Kac-
Moody algebra. The (conjectural) perverse coherent 7-structure on QCoh(LocSys 5 (D))
should deform in this setting. Indeed, local geometric Langlands (in the quantum set-
ting) continues to predict that Harish-Chandra bimodules should be equivalent to
bi-Whittaker D-modules at an appropriate level.

1.6.5 Summary

The above story may be summarized as follows: the adolescent Whittaker method from
Sect. 2, which arises from the geometry of loop groups and “pure”!” local geometric
Langlands, can be imported to the setting of affine W-algebras to illuminate the subject
and solve some basic problems.

But we may have reversed the logic in this presentation. The existence of the
modules W} € W,—mod® was readily anticipated by anyone who considered the
issue. Moreover, the affine Skryabin theorem predicts the existence of the z-structure
on Whit(g,—mod). The theory of opers with singularities (cf. Example 1.6.1) was long
known. So perhaps our knowledge of affine W-algebras should rather have anticipated
the adolescent Whittaker theory.

1.7 Structure of the paper

We now outline the contents of the paper, trying to highlight what parts may be of
interest to different types of readers.

The adolescent Whittaker theory is developed in Sect. 2. A semi-classical version of
the theory is given in Sect. 3. This material, plus the analogue for D-module categories
of the ¢-structure construction from Sect. 5, is the new material on local geometric
Langlands from this paper that does not mention W-algebras.

In Sect. 4, we solve the problem from Sect. 1.5.9 of finding generating modules for
affine W-algebras. The construction uses ideas from Sect. 2, but another construction
using more classical ideas is given in Sect. 6. These two sections do not use any
categorical machinery; rather, they formulate and solve problems purely about affine
‘Wh-algebras.

16 The proof of the affine Skryabin theorem can be modified to identify the corresponding abelian category
with (classical) chiral modules over the chiral algebra (W X W) (C D Oy ), where C D O is the level « chiral
differential operators, as constructed e.g. in [2].

17 That is, that part that explicitly ties to the traditional arithmetic Langlands program, so e.g. does not
mention Kac-Moody algebras.
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The affine Skryabin theorem is proved in Sect. 5. This combines the categorical
methods with Kac-Moody algebras.

Finally, some applications, such as the categorical Feigin—Frenkel theorem, are
given in Sect. 7. We discuss exactness properties of the Drinfeld-Sokolov functor
here.

There are two appendices. “Appendix A” gives background material on homological
algebra for Tate Lie algebras. It includes supporting material on semi-infinite coho-
mology and its calculation. All the material there is standard, but perhaps it warranted
an updated exposition. “Appendix B” is about 7-exactness of !-averaging functors,
which as indicated above, plays a key role.

1.8 Notation and conventions

1.8.1. We assume the reader is familiar with the theory of D-modules in infinite
type and group actions on (cocomplete DG) categories. We refer to [10,49] for these
subjects. For a group H acting on €, we let C# denote the strong invariants, G-¥
denote the weak invariants, and €*>¥ denote the invariants twisted by the exponential
D-module along a character v : H — G, (cf. [10] §2.5.4).

We use homotopical algebra methods freely, although this is inessential at some
points. Our default categorical language is the co-categorical language of Lurie. So
category means (0o, 1)-category, and the rest of the categorical notions (notably limits
and colimits) are understood correspondingly.

We use ® to denote the natural symmetric monoidal operation on DGCat,p; .

1.8.2 Kac-Moody groups

We let:
1= Zky — G(K) — G(K) — 1

denote the Kac-Moody extension. Some explanation is in order.

Here Z g j is a certain (finite-dimensional) torus, which is G, for G a simple group.
Precisely, it suffices to define its character lattice; it will be a certain sublattice of the
k-vector space of levels, i.e., Ad-invariant symmetric bilinear forms on g.

Recall that g = 34 @ [g, g] where 34 is the center. Moreover, recall that [g, g] is
canonically a direct sum of simple Lie algebras g; (its minimal normal subalgebras).
For any level k, the spaces 34 and g; are pairwise orthogonal. We then take the lattice
of levels such that k|5, is even, i.e., the pairing of any two coweights of G/[G, G]
is an even integer, and «|g; is an integral multiple of the Killing form. Clearly such
levels k-span the space of all levels.

For any level of the above type, we obtain a central extension of G(K) by G,,
whose Lie algebra is the Kac-Moody extension g, of g((¢)). Indeed, the adjoint group
G is canonically a product of groups G;, so we obtain G — G/[G, G] x [1; Gis
our extension of G(K) is the Baer sum of the extensions of G/[G, G](K) defined
by the Contou-Carrére symbol and the extensions of G;(K) defined by the usual
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determinant line method. This is additive in the level, so it is equivalent to say that there
is an extension G/(K\) of G(K) by Zgy whose pushout by a character Zgy — Gy,
(equivalently, a level of the specified type) is the one we just explained.
1.8.3. For any level k, there is a canonical multiplicative D-module on Zk j; whose
underlying O-module is multiplicatively trivialized. E.g., if Zgy = Gy, this is the
D-module “z*” for A the given scalar. We let D, (G (K)) denote the corresponding
category of twisted D-modules: by definition, this is the category of D-modules on
E(—I?) that are Z g js-equivariant against our multiplicative character. This DG category
is equipped with a convolution monoidal structure.

As in [10], this allows us to speak about DG categories acted on at level « (for a
general level k).

2 Compact approximation to the Whittaker model
2.1 Invariants and coinvariants

In this section, we will prove the following theorem:

Theorem 2.1.1 For every C acted on by G (K) at level k, there is an equivalence:
Cyy — VMY

functorial in C.

Remark 2.1.2 The functor'® realizing this equivalence was constructed by Gaitsgory
in [34], and conjectured to be an equivalence. This theorem was proved in loc. cit. for
rank 1 groups, and in [10] for G = GL,,.

Remark 2.1.3 From the onset, we draw the reader’s attention to Theorem 2.3.1, which
is the essential tool in proving Theorem 2.1.1, and which plays a key role throughout
this paper.

18 This functor admits a very simple description in the language [49] of D-modules on infinite type
(ind)schemes. First, note that convolution by any (N (K), ¥)-biequivariant D-module on G (K) induces a
functor Cn (g),y — @N(K).¥ Then we should take the convolution with the renormalized pushforward
from N(K) to G(K) of the character sheaf. We remind that the word renormalized indicates something
specific to the infinite type setup, and in particular that it indicates that we have chosen trivializations of
dimension torsors.

In particular, we see that this functor makes sense for any category acted on by N (K), i.e., the G(K) action
is not necessary. However, we remind that a peculiarity of the infinite type framework is that if we took
€ = Vect - ¢ (i.e., the N(K) action on Vect corresponding to the character ), then this functor is zero,
even though Cp (k) y = eNK).Y = Vect (the identification being realized here by a different functor).
In any case, the explicit description of the functor will be immediate from the proof given below, and we
do not particularly emphasize it.
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2.2 The adolescent Whittaker constructions

2.2.1. The main tool for proving Theorem 2.1.1 is the following sequence of sub-
groups of G(K).

Definition 2.2.1 For n > 0, we let /,, denote the subgroup Ad_,, 51 (G(O) XG(0/m)
N(O/th)).

In other words, we take elements of G(O) that lie in N modulo #", and conjugate
this subgroup in a way that enlarges congruence subgroups of N (K), fixes T (K), and
shrinks congruence subgroups of N~ (K).

Example 2.2.2 Forn = 0, Io =G(0)."Forn =1, Iyis con]ugated by ¢(¢) from the
radical of Twahori. While 7 ,» neither contains nor is contained in I n+1, these groups
limit to N (K).

Notation 2.2.3 Motivated by the limiting behavior above, we add N (K) to this family
of subgroups by setting /,, = N(K) for n = co.

Example 2.2.4 For G = GLy and 0 < n < 00, I n 1s the subgroup of matrices:

1+ t"a t7"b
e 1+1"d

fora, b, c,d € O. Similarly, for G = G L3, we obtain the subgroup of matrices:

l+1"a 7'  t ¢
"d  1+t"e 7"f
g *"h 141"

Example 2.2.5 For G = T a torus, I, is the nth congruence subgroup.

Remark 2.2.6 (Triangular decomposition) We will repeatedly use the following fact
without mention. For all n > 0, note that /,, admits a triangular decomposition:

in=U,NN"(K)) x (I, N T(K)) x (I, N N(K))

with the isomorphism induced by the multiplication map. The same is true if we reverse
the order of the factors.

Remark 2.2.7 (Splitting the Kac-Moody extension) Note that G/(K\) — G(K) is
canonically split over G(O). By transport of structure, it is canonically split over
Ad_, 51 (G(0)) as well, and in particular, over [,,.

19 This is the only case where I, is not prounipotent. So for many problems, a claim about all Inis proved
by treating the n = 0 case separately, where the claim may be degenerate anyway. Despite this clumsiness,
it seems to be most natural to include the n = 0 case on equal footing wherever possible.
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Varying n, these splittings coincide on all intersections I, 0 I, Indeed, we may
safely assume one of n and m is non-zero, in which case this intersection is prounipo-
tent. But the splittings differ by a homomorphism 1, N i, — G,,, which must be
trivial by prounipotence.

Therefore, D, (Io n) D(Ia ») as monoidal categories, and as n varies these equiva-
lences are compatible with restriction to intersections between the subgroups I

2.2.2. One has the following straightforward construction of characters of the I

Lemma 2.2.8 For every n, there is a unique homomorphism wlon . [, — G, annihi-
lating B~ (0) N I, and, with 1/f1°n |N(K)ﬂin = w'inﬂN(K)' For a pair of integers n, m,

the corresponding characters coincide on the intersection [nn i,

Notation 2.2.9 To encourage the reader to think of the characters y/; and ¥ as all
being “the same,” we denote them all by v when there is no risk of confusion.

Example 2.2.10 Since the n = 0 case can be the most confusing: the character is trivial
in this case.

2.23. In the remainder of this section, ¢ € DGCat,,,; is equipped with a G(K)
action of level «.

Definition 2.2.11 For 0 < n < oo, we define the nth adolescent Whittaker category
.20
as:

Whit=" (@) := eln V.

Remark 2.2.12 For n > 0, Whit="(C) is a subcategory of € since /, is prounipotent
if n < oo and ind-prounipotent if n = oo.

Remark 2.2.13 In line with Example 2.2.2, Whit="(€) = C¢(O) is the spherical cate-
gory, Whit=! (@) is2! the baby Whittaker category of [1], and in the limit as n — oo,
we have Whit=>(€) = CNK).¥ the (grown-up) Whittaker category.

2.2.4 How are the categories Whit=" related as we vary n?

Since the 1, groups are not contained one in another, we can naturally relate these
categories via averaging. In Theorem 2.3.1, we will find particularly nice behavior of
these averaging functors in this setting.

2.2.5 Forn <m < oo, we have a functor:

bms - Whit™" (€) — Whit="(€)

20 Note that this category makes sense because of Remark 2.2.7.

21 At least if the center of G is connected, so that 11 is actually conjugate to the radical of Iwahori by an
element of G(K) (and not merely G (K)), but the reader is advised to ignore this point.
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given as the composition:
, . v,
elns‘// Ob]V) elnﬂlm,w AV*) elmﬂb
and for all n < m we have a functor:
tyn © Whit="(€) — Whit="(C)

given as the composition:
, .. v
elny O oluniny AV olyy

Notation 2.2.14 We use the following convention systematically: for m = oo, we
suppress m from the notation. So we use the notation ¢/, instead of L,!L 0"

Remark 2.2.15 We remind that x-averaging only makes sense for group schemes, not
group indschemes, SO t; « = (5, 00,+ does not make sense. (Here makes sense means
that while there is a non-continuous right adjoint for formal reasons, this functor is
pathological.)

Remark 2.2.16 These functors compose well: e.g., for £ < n < m < oo, we have
Ln,m,x O U n,x = Lo, m, -

!

Remark 2.2.17 There is no a priori adjunction between the functors ¢, ,, . and yms

since Oblyv is a left adjoint while Avf is aright adjoint. Rather, their relationship, in the

terminology of [35], is that these functors are dual to one other (when C is dualizable).

Warning 2.2.18 Neither of the constructions ¢, ;,, « or L;L . 1s compatible with forgetful
functors to C. We advise to mostly forget about the forgetful functors to € and to
remember these functors instead.

2.3 Formulation of the main result
Let A:=2(p, p) € Z=. Note that:??
nA = dim(Ad_, ;) N(O)/N(0)).

The main result of this section is the following.

Theorem 2.3.1 (1) Foralln < m < oo, the functor Lil’m admits a left adjoint v, ).
(2) Forall0 <n <m < 09, ty m, is fully-faithful.

22 Just for fun, we remark that A can also be calculated as > (‘;’), where the d; are the exponents of

the semisimple Lie algebra [g, g].
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) If m # oo, there is a canonical isomorphism:
lnm,) = ‘n,m,*[z(m —n)Al.

These isomorphisms are compatible with compositions, e.g. the induced isomor-
phisms between 1y s« © lgnx = Lomx ANd Ly, O Lgpt = Lo, canonically
coincide.

Remark 2.3.2 The method below is also used in a finite-dimensional situation in [6],
so we consider this an affine analogue of the first part of their Theorem 1.5 (1).

Remark 2.3.3 The functor ¢, is tautologically computed by forgetting down to

@In"m¥ and then !-averaging to @7V : the claim in this theorem is that the !-averaging
is actually defined.

Remark 2.3.4 In the n = 0 and m = oo case this result says that we can !-average
spherical objects to obtain Whittaker equivariant objects. This is an old observation
that has been known for as long as the words have made sense. (Actually, the I, groups
were found by reverse engineering while trying to generalize that argument along the
lines of the proof of Theorem 2.3.1 (1) given below in the m = oo case).

Remark 2.3.5 A quite similar pattern appeared long ago in the p-adic setting in [53],
though with a (mildly) different series of subgroups in place of the 7,,.

Remark 2.3.6 (Relationship to the work of Beraldo—Gaitsgory) In the case G = GL,
(resp. G = G L»), these results all follow from [10] (resp. [34]). Indeed, in loc. cit., the
authors construct closed subgroups23 H, C I, (specific to GL,) such that the maps:

H,/H,NHy — [,/I,N1I,

are isomorphisms for all m > n. Moreover, using Fourier techniques reminiscent of the
mirabolic theory, Beraldo shows that x-averaging C»+1.¥ — @H»V is an equivalence
for all € as above, with inverse given by the appropriately shifted x-averaging functor.
These facts are easily seen to imply Theorem 2.3.1 in this case.

The methods for a general reductive group are (by necessity) quite different.

(We also remark that for the application to W-algebras, it is essential to work with
compact open subgroups of G(K).)

2.4 Application to co/invariants

Next, we we will deduce Theorem 2.1.1 from Theorem 2.3.1. We begin by making
precise the sense in which the adolescent Whittaker constructions limit to the usual
Whittaker construction.

23 For example, for G L, one has:

[ (1+1"at™"b
Hn—{( o 1>\a,b60].

In the general case, H, is the intersection of I n With the mirabolic subgroup.
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Let C be as always. For all 0 < n < m < oo, observe that the diagrams:

eNENDy OOV eN(K)INT Wy

\LAV*I// lAvf
1

Clm¥ = Whit=" (€) "> Whit="(€) = €/V

and:
Cln¥ = Whit="(€) 2% Whit="(€) = Cln¥
lOblv \LOblv 241
eNKINLLY AvY N KN,y
commute.

Lemma 2.4.1 The induced functors in DGCat;pp; -

NV .= fim eNENY  fim Whit="(€)
n,0Oblv n,i!

n,m

colim Whit="(€) — colirllr,1 NNV —Cr k) y
nylp,m,* n,AV*

are equivalences.

Proof First, we treat the coinvariants statement.
Suppose I'; € G(K) is a cofiltered sequence of prounipotent group subschemes
and let I"'oo:= N; T";. Note that:

G(K)/To =1limG(K)/T;.

Then we claim that:

colime" = er
1

where the structure maps in the colimit are forgetful functors. Indeed, this follows
because the D-module ér € D(G(K)) is the colimit of the dr;, and convolution with
these 6 D-modules give the appropriate (colocalizing) averaging functors.

Now for co > m > n > 0, define Ion,m as (I°m NB~(K)) - (I°n N N(K)). Note that
Ion’m is a group scheme, Io,,,m D) Io,,,m_H, and ﬂmin =N(K)N I,,

Moreover, for a pair (m’, n’) € Z7° x Z>° with m’ > n’, m, the functor:

AV NN NN,y
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takes the subcategory C/»m-¥ into @!w.m ¥ Therefore, we have:

colim CNEINY — colim Clnm ¥ = colim @In ¥
n Avf mzn n

as desired.
The version for invariants follows formally from the coinvariants version:

GN(K)J// = Hoka(G(K))—mod(D/((G(K))N(K),w, )
= Homp, (G(k))-mod(colim D (G(K))'"V. ©)
= Homp, (G(k))-mod (co}lim De(G(K))j - ©)

= lim Homp, (G(k))-mod (D (G(K)); . €) = lim €V

O

Proof that Theorem 2.3.1 implies Theorem 2.1.1 By Lemma 2.4.1, Cy(x),y is the col-
imit in DGCat,,y, of the Whit="(€) with the functors tn.m % as structural functors.
Intertwining via the autoequivalences:

Whit="(C) = Whit="(C)
F s F[2nA]

we see that Cy k), y is also equivalent to the colimit where instead we use the structural
functors:

Thm.2.7.1(3)
tm,x[2(m — n)A] =

tn,m,-

Now this is a colimit in DGCat,,,; under left adjoints, so it is equivalent to the limit
under the right adjoints L!n’ - Applying Lemma 2.4.1 again gives this limit as €V K.¥
as desired. O

We record the following consequence of the argument.

Corollary 2.4.2 The equivalent categories ¥ K-V qnd @ N(K),y are obtained from the
categories Whit="(C) by either taking the colimit under the functors v, .1, or the limit
under their right adjoints L!n’ m

Remark 2.4.3 For the sake of clarity: note that we did not use Theorem 2.3.1 (2) in
this deduction. But this result will be used in proving the other parts of the theorem.

2.5 Notation

In the remainder of this section, we prove Theorem 2.3.1.
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To keep the notation from becoming too overburdened: for a subgroup H C G(K),
we use the notation H" for Ad_, 5, (H). For example, N(0)" = N(K) N I,

We also use the notation Whit(@) to indicate Whittaker invariants NV =
Whit=>(C).

2.6 Proof of Theorem 2.3.1 (1) form = oo
2.6.1. We begin by showing that objects of Whit="(€) can be !-averaged to Whit(C).

2.6.2. We begin by giving the argument in the geometric setting, where it is easier
to understand, and later will explain how to adapt to the categorical setup. So suppose
€ = D(X) for X a suitably nice (e.g., ind-finite type) indscheme acted on by G(K),
ignoring the irrelevant level for the time being.?* ~

For F € Whit="(D(X)), we want to show that act,(yyXF) is defined, where:2

o

- N(0)
yXF e DIN(K) x  X)

is the descent of y» X F using equivariance of F and act denotes the action map

N(O)"
N(K) x X —> X.
So first we should compactify the map act. Note that:

n n

N(0) _ , GO
N(K) x X=NK),xX=NKGO" x X

since G(0)" N N(K) = N(K)N I, = N(O)".

Then define N (K)G(0)" as the pullback to G (K) of the closure of the N (K) orbit
through 1 in G(K)/G(O)". Since the latter is isomorphic to the affine Grassmannian,
so is ind-proper, N(K)G(0)"*/G(O)" is ind-proper as well. Therefore, the map:

n

I — ()]
act: N(K)G(O)" x X —> X

is ind-proper as well.?

Let j denote the open embedding:

n G(O)" )n

N(O) 0 G
N(K) x X =NK)GO)" x X< NEK)GO)" x X.

Then it remains to verify the cleanness result:

WWRF) S o ar(WEF).

24 If we were not forgetting the level, we would equip X with a Zg 37-torsor P with an action of G/(K\)

extending the given action of the central Zg yy.
n

25 Here N(K) x X is the standard notation for the quotient of N(K) x X by the diagonal action of
N (O)" acting on the right on N (K) and “on the left” on X.

26 The notation is potentially confusing: act is just induced by the usual action map G(K) x X — X.
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In particular, the left hand side is defined.

To this end, we begin with a lemma, where we reintroduce the level « for clarity in
the generalization.

Let K, € G(O) denote the nth congruence subgroup, so K, = Ad_,, ;) (KC,) by
our convention.

Lemma 2.6.1 (1) Whit(D,(N(K)G(0)"/K!)) = Whit(D(N(K)G(O)"/K})).
(2) The functor j is defined on objects I € Whit(D,(N(K)G(0)"/K?)), and the
natural morphism ji(F) — jyxar(F) is an isomorphism.

Proof We begln with (1). Recall that N (K )G (O)" is stratified by the locally closed
strata N (K)A(t)G(O)” for i € —Apros?l Therefore it suffices to show that
Whit(D, (N(K)k(t)G(O)”/ICZ)) =0forall 0 # x e —APos,

Using:

NGO /K = AONKIGO) [Kn = MONK) % G(O)" /K
we obtain:
Whit(D, (N (K)A(1)G(0)" /K™)) = D(G(0)" KIyN (O v

where wi::w oAd; " (We forget k because we are dealing with a conjugate of G(O)
now.)

As K € G(0) is normal, it acts trivially on G(0)" /K. Because N(O) < K7,
we see that the N (O) action on G(0)" /K7 is trivial. Therefore, it suffices to see that
¢A|N(0) is non-trivial for 0 # x e —APos,

This is standard: y*(exp (1" ¢;)) = Y (exp(r™t*e)e;) whichis 1if m + (X, o) =
—1. So it suffices to show that (k a;) < 0 for some i € I (then take m = —1 —
(k a;) > 0). Since (A p) < 0 by assumption on X, this is clear.

We now show (2).28 We show that for & € Whit(D, (N (K)G(0)"/K™), jx.ar(F)
satisfies the defining property of j(F).

Leti : Z — N(K)G(0)" /K" be the (reduced) complement to N(K)G(0)" /K"
We need to show that for any § € D, (Z), every morphism j. 4r(F) — ixqar(9) is

zero. Any such morphism lifts canonically to lim,, AViV(O)m’w

to show that this limit vanishes.?”

Let § € N(K)G(0)"/K}; be a closed, finite type subscheme. The above claim
N,y

i+.dr(9), so it suffices

i+.dr(G) restricts to S as zero. In fact, we
N, .
l*,dR(S)

is equivalent to showing lim,, Av,

claim that there is an integer m depending only on S such that Av,
restricts to S as zero.

27 Here APS C A is the subset of positive coroots, i.e., the ZZ-span of {¢; liezg-
28 We thank Dennis Gaitsgory for pointing out that there is something non-obvious still to show.

29 This would be obvious in the finite-dimensional setting, but because of the inverse limit, it is not
completely formal that the restriction of this object to the open cell is zero.
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For this, let $ = § N N(K)G(0)"/Ky and let Sz = S N Z. The restriction of

Aviv(o)m’w i+.dr(9) to 3 is zero for any m by base-change. Then for m large enough,
N (O)™ clearly contains the stabilizers in N (K) of points of S. By our analysis from (1),
our character is non-trivial on each of these stabilizers, so any (N (O)™, v)-equivariant
object restricts to 0 on S for m large enough; this gives our claim. O

Remark 2.6.2 More generally, this argument shows that any D-module on
N(K)G(O)" x X satisfying Whittaker equivariance for the left action on the first fac-
tor and K} -equivariance for the right action on the first factor is cleanly extended from
N(K)G(0)" x X. Note that the action of G(K) on X is not used here. (In the categori-
cal setting, one should instead note that for any C € DGCat,,,; considered with a trivial
G (K)-action, Whit(D,(N(K)G(0)"/K}) ® €) = Whit(D,(N(K)G(O)'/K!) ®
©).)

Therefore, it suffices to see that the pullback of 1//@3" to N(K)G(O)" x X is

Whittaker equivariant for the action of N (K') on the first factor, and K -equivariant for
N(O)"
the right action on the first factor. Note thatthe map N (K)G(0)"x X — N(K) x X

is given by the formula (g1 - g2, x) — (g1, g2 - x), so the first claim is obvious.

For the second claim, note that it suffices to check equivariance after further pullback
to N(K) x G(O)"* x X. Indeed, this follows as the project N(K) x G(0O)" —
N(K)G(O)" is a torsor for a prounipotent group, so pullback is fully-faithful. Our

N(O)
mapto N(K) X X thenliftsto N(K)x X.Now observe that ¢ XJF is K] -equivariant
for the action of K} on the X-factor, since K]} < i nand ¥; | K is trivial. Moreover,
the map:

(81,82,X)>(g1,82-x)
_—

N(K) x G(O)" x X N(K) x X — N(K) x X/K"

descends to a map from N (K) x G(0)"/K}; x X, by normality of )} € G(O)". This
gives the claim, completing the argument.

2.6.3. We now indicate what changes should be made in the general categorical

setting. So let C be acted on by G(K) at level k.
We have a coaction functor:

C— DINK)®C

(obtained from the coaction functor ¢ — D, (G (K))® € encoding the action of G (K)
by !-restriction along N(K) < G(K)). This induces a functor:

| . <n In N0y
act’ : WhitY"(€@) = C¢'»Y - D(N(K)) ® €

where the superscript N(O)" indicates we take invariants for the diagonal action
mixing the action on € with the right action on D(N (K)).

N(O)
Similarly, we have act, 4z : D(N(K)) ® € — Whit="(C).
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As before, we need to show that the left adjoint act; to act' is defined on wﬁﬁ" for
every F € Whit="(C). Again, it suffices to show the corresponding clean extension
property for:3°

- N(O)"
YXF e DIN(K)) ® €= D(NK)G(O)")

G(O)'  JxdR PE—(
® € C D.(NKYG(O)) ® C.

From here, the argument proceeds as explained in the geometric setting.

2.7 An auxiliary lemma

We will need the following lemma before proceeding.>!
Lemma 2.7.1 Suppose n > 0. Then for g € N(K), we have:
Yilinadg i, = Vi, © Mg i nag, 1,
ifand only if g € N(K) N I,
In other words, if g € N(K) but ¢ 1, there exists h € 1, N Adg I, with w;n (h) #
v (g ~The).

We will deduce this result in turn from the following lemma. Here it is convenient
to use the notation I € G(O) for the Iwahori subgroup I = G(0O) xg B (which
should not be confused with the groups 1,,).

Lemma 2.7.2 Suppose % € AT is a dominant coweight. Then the intersection:
N(K)NIL(1)G(O)

is non-empty if and only if % = 0. In this case, the intersection is exactly N(O).

Proof Let Iy = N(O) =1INN(K)andlet - = 1N B (K),ie., T times the first
congruence subgroup in B~ (0). Recall that [ has a triangular decomposition 7 x I_.
In particular, we see that our intersection is non-empty if and only if the intersection
of N(K) with I_x(t)G(O) is.

30 Because the Kac-Moody cocycle is non-trivial on n((r)) x Ad_n/;(,) gll]], there is risk of thinking

that we should be including « in the middle term here. But in fact, the Z g ps-torsor G/(K\) — G(K) is
canonically N(K) x G(O)"-equivariantly trivial over this locus, essentially because the determinant line
bundle is canonically trivial over Gry < Grg. So there is no risk of making a mistake here.

31 This result is essentially [53] Lemma 4, except that he works with a slightly different series of subgroups
(but with similar enough properties that the same arguments should work uniformly for both). Unfortunately,
the argument there is not correct: it relies on Lemma 13 from loc. cit., which in particular says that every
element of f + N gl[z]] can be conjugated into a Borel; this is not true since we can approximate f by

0 2N+1
elliptic elements in the Kostant slice (e.g. G = G L, and take 1 o >

We remark that the argument given here immediately adapts to the mixed characteristic setting of loc. cit.
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Then dominance of)v»(t) implies Ad I_C1_,ie., I_X(t) - i(t)I_. Therefore,

we have:

—i()

1_3()G(0) C A()I_G(0) = 1L(1)G(O).

But by the Iwasawa decomposition, )VL(I)G(O) can only intersect N (K) for 1 = 0.
O

Proof of Lemma 2.7.1 By the Cartan decomposition, g is in the** (1", G(0)")-double
coset A(t) for some A € A. We write:

g=viry, v €l", y2eGO).

Our assumption on g is equivalent to saying Ad, ;) (g) ¢ N(O), so by Lemma
2.7.2 X is not dominant. Choose a simple root «; with (i, ;) < 0.

Now take h:=Ad,, exp(et—[) (the exponential being taken in N (K), where it has the
evident meaning). We claim this £ satisfies the desired conclusions.

First, because y; € 1", we have h € I, with ¢ i, (h) # 0. Therefore, it suffices to
show that Ad,-1(h) € I, with ¥ (Ad,-1(h)) = 0.

To see this, we compute:

Ad,-1(h) = Adyz—l Ad

e N
) exp(TI) = Adyz_l exp(t (ha) l@i)-

Then exp(t_(}v"“i)_lei) € N(O) € N(K), and so this element lies in the nth congru-
ence subgroup X! of G(O)". Therefore, the same is true of Ad Yl giving:

Adg-1(h) € Ky S Ker(y; ) € Iy

as desired. O

2.8 Proof of Theorem 2.3.1 (2) form = oo

Next, we discuss the fully-faithfulness of ¢, ;. Throughout this section, n > 0 (as this
was an obviously necessary hypothesis).

Proof of Theorem 2.3.1 (2) for m = oo

Step 1. First, note that ¢, must be given by convolution with a kernel K, €

D (G(K))NEK).¥).(In.=¥) 'where the notation indicates that the kernel is (N (K), ¥)-
equivariant for the left action. and (I, —1r)-equivariant for the right action.

Indeed, consider the D, (G(K)) as a D_, (G(K))-module?3 category via the right
action, so that this action commutes with the D, (G (K))-module structure. With invari-
ants understood with respect to the left action, we have the functor:

32 We are using the notation from Sect. 2.5 here.

33 Since we are exclusively working with D-modules in this section and not quasi-coherent sheaves, there
is no need to incorporate any critical twist here.
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byt De(GK) ™Y = D(G(R)NE

which is a morphism of D_, (G (K))-module categories for formal reasons>* Since the
(I, ¥)-invariants coincide with coinvariants, universal properties produce an object:

K, € De(G(K))NE¥)Un.=9)
~ Homp, (6 (k)-mod (Dx (G(K ) "Y', D (G (K)N V)

corresponding to ¢y .
It is tautological that for € = D, (G(K)), ¢, is given by convolution by X,,. For
general C, this follows formally by functoriality, since:

oyt €V = DUGE)Y Y @ € DUGEYNEW g @ eNEM,
D (G(K)) Dy (G(K))

Step 2. We are trying to show that the unit map id — LLL,,J is an equivalence. Let
us rewrite this goal in terms of kernels.

A g
Note that ), is given as the composition: Whit(C) = N K)-¥ OOy o AV olny —
Whit="(@).> In other words, L,!1 is given by convolution with 8115/ € D¢ (G(K)), where

this notation indicates the de Rham pushforward of the character sheaf on /.
Therefore, it suffices to show that 8}0 — 51# *XK, =1 nln, v(S ) is an equivalence.
Step 3. Next, we observe that K, can be readlly calculated:
Namely, it suffices to calculate ¢, applied to 8}/; (this is the de Rham pushforward

of the character sheaf on ,). This object is obtained by !-averaging, so is obtained
by !-extending 81// %1, the (pullback of the) exponential D-module from N (K )i, .30
Note that by Lemma 2.6. 1, this extension is clean, i.e., the !-extension coincides with
the x-extension.

Step 4. By the cleanness noted above, the convolution we are trying to compute is
the renormalized D-module pushforward of 8‘” X 81'5( i along the multiplication
map:

In x N(K)I, — G(K).
We claim that this D-module is supported on i n, 1.€., is obtained by de Rham

pushforward of some D-module on this subscheme. In this step, we will show this for
k = 0, and in the next step, we will show it for general «.

34 Namely, the proof of Theorem 2.3.1 (1) (m = o0) shows that ¢, ; upgrades to a natural transforma-
tion between the functors Whit=", Whit : D, (G(K))—-mod — DGCatcey; considered as morphisms of
DGCatp -enriched categories. Then use the fact that D_, (G (K)) acts on Dy (G(K)) € Dy (G(K))—mod.
35 We are using the hypothesis that n > 0 here, so that Inis prounipotent.

36 Because the given splittings of the Kac-Moody extension for N (K') and I coincide on their intersection,
and because the characters v coincide here as well, this twisted D-module makes sense.
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Indeed, since this D-module is equivariant for compact open subgroups, this is
really a problem about D-modules on ind-finite type schemes. So it suffices to show
that the !-fibers of this convolution at all geometric points vanish outside of I,

For y € G(K) a geometric point, the !-fiber obviously vanishes unless y can be
written as i1 ghy with h; € i n»and g € N(K).Itsuffices to show that the fiber vanishes
unless g € N(K) N I,.

We will do this using the following paradigm: if H is a prounipotent group acting
on X, ¥ : H — (G, is a character, and x € X is a geometric point with stabilizer
H, € H,thenif Y|y, is non-trivial, any (H, ¥)-equivariant D-module on X vanishes
along the H-orbit through x.

So consider G(K) as acted on by I, x I,. Note that our convolution is equiv-
ariant with respect to the character (y, —y) (the minus sign occurring due to the
sign appearing for the right action). Note that the stabilizer of g for this action is the
subgroup:

. , he(hAd )
[ N Adg(f,) N Iy x I,

By Lemma 2.7.1,if g ¢ N(K) N I,, then the character (¥, —) restricted to this
stabilizer subgroup is non-trivial, so our !-fiber vanishes, as desired.

Step 5. Next, we explain how the above calculation works for « -twisted D-modules.

Recall that «-twisted D-modules are D-modules on G/(K\) satisfying some equiv-
ariance with respect to the Kac-Moody center, which will actually not be relevant here.
We want to show that any (I, ¥)-biequivariant’’ D-module has vanishing !-fiber at
any point g € G/(I?) mapping to g € N(K) € G(K) with g ¢ I, (We remind that
this equivariance makes sense in the first place because the Kac-Moody extension is
split over 1)

So we need a version of Lemma 2.7.1 for g instead of g. Let o : I, — G/(K\) denote
the splitting. Then we want the conclusion of Lemma 2.7.1 but for some / € I, with

oh) ea(i,)NAdgo(ly)

instead. Note here that Ad, makes sense on the left hand side, and coincides with Adg,

because Z gy, is central in G/(K\) We will actually show:
o) NAdgo(i,) =0, NAdgI,) (2.8.1)

which immediately gives the claim by Lemma 2.7.1.

Let 7 denote the projection G/(K\) — G(K). This map is G (K)-equivariant for
the adjoint actions, which immediately implies that the left hand side of (2.8.1) is
contained in the right hand side.

37 Here “biequivariant” should certainly be understood with the sign change on the character on the right.
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Now note that 7 n N Adg i 4 actson ! (g) via the action map:

I°n N Adg I°n X Jr_l(g) — n_l(g)
(h, ) — o(go(g'h'g).

The right hand side obviously lies in 7 ! (g), and this honestly defines an action map

because o is a homomorphism, and o o Adg—l : Adg(lon) — 6(?) is too.

Moreover, this action commutes with the Zg ps-action on the fiber, so is induced
by a homomorphism I n — Zg p- This homomorphism must be trivial because I n 1S
prounipotent while Z g, is a torus. Therefore, we obtain:

o(m3o(s™'h™'g) =%
Le.
Ady-1(o(h)) =0 (Adg-1(h)), he i,n Adg(f,,).
This implies that the right hand side of (2.8.1) is contained in the left hand side,
since for h as above, o (h) = Adg(a(Adg_1 h)) € Adg(a(1,)).

Step 6. At this point, we have seen that 8}0 *X,, is supported on I Obviously,

itis (1, Y)-equivariant, and its !-fiber at the identity is k by prounipotence of I

Therefore, this convolution is isomorphic to § V" and the unit map is an isomorphism,
T

Iy
as desired. O

2.9 Proof of Theorem 2.3.1 (1) and (2) for m general

Next, we claim that the work we have done so far implies the corresponding results
on t, 1 for m general.
First, we need:

Lemma 2.9.1 Let G, : C; — Cpand G : €y — Cq be functors such that G, admits
a fully-faithful left adjoint F> and G o G admits a left adjoint E. Then G admits a
left adjoint, which is computed as G> o E.

Proof 1t suffices to show that ¥ maps Cp into the subcategory F>(C1) € Cp, which is
equivalent to saying that:

G2 — E
is an isomorphism. But note that we have a map:

28— FhGrE
induced by adjunction from the unit map:

ide, - G1G2F,G2E = G1GLE
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where we are usingide, = G2 F. Itis straightforward to show that this map is inverse
to the given one.>
O

Regarding the theorem, we may suppose m > n, so in particular, m # 0 and ¢,
is fully-faithful. Then the lemma implies ¢, ,, 1 = L:n o ty,1. Moreover, if n > 0, then
because (1 0 ty, ;1 = U1 and both ¢, 1 and 1,1 are fully-faithful, clearly ¢, 1 is as
well.

2.10 Proof of Theorem 2.3.1 (3)

It remains to show that for n < m < 00, t;, .1 and t,, y « differ by a cohomological
shift. We may safely assume n < m, so that m # 0.
Let 5},// ;€ D(I,1,,) denote the pullback of the exponential D-module along the

(well-defined) map v : I m I n —> Gg. Note that the Kac-Moody extension canonically
splits over /,,1,, since the splittings over each of these subgroups coincides on their
intersection; in particular, 810 . can be considered as «-twisted.

min

The main geometric result is:

Lemma 2.10.1 The D-module 8;’ 7 cleanly extends to D, (G(K)).

Proof Let Im In denote the closure in G(K), and let j : fm In — Io,,, In denote the
open embedding. We want to show:

6 ) juarG) ). (2.10.1)

Note that these «-twisted D-modules are (I° m» V) equivariant with respect to the left
action of G(K) on itself. Therefore, by Theorem 2.3.1 (2), it suffices to show that this
map is an isomorphism after applying ¢,, 1, i.e., !-averaging to Whittaker with respect
to the left action.

Note that 1,,1,, € N(K)I,, so the same is true of their closures. Therefore, the
l-averages of both sides of (2.10.1) are supported on N(K)i,,.

We claim that N(K)f,, NN(K)G(O)" = N(K)in. Indeed, it suffices to show that
N(K)I,, € N(K)G(0O)" is closed, and for this it suffices to show this mod N (K),
i.e., that:

in/N(O)" — G(0)"/N(O)"

38 Here is amore conceptual argument that does not require checking anything, but which feels too abstract
for such a simple claim. For notational reasons, suppose all finite colimits exist and are preserved by every
functor in sight (otherwise, use opposite Yoneda categories instead of Pro-categories), and assume all
categories are accessible (otherwise, play with universes). Then Pro(G) : Pro(€1) — Pro(Cp) admits a
left adjoint F1 and we have F1 = Pro(Gz)Pro(FZ)Fl = Pro(G;)Pro(E). The right hand side obviously
maps Cq into Cy, so we obtain Fl = Pro(G; E) as desired.
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is a closed embedding. The n = 0 case is obvious, and for n > 0, this is the embedding
of an orbit for a prounipotent group on a quasi-affine scheme, so is a closed embedding.

Therefore, by Lemma 2.6.1, our !-averages are cleanly extended from N (K )f n-
Moreover, they are (N (K), ) and (Io n, —¥)-equivariant, so it suffices to show that
our map induces an isomorphism between fibers at 1 € G(K), which is clear. O

We now conclude the proof of Theorem 2.3.1. As in the proof of Theorem 2.3.1 (2),

tn.m,1 and ¢, ,, + are defined by kernels; in the notation above, the former is given by
J (8? . ) and the latter by j*,dR(cS]f/ . )[—2(@m — n)A]. Note that the the shift appears

min I))‘l Iﬂ

because in the finite-dimensional setting, x-averaging is given by convolution with the
constant sheaf, not the dualizing sheaf.

3 Semi-classical counterpart
3.1 A semi-classical counterpart of Theorem 2.3.1

For V. C g((2)), let v+ c g((®))Y = g((¢))dt = g((¢r)) denote the perpendicular
subspace with respect to the residue pairing.®
The main result of this section is the following.

Theorem 3.1.1 For every 0 < n < m < oo, the morphism:
f+LieltnLielt/i,ni,— f+Lielk/i,
is a finitely presented closed embedding.*°

Remark 3.1.2 This result will be needed in Sect. 5.

Remark 3.1.3 We consider this as a semi-classical version of Theorem 2.3.1; let us
explain why. The reader may safely skip this. It freely uses some ideas from Sect. 4
and “Appendix A”.

First, note that Theorem 2.3.1 (1) can be reformulated as saying that ¢, ,, « preserves
compacts.

The category ﬁ,{—modi ¥ has the Kazhdan-Kostant filtration with semi-classical
category QCoh”*"(f + Lie I;-/1,) (see loc. cit. for the notation). The x-averaging

functor ¢, ;4 : ﬁ,(—modl (B NN ﬁ,(—modl Y has associated semi-classical functor

39 Tt would be better practice for a variety of reasons to include the symbol d¢ in what follows, but to
simplify the notation we choose coordinates and omit this twist.

40 For m = oo and from the DAG perspective, we should really say ind-finitely presented, as for 0 —
colim, A",
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given — up to a mild correction — by pull-push along the correspondence:

el I o
f+Liel; NLiel,,/1,N 1,

/\

f+Liel}-/i, f+Lielk/i,.

The pullback along the left arrow obviously preserves compacts, whereas pushforward
along the right arrow does because it is a (finitely-presented) regular embedding.

A word on the “mild correction:” running the calculation properly, one finds that the
pullback should actually be a x-pullback followed by a !-pullback for the morphisms:

f+LielrnLielt/i,ni, — f+VLielt/i,Nni,— f+Liel}-/i,.

But this does not affect the discussion above. (The reason this appears is that ¢, «

, - v ,
. e~ Oblv Avy, .
is the composition e—mod’™¥ == G—mod/"Mm¥ = F _mod!"V; the semi-

classical version of a forgetful functor involves a *-pullback along a correspondence,
while the semi-classical version of averaging involves a !-pullback along a regular
embedding.)

The proof of the above result will occupy the remainder of this section.

3.2 Regular centralizers

We need an auxiliary result of independent interest, which calculates in some explicit
terms the semi-classical analogue of the category Whit="g,—mod.

More precisely, we will calculate the quotient stack f + Lie I ,f / I, in more explicit
terms. _

Let J denote the group scheme of regular centralizers over f + b — f + b/N.
We recall that { is the fiber product of f + b¢ with itself over g, /G, that J is smooth,
and that g,., /G is the classifying stack BJ of J (considered as a group scheme, so e.g.
BJ maps smoothly to f + b°).

Let J(O) denote the corresponding pro-smooth group scheme over f + b°[[¢]]. Let
dn C J(0) denote its nth congruence subgroup.

Finally, let J;; denote the group scheme over f+1~" Ad_, 5., b¢[[¢]] obtained from
dn by pullback along the isomorphism:

" Adysy (=)t f 17" Ad 50 B6IIT = f + 611,

(Somewhat more naturally, J” is the group scheme of centralizers lying in the nth
congruence subgroup of the constant group scheme G(O)”", so our notation here
accords with that of Sect. 2.5.)
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Lemma 3.2.1 Forn > 0, the natural map:
BJ" — f +Lielt/I,

is an isomorphism. (As above, B! denotes the classifying stack of the group scheme
dy over f+17" Ad,, 5¢) b°[[£]].)

Proof Applying Ad, s, it is equivalent to show that the map:
B, — f + 1" Ad,s (Lie [;5)/ Ady s In

is an isomorphism.
We have:

[+ 1" Ad, ) (Lie I3)/ Ad, sy I
= (f+ bl +"gllzID/(G(O)  x N(O/t™)).
G(O/1m)

Therefore, we may interpret the quotient stack appearing above as the stack of maps
from the formal disc to g,.¢ /G equipped with an order n lift to f +b/N. Then writing
greg/G = BJ makes this assertion a tautology.

O

3.3 Proof of Theorem 3.1.1

We now return to the result in question.

Proof of Theorem 3.1.1 1t suffices to show that the diagram:

f+LiefinLiefi/i,Ni, f+Lieit/i,

| |

F A7 A0 0L e f 1T A 0L

is Cartesian. We can safely assume m > n, and in particular that m # 0.
We show the assertion in this form in what follows.
Step 1.
Suppose n > 0 for the moment. Fix a point:*!

£e f+Lielt.

41 For clarity: in this argument, we use the notation “€” to refer to A-points of stacks for some implicit
fixed commutative k-algebra A. Similarly, where we say Z (&) € G(K) below, we really are working over
Spec(A) and considering Z (&) € G(K) x Spec(A).
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Let Z(£) € G(K) denote the centralizer of £. We will show that any z € Z(§) lying
in N(K)i, actually lies in K C I, (reminding that K':= Ad_, 3, Kn € G(0)" is
conjugated from the nth congruence subgroup of G(0)).

Indeed, given an element z as above, we can write z = gh for g € N(K) and
hel, As & e f+Lie I,J; the functional:

Lie [, = g(() ~ a((1)” => k

is given by the character v i (where & indicates evaluation on £). As Ad,(§) = &, we
have Adgfl (&) = Ady(§) € f + Lie I}, so the composition:

evad
o le

I, N AdgLie, — g((1) = g((t))Y —— &k

is also calculated by the restriction of ¥ i, to Adg Lie I N I "
Therefore, by Lemma 2.7.1, g € N(O)" = N(K) N fn. Therefore, z = gh € fn.
It remains to show z € K}, C I,,. Applying the automorphism " Ad,, ¢ (—), we
can equivalently show that for:

&€ f+bllel +"gllr]]

any z € N(O/t") xg(o/my G(O) centralizing £ lies in K. Reducing modulo ¢, we
need to show that for any:

§ € f+bllell/t" < allt]l/1"

any element z € N(O/t") centralizing £ is the identity.

For n = 1, this is the well-known fact that the centralizer of £ € f + b intersects
N only at the identity.*? For higher n, it follows from the fact that that intersection is
moreover transverse (by passing to n-jets).

Step 2.

Now fix:

te f+LieltNLieiy.

42 In more detail:

First, one shows that the Springer fiber Spré C G/B is contained in the open cell BwgB/B < G/B: under
the G,y action on G /B defined by p, any field-valued point of Sprs limits to a field-valued point of Sprf R
50 to wo; this is equivalent to the assertion by the Bruhat decomposition.

Next, observe that the natural action of the centralizer Z(§) of & on Sprs is trivial. Indeed, by regularity of
&, Z(&) is generated by its identity component and Z(G); as Spr‘é is finite (by regularity again), the former
action is trivial, while the action of Z(G) is obviously trivial.

Therefore, any z € Z (&) is contained in any Borel containing &, and any such is transverse to B. Therefore,
ZE) NN ={1}.

The transversality asserted below amounts to the (easier) infinitesimal version of this same assertion.
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We claim that there exists g € I, N 1, conjugating £ into an element f 4
t7" Ad_, 5y b°[[2]] (necessarily corresponding to the characteristic polynomial of
& via the Kostant section).

First, assume n # 0. By Lemma 3.2.1, there exists anelement & € I, (resp. g € 1)
with Ad; (&) € f + 17" Ad,5¢) bOLIt]] (resp. Adg(§) € f + t7" Ad,p() b[121D).
Considering characteristic polynomials, we must have:

Adj (§) = Adg (8).

Therefore, g’lh e Z(&). Clearly g’lh € Ini, C N(K)I By Step 1, we have
g 'he Kn < In,s0g €1, As g € I,, by assumption, this yields the claim.

The case n = 0 is similar. The only difference is that we should take % lying in the
radical I = N x G(O) of the Iwahori; this may be done as £ € f + Lie I35 N g[[r]]
for m > 0 implies & € f + Liel C g[[f]]. The n = 1 version of the assertion of
Step 1 (suitably conjugated by p()) ylelds that g~ 'h € N(K)I NZE) <K C I.
Therefore, g € I, and therefore liesin / N [,, < GO)N I as desired.

Step 3. It follows from Step 2 and Kostant theory that:

f+LielrnLielt/i,ni,

is the classifying stack over f + 7" Ad_, ;) b°[[¢]] for the group scheme of loops
into J that lie in i,, N Iom C G(K). By Step 1, it is the same as to take Ion N KM in
place of [nni,y.

Applying Lemma 3.2.1, we are reduced to showing that if y € KI" C I, (for
Km € G(O) the mth congruence subgroup) stabilizes & € f 417" Ad_, 5¢) be[I2]],
then y € I

As before, let us first assume n # 0. Let y = yT -y~ for yT € N(K) and
y~ € B7(K). Then we have:

& =Ady(§) = Ad,+ Ad,-(§).
Note that y~ € Iom NB (K)C in, So:
Ad,-(§) € f +Liel;.
By Lemma 3.2.1, there is an element g € i n with:
Adg Ad,-(§) =§.

It follows that yt¢~! € Z(£) and in N(K)i,,soy* € I, by Step 1,50y € I, as
desired.

The n = 0 case is treated using the same modification from Step 2: replace I, =
G(0) above by 1. O
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4 Drinfeld-Sokolov realization of the generalized vacuum
representations

4.1 A question

4.1.1. We begin this section with a basic question about W-algebras: what are its
generalized vacuum modules? By this, at first pass, we mean that we expect a projective
system of modules W € W, —mod” (n > 0) playing a similar role to the modules
r" g[ 1) for the Kac-Moody algebra.
In more detail, we want that:

° Wg is the vacuum representation, i.e., Wg =W, € WK—modo.

e The inverse limit of the W is the topological chiral®? algebra WS associated with
the vertex algebra W, (cf. [8] §3.6.2).

e For g = slp, so that W, is a Virasoro algebra, the modules W¢ should be induced
from the subalgebra +>" Der(D).** %

e The module W” should have a canonical filtration*® F,W" compatible with the
filtration on W, and with F_{W} = 0. Recalling that the associated graded
of Wi i s*7 the algebra of functions on the indscheme f + b((t))/N(K), the
ass001ated graded of W} should be identified with the structure sheaf of the closed
subscheme:*®

17" Ad 500 (f + BI111/N(0)) € f + b((1)/N(K).

The morphism W' — W" should be strictly compatible with filtrations and
should induce the restriction of functions map when we identify the associated
graded as above.

e The WY should form a flat family of modules as we vary «, and moreover, this
family should extend to allow k — oo for ¥ non-degenerate. In this case, recall
that W¢? is the algebra of functions on the indscheme Opg (D) of opers, i.e.,

43 This funny name is taken from [9], who asks that it be used. It means an associative algebra with respect

=
to the ®-monoidal product on Pro(Vect®) from loc. cit. Note that in [8], such a thing is called a topological
associative algebra.
44 The 2 here is needed for compatibility with the next expectation. At the critical level, this might be
compared to the fact that the Sugawara element corresponding to the derivation t"9; (n > 0) acts by zero
on the module 1ndg“ it (k), cf. [7] Theorem 3.7.9.

i3 giin
45 The other expectations in this list will be verified in this section, but not this one. For this comparison,
see Example 6.1.3.

46 We maintain the conventions of “Appendix A”, so filtrations are assumed exhaustive. Moreover, since
we are speaking about objects of an abelian category, we are tacitly assuming here that each F; W — W¢
is injective.

47 This is not quite canonical: we are using our choice of dt and some choice of non-degenerate Ad-
invariant bilinear form on g to make g((¢)) self-dual. More canonical would be to take ;L*l (¥)/N(K) for
w:g((t)Y — n((#))Y the canonical map.

48 Recall that f 4 b((1))/N(K) = f + b¢(()) (for e fitting into the sly-triple (e, 2 Lie(3)(1), f)) with
f+06[[t]]/N(O) = f + b[[z]]. So for n = 0, we really do get a closed subscheme, and for general n this
follows because " Ad_,, 5, is an automorphism of our indscheme.
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(f + 6(()))dt/N(K) where N(K) acts by the gauge action (not the adjoint
action). Then W7 should be the structure sheaf of the subscheme Opén of opers
with singularities of order < n as defined in [7] §3.8 (see also [22] §2). We remind
that this subscheme is:*°

OpZ" :=(f + Ad_,, ;) (b[[11D))dt/ Ad_,, ;) N(O)

with Ad_, 5,) N(O) acting through the gauge action.>®

The purpose of this section and the next is to construct such modules, which seem
not to exist elsewhere in the literature.

4.1.2. In fact, we will give two constructions of these modules.

We will present the two constructions somewhat out of order: first, we give a
construction via Drinfeld-Sokolov reduction, and then in Sect. 6 give a (perhaps)
more elementary construction via the free-field realization of the 'W-algebra. The
reason is that the former is the one relevant for proving the affine Skryabin theorem.
The latter is included in this paper for the sake of completeness, and because it plays
a technical role in deducing the categorical Feigin—Frenkel theorem from the affine
Skryabin theorem.

4.1.3 Adolescent Whittaker construction
The main idea of this section is to take:
N\ (ine] 9% )
Wi = \D(lndLie i 1//171)
up to a cohomological shift, and show that this construction satisfies our expectations.

Remark 4.1.1 To make some of our treatment more elementary, this resultis split across
Theorem 4.2.1 and Theorem 4.5.1; the former does not explicitly mention W-algebras,
while the latter does.

Remark 4.1.2 This construction is motivated by the following considerations.
Note that:

indfikqu (V) € Ge—mod!"¥ = Whit=" §,—mod)

is compact, and generates this category whenever n > 0. Therefore, as we vary n, the
objects Ln,y(indi’fei (¥)) € Whit(g,—mod) give compact generators.
1€ [y

49 One uses £ (1) to define the structure maps as we vary n.
50 So froman opers-centric worldview, the modules W7 are quantizations of opers with singularity < n. The
existence of such quantizations implies that the subschemes Opé" C Opg (15) are coisotropic with respect

to the canonical Poisson structure on Opg (D). This is straightforward to see from the given description of
Op=", cf. [22] Lemma 4.4.1 and various points in the discussion of [7] §3.6-3.8.
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Anticipating the affine Skryabin theorem Whit(g,,—mod) ~ W,—mod and its com-
patibility with the functor W, we are computing the images of our compact generators
as modules over the W-algebra.

Remark 4.1.3 For n = 0, this theorem says that ¥ (V,) = W,., which is the definition
of the right hand side. The argument given below recovers the fundamental results on
W, that it is in cohomological degree 0, and that it is a filtered vertex algebra®' with
commutative associated graded the algebra of functions on f + b[[t]]/N(O).

The argument is somewhat more conceptual than appears elsewhere (cf. [15,18]
Chapter 15). It substantially overlaps with the presentation given in the recent survey
[5], but the issue of the convergence of the spectral sequence is dealt with by a different
argument. The key advantage of the method below is that it avoids the fensor product
decomposition appearing in other treatments (even in [26]), which is always justified
by explicit formulae I have not been able to understand conceptually.>?

4.2 Vanishing of cohomology
4.2.1 Drinfeld-Sokolov reduction
Recall that there is a continuous functor:>>
WV :g.—mod — Vect

defined as the composition:

~ bl c% Al (o) ®—
5 —mod 2% n((r))y—mod oI CRop)

where —/ is the 1-dimensional n((¢))-module corresponding to the character —1,
and C7 is the semi-infinite cohomology functor as defined in Sect. A.8.4. We remind
that n[[#]] appears in the notation, but plays a very mild role.

4.2.2 The first main result of this section is the following.

Theorem 4.2.1 For every n > 0, the complex \Il(indg’i(ei W ;n) is concentrated in
cohomological degree —nA. (Here A is used as in Sect. 2.3, i.e., A = 2(p, p).)
The argument will be given in Sect. 4.8 below.

Remark 4.2.2 The main issue in what follows is the convergence of a certain spectral
sequence. The approach given below seems to be the most versatile one for n = 0.
However, for n > 0, the method of Sect. B.3 can also be adapted to this purpose and
is much more flexible.

51 One should use factorization techniques for this, cf. [8] §3.8.

52 Though it may well be that a conceptual explanation of this method exists and I just could not find it. Or
perhaps the argument we give here for the convergence, which has some remarkable similarities with the
tensor product argument, is that conceptual explanation.

53 We remind at this point that e.g. Vect denotes the DG category of chain complexes of k-vector spaces,
and that canonical means defined up to canonical quasi-isomorphism (in the co-categorical sense).
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4.2.3. We will prove the above by an argument about passage to the associated
graded, using the methods of “Appendix A”.

First, note that G(K) acts on g, so we obtain an action of G,, on the Kac-Moody
algebra via:

—5:Gpu — G C G(0) C G(K).

This action preserves I n for all n > 0. Moreover, the character ¥ : Lie I . — kis
G, -equivariant if we give the target k the degree —1 grading.
Therefore, “Appendix A” produces PBW and Kazhdan-Kostant (KK) filtrations

on the categories ﬁk—modi”’w and n((t))—modAd*"/;(f)N(O)"/’. (We remind that
Ad_, 54 N(O) = N(K)N1y.)

4.2.4. Werecall the basic facts about these filtrations that we will need. We will need
some of the language and notation from “Appendix A”: see especially the material
about filtrations in Sect. A.3 and renormalization in Sect. A.30.

Throughout, we fix an Ad-invariant identification g >~ g and a 1-form d to obtain
g((1))Y =~ g((1)); note that this induces:

n((1)" = g((1)/b((1)).

Asin Sect. 3.1, for V C g((1)), we let V- denote (g((1))/V)" < g((1))" = g((1));
we recall from loc. cit. that:

Lie F; = Ad_, ;) (allt1] + ¢ " b[[£1)).

e We have semi-classical categories:

Tg\K_modin,w,PBW—cl — Qcohren(Lie ijl_/lcn)
Fe—mod!m VKK~ _ QCoh™(f + Lie {+/1,)

for f € n™((#)) our principal nilpotent corresponding to .
For the n((¢))-categories, observe that:>*

n((1))-modN K)NEny PBW—cl _ QCOhM”(Ad—n,é(t)(ﬂ[[t]]/b[[l]])/Ad—n,b(t) N(0>)

n((l))_modN(K)min,w,KK—cl — QCoh’®" (f + Ad_y, 50 (BLIT1/6001D / Ad 5 ) N(O))

54 At various points in our discussion, the abundance of symbols Ad_,, 5 ;) means something is canonically
isomorphic to the same expression with all such symbols removed. We still retain the notation since it is an
important bookkeeping device, especially as we vary n.
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where these isomorphisms arise from the identification:

Lie Iy /(Lie I,y Nb((1))) = Ad_, 5 ((all1] + ¢ bI[11) /¢ " bL[11])
= Ad,nlj(t) (gllz11/6[01D

e The forgetful functor:

ﬁk—modi"’w — n((1))-modAd-nsw N(O)¥
is filtered for either filtration. Its underlying PBW semi-classical functor:
QCoh™"(Lie I-/1,) — QCoh™" ( Ad_,, 5 (alle1/6011D/ Ad_ 3r) N(O))
is given by pullback/pushforward along the obvious structure maps from:
Lie I/ Ad_,, 3 N(O).

e The functor:

CZ (0((1)), Ad_, 5 N(0), (=) ® =) : n((t))-modAd-ni0 VOV _, yect
4.2.1)

is filtered for each of these filtrations. Here we remind the reader of Notation A.8.5,
which says:

CT (1)), Ad_pj) N(0), =) = CF (n((1)), Ad_ 5 {111, Ad ) N(O), =)
= CT (), Ad_y ) 011, -)

where the first equality is a definition and the second equality is only an equality

of functors, not of filtered functors (the fact that it is an equality of functors is a

consequence of the prounipotence of our group scheme Ad_,, ;) N(O)).

Its underlying PBW (resp. KK) semi-classical functors are given by x-restriction
to:

0/Ad_, 54 N(O) € Ad_,, 51 (gll]]1/bl[z]D)/ Ad_, 5y N(O)

(resp. f/Ad_pp4) N(O) S f + Ad_, 50 (gllz]1/6[[21D)/ Ad_, ) N(O)) fol-
lowed by global sections, i.e., group cohomology with respect to Ad_,, 5,y N(O).

e These two filtrations fit into a bifiltration (cf. Sect. A.22).
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In the language of Sect. A.22, the KK filtration on the PBW-semi-classical categories
is induced via Example A.2.6 from the action:>>

A-x = )\._1 . Adb‘(}h—l)(x)

of Gy, on Lie f;-/1, and Ad_, 3 (allt11/60[¢11)/ Ad_, 54y N(O) respectively (cf.
Remark A.5.12).

4.2.5. With these preliminaries aside, we are prepared to prove the above result.
First, we introduce the following notation, which significantly reduces the burden
in what follows.

Notation 4.2.2 For all n > 0, let £" denote the line det(Ad_,, 3¢ nllt]]/nll£1]). For
n < m, we let:

0= det(Ad _y s 11/ Ad s nllE]]) = €7 @ €7V,

Proof of Theorem 4.2.1 Here is the strategy: we will construct a Kazhdan-Kostant fil-
tration on indi;c i () to obtain one on \Il(indf; i (¥)), and it will be easy to show
that the associated graded for the latter is in one cohomological degree.

We would be done, but that the Kazhdan-Kostant filtration on indii”ei () is not

bounded below (and not even complete). We will nevertheless show that the induced
filtration on its Drinfeld-Sokolov reduction is bounded below. This will be achieved by
a comparison with its PBW filtration, which is bounded below (although its associated
graded is not in a single cohomological degree).

Step 1.

Observe that :

: EK < _ in N
mdLie i (¢) € g—mod
has a canonical KK filtration, denoted F' .K K indfi”e ; (¥). Indeed, this follows by func-

toriality from Example A.5.13. This filtration fits into a bifiltration with the PBW

: PBW : 18k
filtration F, 1ndLiei ).

The induced KK filtration on the vector space:
gr]®Wind™ . () = Sym* g((1))/ Lie I,
is easy to understand concretely — the KK filtration is:

FFK grf BV indfi”ein(xlf) =® @ (Sym’~ g((1))/ Lie 1,,)’

55 Note thatin “Appendix A”, we use the sometimes confusing convention that the action of G, on a scheme
is expanding if functions are non-negatively graded. The reason is that if any group acts on a scheme, there is
an inverse sign for the induced action on functions. Bute.g., the grading on Sym(g) = gr, U (g) corresponds
to the action of Gy, by inverse homotheties on gV.
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where the superscript j indicates the —p-grading (note the sign!). (For example, for
a positive root «, e, has grading —(p, «), so the corresponding element lies in

FXK  put, if non-zero, this element will not lie in FXX )
1=(p,) R —(p,a)
Step 2. Note that we can compute W(indi;ei (1)) as the Harish-Chandra version

of semi-infinite cohomology (cf. Sect. A.39):
w(ind® ; (1)) = €% (1)), nll11), Ad ) N(O), indf . (¥) ® =)

by prounipotence of Ad_, 5 N(O).
Since the functors:

R ; | ) €T (1), Ad_50) N(0),—@—)
Ge—mod/m ¥ 2 1((£))-modAd-nin N(©O)¥ i Vect

are bifiltered, we obtain a bifiltration on W(indgi”ei (¥)) € Vect. In particular, we

obtain the filtrations F,”? W\Il(indfi“ci (¥)) and FKK \Il(indfi“ci (V). We will now

compute the associated graded complexes.
First, it is convenient to slightly modify the functor V. We define:

W, (=) = CT (n((1)). Ad_ ) nll1]]. =) = W(—) @ £"V[-nA]  (4.2.2)

(cf. (4.2.1)). Obviously it differs from ¥ only by a cohomological shift and tensoring
with a 1-dimensional vector space. (At the level of filtered functors, there is also a
shift in the indexing by nA.)

Then we claim that:

eV Wy (ind® (1) = C*(Ad ) N(O), Fun(Ad 0 1 "Bl11D)
4.2.3)

i.e., (derived) global sections of the structure sheaf of the stack
Ad_, 5y t7"b[[2]]/ Ad_p 51y N(O).

This is a straightforward verification using Sect. 4.7. Writing W, | 50_mod!n as the
appropriate composition:

— 7 Obl )
gK—mod”l"/’ =5 n((t))-modAd-niwy NV _y yact

we find that its semi-classical functor:

QCoh™"(Lie I+ /1) — Vect
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is given by successive pullbacks and (renormalized) pushforwards along the diagram:

Lie I}/Ad_nﬁ(t)N(O) 0/Ad_, ;) N(O)
Lie I;}/1, Ad_ 5 (@LIE11/6L171D / Ad ) N(O) Spec(k).
We recall that Lie I,J; = Ad_,;(ollell + ¢7"b[[z]]). Therefore, since

grPBW indfikei () is the structure sheaf of Lie I,J;/ Ad_, 5, we obtain the claim.
The same aryialysis applies in the KK setting, and we obtain:

erk KW (ind® | (1)) = C*(Ad_y50) N(O), Fun(f + Ad_ 500 ¢ "bl111))

The major difference is that Ad_,, ;) N(O) acts freely on this locus and the quotient
is an affine scheme. Indeed, by Kostant theory we have:

F A0 170l111/ Ad sy N(O) = 17" Ay s (f + BIIE1D/ Ad_ ) N(O)
=17 Ad_, 50 (f + 671D

for e fitting into our principal sl as usual.
In particular, we find that grX X W, (indiike ;W) e Vect”. Since W, differs from W

by the cohomological shift by nA, we find that grK € w (indi”e N (¥)) is concentrated
in cohomological degree —n A, as expected.

Step 3. Asindicated in the preamble, it remains to show that F l.K Ky, (indg‘e i ) =
0 forall i < 0.5 R

As a first step toward this, we first observe that Fl.P BWyy, (indi’i‘e i (¥)) = 0 for
i < 0. Indeed, as in Remark A.8.3, we have:

FPPYy ind?s ()

= colim FZGV \ C*(Ad_5) nllt1]. Ad_5) N(O), ind’* i @)@ L (m = m)Al.

m>n

Then since the PBW filtration on indifei (¥) vanishes in negative degrees, the
PBW filtration on: ’

C*(Ad (o nllF1] Ad ) N(O), ind® - ()

vanishes in degrees < —(m — n)A (cf. Remark A.3.16, i.e., this vanishing follows
from using the standard filtration on Harish-Chandra cohomology). This obviously
gives the claim because of the shift of filtration that occurs in the colimit.

56 Note that due to the filtering conventions, this means that FiK K of W of this module vanishes fori < nA.
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Step 4. Now recall that W, (indg’i‘ei (¥)) is bifiltered. In particular:

ar PV Wy (inds ()

(48.2) _
T (Ad_p 50 t"bLI1]1/ Ad ) N(O), Oad_, 5y -bl1111/ Ad_, ) N(O))

inherits a KK filtration. We claim that:
KK _ PBW T
FfR gl Wy (ind? (1)

vanishes in negative degrees.
We will verify this by giving an explicit description of the KK filtration in this case.
Note that G,, x G, acts on:

Ad_, 5t "b[[1]]/ Ad_,, 5y N(O)

where the action of one factor is induced by the inverse homothety action on the vector
space Ad_, ;51 t " b[[¢]], and the action of the other factor is given by the adjoint action
induced by the cocharacter g (of the adjoint group). In what follows, we consider this
stack as equipped with the induced diagonal action of G,,; in particular, the global
sections of its structure sheaf inherit a grading.

Then by Step 1, the KK filtration is induced from the grading as:

FFE g PV wy(ind? - ()

= @< T(Ad_, 50 t‘”b 111/ Ad_y 50y N(O), Ond_, 5 7611011/ Ad_y 50, Ny
4.2.4)

where the outer superscript in the global sections indicates the grading defined above.

Now we claim that our G,,-action is expanding. Obviously the inverse homothety
action is expanding. Moreover, the — ¢ adjoint action on both b (so on b((¢))) and on
N (K) are, so the same is true for our quotient stack above. Therefore, the diagonal
action is expanding as well.

Therefore, our grading is in non-negative degrees only. By (4.2.4), we obtain the
desired vanishing.

Step 5. We now make the (simpler) observation that the PBW filtration on
ar, KKy, (1ndg” (¥)) vanishes in negative degrees.

Indeed, thls 'PBW filtration on functions on the scheme [+ Ad_ 0
t7"b[[t]]/ Ad_,,5+) N (O) comes from degenerating f. Precisely, we have a prestack
over Aili /G, defined by the family:

ﬁf + Adfn,é(l) t_nb[[t]]/ Adfnﬁ(l) N(O)
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and the®’ pushforward of the structure sheaf defines the PBW filtration on our complex.

The monoid A! acts on the total space of this fibration through the homothety action
of this monoid on g((¢)): this implies the claim.

Step 6. From here, the claim is formal:

Suppose V € BiFil Vect is any bifiltered vector space. We denote its underly-
ing filtrations as FFBY and FXX. We suppose that FPBV v, FKK orPBW y and
FFPBW orKK vanish fori < 0. Then we claim that FXXV vanishes fori < 0 as well.

We denote:

FV = FiKKF]PBWV _ F]_PBWFiKKV'
Then observe that:

FXEV = colim F; ; V.
J

So it suffices to show thatif i < 0, then F; ;V = 0.

Since Coker(F; j—1V — F; ;V) = FfX gr?2W'v = 0, F; ;V is independent of
Jj. Therefore, it suffices to show the above claim when i, j < 0.

But the same argument shows that F; ;V is independent of i when j is negative.
Therefore, for i, j < 0, we have:

Fi;V > colim Fjr ;V = FjPBWV -0
l/

as desired. O

Remark 4.2.5 The method used here bears a striking resemblance to the method of
tensor product decomposition used traditionally (e.g. in [15,18]) in the n = 0 case
above, i.e., to compute ¥ (V).

There, one finds a quasi-isomorphic subcomplex’® of the usual complex of Drinfeld-
Sokolov semi-infinite chains with “size” Sym(b((¢))/b[[¢])) ® A®*n[[z]]"; this complex
is closed under the KK filtration and bounded from below with respect to it, which
solves the boundedness problem.

The method used above settled the convergence by a comparison with the PBW fil-
tration, whose associated graded also has this “size,” since itis Lie algebra cohomology
for n[[#]] with coefficients in Fun(b[[z]]) = Sym(b((z))/b[[¢]]).

4.3 'W,-module structures
4.3.1. Define:

n._ 0 . 1Bk D) — —nA . 1Bk R n,v
Wii=H"W, (ind* i Vi) =HTwndY )@

57 Note that we should work with QCoh"*", so the pushforward is continuous. But this is a place where one
can only feel anxiety, but cannot make a mistake: since our complexes are bounded from below, renormalized
pushforward coincides with any other notion.

38 In [18], it is introduced in §15.2 and denoted by C} (g)o.
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By Theorem 4.2.1, this is the only non-vanishing cohomology group. We recall that
W, was defined in (4.2.2). Note that tensoring with this line is extremely mild.

We now make some observations about the W,.-module structure on W;,. (For
further observations, see Sect. 6.)

4.4 Recollections on W-algebras
Before proceeding, we summarize what facts we will need about W,.

4.4.1. Recall that W,: =W (V,) = Wg is a vertex algebra, which for our purposes
means the vacuum representation of a chiral (or factorization) algebra in the sense of
[8].

Here are two conceptual explanations of this fact.

One may use [8] §3.8 to give a model for semi-infinite cochains that factorizes.

Alternatively, one can work as in [37] and show that the categories g,—mod is (the
fiber of) a unital chiral category in the sense of [47] with unit the factorization algebra
V, (or rather, the Kac-Moody factorization algebra). Moreover, one can show that our
definition of ¥ : g,—mod — Vect factorizes. This formally implies that the image of
the unit is a vertex algebra in the above sense.

(There is also a traditional vertex algebra description: see [18] §15.)

4.4.2. In either of the above pictures, we find that W upgrades to a functor:

W : §e—mod — W,—mod?act

where the right hand side denotes the DG category of factorization modules for (the fac-
torization algebra with underlying vacuum representation) W,.; this notion is defined
in [47].

Some remarks about this notion are in order.

\/\7,(—modfa1Ct has a canonical #-structure, and by [8] §3.6, the heart is the abelian
category of discrete W¢*-modules, which coincides with vertex modules in the usual
sense. We denote this category by W,—mod®.

Itis possible to compute W,—mod ™t explicitly: it turns out to be the left completion
of the derived category of this abelian category. However, such arguments have not
been given in the literature previously (e.g., the corresponding fact for Kac-Moody
algebras is not published), and are somewhat involved.

Moreover, we will not need to compute this DG category so explicitly: we will only
need to know the heart of its ¢-structure.

4.43. By the above, for M € g,—mod, Hk\l/(M) € WK—modO, i.e., this object of
Vect™ has a canonical action of the W, -algebra.

Moreover, we find that the functors (H by k e 7) are cohomological, i.e., for a
morphism f : M — N € g,—mod, the boundary morphism:

H*(Coker(f)) — H' (M)
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is a morphism of W,.-modules.

4.4.4 We also need some compatibilities with filtrations.

First, the KK filtration on V, makes sense factorizably, so defines on V a structure
of filtered vertex algebra (cf. [8] §3.3.11 or [18] §15).

Then one can show by mixing [37] and “Appendix A” that the KK filtration on
B«—mod defines a filtration on this category as a unital factorization category and that
W is a factorizable functor.

Since the induced KK filtration on W, = W (V,) = HOW(V,) is a filtration in
the abelian category of vector spaces, we deduce that W, is a filtered vertex algebra.
Concretely, this means that WY is filtered as a topological chiral algebra. We remind
that grX X W, is the commutative vertex algebra of functions on f + b[[¢]]/N(O) =
f =+ b°[[¢]], and that the associated graded of W¢* is the corresponding commutative
topological algebra of functions on the affine Kostant slice f + b((¢))/N(K) =

S+ b(@).

4.4.5. Suppose M e Fil &G, —mod is a KK filtered Kac-Moody representation.
Recall from “Appendix A” that W (M) inherits a KK filtration.

From the above discussion, for any integer k, gr X w(M) e grkk W,—modt,
which as before is a DG category with a ¢-structure whose heart is IndCoh(f +
b((1))/N(K))®.>° Therefore, for any integer k, Hk(ger W(M)) € IndCoh(f +
b((1)/N(K)®.

4.5 Description of the modules W}

Now observe that the modules W¢ are naturally filtered. Indeed, as above, each module
indgi“e i () carries a canonical KK filtration, so it Drinfeld-Sokolov reduction does
as well. However, we will renumber the filtration by shifting the indices by nA: this
amounts to considering the natural filtration on HOW,, (indi’i”e i (y)) instead of on

H"AW of this module. We denote this filtration FXXW?.
We now have the following outcome of the proof of Theorem 4.2.1:

Theorem 4.5.1 The filtration on Wy, satisfies:
o FKEWI =0 fori <0.
o H¥(grkX Wi) vanishes for k # 0.
° Ho(ger W) € IndCoh(f + b((t))/N(K))® is the structure sheaf of the closed
subscheme t™" Ad_,, 5 (f + bl[t]]/N(O)) with its natural grading as a Gy,-
invariant subscheme.

Remark 4.5.2 (Cyclicity of W) Note that the algebra of functionson f+b/N = f+b¢
is a polynomial algebra, and with respect to the KK grading, is generated by elements
of degree > 1 (and > 2 if g is semisimple). The same holds for the affine version, or
for the structure sheaf of a G,,-invariant subscheme of f + b((¢))/N(K).

59 We recall that the heart of the natural ¢-structure here is tautologically the same as the abelian category
of discrete modules over the algebra of functions on this indscheme.
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Because FXKW! = 0, we deduce that Ff¥W" = Gr§X W" = k, where this
copy of k corresponds to the constant functions on ™" Ad_,, 5 (f + b[[t]]/N(O)).
In particular, we obtain a canonical vacuum vector 1 € Wy.

Moreover, the map WZ* — W} given by acting on this vector is surjective; indeed,
this follows because it is true at the associated graded level. Therefore, we obtain that
W is a cyclic module for the W, -algebra.

4.6 Varying n

We conclude this section with the following result.

Theorem 4.6.1 (1) For m > n, there is a uniqgue map W' — W2 preserving the
vacuum vectors introduced in Remark 4.5.2.

(2) This map is surjective and strictly compatible with filtrations. Upon passage to the
associated graded, it yields the restriction map for functions along the canonical
embedding:

17" A5 (f + BIIEN/N(O)) > 17 Ad_yy 30y (f + BII2TT/N(O)).

(3) The compatible system of maps W¢* — W defined by the vacuum vectors defines
an isomorphism:

WIS — lim W e Pro(Vect®)
n

of pro-vector spaces.

Proof Step 1. First, we observe that these maps are unique if they exist. Indeed, this
follows immediately from the cyclicity of the modules W;*.

Step 2. We now construct a map o : W' — Wi,

First, note that we have:

ind% () — ind® . ().

Lie(/,N{ ) Lie I,

Then we claim that there is a canonical map:

T - 4B n,m _ P~
mdLie im(xp) — mdLie(i,,mi,,,)(w) ® " [(m — n)A] € g,—mod.

It suffices to construct:

v — indtjz(’;’mi () @ " [(m —m)A] € Lie [ n—mod.

More generally, suppose h; C h» is an open Lie subalgebra in a profinite dimensional
Lie algebra. Then for any module M € hr—mod, we claim that there is a canonical
map:

M — indj> (ObIv(M) ® det(hy/b1)[dim by /b 1).
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Indeed, by the projection formula it suffices to construct this for M = k the trivial
module, and then it is given by Lemma A.7.10.
By composition, we obtain:

indfike W)= indgfe ; (D) @ " [(m = m)A]. (4.6.1)

Applying W now gives the desired map.

Note that these morphisms compose well as we vary n and m.

Step 3. By our generalities on filtrations from “Appendix A”, o : W' — WZ is
filtered, and on passage to the associated graded, it yields the restriction map along
our closed embeddings.

This observation actually implies the rest of the results. The map preserves vac-
uum vectors by their construction. It is surjective because it is surjective at the
associated graded level. For a surjective morphism of filtered abelian groups with
filtrations bounded from below, surjectivity at the associated graded level is equiva-
lent to strictness. Finally, the projective system {W} } gives W?* because this is true
at the associated graded level.

O

5 Affine Skryabin theorem
5.1 Formulation of the result

Let Dt(W,—mod®) denote the bounded below derived category considered as a DG
category. Then define:

W,—mod® € DT (W,—mod®)

as the full subcategory generated by the objects Wi e W,—mod" under cones and
shifts; recall that these objects were defined in Sect. 4. Finally, following [24] §22-3,
we define:

W,—mod:=Ind(W,—mod®).

The purpose of this section is to prove:

Theorem 5.1.1 (Affine Skryabin theorem) There is a canonical equivalence:
Whit(g,,—mod) ~ 'W,—mod.

This equivalence has the property that the composition:

B—mod — Whit(g,—mod) ~ W,—mod OO Vect
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is the Drinfeld-Sokolov functor V; here the first morphism is the canonical morphism
coming from identifying Whit with coinvariants.

5.2 Construction of the t-structure

5.2.1. The core of the proof is a construction of a canonical 7-structure on
Whit(g,—mod) and an analysis of some nice properties that it has.

5.2.2. Recall from Sect. 2 that we have the categories Whit=" (g,—mod), and adjoint
functors (ty m, 1, L;Lm) forO <n <m < 0.

Forn < oo, note that Whit=" (§,—mod) = G—mod’”¥ has a canonical 7-structure
(the forgetful functor to g,—mod is z-exact).
The key observation is:

Lemma 5.2.1 Foralln < m < oo, the functor:

ln,m,![_(m —n)A] Thm.2=‘7.1(3)

[n,m,*[(m —n)A]
is t-exact. (Again, A:=2(p, p) as in Sect. 2.3.)
Remark 5.2.2 We prove Lemma 5.2.1 in Appendix B after giving a sketch below.

Proof sketch forLemma 5.2.1 The idea is that for general reasons s-averaging I, N I,
to I,, has cohomological amplitude:

[0, dim £, /1, 0 1,1 =10, (m — n)A]
while !-averaging has amplitude:
[—dim /Iy N 1y, 0] = [—(m —n)A,0].

Indeed, this follows since they are essentially given by * and !-versions of de Rham
cohomology along the affine scheme 1,,/1,, N I,.

Then recall that ¢, ,, « and ¢, , 1 are a composition of a forgetful functor, which
is t-exact, with such an averaging functor. So we find that ¢, , «[(m — n)A] is right
t-exact, while ¢, ;; 1[—(m — n) A] is left t-exact. These functors coincide by Theorem

2.3.1 (3), so they are 7-exact. O

5.2.3 We now have the following result:

Proposition 5.2.3 (1) There exists a unique t-structure on Whit(g,—mod) compatible
with filtered colimits such that the functors:

tn[nA]

are t-exact.
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(2) With respect to this t-structure, Whit(gc—mod)™* is the (DG) bounded below
derived category DJF(Whil‘(/j,(—modCQ )) of its heart.

Convention 5.2.4 Here we make the decision to always equip Whit="(g,—mod) with
the canonical t-structure on Harish-Chandra modules, i.e., realizing the category as

’g\,(—modl’“/’. This can be confusing, since we need the shifts above for the functors to
be t-exact; but shifting all our t-structures would probably be more confusing.

Using the automorphisms [nA] : Whit="(g,—mod) — Whit="(g,—mod), we
have:

Whit(g,—mod) = colim A]Whitf"@—mod).

n»‘)l,m,![_(m _n)

Therefore, the above result is an immediate consequence of the following plus Lemma
A.8.1 (the Bernstein-Lunts theorem).

Lemma 5.2.5 Suppose i — C; € DGCat oy, is a filtered diagram of cocomplete DG
categories, each equipped with an (accessible) t-structure compatible with filtered
colimits. Suppose every structure functor y; j : C; — C;j is t-exact and admits a
continuous right adjoint ¢; ;.

(1) Then C:=colim; C; admits a unique t-structure such that each y; : ¢; — Cis
t-exact.

+ O\ . . . .

2 Ife’ = DT (C") is the bounded below derived category of its heart for each i,

and if the filtered category indexing our colimit is countable, then Ct = DT (CV).

Proof Step 1. Define a t-structure on € by declaring C=Y to be generated under colimits
by the subcategories wi((‘ffo). It is equivalent to say that ¥ € €= if and only if
i (F) € G,.ZO for all i; here ¢; : € — C; is the (continuous) right adjoint to ;.

We want to show that the functors 1; are t-exact. Clearly they are right z-exact, so
it remains to show left 7-exactness. Suppose F € Gizo; we need to show y; (F) € €0,

It suffices to show ¢;v; (J) € G?O for all indices j. By standard generalities about
filtered co/limits (see [35]), we have:

Qivi(F) = iC_())}E{Elj Vi k(3 e €.

But ¢ 1 (F;) € Gfo by z-exactness, and ¢; x (szo) - G?O because it is right adjoint to
a t-exact functor, so each term in our colimit is in degrees > 0. Since our f-structures
are compatible with filtered colimits, we obtain the claim.

Step 2. Now suppose that (?l.+ = D+(€?) is the bounded below derived category of
its heart. We want to see the same property for C.

Some technical comments first: note that the ¢-structure on C; is right separated
by assumption. By the compatibility of the ¢-structures with filtered colimits, it is
therefore also right complete. It follows formally that the 7-structure on C is right
separated, and again, that it is right complete.

Therefore, it suffices to show that an injective object / in the abelian category €%
is “actually injective” in C, i.e., that the following equivalent conditions are satisfied:
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Home(—, I) : € — Vect® is t-exact.
For F € €%, Home (7, I) € Vect=’.
For F € €%, Home(F, I) € Vect”.

We will do this in what follows.

Step 3. We need some general properties about homological algebra for abelian
categories.

Suppose A and B are Grothendieck abelian categories and F : DT (A) = DT (B) :
G are adjoint with F f-exact. Then recall that G is the derived functor of H 0G) -
B — A, that is, for any injective I € B, G(I) = H(G(I)).

Indeed, for ¥ € A, we have:

Ext) (F, G(I)) = Extiy (F(F), I) = 0 fori > 0.

A standard argument shows as well that HG (1) is injective. Therefore, by the long
exact sequence, 779G (I) = Coker(HY(G (1)) = G(I)) € DT (A) satisfies the above
vanishing as well. But since 7>G (1) is in degrees > 0, the vanishing of positive Exts
is enough to guarantee that it is zero.

Therefore, in our setting, the functors H O(p,',. i G? — @? preserve injective objects,

and; j = H O, j when evaluated on such an object.

Step 4. Now we show that ¢; (1) = H 0((/),- (1)) for every i. (The argument is unfor-
tunately a little indirect.)

Suppose i — j is given. We form the cone:

Coker(gi,; H(¢; (1)) — ¢i (1)) = Coker (¢, ;H’(¢;(1) — ¢i,j¢;(D)
=017 %; (D).
Obviously the last term is in cohomological degrees > 0. Moreover, because
Ho(cpj (1)) is injective in Gj?, the first term (pi’jHO(ng (1)) in our distinguished trian-

gle is in cohomological degree O (by the previous step). Therefore, this is a truncation
sequence, and in particular we have:

HO (g1, jH (9 (1)) = H (@i (D)),
We remark again that HO((p,-,jHO(wj(I))) =@ j H0(<pj (I)). Therefore, the objects
j— H% (1)) defines an object of lim; C; = C (the structure maps in this limit

being the ¢;).
Recall that by filteredness, any object I of € can be written as:

colim v; ¢; (F).
1
Therefore, the object of € constructed above is:

colim y; H(g;(I)) = H' (colim yri¢; (1)) = H(I) = 1.
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This proves the claim.
Step 5. We now conclude the argument. For F € €, we have & = colim; ¥;¢; (F) €
G, so:

Home (¥, I) = lim Home, (i (), I) = limHome, (¢i (F), ¢;i (1)).

Now suppose F € €. Then ¢; (F;) € G?O and @; (1) is injective by the above, so each
term in this limit is in Vect=C. Because this is a countable limit by assumption, the
limit is in Vect=!. But now recall that:

H'(Home (F, 1)) = Exte(F, I) = Extpo(F, 1) =0

by injectivity of I, completing the argument. O

Notation 5.2.6 There is risk for notational confusion in using this ¢-structure: e.g.,
Whit="(g,—mod) continues to denote the adolescent Whittaker category, while
Whit(g,—mod)=" denotes the subcategory of Whit(g,—mod) consisting of objects
cohomologically bounded from above by 7.

5.3 Fiber functor
5.3.1. Observe that we have:

Be—mod

| S

Whit(g,,—mod) Y Vect

where we regard Whit as coinvariants. Indeed, this follows because each functor
C*(Ad_p 50 nllz]], (=) @ =¢) 0bviously60 factors as:

B—mod
\LA"K\
Be—modAd-nion N(O).¥ > Vect.

We will prove Theorem 5.1.1 by an analysis of this functor.

60 Indeed, it suffices to show that the natural transformation Oblv Avf — id induces an isomorphism on this

Lie algebracohomology; (here everything is withrespectto Ad_,, 5,y N (O) andits Lie algebra). It obviously
suffices to prove this statement for Ad _,, 5t n[[#]]-mod in place of gx—mod. Then the Lie algebra cohomol-
ogy functor is corepresented by the trivial representation, so with the twist by the character it is corepresented
by the 1-dimensional module defined by . Since this object lies in Ad_, ;) n[[1]]-mod™**=nsw) N (0¥
and since the forgetful functor from this category to Ad_, ;) n[[z]]-mod is fully-faithful, we obtain the
result.
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Warning 5.3.1 The cohomological shifts can cause a great deal of confusion here. By
the above, for m > n the following diagram commutes:

Whit="(g,—mod) = ’g\,(—modi”"/’ $§K—mod ¥ Vect

\Ltn,m.*

Whit="" (g,—mod) = ’g\,(—modf’""”

obly - w
Y > §,—mod — Vect.

Then recall that in the proof of Theorem 2.1.1, we used cohomological shifts by 2n A
on Whit=" to identify Whit(C):= colimy,, ,, . Whit="(€) with the colimit under the
functors iy, 1.

Therefore, we obtain the commutativity of the following diagram:

. w2
Whit="(g,—mod) g—mod AL vect

\Lln,!
\I/Whit

Whit(g,—mod) Vect.

Oblvy

This is the reason we use the notation WWhit (rather than W): we continue to use the
notation W for the functor Whit="(g,—mod) — Vect obtained by thinking of this
category as Harish-Chandra modules, and then WMt o 1, | = W[—2nA].

(Note that the confusion arises here because we are not adhering to the principle
espoused in Warning 2.2.18).

5.3.2. The main observation is that WWht . Whit(g,—mod) — Vect is canonically
corepresented in a nice way. Heuristically, if we think of the source category as the
category of modules over the W, -algebra, we want to show that it is corepresented by
the projective system {W} },,~¢ from Sect. 4.

5.3.3. To make this idea precise, define "W € Whit=" (g,—mod) as:
ind®™ () ® £"V[nA] € Ge-mod = Whit=" G-mod).

Here (and throughout this section) we are freely using Notation 4.2.2, so £ is shorthand
for a determinant line. We use the same notation for the induced object ¢, y(W7) of
Whit(g,—mod).

We have the following basic properties.

o W Whit(g,—mod)“. Indeed, recall that tn[nA] s t-exact, giving the claim.
e The notation is compatible with Sect. 4 in the sense that:

Wy Whit (/Wﬁ) =W € Vect” C Vect.
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Indeed, this was the definition of the right hand side (we remark that Warning 5.3.1
is important here).

5.3.4. Now observe that in the proof of Theorem 4.6.1, we in effect constructed a
canonical map &y, , : "W — "W2 form > n.
Indeed, in (4.6.1), we produced a map:

ind®: ind® n [ — oy
ind %, im () — ind in(lﬂ) ® " [(m — n)A] € g,—mod
This induces a morphism:

Uy indi’i‘e W)~ Av,;"’*”(indgike ;e 2" [(m — n)A)) € Ge—mod!m V.
(5.3.1)

Note that Avi’”’w is the same as ¢, » here. Therefore, incorporating the determinant
twists and cohomological shifts, and switching to adolescent Whittaker notation, we

obtain:®!

2 W = indiikeim(l/f) ® 0™V mA]
- tn,m,*(indfi”e ; (1) @ m —mA]@ " [mA]

= L”’m’!(indife i W) ® gn,v[_nA])
= tpy.m (W) € Whit=" (g,—mod).

We have the following important fact.

Lemma 5.3.2 The morphism oy, : "W — "W € Whit(g,—mod)® is an epimor-
phism in this abelian category.

Proof Step 1. By t-exactness of t,, |[mA], it suffices to show the corresponding fact
in Whit="" (g,—mod). Tautologically, this reduces to a fact about the morphism o
from (5.3.1).

Observe that both the source and the target have canonical KK filtrations in

’g}—modi mV  We will first verify that the associated graded morphism is an epi-
morphism. Afterwards, we will explain why this suffices to deduce the result (the
issue being that the KK filtration is not bounded from below).
Step 2. We have:
ger indi‘i‘ei W) =0

FiLieis/i, € QCON " (f +Lie I /1),

61 Regarding the arithmetic of cohomological shifts: in the last equality, up to the factor of A we have a
contribution (2m — n) from the previous line; switching from ¢y m x t0 ¢, ,,, 1 means we need to add a shift
by —2(m — n), producing the —n that is displayed.
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As in Remark 3.1.3, we have:

Im

kK Av Y (ind® () @ € [0m — n)A]) = m,(0

f+Lie itnLie i,;/inmim)

form : f+Liel-NLiefs/i, NI, — f+Liel;}/I, the projection; note that the
determinant twist and cohomological shift are absorbed due to the “mild correction”
from loc. cit.

By construction, our map is the canonical adjunction morphism. Because 7 is a
closed embedding by Theorem 3.1.1, this map is an epimorphism as desired.

Step 3. Now we explain why the associated graded map being an isomorphism
suffices.

Let Lo = r9;,. We use the term (Lo + p)-grading to refer to the corresponding
grading on g((r)) induced by taking the diagonal action of G, with respect to loop
rotation and Ad ;). Note that ¢ : I, — kis graded for k being given degree 0: the
point is that < has (Lo + p)-degree 0.

Therefore, indi’i”ei carries a canonical (Lo + p)-grading. The same formally holds

n

for:
Avim Y (ina® () ® " (m — n)A])

and our map «,, ,, is compatible with these gradings.

Obviously it sufﬁces to show a;, ,, is an epimorphism in the case m > 0, since
otherwise m = n = 0. We claim that in this case, for every integer i, the KK filtration
on the ith (Lo + p)-graded component of our modules is bounded from below. This
combined with the corresponding semi-classical statement obviously suffices to show
the surjectivity of the morphism o/, . since it implies it on each graded component.

We show this below.

Step 4. To verify the claim about the (Lo + p)-grading on 1ndg” (), note that

because the KK filtration is compatible with the grading and separated (non -derivedly),
it suffices to show that the (Lo + p)-eigenvalues on ng K 1ndg” (w) are bounded

n,m>

above by some function of i going to —oo as i does.
Recall that:

erf K ind® , (v) = @ Sym (g((1))/ Lie 1)/

where the superscript indicates the (i — j)th graded degree with respect to the —g-
grading.

Below, for « in the root lattice of G, we use the notation |«| for (p, «).

The jth summand above is spanned by elements of the form:

Ca Cay oy S I8
o2 Tk et T T
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where ey, € nis a non-zero vector of weight oy, fg, € b~ is a non-zero vector of
weight —fB¢. (Note that 8, can be a positive root or zero, and in the latter case fy can
be any non-zero vector in t.) That this vector has degree i — j means that:

—ZIWH- Z Bel =i — . (53.2)

L=k+1

Finally, note that:

re > 14 mloyg| ifl<i<k
re>1—m(|Be]l+1) ifk <t <j.

by definition of I m» and the fact that m > 0.
Then the (Lo + p)-degree of an element as above is:

k J
do—retlac+ Y —re— Bl
=1 {=k+1

J

k
<Y —l—(m—=Dlael+ Y —1+@m—DIBl+m

=1 l=k+1
5.8.2)
C2D b m— )G — j)+m(— k)
= (m—1)i — mk.

If m — 1 > 0, then clearly this goes to —oo as i does.

To treat the general case (so additionally allowing m = 1), we need to bound k in
terms of i.

For this, we let o4 denote the longest root of G. We then apply (5.3.2) and the
fact that j > O (by its definition) to obtain:

izi-j=- Zlael-i- Z |Bel = —klotmax -

l=k+1

Therefore:

—k <
|Cmax]|

(safely assuming G is not a torus, so this fraction makes sense).
Applying this above, we find that the (Lo + p) degrees are at most:

(m—1)i —mk < (m—1+ )i

[etmax]
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which does indeed go to —oo0 as i does 62

A similar calculation treats Av* v (mdgK (1//) ® 5" (m — n)A]). We note that

this averaging can be explicitly described as I'(G(K), 8‘” )’ n where 5;# i was

defined in Sect. 2.10, and where the notation indicates that we take global sections
on the loop group with coefficients in this D-module, and take right [ ,-invariant
sections.

O

5.3.5. We have the following key observation.

Proposition 5.3.3 The pro-object {Wi},=0 € Pro(Whit(ge—mod)) canonically
corepresents the functor WWhIt,

Proof By definition, "W! € Whit(g,—mod) corepresents the functor:
F > C*(Lie I, () ® =) @ £"[—nA]l.
Note that this complex maps by restriction of invariants to:

C*(Ad_,, 3 1], () ® =) ® " [—nAl.

If we had a shift by positive n A instead, this in turn would canonically map to W (Li, (F)
by definition of W. As it is, it maps instead to:

W (1 (F)[—-2nA] = WL ().
Passing to the colimit in n, we get a canonical morphism:

colim C* (Lie 1,1, 1}, () ® =) ® £"[~nA] — colim WWNit(,, i} (F)) = wWhit (),
n n

The left hand side is the functor corepresented by our pro-object, so we need to see
that this morphism is an isomorphism.

This is a straightforward verification. By definition of
that for M € g,—mod, the morphism:

wWhit 3¢ suffices to show

colim C*(Lie I, M ® —) ® £"[nA] — W(M)
= colim C*(Ad_ 3 nl[1]]. M ® —y) @ ¢"[nA]

2 Of course, this only makes sense if G is not a torus. In that case, griKK = 0 fori < 0, so the game is
over before it even started.

63 1n other words, the x-twisted D-module & %// . does notdescend to G(K)/ I n because of the presence of

the character . But its underlying quasi—cohey;lerlllt sheaf does descend, and we are taking its global sections
(which will still be acted on by @y ); this is because the exponential D-module has trivial underlying
multiplicative quasi-coherent sheaf.
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is an isomorphism.
In the notation from the proof of Lemma 2.4.1 and using the same method, this
follows from the identity:

colim C*(Lie Iy, M) = C*(Ad_, 3 nll7]], M)
m

forn > 0, whichis a straightforward verification using the fact that h—mod is a co/limit
in the standard way for h a profinite-dimensional Lie algebra. (We have omitted
because this holds for any M € Lie I,,-mod.) O

5.3.6. We obtain the following important consequence of the above results.

Theorem 5.3.4 The functor WMt s t-exact. Its restriction to Whit(g.—mod)™ is con-
servative.

Proof Step 1.By Proposition 5.3.3, Whit i corepresented by the pro-object {! Wi },,>0.
Because each of these objects lies in the heart of the 7-structure, we obtain that W Whit
is left 7-exact.

Now note that Whit(g,—mod) is compactly generated by the objects "W . Indeed,
this follows from the co/limit formalism and the observation that for n > 0,

indfi”ei (1) compactly generates g,—mod Iy (by prounipotence of ).

Since these compact generators lie in Whit(g,—mod)=0, to verify the fact that W is
right 7-exact, it suffices to show that \IJWhit(/ Wi e Vect=". But as we noted before,
this object is W”, which lies in Vect”.

Step 2. Suppose F € Whit(Gc—mod)=? is an object with WWhit(F) e Vect™?.
By right completeness of the ¢-structure on Whit(g,—mod), the conservativeness will
follow if we can show F € Whit(g,—mod)>°.

Because the objects “"W" e Whit(g,—mod)” generate Whit(g,—mod)=’ under
colimits, it suffices so show that:

Homyyhitg, —mod) ( Wi» ) € Vect™

for all n. Clearly this complex is in Vect=", so we need to show that its H? vanishes.
Observe that:

HOHomyyhie g, -mod) ( Wits F) = Homyhieg, -mod)© (Wi, H(5)).
Therefore, by Lemma 5.3.2, the map:
HHomypit g, -mod) (Wit F) = H Homyyyig, —mod) (Wi )

of restriction along «,, ,+1 is injective. Therefore, it suffices to show that the colimit
under n vanishes. But we have:

colim H Homypitg, -mod) (Wi )

= HO(CO}Zim Homyypit(g,—mod) (Wi ) = HOWW"(F) =0
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by assumption, giving the result. O

5.4 Affine Skryabin

We now prove the result with which we began this section.

Proof of Theorem 5.1.1 Step 1. The main step is to compute the heart of our z-structure
on Whit(g,—mod).

We will do this using the following paradigm. Suppose A is a Grothendieck abelian
category and F : A — Vect” is a conservative exact functor that commutes with
colimits.

Recall that endomorphisms of the functor F' can naturally be considered as a pro-
vector space End(F) € Pro(Vect”). To compute it explicitly, take {F;} € A pro-
representing the functor F and then evaluate F () as a pro-vector space. It is standard
that End(F) is a topological chiral algebra and that the canonical functor:

A — End(F)-mod(Vect®)

is an equivalence. (cf. [8] §3.6).

We apply this with A = Whit(g,—mod)® and F = wWhitC . Whit(g,—mod)® —
Vect”. Note that WWhit© js exact and conservative by Theorem 5.3.4. We want to
show the topological chiral algebra defined by this data is W¢*, i.e., the one associated
with the vertex algebra W,..

We have a canonical morphism of topological chiral algebras

W4 — End(wWVht©)

because W%* acts on the cohomologies of W of any object of g,—mod (cf. Sect. 4.4.3).

Therefore, to show that this map is an isomorphism, we just need to show it at the
level of pro-vector spaces. Because {"W!'},,>o corepresents PWhit© End(‘-IJWh”'@) is
the pro-vector space given by:

(ORIt WIY Y S = (W0 = WO

where the last equality is Theorem 4.6.1 (3). Clearly this identification is compatible
with the map above, so we obtain the claim.

Step 2. From here, the theorem is straightforward. By Proposition 5.2.3 (2) and the
above, we have:

Whit(@c—mod)* ~ DT (W,-mod®).
Because Whit(g,—mod) is compactly generated by the objects:
"W e Whit(g,—mod)™

which correspond under this equivalence to Wy e D (W,—mod"), we obtain the
theorem by definition of W,—mod. O
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6 Free-field realization of the generalized vacuum representations
6.1 Overview

6.1.1. In this section, we give another construction of the modules W¢. Though the
construction is interesting in its own right, it also plays a technical role in the proof of
Theorem 7.3.2.

6.1.2. Letk' = —k + keris Let/t\,(/ denote the Heisenberg extension:
0 — k — to — t((1)) = 0.

(This is another name for the Kac-Moody extension associated to «” considered as a

C ..t
symmetric bilinear form for t.) Let V ,» denote the vacuum representation ind tf[/t]] k),
considered as a vertex algebra.

Recall that there is an injective free-field homomorphism:

@ :We = Vi,

that is a map of vertex algebras; its construction is recalled in Sect. 6.2.3. In particular,
this means that any module over t, can be considered as a module over W, by
restriction.

6.1.3. Now letusrevisit the problem from Sect. 4.1. We have the generalized vacuum
representations:

T
V’tl,l(/:z ind,ipp; (K)

of the Heisenberg algebra. We can use these to construct cyclic modules over W, :
Vf’l(, is a W,-module by restriction along ¢, and we can take the sub-W,-module
generated by the canonical vacuum vector in V”’K,.

The main result of this section is:

Theorem 6.1.1 This construction produces W, equipped with its canonical vacuum
vector.

Remark 6.1.2 Note that because we are comparing cyclic modules with preferred gen-
erators, this theorem uniquely characterizes the isomorphism it describes.

The above result is quite useful in practice for computing the modules W in cases
where W, has an explicit description.

64 The correction by kcrir plays an essentially negligible role in what follows; see [22] §10 and [37] for
some explanations why it is needed.
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Example 6.1.3 For g = s, this theorem and the explicit formulae® for ¢ from [18]
§15.4.14 together with the above result allow to recover the explicit description of the
modules W} proposed in this case in Sect. 4.1.

Example 6.1.4 At the critical level k = k¢ri;, this theorem implies that W7 is the
structure sheaf of Opén under Feigin—Frenkel. See Lemma 7.3.3 for more on this.

6.1.4 Proof sketch

The proof of the theorem is based on a straightforward generalization of the map ¢.
Namely, we will construct maps:

. n n
Oy - WK — V{,K/

of W¥-modules. We will show that it is injective and preserves vacuum vectors by
constructing filtrations and computing this map at the associated graded level (recall
that this is how the vacuum vector in W/ was constructed).

Obviously this would suffice to prove the theorem: a generator-preserving injective
map between cyclic modules is an isomorphism.

Remark 6.1.5 (Screening operators?) Dennis Gaitsgory has suggested that ¢, might
be the first map in a resolution of W, as in the n = 0 case (at least in the irrational
and critical level cases, see [21,23]). We record his idea here as a sort-of-conjecture.

6.2 The Wakimoto vertex algebra

6.2.1. The construction of ¢ passes through the theory of Wakimoto modules. Since
we are trying to generalize this construction, we must review these. We also refer the
reader to [22] §10-11 and [29] for some other introductions.

We also use the theory of global sections of D-modules on the loop group, but only
in a minor way. The reader familiar with [2] (cf. also [22] §21 and [37]) will have
more than enough information at hand for these constructions.

Let 7 and /™ denote the Iwahori subgroups defined by B and B~. We then form:

I'(G(K), jxar(@r.1-)

where this pushforward is as a «-twisted D-module. Note that because I - I~ C G(O)
is open (it is jets on the open cell BB ™), the theory of D-modules on the loop group

65 For the reader’s convenience, if L, = —"119; in the Virasoro algebra and h; € ?Z( is defined by the
element t' € k((t)) = t((r)) C ?K (recalling that the Heisenberg algebra has a canonical vector space
splitting, i.e., it is defined by a 2-cocycle), these formulae say:

¢(Ln)= Y thihj:—@+ Dihy
i+j=n

for an appropriate scalar A depending on the level. Here : h;h; : is the normally-ordered product, so /14
if j > i and hjh; otherwise.
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normalizes this object to lie in cohomological degree 0. There is a left action on this
vector space by g, (with the central element acting by the identity), and a commuting
right action by®® §_, 2., -

We define W, as the semi-infinite cohomology:

CF (W () + 6711111, B7(0). T(G(K), juar(@r.1-))
formed with respect to the right action. Because we have the commuting left action,
W, € ge—mod.

Remark 6.2.1 In a suitable sense, this is global sections of the semi-infinite flag vari-
ety FIZ = G(K)/N~(K)T (O) with coefficients in the D-module on it induced by
Jx.dr(@y.1-) € D (G(K)). See [52], where some of these ideas are introduced. (But
I do not mean to suggest that this perspective is especially enlightening.)

There is a canonical morphism:
Vi > Wy (6.2.1)
induced by the composition:
Ve = T(G(K). 86(0)?? — T'(G(K). 86(0))" ¥
— T(G(K), jrar(@-)F @ (6.2.2)

— €% (n7(@) + b7([11, B~(0), T(G(K), juar(@.1-))-

Here §G(0) is the pushforward of wg(p), considered as a x-twisted D-module, and
invariants are for the right actions.

Remark 6.2.2 Factorization shows that W, is a vertex algebra, and V, — W, is a
morphism of vertex algebras.

6.2.2. We now compute W, more explicitly. Note that:
T(G(K), jxar(@r.1-))) = T(N(K), Sn(0)) @ T(B™(K), §5-(0))-

This is compatible with the left action of n((#)) and the right action of /[J\_,(Jrz,(“_”.
(Each of these global sections is usually called a CDO for the respective groups.)
Note that:

C*(n™ (1) + b7 [[z]], B~ (0), T (B™(K), 8p-(0))) = Vi

Indeed, the invariants B~ (O) leave us with a vacuum representation for a central
extension of b((¢)), and the rest of the semi-infinite cohomology reduces us to a
central extension for T (cf. [2] Theorem 5.5).

66 We will only need the action ofE:K+2K "
cri

action of n™ ((r)) + b~ [[¢]], which is substantially easier to construct, will play the main role.

, the induced central extension of b~ ((¢)). Moreover, the
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The calculation of the exact level has to do with finer points about Tate extensions:
we refer to the sources above.%’

So we find W, is isomorphic to a tensor product of the CDO for N and a Heisenberg
algebra; in particular, it lies in cohomological degree zero.

Remark 6.2.3 The morphism V,, — W, is injective: see [29] Theorem 5.1. The argu-
ment is proved by constructing filtrations and passing to the associated graded; we
will essentially reconstruct it (and generalize it) in what follows.

6.2.3 Construction of the free-field homomorphism

Note that:
W(C(N(K),Sn0)) =k

by a similar calculation as above. Therefore, W (W, ) = V¢ .

By functoriality, we obtain the morphism ¢ : W, — V¢ ,+ from (6.2.1). Factor-
ization makes clear that ¢ is a morphism of vertex algebras. As in Remark 6.2.3, one
can show that it is injective using filtrations; this argument will be generalized in what
follows.

6.3 Generalization to higher n

6.3.1.  'We now wish to construct the maps ¢,. We do this through a straightforward
generalization of the above, but adapted to the modules indi”i‘ei (¥) in place of V.

For n > 0, we let S}ﬂ denote the D-module on G(K) given by pushforward from

n

the character sheaf on 1, defined by 1; we normalize it to lie in cohomological degree
0. For n = 0, we let 8}0 be the D-module considered before: the pushforward from
I-1".

Let I, denote B~ (0O) NI, .

Define W7, as the semi-infinite cohomology:

CT (™ (1)) + b7 [[1]]. I, . T(G(K), 5}{))

where the semi-infinite cohomology is again taken with respect to the right action.
Note that W? € g,—mod again.

Writing indi”i‘ei () as I'(G(K), 8;5/ )i n (the invariants being for the right action),

we obtain a map indi’i‘ei (¥) — WY, asin (6.2.2).

67 In[22], there is a potentially frustrating typo in the beginning of §10.2 that might thwart the reader who
turns there: what is denoted «” there should be —« +2«,.;; (the sign is wrong there in the second summand).



‘W-algebras and Whittaker categories Page 67 of 114 46

6.3.2. Let us compute W7 more explicitly.

Let$ i € D, (B~ (K)) denote the pushforward of @ i with a cohomological shift
to put it in the heart of the z-structure.

We use the notation 7, for Ad_, 3,y N(0) = i, N N(K). Let 5}& € D (N(K))

be the pushforward of the character sheaf on I + defined by v/, again normalized to be
in cohomological degree 0.
Then the triangular decomposition 7, = I} - I, readily implies:

[(G(K). 8] ) =T(N(K),8),) @ (B~ (K), 8;-)

compatible with the left n((¢)) and right b actions. Note that:

—k+2Keris
CT (n™ (1) + b7 (111, I, T(B™(K), 8;-))

is V’Z’K,: this follows because Lie 1, N t[£]] = M [e]].

6.3.3 Generalized free-field morphism

Note that:

W, (T(N(K), 8}3)) =k

for W, the Drinfeld-Sokolov functor defined relative to the lattice Lie [ FCn(()), as
in (4.2.2).

Combining this with the above, we obtain W, (W}) = V’,Z’K,. Factorization geom-
etry makes W, (W?) a vertex module for W(W,) = V’,Z,K,, and this isomorphism is
compatible.

6.3.4 Now by functoriality, we obtain the desired map:
. W (ind 8¢ -
©On \/\7?._\11,,(1ndLie i (Y)) = Wy (W)) = V’Z,K/

This is obviously a morphism of W,.-modules by functoriality.
As in Sect. 6.1.4, it remains to show the following.

Lemma 6.3.1 The morphism ¢, is injective and preserves vacuum vectors.

Proof Note that W7 carries a canonical KK (i.e., Kazhdan-Kostant) filtration such
that the morphism from indﬁi”ei (¥ ) is filtered. Indeed, both are derived from the KK
filtration on I' (G (K), 5;5’ ). The resulting filtration on W (W¥) is the PBW filtration on

this Heisenberg module: this follows because t((¢)) has zero — g-grading.
In particular, the KK filtrations on the source and target are both bounded from
below.
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At the associated level, we obtain a morphism:
Fun(O f.41-n ad, 5, 61111/ Ad—npry N(O)) = Fun(Opnyyy)-

It is routine (and similar to the methods from Sect. 4) to see that this map is obtained
by pullback from the Miura transform:

I 22 e Ady ) LT Ad s N(O).

So obviously this map preserves vacuum vectors: they correspond to the constant
function with value 1. Since the filtrations on W} and Vf) . begin in degree 0 with
1-dimensional gr, this implies that ¢, preserves vacuum vectors as well.

Then it remains to show that the Miura transform is dominant. Applying the iso-
morphism ¢ Ad,, 5, we are reduced to the n = 0 case, where it is well-known: over
the open in f + b[[#]]/N (O) corresponding to regular semisimple elements, the map
is finite étale. O

7 Applications
7.1 Overview

In this section, we give some applications of the above results. First, we discuss
how Theorem 5.1.1 provides a systematic framework for understanding exactness
properties of the Drinfeld-Sokolov functor W. Then we give a categorical form of the
Feigin—Frenkel theorem, which is Theorem 7.3.2.

7.2 Exactness results for ¥

7.2.1.  Our main general result is the following.

Theorem 7.2.1 For every n > 0, the functor:

W[—nA] :ﬁ,(—modi"”” — Vect

din,x//,@

is t-exact. Moreover, for every M € g,—mo , the canonical morphism:

HO((M ® ¢)n?y > H™2w (M)

is injective; here £ is a determinant line as before, the superscript I,,, ¥ indicates
invariants, and we included H° o emphasize that these are non-derived invariants.

Proof The exactness follows Theorem 5.3.4 because \IJWhitcn,g = Y[-2nA], and
tn1[nA] is t-exact. The injectivity follows immediately from Lemma 5.3.2.
O
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In the particular case n = 0, we obtain:
Corollary 7.2.2 The functor ¥ : §c—mod®‘?) — Vect is t-exact.

Remark 7.2.3 At critical level, this is a part of [25] Theorem 3.2. At non-critical level
(say for g simple), this follows from Arakawa exactness, cf., below. (The relevant
deduction is the proof of Proposition 2 in [26], although this reference is ostensibly at
critical level.)

7.2.2 Arakawa exactness
We now show how the n = 1 case of the above recovers Arakawa exactness.%®

Let I~ be the negative Iwahori group G(O) xg B™, and let I ~ denote its prounipo-
tent radical G(O) xg N—.

Corollary 7.2.4 (Arakawa exactness) The functor:
W[—A + dim(N)] : Ge—mod -0 1~ 5 Vect

is t-exact.

Remark 7.2.5 This result generalizes [4] Main Theorem 1 (1). First, loc. cit. actually
uses Ad_ ;) [~ instead of its prounipotent radical. Moreover, it assumes that there is
Z-grading given on our modules compatible with the Lo-grading on the Kac-Moody
algebra — the above result removes this restriction (which is only substantial at critical
level).

Proof of Corollary 7.2.4 Recall the main theorem of [6]: for any C acted on by G, the
functor AV!N’W is defined on GV, and AV!N'III = Avi”w[Z dim N]. (This is not how
the authors formulate the result, but the proof goes through using the methods from
the proof of Theorem 2.3.1, which was modeled on [6].)

We can WriteﬁK—modAd—5<’ ' intwo steps, by first taking invariants with respect to
the conjugated first congruence subgroup Ad_ ;) K1, and then invariants with respect
to N~ =Ad_j 7/ Ad_s4 Ky

Therefore, as in Lemma 5.2.1 by Lemmas B.2.2 and B.2.3, this implies that the
functor:

AVY Y [dim N1 : Ge—mod™d-s0 1" — 5, —mod¥

is f-exact. .
Clearly W(M) = W(AVY Y (M) for such M € Ge—mod™4=i0 1™ Since W[—A]
is t-exact on Tj,(—modl 1”/’, we obtain the claim. O

68 The ideas used here can be extended to reprove the main results from [4] and other results from the
representation theory of affine W-algebras. We plan to pursue this in future work.
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7.3 Feigin-Frenkel redux
7.3.1.  We now show a (long® anticipated) version of Feigin—Frenkel duality.

7.3.2. Let G denote the Langlands dual group to G, defined by some choice of Borel
B, maximal torus 7', and Chevalley generators e¢; € n. We obtain Langlands dual data
for é, which we denote similarly.

Note that t = tY, since T and T are dual tori; this identification is compatible
with the natural actions of the Weyl group W. Recall that a level « is the same as a
W -invariant bilinear form on t. Therefore, if « is non-degenerate, then % makes sense
as a level for §: « is a W-invariant isomorphism t >~ t¥, and % is its inverse.

Recall that for « a fixed non-degenerate bilinear form, we can take limits of “many”
constructions as k — 00, i.e., the definitions of the topological enveloping algebra,
and its category of representations, and the W, -algebra, etc., extend naturally over
P!

7.3.3. For k as above, we let & denote the level of § given by:

. 1
Ki=———— + Kerit
K — Kcrit
where in the denominator we are using the critical level for g and in the second term it
is the critical level for §. Note that the map « +> « is involutive and sends s to 0.
The Feigin—Frenkel duality theorem from [20] says:

WQ’K ~ WE;,;Z

as vertex algebras. Here e.g. Wy , is what we were denoting W, before, and the right
hand side is the W-algebra on the Langlands dual side with respect to the Kac-Moody
extension defined by the dual level. This duality theorem makes sense and is defined
in the limit k — oo.

Warning 7.3.1 In truth, I don’t know where in the literature to find this statement:
Feigin and Frenkel only prove it for irrational levels and critical/level co. It seems to
be folklore’? that it is true in this full generality: see e.g. [5] Remark 5.24. We assume
duality holds at all levels in what follows.

7.3.4. We now have the following form of Feigin—Frenkel.

Theorem 7.3.2 (Categorical Feigin—Frenkel duality)
There is a canonical equivalence of categories:

Whit(Ge—mod) ~ Whit(§.—mod).

69 Certainly it was written in [33] from 2007, though it must have been anticipated earlier still.

70 We learned an argument deducing the general duality theorem from the generic version from Edward
Frenkel.
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Here Whit on one side is with respect to N (K), and on the other side is with respect
to N(K).

To prove this, observe that we have an equivalence of abelian categories
Wg,,(—mod@ ~~ \/\7@7,;—m0d(9 coming from usual Feigin—Frenkel. This fact com-
bined with affine Skryabin (Theorem 5.1.1) gives Theorem 7.3.2 on bounded below
derived categories. To deduce all of Theorem 7.3.2, we need to match the compact
generators under this equivalence. This follows from:

Lemma 7.3.3 Under Feigin—Frenkel duality, there is a unique isomorphism:
WE,K ~ Wg P
preserving vacuum vectors and compatible with Feigin—Frenkel duality.

Proof The basic property satisfied by Feigin—Frenkel is that the diagram:

g.%

Pt

~
Vismros —> Vi
K=Kerit

commutes, where the bottom arrow is the obvious isomorphism.
Therefore, this compatibility follows from Theorem 6.1.1. O

Remark 7.3.4 We are constantly neglecting twists involving forms on the disc by hav-
ing chosen our dt. Of course, it is better to incorporate these twists systematically
as in [52] §2. They come out in the wash: Whittaker is properly defined with twists
incorporated, as is this category of Kac-Moody representations, as is Feigin—Frenkel
duality.

7.3.5 Critical level

For k = k.rit, the above gives:

Corollary 7.3.5 There is an equivalence:""

Whit(Geri—mod) ~ QCoh(Op (D))

Jor Opg (Zo)) = (f + b((¢)))dt/N(K) the indscheme of opers on the punctured disc.

For n > 0, the subcategory Whit="(g.,i;;—mod) < Whit(g.,i;—mod) is the sub-
category of quasi-coherent sheaves set-theoretically supported on Opg", i.e., the
subscheme of opers with singularities of order < n.

71 Since Opé (ﬁ) is an ind-pro affine space, IndCoh defined in any sense coincides with QCoh.
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The only thing still to explain is the calculation of Whit=". This follows because we

know Whit="(g,,i;;—mod) is compactly generated by L”’!(indﬁ:} (1)), which goes
under this equivalence to \IfWhit(indEi‘: ‘I (¥)). Up to shift and determinant twist, this

is the structure sheaf of Opén by Lemma 7.3.3.
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Appendix A: Filtrations, Harish-Chandra modules, and semi-infinite
cohomology

A.1 Overview

A.1.1. Inthis appendix, we give a slightly non-standard construction of the (quantum)
Drinfeld-Sokolov reduction ¥ : g,—mod — Vect, and discuss its compatibility with
various filtrations. This material supports the calculations of Sect. 4.

A.1.2. The treatment we give here is quite lengthy, but this does not reflect the
seriousness of the contents. There is a small number of ideas, and we summarize them
here as themes to keep an eye towards:

e Recall that the Drinfeld-Sokolov functoris defined as M +— C? (@), n[[t]], M®
(—v)), where C7 is the semi-infinite cohomology functor. This functor should
be thought of as “cohomology along n[[#]] and homology along n((¢))/n[[¢]],”
although this does not quite make sense. Here we recall that cohomology is well-
behaved’? for pro-finite dimensional Lie algebras, while homology is well-behaved
for “discrete” Lie algebras (i.e., non-topologized ones).

We give a slightly non-standard treatment of this semi-infinite cohomology functor,
avoiding irrelevant Clifford algebras. Rather, we define:

CT (n(()). nll]]. —):=colim C*(Ad_p 3¢ nlle]], 5 [dim(Ad 5 nllz1]/nll21D].

Here we recall that for finite-dimensional Lie algebras, Lie algebra cohomology
and homology differ by a determinant twist and cohomological shift, so satisfy both
covariant and contravariant functoriality (up to these twists and shifts) with respect
to the Lie algebra. There is a relic of this for Lie algebra cohomology for profinite-
dimensional Lie algebras, giving the structure morphisms in the above colimit.
(So in fact, we should have included a twist by the line det(Ad_, 5, n[[¢]1]/n[[£]1])
to make the above structure maps canonical.)

So much attention is paid to the construction of such morphisms.

72 E, g., continuous, at least for an appropriate definition of the source category.
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e The other major theme is filtrations.

The first question is given a (PBW) filtered module over a Lie algebra, how is
its co/homology filtered? What is its associated graded?

But there is a more subtle point in working with (finite or affine) W-algebras:
one would like the associated graded of a 1-dimensional module corresponding to
a character ¥ of n (or similarly for n((z))) to be the skyscraper sheaf at 1 € n"
in QCoh(nY) = Sym(n)-mod = gr, U (n)-mod. However, this is impossible: it
is a graded module, so must be at the origin in n".

The (standard) solution to this problem is the Kazhdan-Kostant method, which
twists the filtration using p : G, — T. This is the only canonical way of obtaining
(non-derived) filtrations on W-algebras.

Finally, we emphasize the relationship between the PBW and Kazhdan-Kostant
filtrations using bifiltrations; this material is used in Sect. 4 to settle a subtle
homological algebra point regarding some Kazhdan-Kostant filtrations.

Each of these amount to completely elementary constructions and statements about
Lie algebra co/homology, and its relation to Harish-Chandra conditions.

The reason this section is so long is rather out of a commitment to develop the theory
with an emphasis on the categorical aspects. A primary reason for this is because,
following [24], the derived category of g[[#]] or g((z))-modules is subtle, and is better
to understand through categories than (topological) algebras. One thing this requires,
however, is some general formalism for working with filtrations on categories rather
than on algebras and their modules.

This section also renders the theory in the IndCoh formalism of [42]. It has the
advantage that it provides a robust framework for Lie algebra cohomology that does
not rely on explicit formulae. But this accounts for some portion of the length: we
have explained some elementary points in detail, in the hopes that this is instructive
for understanding the formalism. We also hope that an IndCoh treatment gives the
feeling why things are the way they are, and that they could never have been another
way.

Finally, we advise the reader to look to Sect. 4.2.4, where we give another summary
of what is actually needed from this section, which should also help identify what is
most important here.

A.2 Filtrations

A.2.1. We begin with some abstract language about filtrations.

Definition A.2.1 Let C € DGCat,,,; be given. A filtration on € is a datum of Ce
QCoh(A}z /G)—mod plus an isomorphism:

C~File ® QCoh((A}\0)/Gy,) = ®  Vect.
QCoh(A}/G) QCoh(A}/Gu)
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Here A;z is Al with coordinate %, and G, acts by inverse’> homotheties.

An object of Fil C is called a filtered object of C. Note that there is a canonical
restriction functor Fil © — €. For F € C, we refer to an extension F of F to Fil C as a
filtration on &F.

We say a morphism F : C — D between filtered categories is filtered if we are
given the data of Fil F : FilC — Fil D a QCoh(A}1 /G;;)-linear functor.

In the language of [38], we would say Fil C is a sheaf of categories over Alh /Gy
with fiber C at the open point of this stack.

Notation A.2.2 For a filtered category’* C as above, we let G denote the fiber of Fil @
at 0; it is called the associated semi-classical category. Note that G, acts weakly on
€. For F e C filtered, we let gr, F denote the induced object of €/, obtained by
taking the fiber at & = 0. Note that gr, (F) comes from an object of €-Cm ¥ which
we also denote by gr, (¥). For a filtered functor F : ¢ — D, we obtain a functor
Fe . el — D which we refer to as the corresponding semi-classical functor.

Example A.2.3 Vect is canonically filtered, with Fil Vect:=QCoh(A} /G,,).” In this
case, a filtered object is a G, -representation with a degree 1 endomorphism. A G-
representation is the same as a Z-graded vector space, and we suggestively denote the
nth term of this graded vector space as F}, (V). Then our degree 1 endomorphism is a
sequence of maps F,, (V) — F,41(V).

The induced object of Vect is obtained by inverting this degree 1 endomorphism 7
and taking the degree 0 component: this is computed as the colimit V:= colim,, F,, (V).
(So in this formalism, filtrations are by definition exhaustive.) We compute gr V by
taking the cokernel of & acting on &, F,,V, which is &, Coker(F,,—1V — F,V).In
this example, we let gr,, V denote the nth summand.

Example A.2.4 The above example generalizes to general C in place of Vect: it has
a canonical filtration defined by the category C ® QCOh(A}L /G,,), and the above
calculations render as is. We refer to this as the constant filtration on C.

Example A.2.5 For A a filtered associative DG algebra, the Rees construction provides
an algebra object Ay € QCoh(A}1 /G,,) with generic fiber A. Then the category
Fil A-mod:=A;-mod(QCoh(A} /G,,)) provides a filtration on A-mod. Note that
A-mod is the DG category of gr, A-modules. The induced functor A—-mod — Vect
is canonically filtered.

Example A.2.6 Suppose C carries a weak action of G,,. Then we define:

File:=C®» @ QCoh(A}/G,).
Rep(G)?l)

73 This is so that i € F(A;i, ] Al ) has weight 1 with respect to the G, -action: we remind that when a
h

group acts on a scheme, there is an inverse sign in the formula for the induced action on the algebra of
functions.

74 We use this terminology, even though our categories are always of a special type: DG and cocomplete.

75 So we can rewrite the original definition more evocatively by saying that a filtered category is a Fil Vect-
module category (in DGCatcopz-
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Here Rep(G,,) acts on each of these categories as on any weak G,,-invariants. This
tensor product is considered as acted on by QCoh(A}i /G,,) in the obvious way. Note
that this really does define a filtration on €, and that there is a canonical functor
eGm-w s Fil @, given by exterior product with the structure sheaf of A}i /G-

Concretely, suppose that C = A-mod for A = @;c7A’ a Z-graded algebra. Note
that A inherits a filtration from its grading: set F;A = @ jfl-Aj .76 Then Fil A—-mod
is the DG category of filtered modules over this filtered algebra. In this case, functor
A-mod®"* — Fil A-mod takes a graded module and creates a filtered one using
the same construction as above.

A.2.2.  We will use the following terminology in what follows: a filtered vector
space F,V is bounded from below if for all i <« 0, F;V = 0. Note that the functor
gr, : FilVect — Vect is conservative when restricted to the subcategory of filtered
vector spaces with bounded below filtrations.”’

A.3 Finite-dimensional setting

A3.1.  Our formalism for semi-infinite cohomology will be built from the finite-
dimensional setting, so we spend a while discussing this case.
We fix h € Vect” a finite-dimensional Lie algebra.

A.3.2. The’® PBW filtration on U (h) defines a filtration on h—-mod with f)—modd =
QCoh(h").

Here is a more geometric perspective. Let exp(h) denote the formal group asso-
ciated with h. Recall that h—-mod = IndCoh(B exp(h)) so that the forgetful functor
corresponds to !-pullback to a point.

We have an induced family by, of Lie algebras over A}L givenby h ® O AL with the
bracket given by / times the bracket coming from §. This family is obviously G, -
equivariant, so defines Fil i a Lie algebra over A}i /Gyy,. The generic fiber of Fil by is b,
and special fiber is the vector space l) equipped with the abelian Lie algebra structure.
We remark that the latter abelian Lie algebra has underlying formal group b}, that is,
the formal completion at O of the vector space h; we use this notation at various points
to emphasize the abelian nature.

Therefore, we obtain Fil h—-mod:=IndCoh(B exp(Fil h)), which is a filtration on
h—mod. Note that the “special fiber” h—mod< is IndCoh(Bbh) = Sym(h)-mod =
QCoh(h").

Warning A.3.1 For obvious reasons, we prefer to think of IndCoh(Bb}) as QCoh(h"),
remembering that this category actually arises from the classifying space of a com-
mutative formal group. Part of remembering this means internalizing that a duality

76 Geometrically, this construction amounts to pullback along the map A}i /Gy — BGy,.

77 Although boundedness from below does not make sense for an arbitrary filtered category, (derived)
completeness of a filtration does. However, we will not use this notion in any significant level of generality,
remarking only that it is not so straightforward to verify in many of our examples.

8 Personally, I find the discussion that follows to be not so interesting, but its Harish-Chandra generalization
(which we will discuss next) to at least be somewhat clarifying.
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occurs in this transition, so various pullbacks and pushforwards get swapped. For
example, the fiber functor Sym(h)-mod — Vect (which corresponds to !-pullback
Spec(k) — ]Bh(/)\) goes to global sections QCoh(hY) — Vect.

Example A.3.2 U (b) is filtered, and its associated graded is the structure sheaf of h".

Warning A.3.3 The construction h +— Fil h has some subtleties. We can rewrite its
output: Filh € LieAIg(QCoh(A}L /Gyy,)) is the same as a filtration on f plus a Lie bracket
on that filtered vector space extending the one on f. In our case, the filtrationis ;) = 0
fori < Oand F;f) = hfori > 0, so that the bracket [—, —] : F;h ® F;h — Fiy;b
happens to factor through F; 1 ;1§ (so that gr, fj is abelian, as we expect). In particular,
h=gr b

This is slightly confusing for h being abelian: since the generic and special fibers
are the same, it is easy to wrongly confuse this filtration with the constant one.

A.3.3. Now recall that the functor:
Co(h, —) : b—-mod — Vect

corresponds to the IndCoh-pushforward functor for B exp(h). Therefore, we see that
this functor is naturally filtered, i.e., it extends to give Fil h—-mod — Fil Vect. Note
that the corresponding semi-classical functor QCoh(hY) — Vect is #-restriction to 0.

Remark A.3.4 Say FeM € Filh—-mod, and for simplicity let us assume M is in the

heart of the 7-structure and that F; M — F;;1 M. Recall that C,(h, M) is computed
by the complex:

o> AHOM 5> h QM > M —> 00— 0— ...
with appropriate differentials. Then the resulting filtration on C4 (), M) has F;-term:
o> AH® FioM > Y Q FiiM — FEM — 00— 0 — ...

A.3.4. Moreover, recall that wpexp(n) is compact, as is its extension wp exp(Fil h)'79

Note that wp exp(py) corresponds to the trivial representation in h—mod. Therefore,
the functor:

C*(h, —) : hb—-mod — Vect

of Lie algebra cohomology has a canonical filtered structure with graded QCoh(h“) —

Vect given by the (QCoh, !)-pullback to 0 € Y, i.e., the (continuous) right adjoint to
the pushforward functor from 0.

79 This uses our assumptions on h in a serious way. We recall that the standard filtration on @ of any formal
prestack (“with deformation theory” in the [42] sense) gives a bounded free resolution in this case. This
corresponds to the standard resolution of the trivial module for U (h) (or its Rees algebra).
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Remark A.3.5 We retain the notation of Remark A.3.4. Recall that C*(h, M) is com-
puted by the complex:

o> 0> MM —> A QM —> ...
with appropriate differentials. Then the resulting filtration on C*(fh, M) has F;-term:
o> 0> FM > 5 @ FylM — A%)Y ® FiuoM — ...

Note that (unlike the case of Lie algebra homology) even if the filtration on M has
F_1M =0, we may not have F_1C*(h, M) = O (though F_ 4imp—1C*(h, M) will be
Zero).

A.3.5. We now recall the following fact.

Lemma A.3.6 There is a canonical isomorphism of functors:

C*(h, (—) ® det(h)[dim b]) =~ Co(h, —).

Moreover, suppose that we regard det(h)[dimb] as a filtered bh-module with
Faimp—i—1 det(h)[dimb] = 0 and Fgim i det(h)[dimb] = det(h)[dim b] for all
i > 0. Then this isomorphism extends to an isomorphism of filtered functors, g induc-
ing the usual isomorphism-up-to-twist-and-shift between * and -restriction to the
point 0 € hY.

Proof Recall that for any M € h—mod (possibly non-filtered), C*(h, M) has a canon-
ical filtration F' .Ch"”C’(b, M) (indexed by non-positive integers but bounded below)
with grffe" C*HyM)=MQ® Aihv[—i]. Similarly, the functor of !-restriction along
0 <> b has a filtration with the same associated graded. One immediately sees that
these “glue”: C*(h, —) has a canonical filtration considered as a filtered functor.

In particular, we obtain a natural transformation of filtered functors h—-mod —
Vect:

(=) ® det(h) [~ dim h] — C*(h, -)

where on the left hand side det(h)” [— dim b] is equipped with the filtration with one
jump in degree — dim k. Evaluating this on U (f), we claim that the composition:

det(h)V[—dim b] — U(h) ® det(h)'[—dimh] — C*(h, U(H))

is an isomorphism of filtered complexes. Indeed, it suffices to check this at the asso-
ciated graded level, where the claim is standard.

Then observe that using the (filtered) bimodule structure on U (h), C*(h, U (h)) can
actually be considered as a filtered h-module. We claim that the above computation is
true with this extra structure, considering det(h)" as an h-module in the obvious way.
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Indeed, considering U (h) as a filtered h-module via the right action, the morphism:

U(h) ® det(h) ‘[~ dim h] — C*(h, U(h))

is a tautologically a morphism of filtered h-modules. Moreover, by a standard argu-
ment, this is also true if we consider U (h) as a filtered h-module via the adjoint action.
This shows the claim.

Now observe that by usual Morita theory, the datum of C*®(h, U (h)) as a filtered
h-module completely is equivalent to the datum of the filtered functor C*. So the result
follows from the observation that:

C*(h, U(h) ® det(h)[dim b]) = k = C.(h, U (h))

as filtered h-modules. O

Remark A.3.7 From the perspective of usual complexes: for M a complex of b-
modules, Lie algebra homology is M ® A®h with the appropriate grading and
differential, while cohomology is M ® A®h". Noting that A’ = det(h) ® A4mb—ipV
and matching up the differentials and gradings then gives the claim.

Remark A.3.8 This isomorphism amounts to the calculation of C*(U (h)) as a filtered
complex acted on by b (using the bimodule structure on U (h)). Since the claim is that
the result is 1-dimensional in some cohomological degree with filtration jumping in
one degree, the isomorphism above is easy to pin down uniquely.

A.3.6. We also observe that the above generalizes in the natural way to the setting of
a morphism h; — by between (finite-dimensional, non-derived) Lie algebras. Here
generalizing means that we obtain the previous discussion by considering the structure
map h — 0.

We draw attention to the following consequence of Lemma A.3.6 in this setting,
which will play an important role in what follows. Let indgf : h—-mod — hr-mod

denote the left adjoint to the forgetful functor. Note that by realizing ind?ﬁ asalndCoh-
pushforward, we find that it is naturally filtered with semi-classical functor the quasi-
coherent pullback along hy — by .

Corollary A.3.9 There is a canonical isomorphism of filtered functors:

C* (b2, ind}? (=) @ det(ha/h)ldim b/b11) ) = C*(hn, ).

Here det(h/h1)[dim b2 /1] is considered as trivially filtered with a single jump in
degree 2 /b1.

Remark A.3.10 If h; — b, is not injective, the quotient above should be replaced by
the cone.
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A.3.7 Harish-Chandra setting

Now suppose that (h, K) is a finite-dimensional Harish-Chandra pair, so b is as above,
K is an affine algebraic group acting on h, and we are given a K -equivariant morphism
Lie(K)=:t — b.

Recall that a group always acts trivially on its classifying stack. Therefore, the
induced action of K on B exp(f) factors through an action of K g on B exp(h). Using
somewhat strange notation, we let® B(h, K) denote the quotient Bexp(h)/ K gr. We
let h—mod*X denote IndCoh(B exp(h)/ K 4r), noting that this category is tautologically
the K -equivariant category for the induced strong action of K on h—mod.

Example A.3.11 For the Harish-Chandra pair (¢, K), we obtain B(¢, K) = BK.

Example A.3.12 Note that the projection map Spec(k) — B(f, K) defines a group
(h, K) whose classifying stack is as notated. If h = Lie(H) for K € H, then (b, K)
is the formal completion of K in H.

A3.8. Now we recall that for any ind-affine nil-isomorphism f : X — Y of
prestacks, [42] §1V.5.2 associates a deformation of this map, i.e., a prestack Y5 over
A%/Gm and an A},L/Gm-morphism X x A%/Gm — Yp giving f over the generic
point.

For example, for Spec(k) — Bexp(h), we obtain the deformation BFilh corre-
sponding to the PBW filtration.

For a Harish-Chandra datum as above, we obtain a deformation BFil (h, K) asso-
ciated with the map BK — B(h, K). The special fiber of this deformation is
(B(h/®)y)/K, where we note that (h/8)} is®! exp(h/€) with /¢ considered as an
abelian Lie algebra.

Therefore, we obtain a filtration on h-modX with p-mod® </ = QCoh((h/8)"/K).

Example A.3.13 When ¢ = b, this is the constant filtration on Rep(K) (in the sense
of Example A.2.4).

A.3.9. From now on, we assume £ — 0 is injective.

A.3.10. IndCoh pushforward and pullback along the ind-affine nil-isomorphism
BK — B(h, K) induces a pair of adjoint functors:

ind = ind} : Rep(K) = h-mod* : Oblv .

These functors are evidently compatible with filtrations. At the semi-classical level,
they induce the adjunction:

Rep(K) = QCoh((h/®)"/K)

80 We do not include exp in the notation because we believe that with the comma, there is no risk for
confusing the vector space underlying ) and its associated formal group, the way there could be in the
notation Bh.

81 We will not need this in practice, but if € — b is not injective, then h/€ should be considered as a
complex and understood as the cone; the corresponding scheme should be understood in the usual sense.
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given by pullback and pushforward along the structure map (h/€)V/K — BK.

In particular, we find that h—-modX admits a canonical 7-structure for which Oblv :
h—-modX — Rep(K) is t-exact, and that the functor ind is #-exact for this 7-structure
as well.

A.3.11.  We focus on the case of Harish-Chandra cohomology.

Using the standard resolution of wpp, ) induced by the ind-affine nil-isomorphism
BK — B(h, K), we find that wpy, k) is compact. Moreover, this compactness remains
true (for the same reason) for wgFil (p, x)-

Therefore, mapping out of it defines a filtered functor:

C*(h, K, —) : b-modX — Vect.

On associated, graded, this functor is given by taking !-restriction along 0/K
(h/8)V/K, and then global sections (i.e., group cohomology for K).

Example A.3.14 1f ¢ = h, then C* (¢, K, —) computes group cohomology t-modX =
Rep(K) — Vect. The filtration on this functor is the constant one.

Example A.3.15 If K is unipotent, then C*(h, K, —) coincides with C*(fh, —) (com-
posed with the forgetful functor h-mod®X — h-mod). However, the filtered structures
are substantially affected by the presence of K, as can be seen e.g. by looking at the
semi-classical level.

Remark A.3.16 We explain the above constructions using usual complexes. Suppose
for simplicity that K is unipotent, so C*(h, K, —) = C*(h, —) as a non-filtered
functor. In the notation of Remark A.3.4, the filtration F, M is a filtration in h—modK
if the F;M are K-submodules of M, i.e., if it induces a filtration on the image of
M € t-modX = Rep(K).

In this case, we obtain a filtration on the cohomological Chevalley complex with
ith term:

.5 0> FM—> h/DVQF M+b @ FM
— A*(h/8)Y ® FipaM + (h/8)Y AbY @ FiiM + A*hY @ F;M — ...

A3.12.  We now give versions of Corollary A.3.9 in this setting.

Lemma A.3.17 Let ind denote the induction functor Rep(K) — b—modK. There is a
canonical isomorphism:

C'(b, K, ind ((—) ® det(h/K)[dim b/E])) = C*(K,—) : Rep(K) — Vect

of filtered functors. As before, det(h/€)[dim h/¥€]) is filtered with a single jump in
degree dim /€.
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Proof The proof is similar to Lemma A.3.6: we need to evaluate both sides on the
regular representation®” O and consider the result as a filtered K-module. For the
right hand side, we obtain the trivial representation (in cohomological degree 0, with
the filtration jumping only in degree 0).

Then one calculates C*(h, K, ind Og) as det(h/€)Y [— dim b /€] using standard fil-
trations as in Lemma A.3.6, which gives the claim. Here we note that for C*(h, K, —)
(considered merely as a filtered functor) the standard filtration has associated graded:

gr ;C*(h, K, —) = C*(K, (=) @ A (h/&)"[—i]).
]

Suppose now that (h1, K) — (h2, K) is a morphism of Harish-Chandra pairs.
Note that IndCoh pushforward defines a functor indgf : hi-modX — hr-modX
compatible with forgetful functors and satisfying similar properties as before.

We have the following generalization of Lemma A.3.17.

Lemma A.3.18 There is a canonical isomorphism of filtered functors:

C* (1, K, indy? ((—) ® det(ha/h)(dim ba/h11)
=C*(h1, K, —) : h1-modX — Vect.

As before, det(hy/h1)[dim ho/b1] is filtered with a single jump in degree dim b /0.

The argument is similar to those that preceded it, so we omit it.

A.3.13 Group actions on filtered categories

We now put the above into a more conceptual framework whose perspective will be
convenient at some points. We essentially rewrite the above using a version of the
theory of group actions on categories.

Associated with the ind-affine nil-isomorphism, K — K4 one has the deformation
Fil K4r, which is a relative group®® prestack over A;‘z /G, with generic fiber K r and
special fiber K x BE). Note that because £ is a commutative formal group, Bt
actually is a commutative group prestack (acted on by K).

Observe that we have a fiber sequence of relative groups:

1 — exp(Filt) — Fil K — Fil Kgg — 1 (A3.1)
where Fil K just means K x A%/Gm.

Note that the usual convolution monoidal structure makes IndCoh(Fil K ;g) €
Alg(QCoh(A} /Gy,)-mod).

82 We are lazily not distinguishing between O g considered as a sheaf and its global sections.

83 One way to see that the deformation formalism from [42] forces a (relative) group structure is to instead
work with the classifying prestacks.
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Definition A.3.19 Let C be a filtered category. A (strong) action of K on FilC is a
IndCoh(Fil K;r)-module structure on Fil C € QCoh(A}IL/(Grm)—mod.84

Warning A.3.20 There is a redundancy in the terminology: K acts on Fil € could
wrongly be understood to mean that Fil C € DGCat,,p is a D(K)-module category.
However, we are confident that there is no risk for confusion in our use of the above
terminology: the meaning is completely determined by whether or not there is a Fil in
front of what is acted upon.

We also note that there is no such risk for weak actions, i.e., if K acts on Fil €, then
K acts weakly on Fil € in the sense that Fil C is a QCoh(K)-module category.

Note that if K acts on Fil C, then K in particular acts on C (in the usual sense).

Moreover, ! receives an action of IndCoh(K x BE). This is equivalent to saying
that QCoh(£") (with the usual symmetric monoidal structure) acts on e, and K acts
weakly on G, and these two actions are compatible under the adjoint action of K on
£V In particular, X% may be thought of as a sheaf of categories on £ /K.

Using the “trivial” action of K on Fil Vect as a filtered category, we obtain an
invariants and coinvariants formalism. By the same arguments as in [10] §2, the two
are canonically identified.

In particular, we obtain a filtration on €KX with €K</ = (@ ® Vect)K-»,

QCoh(¢v)
where QCoh(£¥) acts on Vect through the restriction to O functor. Geometrically, this
means we take our sheaf of categories on £¥ /K, restrict to 0/ K, and then take global
sections.

The adjoint functors Oblv : CX = € : Av, carry natural filtrations. semi-
classically, Oblv*! is the functor:

el @ Ve)Kw el @  Vect — e
QCoh(tY) QCoh(eY)

where the first functor is forgetting and the second is *-pushforward along 0 < £¥. Of
course, the semi-clclassical Avff is the right adjoint to the functor we just described:
I-pullback 0 < £¥ and then *-pushforward to BK .

Example A.3.21 We can reformulate some of our earlier constructions in saying that
K acts on Fil h-mod for a Harish-Chandra pair (), K). The associated filtration on
h—modX is our earlier one.

A.4 Derived categories

The following result will play an important role for us, but may be skipped at first
pass.

Lemma A.4.1 (Bernstein-Lunts, [12]) b—modK is the derived category of its heart.
(Here we continue to assume € — 0y is injective.)

84 One may work equivalently with co-actions by duality. This has the advantage that one may equate
IndCoh with QCoh using formal smoothness, and then at least try to forget IndCoh.
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Proof If £ — b is an isomorphism, then h-mod®X = Rep(K), and this is a general
property about algebraic stacks (see e.g. [32] Proposition 5.4.3).

In general, we have a r-exact forgetful functor Oblv : f)—modK — Rep(K).
Moreover, this functor admits a left adjoint ind, geometrically given by IndCoh-
pushforward.

Now observe that our hypothesis implies that the tangent complex of the morphism
BK — B(h, K) is concentrated in cohomological degree 0: it is j/€ considered as
a K-representation. Therefore, the monad Oblv oind has a standard filtration with
associated graded given by tensoring with Sym(l/€), so in particular, this monad is
t-exact. Since Oblyv is f-exact, we find that ind is as well.

Therefore, we obtain a similar pair of adjoint functors between D(Rep(K)®) =
Rep(K) and D(h—modK’O). Both forgetful functors b—modK — Rep(K) and
D(h—modK 9y > Rep(K) are conservative and commute with colimits, so are
monadic. Then we observe that the monads on Rep(K) are naturally identified, giving
the claim.

O

A.5 Kazhdan-Kostant twists

A.5.1.  We now discuss how to render the standard solution to a standard problem in
our framework.

We begin by describing the issue. Suppose g and n are as usual, and ¢ : n — k
is a non-degenerate character. We choose G-equivariant symmetric g >~ g and take
f € g = gV the principal nilpotent mapping to ¥ € n".

Recall that W/i"_mod ~ g—modN "/’, and that W/ is filtered with associated
graded being the algebra of functions on f + b/N. In particular, C*(n, (—¢) ®
indf (¥)) is filtered with associated graded being this algebra of functions.

However, this filtration is not induced by the obvious PBW filtration on ind§ (/).
Indeed, suppose more generally that M is any (PBW) filtered n-module. Then the
induced filtration on M ® — has the same associated graded as M. (So in the case
above, we will see the DG algebra I'(b/N, Oy, y) instead.)

The issue is with the filtration on the 1-dimensional representation ¥: jumping
in a single degree, its associated graded is going to be the augmentation module of
Sym(n). In other words, its associated graded will be a G,,-equivariant quasi-coherent
sheaf on n", so it must be the skyscraper at the origin, though we would rather see the
skyscraper at ¢ € n".

The solution® to this problem is to use / to modify the filtration on U (n), so that
its associated graded is again Sym(n) (but with a modified grading!), and the module
¥ is filtered with associated graded being the skyscraper at ¥ € n"” instead. Namely,
we set:

Ffumy = F5Yumnumy’
J

U :={x € Um) | Ad_j)(x) = 27 - x).

85 Essentially introduced, I believe, in [44] §1, where it is attributed to Kazhdan.
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We emphasize that the grading used here is induced by —g : G,, — G?, not p itself
(so n is negatively graded). For example, fori € Zg, ¢; € FOK KU (n), and for « a
general root, ey, € FlK_ I((ﬁﬁa)U (n).

One has a similar filtration on U (g). Moreover, these filtrations naturally induce
the “correct” filtration on W/?" (e.g., it is a filtration in the abelian category, not just
the derived category).

Our present goal is to render the above ideas in the categorical framework. We
will begin by discussing some generalities, and then apply these to the example of
Harish-Chandra modules.

Warning A.5.1 We immediately see that Kazhdan-Kostant filtrations are typically
unbounded from below and are not complete filtrations. This causes some technical
problems (e.g., in Sect. 4), and requires care.

A.5.2.  'We begin by discussing how to twist a filtration by a grading to obtain a new
filtration. Motivated by our particular concerns, we use the notation PBW to indicate
an “old” filtration and KK to indicate a “new” filtration.

So suppose that FFBWV < FilRep(G,,), i.e., V is equipped with a grading
V = @;V/ and a filtration FF'BW'V as a graded vector space, so we have a grading
FPBVY = @;F'BWVJ compatible with varying i in the natural sense.

Then we can twist the filtration FFBW by the grading to obtain the filtration:

FfEv =@ FPEVYI
J

as before.

Here is a geometric interpretation. Recall that a filtered vector space is the same as
a quasi-coherent sheaf on A}i /G,,. The data of a compatible filtration and grading as
above is equivalent to a quasi-coherent sheaf on A}.L /G, x BG,,, where we recover
the underlying filtered vector space by pulling back along the first projection.

Formation of the KK filtration corresponds to pulling back along the graph of the
projection A} /G,, — BG,, instead.

In either perspective, we immediately find that:

oKV =@ a5 V.
J

That is, grf(

K'v = grPBW v as vector spaces, although the gradings are different.
A.5.3.  We now give a categorical version of the above.
Suppose € is a filtered category. We use the notation Fil”ZW @ for the underlying
QCoh(A}z /Gy,)-module category, since we wish to construct another filtration on C.
The extra data we need is an action of QCoh(G,,) (with its convolution monoidal
structure) on Fil”2W € commuting with the QCoh(A} /G,,). In this case, we can again
twist our filtration by this action in forming:

FilKK @:=FilPBW Cm.w ® QCoh(A}/Gy,)
QCOh(A]h/Gm)(@Rep(Gm)
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where the action on the right term is induced by the symmetric monoidal functor:
QCoh(A}/G,,) ® Rep(G,,) — QCoh(A}/G,)

of pullback along the graph of the structure map A}L /G — BGy,.

More geometrically: we are given the datum of a sheaf of categories on A}i /Gy x
BG,,, and we observe that we can form fwo filtered categories from it, via pullback
along the maps:

idxp,T:AL/G, — Al /G, x BG,,

where p : Spec(k) — BG,, is the tautological projection, and I is the graph of the
structure map as above. These two maps coincide over the open point A%\O /Gy, SO
are filtrations on the same category C. By definition, the pullback along id x p defines
the “PBW” filtration, and pullback along I" defines the KK filtration.

Remark A.5.2 There is a tautological functor Fil?BW @Cn-w s FjIKK @,

Remark A.5.3 Note that C is also the fiber at 0 of FilXX €, but the weak G,,-action is
different: it is the diagonal action mixing the standard action of G,, on ¢ with the
action coming from the weak G,,-action on Fil”ZW e,

Example A.5.4 In Sect. A.5.2, it is tautological that the KK twisting construction is
symmetric monoidal. So if A is an algebra with compatible filtration FBW and
grading, we obtain a filtration FXX on A (as an algebra). Therefore, we obtain two
filtrations Fil”2Y  FilKX on A—mod. Of course, the grading on A induces a weak G,,,-
action on Fil”BW A and the general categorical construction above produces FilKX A.
The functor Fil?2W A-mod®"* — FilkX A—-mod corresponds to taking a graded and
PBW filtered A-module and then applying the corresponding KK twist to obtain a KK
filtered A-module.

A.5.4. The reader may skip this material for the time being, and return to it as
necessary. Its purpose is closely tied to Warning A.5.1: Kazhdan-Kostant filtrations
are typically incomplete and unbounded from below, even when a corresponding
PBW filtration is bounded from below. To deal with this issue, we wish to yoke the
two filtrations on our category.

Definition A.5.5 A bifiltration on € € DGCateon is a QCoh(A} /Gy x Ay /Gy)-
module category BiFil € plus an isomorphism:

e ~ BiFilC ® QCoh (A}, \0)/G x (A}, \0)/G)
QCOh(A%l /Gm XA%‘Z /Gm)
= BiFil C ® Vect.

QCoh(Al /Gm XA;LZ /Gm)

A bifiltration on ¥ in C is an object of BiFil € restricting to JF.
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Much of our earlier discussion generalies. E.g., we have an obvious notion of
bifiltered vector spaces, and so on.

Note that a bifiltration on € indeed gives rise to two filtrations on C, denoted Fi
and FilKX C. These are respectively obtained by restricting BiFil € to the loci:

|PBWe

Aj /G x (A, \0) /G = AL/Gyy
(AR N0 /G x Ap, /G = AL /Gy

Note that a bifiltration on F € C gives rise to PBW and KK filtrations on .

Remark A.5.6 Let @PBW—l and @KK~l denote the semi-classical categories associ-

ated with each of these filtrations. We claim that e.g. @PBW= carries a natural KK

filtration FilKK@PBW=cl. moreover, the weak G,,-action on C¥BW=¢l extends to one

on FilKK@PBW=cl "and this action commutes with the action of QCoh(A} /Gy).
Indeed, note that CPBW—L.Gm.w ig the restriction to:

BGyn x (4},\0)/Cm S A}, /G x A}, /G

|KK GPBW—CZ,Gm,

so taking Fi " as the restriction to:

BGm x A, /G

(and applying de-equivariantization) gives the desired construction.
Of course, this works symmetrically in PBW and KK.

Example A.5.7 Suppose that we are in the setting of Sect. A.21, so C carries a single
(PBW) filtration and a compatible weak G, -action. We claim that this data induces a
bifiltration on € inducing the PBW and KK filtrations in the sense of Sect. A.21. For

this, we note that we have the morphism:3°

Ap, /G x AL /G — AL /G x BGy,
(s1el, el (51®s el Ly, L)

whose restriction to All‘u /Gy % (A,{U\O) /Gy, is the id x p and whose restriction to
(A}i1 \0)/G,, x A;iz /Gy = A)la /G,y is T'; so the operation of pullback (in the sheaf of
categories language) along this morphism gives the desired structure.

Recall that C”BW=/ is canonically isomorphic to CX X~/ in this case, so we denote
them each by €.

Recall that G,, x G,, weakly acts on C°: one factor acts because this is always
true for the semi-classical category, and the other factor acts because of the weak
G -action on FilPBY @, Then it is straightforward to verify that the KK filtration on
@PBW=cl — @¢l i5 induced by taking the diagonal weak action of G,, on C and
applying Example A.2.6.

86 The notation s € L for points of A}i /Gy, is used because this stack is the moduli of a line bundle plus
a section.
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The situation with CKK—¢/ = @/ is similar: its filtration is induced by the “canoni-
cal” weak G,,-action on G i.e., the one from the first G,,-factor above (so is unrelated
to the weak G,,-action on Fil"ZW ).

A.5.5. We now begin to apply the above in the setting of Lie algebras and Harish-
Chandra modules.

Before discussing Kazhdan-Kostant directly, let us discuss what we can obtain
without the additional “grading” (i.e., weak G,,-action). We use the language of
Sect. A.3.13.

Suppose G, acts on Fil C. Let ¢ denote the exponential (alias: Artin-Schreier)

character sheaf on G,. Our problem is to construct a filtration on €%V,
__ First, note that (forgetting the filtrations) we can write C (?Gf: ¥ in two steps: for
Gy, the formal completion of G, at the origin, the group prestack BG, = G,z /G, acts
on €%« Note that QCoh(B@a) = QCoh(A]{ie) with the convolution structure on the
LHS corresponding to the tensor product structure on the RHS; here the subscript Lie
is used so we later remember the Lie-theoretic origins of this copy of the affine line.
Therefore, CC«¥ fibers over Aiie, and we can take its fiber at 1 € Aiie, i.e., we can
form:

e @  Vect
QCoh(A] )

using the restriction functor along 1 — Aiie- It is immediate to see that this tensor
product is CCa-¥

In the filtered setting, let Fil Gy denote the (commutative) relative formal group
over A%/(Grm defined by Fil Lie(G,). As above, BFil G, acts on Fil eGa-w Note that:

QCoh(BFil G,) ~ QCoh((A};, x A})/G,,) € Alg(QCoh(A},/G,,)-mod)

where the left hand side is equipped with the convolution monoidal structure, and the
right hand side is equipped with the tensor product monoidal structure. Moreover, since
A]{ie occurs here as the coadjoint space Lie(G,)V, it is naturally equipped with the
action of G,, by inverse homotheties; so both A!-factors are acted on in this way, and
our graded algebra of functions is a polynomial algebra on the two degree 1 generators
h and xh for x € Lie(G,) the generator.

Warning A.5.8 The reader confused why we see (Aiie X A}‘z) /Gy, and not A]{ie X
(A}i /G,,) should return to Warning A.3.3.

The upshot is that we obtain a filtration on €« by taking Fil €« ¥ as Fil @Ca-w
and restricting along the diagonal map:

x> (x,x)

AlL/G,, (Alje X AL) /Gy

When there is risk for confusion, we refer to this as the PBW filtration on CCGa¥ and
denote it by Fil?BW eGa¥V
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Remark A.5.9 But in our hearts, we know that we would rather restrict along the non-
existing map:

x—(1,x)

AlL/G,, (Alje X ALY /Gy

Remark A.5.10 Note that CCa-¥-¢l = @Ga-cl ynder this construction.

A5.6. Let G, act on the group G, through inverse®’ homotheties. Since the mor-
phism G, — G, 4r is G,,-equivariant, G,, acts on Fil G, 4r. For € “PBW” filtered,
it makes sense to ask that a weak G,,-action and a (strong) G -action on Fil”2% @ be
compatible (with the action of G, on Fil G,). Note that this in particular gives a weak
G,p-action on FilPBV @Ge-v 5o we may form FilK K @Ca-w

Observe that if we regard Lie G, as a filtered Lie algebra through the PBW method
of Sect. A.3.2 (remembering Warning A.3.3) and equip it with the above (degree
—1) grading, then Kazhdan-Kostant twisting gives Lie G, equipped with the constant
filtration (jumping only in degree 0).

It follows formally that BG, (with no Fill) acts on FilKK@Ca  Therefore,
FilKK @Ga-% hag an action of QCoh(A]{ie), and we may take its fiber at 1 € Aiie
(by approriately tensoring with Vect). By definition, this is FilX € €<V the Kazhdan-
Kostant filtration on CCa-¥ |

Recall that €/ has commuting (because G, is commutative) actions of QCoh(G,)
(under convolution) and QCoh(Lie(G,)Y) = QCoh(Aiie). One immediately finds
that @G- V- KK=cl ‘the “semi-classical” category for the special fiber, is @/ Ga| leAl. >
where the restriction notation means we form the appropriate tensor product. :

Warning A.5.11 This Kazhdan-Kostant filtration on €%V is nor obtained by applying
the method of Sect. A.5.3 to the PBW filtration. Indeed, the semi-classical categories
are different.

A.5.7. We now repeat the above to produce a bifiltration on €%+ inducing the PBW
and KK filtrations.

Note that @®«? carries a canonical bifiltration from Sect. A.5.4: it is induced by
the weak G,,-action on Fil?BW @G- Moreover, because Lie G, is bifiltered by its
PBW and KK filtrations by Sect. A.5.4, it follows that the corresponding bifiltered
formal group acts on BiFil €5«* . Combining our analysis in the PBW and KK cases,
we find that the action of QCoh(A}lL_L1 /Gy % A}iz /G,,) extends to an action of:

QC0h<(Aiie x A /G % Aéz/@m)

where the action on the first two factors is diagonal. So we obtain our desired bifiltration
by setting BiFil €%«-¥ to be the restriction of BiFil €¢«* along the map:

A /Gy xid
—_—

AL /Gu x AL /Gy (Alic X Ap)/Gm x At /Gy

87 The reader is reminded that we used —p in Sect. A.1, so n had negative degree with respect to the
Gy -action. So the sign here is the expected one.
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where A is the diagonal map Aj, = A" — Al x Al = Af; x A} . By construction,
it induces the PBW and KK filtrations on GG‘I"”, with terminological conventions
consistent with Sect. A.5.4.

Remark A.5.12 Recall from Remark A.5.6 that our bifiltration induces filtrations on
CCa- V. PBW=cl 34 @Ga-¥.KK=cl (in the notation of loc. cit.). It is straightforward to
verify that the (KK) filtration on Ca-¥>-PBW=cl — (“J'CI*G’“’W|0e Al is as in Example
A.5.7,i.e.,induced by the diagonal G, -action via Example A.2.6. The (PBW) filtration
on CGa. V. KK—cl _ @cl,Ga,w e AL is obtained from degenerating the character, i.e., it

is the G,,-equivariant sheaf of categories over A! with fiber €/ Ga-?| reh), At L e Al

of course, the G,,-equivariance here comes from the G,,-action on Fil?8W e,

A.5.8. We now apply the above in the Harish-Chandra setting.

Suppose as before that (h, K) is a Harish-Chandra pair with h finite-dimensional
and K an affine algebraic group. We suppose Lie(K) < § for simplicity. Suppose
moreover that we are given a non-trivial character v : K — G, ; let K’ denote the
kernel. We also let i denote the induced character £ — k, or the corresponding
1-dimensional €-module; similarly for —r.

Then since K acts on Fil h—-mod, G, acts on Fil [)—modK/, so by the above, we obtain
a PBW filtration Fil?2W§-modX ¥ from Sect. A.5.5. We have h—mod XV PBEW=cl —
QCoh((h/8)"/K).

Suppose now that G,, acts on K; that the K-action on h has been extended to
G, x K; and that the character ¥ : K — G, is G,,-equivariant for the inverse
homothety action of G, on G,. Then Fil [)—modK " carries an action of Gs = K/K'
and a weak action of G, giving a datum as in Sect. A.5.6. Therefore, we obtain a KK
filtration FilK X h—mod®-¥ . We have:

h-modX VKK~ — QCoh(y + (h/8)"/K)

where ¥ + (/€)Y C Y is the inverse image of v under the map h¥ — £ this locus
is closed under the K-action because v is a character.
These two filtrations fit into a bifiltration by the general formalism.

Example A.5.13 For ¢ = b, the PBW filtration on Rep(K) gw t-modX¥ is the
constant one (as we discussed before), and the KK filtration is induced from Example
A.2.6 via the weak G,,-action on Rep(K). In other words, we regard Ok as a graded
coalgebra, so by loc. cit. it inherits a natural coalgebra filtration; then the KK filtration
is obtained by considering filtered comodules. Note that the group cohomology functor
Rep(K) — Vect is canonically bifiltered, e.g. because the trivial representation has a
canonical®® bifiltration.

It follows formally that the induction functor ind? : Rep(K) = t-mod®¥ —

h—modX¥ is bifiltered. Applying this to the trivial representation with its canonical
bifiltration, we see that the functor C*(¢, K, (—) ® —¢) : h—modK"/’ — Vect is

88 Tt is the constant bifiltration on the underlying vector space of the representation.
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also naturally bifiltered. Its underlying semi-classical functors for the PBW and KK
filtrations are the appropriate global sections functors:

I'((h/®)Y/K,—) : QCoh((h/&)"/K) — Vect
'y + (h/€)Y /K, —) : QCoh(y + (h/€)¥/K) — Vect.

Somewhat more generally,3° suppose that the character ¥ is extended to h and
continues to satisfy the appropriate G,,-equivariance.

Then for M € hb-mod®-¥, M ® — can be considered as an object of h-mod”X,
so it makes sense to take the Harish-Chandra cohomology:

C.(b’ K7 M ® _1//)'
This functor is bifiltered, with PBW and KK semi-classical versions given by:

QCoh((h/8)" /K) — Vect
QCoh(y + (h/8)"/K) — Vect

given by !-restriction to 0/ K or ¥/K followed by global sections on this stack (i.e.,
group cohomology for K).

Remark A.5.14 Let us describe what a KK filtration on an object of h-modX-¥ Jooks
like concretely. Suppose M € h-modX V% observe that M @ —y € t-modX =
Rep(K), i.e., the natural ¢-action integrates to the group. A sequence:

CFfMc FEf M c .

is a KK filtration if:

e It is a filtration of M considered as a module over the KK-filtered algebra U (h).
In other words, if h/ indicates the jth graded component of b, h/ maps F; KK M to
FKK M.

i+j+1
e Consider Ok as a filtered coalgebra using the G,,-action on it and Example A.2.6.

Then the coaction map (M ® —¢) — (M ® —) ® Ok should be filtered.
If K is connected, this is equivalent to asking that ¢/ acting on M ® — takes FiK KMo
—y to FK KM@ —y.

Suppose now that v is G,,-equivariantly extended to h. We also suppose that K is
unipotent, so C*(h, K, —) coincides with C*(f), —) as a non-filtered functor. Then the
KK filtration on C*(h, K, M ® —) is similar to the filtration from Remark A.3.16;
its ith term is:

0— FKEMe—y - > 0/ /e)Y @ FEK Mo -y + ) @ FAkMe —y — ...
j

89 This setup appears strange if one has the finite W-algebra example (h, K) = (g, N), but its infinite-
dimensional version appears in the affine W-algebra setup.
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A.6 Compact Lie algebras

A.6.1. 'We now begin to move to an infinite dimensional setting. Let §) be a profinite-
dimensional Lie algebra, so h = lim; h/bh; is a filtered limit of finite-dimensional
Lie algebras h/b; € LieAlg(Vect®), and with all structure maps being surjective. Of
course, h; € b indicates the corresponding normal open Lie subalgebra, which is of
the requisite type.

Following [24] §22-23, we define:

h—mod:=colim h/h;—mod € DGCat,py;
1

where our structure functors are forgetful functors. By our assumptions, for each
structure map h/bh; — §/b;, the induced functor:

Oblv : h/h;—mod — bh/h;—mod

has a continuous right adjoint: it is Lie algebra cohomology with respect to the b ; /b;.
Therefore, the above colimit is also the limit under these right adjoint functors.

By Lemma 5.2.5, h—-mod has a canonical 7-structure compatible with filtered colim-
its with heart the abelian category of discrete®® h-modules. Moreover, if our indexing
category is countable, h—-mod™ is the (bounded below) derived category of this abelian
category.

We see that h—mod is compactly generated, and that it has a canonical trivial
representation k € h—mod that is compact. Therefore, we have a continuous functor
C*(h, —) : b—-mod — Vect, which is defined as the complex of maps from the trivial
representation.

Remark A.6.1 Note that the ¢-structure on h—mod is not necessarily left complete.
Indeed, suppose b is abelian and infinite-dimensional. Then®! Exty gk k) =
A°®HY, so there are non-zero maps k — k[n] for each n > 0. If the r-structure
were left complete, we would have &,>ok[n] = ]_[n>0k[n] (proof: consider the
Postnikov tower for the LHS). But this is impossible: we would have constructed a
map k — @,>o0k[n] that would not factor through any finite direct sum, contradicting
the compactness of k.

In fact, the 7-structure is not even left separated. Here is one explicit way to see this.
Then h—mod is canonically self-dual in the sense of [35]: indeed, each h/h;—mod has
a canonical Serre self-duality, and we tautologically have:*?

b—modv = lim h/h;}—mod
OblvY

where the notation indicates the limit under the functors dual to the forgetful functors;
these are given by coinvariants with respect to the kernels, which differ from the

90 Recall that these are h-modules V such that the stabilizer of any vector in V is open in b.

91 In what follows, Y should always be understood as the continuous dual to b.

92 Dualizability is no issue because we are in a co/limit situation.
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invariants by a shift and tensoring with a 1-dimensional representation, according to
Lemma A.3.6. This readily implies the claim: we should replace Serre self-duality
on each h/h;—mod by its composition with the functor of shifting by dim h/h; and
tensoring with the determinant of the adjoint representation.

It follows that we have an equivalence D : Pro(h-mod)?? =~ h-mod, where
h—mod® indicates the subcategory of compact objects. The objects U (h/b;) are com-
pactin h—mod (and even generate), and form a filtered projective system in the obvious
way; we denote this pro-object by U (h). The object DU (h) € h—mod is then obvi-
ously non-zero, but lives in N, h—mod="" because DU (h) = colim; DU (h/b;), and
DU (h/b;) lies in cohomological degree — dim b/b;.

Remark A.6.2 Note that h" is a Lie coalgebra, so there is a general formalism of taking
comodules over it. It is straightforward to show that h~comod is the left completion
of h—mod.

Warning A.6.3 For M € h—-mod™, C*(h, M) is computed by a standard complex, but

this is not true for general M € h—mod. To make this precise, note that for any M €
coact
h—mod, one can form a semi-cosimplicial diagram M = M ® h" § ... € Vect
0

and the canonical morphism:

C*(h, M) > lim(M=Meh" 3 ....)

inj

This map is an equivalence for M € h—-mod™, but not for general M. Indeed, consid-
ering the right hand side as a functor in the variable M, it is easy to see that it will not
commute with colimits.

A.7.  We have a canonical filtration on h—mod. Indeed, this follows immediately
from the fact that the functors Oblv : h/h ;—mod — bh/h;—mod are filtered.
We have:

h-mod<’ ~ colim QCoh((h/h;)")

where the colimit is under *-pushforward functors along the closed embeddings «; ; :
(/5" = (b/h)".

We claim that h-mod’ is canonically isomorphic t0° IndCoh(§Y), where b is
considered as an indscheme. Indeed, in the standard IndCoh notation from [36], we

93 Recall that tensoring with the dualizing sheaf induces an equivalence QCoh(hY) = IndCoh(p"). We
prefer to write the category of IndCoh rather than QCoh though because the notation is somewhat simpler.
(Note that the place where this equivalence is shown, [43] Theorem 10.0.7, has a countability hypothesis.
This assumption is verified for us in our applications, so the reader may safely assume it in this section.
But in fact, one readily verifies that this assumption is only used in finding nice presentations for a fairly
general class of indschemes; this is no problem for our indscheme ", so one finds that the countability is
not needed in applying their method in the present case.
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have commutative diagrams:

IndCoh
% jox

IndCoh((h/h;)¥) —— IndCoh((h/h;)")

| ¥

Qi j*

QCoh((h/h;)") —— QCoh((h/h:)")

with vertical arrows equivalences; of course, these commutative diagrams have the
requisite compatibilities of higher category theory. Therefore, f)—modd is equivalent
to this colimit; since the functors a}’»‘ﬁi"h admit the continuous right adjoints al!’ we
obtain the claim.

As before, the functor C*(h, —) : h—mod — Vect is filtered, and with semi-
classical functor IndCoh(h) — Vect given as !-restriction to 0 € h".

j’

A.7.1 Actions of group schemes on filtered categories

It is straightforward to generalize the above definitions to the Harish-Chandra setting
and to compute the outputs. But it is quite clarifying in this setting to generalize the
language of Sect. A.3.13, so we do so.

A.7.2. Suppose K is an affine group scheme; we write K as a filtered limitlim; K /K;
for K; € K anormal subgroup scheme with K /K; an affine algebraic group. Recall
that an action of an algebraic group on a filtered category induced a weak action the
semi-classical category. As a warm-up, we begin our discussion there.

Definition A.7.1 A weak action of K on a category € € DGCat,,,; a QCoh(K)-module
structure on €, where QCoh(K) is given the convolution monoidal structure.

A renormalized (weak)®* action of K is an object of lim; QCoh(K /K;)—mod,
where the structure functors QCoh(K /K;)-mod — QCoh(K /K j)-mod are given
by weak invariants with respect to K;/K;.

Notation A.7.2 We say a renormalized action of K is on C € DGCat,,,, if the
compatible system of QCoh(K /K;)-module categories is denoted by CXi~"¢" and
@ = colim CXi="e" Note that this is necessarily a co/limit situation, i.e., all structure
functors admit right adjoints.

Example A.7.3 Define Rep(K) as colim Rep(K/K;) € DGCatcy,;. (This category
should not be confused with QCoh(BK): they have f-structures and coincide on
bounded below derived categories, but Rep(K) is always compactly generated while
QCoh(BK) may not be; rather, the latter category is the left completion of the former.)

Clearly this definition makes sense for any affine group scheme. Moreover, Rep(K;)
is weakly acted upon by K /K;. So setting VectXi~¢":=Rep(K;), we obtain a renor-
malized action of K on Vect.

94 If K is an extension of an affine algebraic group by a prounipotent one, as is always the case for us, this
renormalization has no effect in the setting of strong group actions on categories: this a consequence of the
coincidence of invariants and coinvariants for such categories (see [10]). So we set the convention that the
word renormalization indicates that we are working with weak group actions.
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Remark A.7.4 Note that the trivial representation in Rep(K) is compact, so we have a
continuous group cohomology functor C*(K, —) : Rep(K) — Vect.

Remark A.7.5 Note that for any € with a renormalized action of K, Rep(K) acts on
@K-ren: indeed, writing CK—7en = (@Ki—rem)K/Ki.w '\we find Rep(K;) acts, so taking
the colimit over i gives the claim.

In fact, since the colimit defining Rep(K) is under (symmetric) monoidal functors,
and since:

(_)K/Ki,w

QCoh(K/K;)-mod ——— Rep(K/K;)-mod

is an equivalence (by 1-affineness of BK /K;), we find that the functor € > CK—7en
is actually an equivalence between Rep(K)-mod and the (2-)category of categories
with a renormalized K -action.

Remark A.7.6 Suppose that X is a quasi-compact quasi-separated classical® scheme
with a K -action. By Noetherian approximation, we can write X = lim; X’ under affine
morphisms and K = lim; K /K; as above such that X' is finite type and K /K; acts
on X', with these actions being compatible in the natural sense as we vary i. Finally,
we assume that all structure morphisms among the X' are flat.

In this case, we obtain a renormalized action of K on QCoh(X) by setting:

QCoh (X)X :=colim QCoh(X' /(K /K})).

To emphasize a stacky perspective, we sometimes use the notation:
QCoh™"(X/K) = QCoh(Xx)X~"en.

All structure maps here are affine, so this is a co/limit situation. We similarly have
IndCoh(X)X="¢"; the flatness of our structure maps implies that this is also a co/limit.
(All of this is invariant under choices of presentations as limits.)

Note that for X = Spec(k), we recover Rep(K) by this construction.

More generally, let X = colim; X; be an indscheme, with the X ; schemes sat-
isfying the above hypotheses. Moreover, we assume the closed embeddings among
the X; are finitely presented and eventually coconnective (e.g. regular). Note that
QCoh(X):=1lim QCoh(X ) is a co/limit, and similarly for IndCoh(X).?® Clearly each
of these categories has a canonical renormalized action of K.

A.7.3. We now discuss the filtered setting.

Definition A.7.7 A (strong) action of K on a filtered category is an object of:

lim IndCoh(Fil (K /K;)ar)-mod(QCoh(A} /G,,)-mod)

95 We have used the word scheme throughout to mean classical scheme, but are emphasizing it here because
although it may seem unnecessary, it is important for the Noetherian approximation we are applying.

96 Note that taking K = {1}, our earlier discussion gave a makeshift definition of IndCoh(X;).
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i.e., a compatible system of filtered categories acted on by the K /K.

As before, we say this action is on Fil € if our compatible system is denoted Fil CX
and Fil @ = colim; Fil X . Again, this is a co/limit.

If K has a prounipotent tail, then C inherits a (strong) action of K with all notation
compatible, i.e., the generic fiber CXi of Fil @Xi is the K;-invariants for this action.

Remark A.7.8 At the semi-classical level, we obtain an object of:

lim QCoh((€/€,)" /(K / K;))-mod=:ShvCat’ " (¢" /K).

Here we use the sheaf of categories notation because, by [41],

ShvCat(t") :=lim QCoh((¢/¢;)")-mod # QCoh(¢")-mod.

(Although the RHS is a full subcategory of the LHS.) We use the superscript ren
because of the relationship to our notion of a renormalized action of K on a category.

In the above setup, we use the notation G/ |£’/_Er§$ to indicate the corresponding

object of QCoh((¢/¢)Y /(K /K;))—mod. With this notation, we are encouraging the
reader to imagine C° as sitting over £ and equipped with a compatible weak (or
better: renormalized) action of K.

Then observe that the filtration on CX has €K</ = @</ |6( ~renand more generally,

eKi,cl — ec’l|Ki—'i€C_

(&/8)
Remark A.7.9 Note that in the above setting, we may reformulate our semi-classical
data in saying that we have a compatible system of categories C le/e;)v equipped with
renormalized K -actions and QCoh((€/;)")-module category structures and satisfying
the natural compatibilities.

We let € denote the limit of this diagram. Note that this is actually a co/limit
situation. Then G can be thought of as the global sections of the sheaf of categories
on £ that our datum induced. Note that C itself actually is a filtered category, with
e as its semi-classical version.

Note that the place to be careful about making mistakes in distinguishing sheaves
of categories from module categories is that we may have:

C e # €1 ®  QCoh((e/e)).
QCoh(tv)

A.7.4. Now suppose that we are in a Harish-Chandra setting: we assume we are given
aprojective system of Harish-Chandra data (h/h;, K/K;) with £/¢; — b/h; injective.
Our two projective systems h/h; and K /K; are assumed to satisfy our earlier (e.g.,
finiteness) hypotheses.

We then set:

Fil h—modX := colim Fil h/b;—~modX/Xi € DGCat, .
1
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Note that this is a co/limit situation; the right adjoint to the forgetful functor:
Fil /b j-modX/Ki — Fil h/h;—modX/Ki

is given by (the filtered version of) Harish-Chandra cohomology with respect to
(h;/bi, Kj/Kp).

Note that this construction makes sense for each K; in place of K. Moreover,
K /K; acts on Fil h-modXi, and we have natural compatibilities as we take invariants.
Therefore, the above data defines an action of K on Fil h—mod.

Note that h—modX-! = IndCoh”*"((h/€)¥ /K): the calculation is the same as the
one we gave for h-mod<’.

We have a natural filtered Harish-Chandra cohomology functor h-modX — Vect
with expected semi-classical version given by !-restriction to 0/ K followed by group
cohomology.

A.7.5. Now suppose in the above setting that we have compatible G,,-actions on
each K /K; and h/b;. Suppose moreover that we are given a G,,-equivariant character
Y : K — G, for the action of G,, on G, by inverse homotheties.

The construction of Sect. A.5.8 applies as is, giving a Kazhdan-Kostant filtration on
h—modX v fitting into a bifiltration with the PBW filtration. It has similar properties
to the finite-dimensional version, up to the various differences we saw above between
the finite and profinite-dimensional settings.

A.7.6. Now suppose that we are given h® C h an open subalgebra, so b/ is

finite-dimensional. We assume the pair (h°, K) satisfies the profinite-dimensional

Harish-Chandra conditions as above, so € € h° C b and h° is a K -submodule of b.
We have the following version of Corollary A.3.9 and Lemma A.3.18.

LemmaA.7.10 (1) The forgetful functor b—-mod — h°-mod admits a left adjoint
indgo as a filtered functor. The induced semi-classical functor (indgo)"l is the
(IndCoh, %) pullback functor:

IndCoh (%) — IndCoh(h")

i.e., the left adjoint to the IndCoh-pushforward along the projection ¥ — §%V.
There is a canonical isomorphism of filtered functors h—-mod — Vect:

c* (b ind), ((-) @ det(h/b")[dim b/5°1) ) = C*(1", )

where det(h/b°)[dim b/5°]) is filtered with a single jump in degree dim b/°.
(2) The functor indg0 is a morphism of filtered categories acted on by K. The induced

Sfunctor indg0 : h%—mod® — h-modX has semi-classical version:

IndCoh™" ((h° /&)V /K) — IndCoh”*"((h/%)" /K)
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again given by (IndCoh, x)-pullback.
There is a canonical isomorphism of filtered functors ho—modK — Vect:

C* (b, K. indy, () @ det(h/b")[dim b/"]) ) = C*(b°, K. ).

(3) Suppose now that we are given the extra data of Sect. A.7.5, and suppose that we
are given a character  : ) — k extending the same-named character on €. Then
there is a canonical isomorphism of bifiltered functors ho—modK Vs Vect:

C*(b. K. ind}, (0) ® (—) ® det(h/")[dim b/5’]) ) = C*(6°, K, = ® (=)).
Each of these functors has semi-classical version:
IndCoh™" (y + (h°/€)¥ /K) — Vect

given by \-restriction to ¥/ K followed by T4 (i ¢ aroup cohomology with
respect to K ).

Proof These results follow immediately from their finite-dimensional counterparts by
passing to the limit. O

A.8 Tate setting

A.8.1. Our treatment here follows [37] at some points.

Suppose h € Pro(Vect®) is a Tate Lie algebra, i.e., b is a limit under surjective
maps of (possibly infinite dimensional) vector spaces, has a continuous Lie bracket,
and an open profinite dimensional Lie subalgebra.”’

Suppose moreover that we are given a Harish-Chandra datum (h, K) with K a
group scheme and ¢ < b an open®® subalgebra. We are going to define a filtered
category h—mod acted on by K.

First, observe that the group prestack (h, K) from Sect. A.3.7 still makes sense,
receiving a canonical ind-affine nil-isomorphism BK — B(h, K). The definition from
loc. cit. does not make sense as is: de Rham spaces and formal completions are best
avoided in infinite type. Instead, we assume ) = Lie(H) for a group indscheme H
with K C H a compact open subgroup;”” then (), K) is the formal completion of K
in H. In general, one can appeal e.g. to [7] 7.11.2 (v) for the construction.

We form the simplicial diagram:

K
... K\(h,K) x (h, K)/K = K\(h, K)/K = BK

97 Asin[9] §1.4, a topological Lie algebra structure on a Tate vector space automatically has a basis by
open Lie subalgebras.

98 This is a serious condition: for example, K can not be trivial if the topology on f is non-trivial.

9 In particular, we assume H /K is ind-finite type: this forces H to be reasonable in the sense of [7].
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given by applying the Cech construction to the morphism BK — B(h, K); note that
the geometric realization of this diagram is B(h, K). Moreover, note that each term in
the simplicial diagram is of the form “an ind-finite type indscheme modulo an action
of K.” Therefore, IndCoh"*" makes sense for each term of this diagram. We define
h—-modX as the totalization:

h-modX := Tot (Rep(K) = IndCoh”™" (BK) = IndCoh™" (K\(h, K)/K) = )

Since all the morphisms in our simplicial diagram are ind-affine nil-isomorphisms, this
is a co/limit. The Beck-Chevalley formalism easily implies that the forgetful functor

Oblv : f)—modK — Rep(K) is monadic, and in particular, admits a left adjoint ind?.
It is easy to see that ind? o Oblv is conservative and ¢-exact, so Oblv is monadic

and h—modK has a canonical 7-structure with Oblv and ind? both 7-exact. We have:

Lemma A.8.1 (Bernstein-Lunts, [12]) If K = lim; K /K; is a countable inverse limit,
h—modK " is the bounded below derived category of the heart of its t-structure.

Indeed, Rep(K)* = D+(Rep(K)®) by Lemma 5.2.5 (which is where the count-
ability hypothesis enters), and then the same argument as in the finite-dimensional
Lemma A.4.1 applies.

A.8.2. Now note that the deformations defined in [42] §IV.5.2 makes sense in the
infinite type setup and are well-behaved in our setup. Applying thisto BK — B(h, K),
we obtain a prestack Fil B(h, K) over A}E/Gm with special fiber (B(h/¢)))/K.

We can form the above Cech construction along this deformation and imitate the
above construction to obtain a filtration on h—modX. We claim that h—mod¥ <l ig
canonically isomorphic to QCoh™" ((h/£)¥ /K), with (h/€)" the continuous dual con-
sidered as an affine scheme. Indeed, we need to compute:

Tot (IndCoh"’”(IB%K) = IndCoh™*" ((h/8))/K) = )

Here it makes sense to replace h/¢ by any K-representation V. Since any K-
representation is the union of its finite-dimensional representations, we find that the
above is IndCoh™" (B(h/€)o/K) (where the renormalization makes sense because
B(h/#)o is the appropriate colimit of the classifying stacks acted on by K corresponding
to finite-dimensional subrepresentations of h/€). Clearly IndCoh™ " (B(h/¢)(/K) ~
QCoh™"((h/%)V/K) as desired.

Finally, note that if K = lim; K /K; as before, then the above construction makes
sense for each of the compact open normal subgroup schemes K; € K. Moreover,
K; /K j-invariants for Fil h—-mod”X/ are easily seen to give Fil h—-modX.

This is exactly the data to define the filtered category h—mod acted on by K. Note
that:

h-mod“’ = IndCoh(h") := colim QCoh((h/)") € DGCat ons
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with the colimit being under *-pushforward functors; we label this colimit as IndCoh
for the same reason as in Sect. A.7.

More precisely, recall that our semi-classical data is a renormalized sheaf of cate-
gories on £/ K. This sheaf of categories is described in the same way as in Sect. A.7.4.

A.8.3. Next, we note that the above makes sense even if £ is not an open subalgebra.

More precisely, and with apologies for the notation change, choose Hy a group
scheme and a Harish-Chandra datum (Hy, §) with hy C b open. Then suppose that
K 1is a group subscheme of Hy, with no hypothesis that it be compact open (e.g., K
could be trivial).

Then as above, we have an action of Hy on Fil j-mod. We claim that given any
action of Hy on Fil €, we can restrict to obtain an action of K on Fil C.

Indeed, if Hy = lim; Hy/H; for H; a normal subgroup scheme, note that H; K is
a compact open subgroup scheme of H; we then set:

Fil @X := colim Fil "X € DGCat, oy
1

We remark that this is a co/limit. Replacing K by a compact open subgroup (of K),
we obtain the requisite data.

A.8.4 Semi-infinite cohomology
We now make a more stringent assumption on b: suppose that it is a union'% of open
pro-finite dimensional subalgebras f) = colim; h;. We fix an initial index “0” and let
ho denote the corresponding open subalgebra.

We assume that for every h; C b, the action of b; on det(h;/b;) is trivial; e.g.,
this is automatically the case if § is ind-pronilpotent. For later use, we observe that in
this case:

indg? (M @ det(h; /b)) = ind{* (M) ® det(h;; /b;) (A.8.2)

since we are just tensoring by a line. (This line is essentially just a placeholder, ensuring
the canonicity of various isomorphisms.)
In this case, we obtain a semi-infinite cohomology functor:

C% (b, ho, —) : hb—-mod — Vect

defined as follows.
Note that any of the compact open subalgebras h;, we have a forgetful functor
h—mod — h;—mod, which is conservative and admits the left adjoint indgl_. Then we

claim that the induced map:

h—-mod — lim h;—mod

100 Note that this assumption is not satisfied for the Kac-Moody Lie algebra. There is a semi-infinite
cohomology theory for such algebras, but it is a more subtle and will not be needed in this paper.
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is an equivalence. Indeed, both sides are clearly monadic over hp—mod. This is a
co/limit, so we also obtain:

colim h;—mod 3 h—mod € DGCat, s
1

where we are using the induction functors on the left hand side.
We then define a functor:

C7 (b, b, indgi(—)) - hi—mod —> Vect
as:

C*(bi, (=) ® det(h; /ho)[dim b; /hol).
ByLemmaA.7.10 (1) and (A.8.1),forh; € b; C b, we have canonical isomorphisms:
C% (b, o, ind) (=) ~ €7 (h, bo, ind}’ indy ().
These are compatible as we vary indices, so we obtain the desired functor

C7 (h, ho, —).

Notation A.8.2 This functor depends only in a mild way on kg, but it is convenient for
our purposes to keep it in the notation.

Remark A.8.3 Here is another perspective. Note that by the general co/lim formalism
for a filtered diagram, any M € h—mod can be written as colim; indgi M € h-mod,
i.e., we forget down to fj; and then induce. So we find:

C7 (b, bo, M) = colim C* (b, M ® det(b; /ho)[dim b /ho)).

Applying this formula to M € h-mod” (or a bounded below chain complex of
such objects) and computing C*®(h;, —) by the standard resolution, one recovers the
usual complex computing semi-infinite cohomology in this case; i.e., this perspective
recovers the classical one.

The above analysis applies just as well in the filtered setting, so we obtain a canonical
filtration on C2 (b, ho, —). The semi-classical functor:

IndCoh(h") — Vect

is given by !-restricting!®! to obtain an object of QCoh((h/ho)"); and noting that
this is QCoh of an affine scheme, we then take #-restriction to 0 € (§/ho)". Indeed,

101 Precisely, recall that IndCoh(h") was defined as the colimit under pushforwards of QCoh of its reason-
able subschemes; then our !-restriction here is the right adjoint to the structural functor QCoh((h/ ho)v) —
IndCoh(h").
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by Lemma A.7.10, the functor C*(f;, (—) ® det(h; /ho)[dim b; /Ho]) semi-classically
gives the functor:

IndCoh(h;") — Vect

that is the composition of !-restricting to (h; /fo)" and then *-restricting to 0; passing
to the colimit in i gives the claim.

Remark A.8.4 From the perspective of Remark A.8.3, we have:
FiCZ (b. ho. M) = colim Fi_gim /5y C* (b7, M ® det(h; /o) [dim b; /o).

(The shift in indexing reflects the repeatedly emphasized fact that our determinant
lines are considered as filtered with a jump in degree dim b; /ho.)

A.8.5. Now observe that the above all makes sense in the Harish-Chandra setting as

well. Indeed, if we have the Harish-Chandra datum (b, K) with K a group scheme,
then note that € C h; fori > 0, so the formula:

C% (h.ho. K, —):= CO{,im C*(hi, K, M ® det(h; /ho)[dim b; /ho])
makes sense by cofinality and defines a filtered functor:
C%(f), ho, K, —) : h-modX — Vect.
If ho = &, then the corresponding semi-classical functor:
IndCoh™" ((h/®)"/K) — Vect

is given by !-restriction to 0/ K followed by group cohomology with respect to K. If
ho C & with det(t/h) a trivial ho-representation, then we can twist to reduce to this
case, i.e., the functor:

c? (b, bo, K, (=) ® det(¢/ho) V[~ dim £/bo]) : h-modX — Vect.

will have the semi-classical functor described above.

Notation A.8.5 When hy = ¥, we use the notation C%(h,K ,—) in place of
Cz(h, ¢ K, —).

A.8.6 KK version
Suppose now that (h, K) is equipped with a G,,-action as before. Suppose moreover

that K is equipped with a character  : K — (G, thatis G,,-equivariant for the inverse
homothety action on the target.
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Then b—modK ¥ makes sense, and inherits PBW and KK filtrations fitting into a
bifiltration as before; this is immediate from our earlier constructions and the general
KK formalism.

We have:

h-mod XV PBW=l — |ndCoh™" ((h/%)" /K)
fh—modX V- KK=l — |ndCoh™" (v + (h/8)" /K)

as before. The KK filtration on the former and the PBW filtration on the latter are as
in Remark A.5.12.

Remark A.8.6 Suppose now that h satisfies the hypotheses of Sect. A.8.4, and let b
be as in loc. cit. Suppose that i : £ — k is extended to a character ¢ : h — £, so the
functor:

CZ (b, ho, K, (—) ® =) : h-mod® ¥ — Vect

makes sense. Note that if the subalgebras h; € b are all graded subalgebras (with
respect to the grading on h induced by the G,,-action), and ¢ : h — k is graded
for the degree —1 grading on the target, then c* (f), ho, K, (—) ® —w) is naturally
bifiltered. If € = f, then the induced semi-classical functors:

QCoh™ ((h/£)" /K) — Vect
QCoh™ ( + (h/£)"/K) — Vect

are given by x-restriction to 0/K and ¥/K followed by global sections, i.e., group
cohomology with respect to K. Here we note that our hypothesis means € is open in b,
so (h/8)Y is a scheme, not an indscheme; so our definition of IndCoh”“" in this infinite
type setting means that it tautologically coincides with QCoh”“".

A.8.7 Central extensions

Finally, we explain the straightforward extension of the above to central extensions of

b.
A.8.8. Suppose that in the above notation, we are given H a Tate Lie algebra and a
central extension:

0>k—>h—>hHh—>0

of h by the abelian Lie algebra k.
We suppose that K is as in Sect. A.8, so £ C b is an open subalgebra. We suppose
moreover that we are given a Harish-Chandra datum (h, K x G,,;) compatible in the
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sense that the projections:

h—b
p1
K xG, — K

induce a morphism of Harish-Chandra data. Moreover, we assume that the structural

0 ~ —~
morphism k M tx k = Lie(K x Gp) — b is the given embedding of k into b;

and that the G;;, € K x Gy,-action on § is trivial.
Remark A.8.7 Note that the extension H is canonically split over €.

Remark A.8.8 Of course, everything that follows generalizes to the case where the
central G,, is replaced by a torus. We mention this because it is necessary for the
setting of affine Kac-Moody algebras for non-simple g, as in Sect. 1.8.2.

A.8.9. We want to form the DG category hl —mod, which morally is the DG category
of b modules on which 1 € k € b acts by the identity. For this, we will construct an
action of QCoh(A!) on f) mod; it then makes sense to take the fiber at 1 € Al (by
tensoring with the restriction to 1 functor QCoh(A!) — Vect).

Indeed, note that our Harish-Chandra datum induces an action of G, 4 on IB%(I) K):
Gy acts because it acts on h) commuting with K, and the action of the formal group is
trivial because our Harish-Chandra data was extended to (h, K x G,,). Moreover, the
underlying G, -action is canonically trivial, because G, acts trivially onE. Therefore,
we obtain an action of ]B%Gm = Gm.ar/Gn on IB%([) K). 102

Then observe that QCoh (IB%(Gm) ~ QCoh(A), with the convolution monoidal struc-
ture on the left hand side corresponding to the tensor product on the right hand side,
s0 we obtain the desired action on h—mod by definition of this category, and therefore
the definition of the category h—mod.

Example A.8.9 A splitting of the Lie algebra morphism/l)\ — B gives an identification
h1—mod >~ h—-mod compatible with all extra structures.

A.8.10. Thereisa filtered version of the above, quite similar to Sect. A.5.5. We use the
Gy, action on Fil f) mod as above, finding that hl mod is filtered with semi-classical
category IndCoh("). So the situation is not sensitive to the central extension.

The rest of the usual package generalizes as is to this setting. We have an action
of K on FiIEl mod, so obtain a filtration on El modX . If we have compatible G, -
actions on h and K withk C h acted on trivially, we obtain a bifiltration on bl modK
if K is equipped with an approprlately G, -equivariant additive character, we obtain
a bifiltration on b] —modX*¥ as well. The semi-classical categories are as expected,
i.e., the same as if we worked with b instead of its central extension, and the various
restriction and induction functors satisfy the standard functoriality properties at the
semi-classical level.

102 Here @m is the formal group of G, i.e., the hat notation is being used in a different way from E



46 Page1040f 114 S.Raskin

Appendix B: Proof of Lemma 5.2.1
B.1 Overview

We give two proofs of this result: a geometric one based in the theory of D-modules,
and a representation theoretic one.

The former approach, which was sketched after the statement of Lemma 5.2.1, is
more versatile and conceptual. But for technical reasons, we only know how to apply
this method for n sufficiently large.!?3

The second one is more ad hoc. The idea is that we can compute the associated
graded of this functor using (the proof of) Theorem 3.1.1 and verify exactness here.
However, the problems with unboundedness of Kazhdan-Kostant filtrations come in
here, and we use some tricks to circumvent this.

Remark B.1.1 There is a homology between the two approaches: (0, &qy ) is involved
in the technical issues on both sides. Perhaps this hints at a more systematic solution.

B.2 Geometric approach

B.2.1. We begin with the D-module approach. Since € = g,—mod and its Harish-
Chandra variants are fairly general examples of categories acted on by a group, we
introduce some axiomatics about the relationship between such group actions and ¢-
structures. We then establish general results about Av, and Avy, and deduce Lemma
5.2.1 from here.

B.2.2 Axiomatics

Fix H an affine algebraic group and C a DG category acted on weakly by H.

Suppose € is equipped with a 7-structure compatible with filtered colimits. Note
that QCoh(H ) ® C inherits a 7-structure: (QCoh(H)® €)=" is generated under colimits
by objects Oy X F for F € €=0,

Lemma B.2.1 The following conditions are equivalent:

(1) The functor Oblvo AvY : € — C is t-exact.

(2) The functor act : QCoh(H) ® € — C is t-exact.

(3) The functor coact : © — QCoh(H) ® C is t-exact.

4) CH-Y admits a t-structure such that Oblv and AvY are t-exact.
(5) The QCoh(H)-linear equivalence:

QCoh(H) ® C — QCoh(H) ® C (B.2.1)

induced by coact : ©€ — QCoh(H) ® C is t-exact.

103 We remark that this is enough to establish Theorem 5.1.1. In turn, this is enough to show Corollary
7.3.5, which implies Lemma 5.2.1 in general. Also, for G = G L, Beraldo’s refinement [10] of Theorem
2.3.1 can be applied to obtain Lemma 5.2.1 at general level (using D-module methods).
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X
Proof Note that we have a functor p} : C M QCoh(H) ® C, which admits

the conservative right adjoint p 4. We claim pJ and p; . are f-exact. Indeed, p; is
tautologically right r-exact, so p» . is left r-exact. But from the definition of the ¢-
structure, we see py . is right £-exact as well, so -exact. Then since py . p}‘ =0p®—
is t-exact, we obtain the r-exactness of pi" as well.

We will deduce the other conditions from (1). Since e.g. (4) obviously implies it,
this suffices.

Recall from the Beck-Chevalley formalism that we have:

P2, coact = act p5 = Oblv AvY .

Since p» . is t-exact and conservative, we see that (1) implies (3).

We now deduce (2) from (1); by the above, we assume (3) as well. Note that
t-exactness of coact implies that its right adjoint act is left 7-exact. Since p}‘(@fo)
generates (QCoh(H) ® ©) =0 it suffices to show act p; isright z-exact, but this is clear
since Oblv AvY is ¢-exact by assumption.

For (4), observe that G- is the limit of a cosimplicial diagram with 7-exact struc-
ture maps in the underlying semi-cosimplicial diagram (by (3)). This implies the
existence of a ¢-structure with Obly : CH-¥ — € r-exact. To see AvY is t-exact, it
suffices to see that Oblv AvY' is, but this is given.

Finally, note that the equivalence (B.2.1) intertwines the functors p3 and coact.
Therefore, it suffices to see that coact(C=?) generates (QCoh(H) ® €)=" under col-
imits. But this follows because act is 7-exact and conservative.

O

If these equivalent conditions are satisfied, we say the 7-structure is compatible with
the weak action of H.

B.2.3. Now suppose that H acts strongly on C.
We say that the action is compatible with the #-structure if it is compatible for the
weak action. It is equivalent to say that:

coactf—dim H]: C - D(H)® C

is z-exact. As in the weak setting, CH inherits a -structure with Obly : @7 — @ being
t-exact.

Lemma B.2.2 In the above setting, the functor Avy : € — CH has cohomological
amplitude [0, dim H].

More generally, for K € H with H/K affine, the functor Av, : CX — CH has
cohomological amplitude [0, dim H /K.

Proof Av, is left r-exact because it is right adjoint to a 7-exact functor.

For the upper bound on the amplitude, note that weak averaging from €X' — @H.w
is -exact because H /K is affine. Observe that weak averaging is given by convolution
with Dy /g, *-averaging is given by convolution with the constant D-module kg /g,
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and then use the de Rham resolution of kg /g, which consists of free D-modules in
degrees [0, dim H /K], to complete the argument. O

B.2.4 !-averaging

We now want a version of the above for !-averaging. It is essentially the same, but
slightly more subtle because !-averaging may not be defined.

Moreover, the proof of Lemma B.2.2 in the case where H /K was affine used the fact
that de Rham cohomology on an affine scheme is right #-exact. The corresponding fact
for compactly supported de Rham cohomology is harder to show (for non-holonomic
D-modules), and is the main theorem of [51].

B.2.5. Suppose in the above setting that are given K, Ko two subgroups of H,
and characters ¢; : K; — G, that coincide on K| N K;. Suppose that for every
€ e DGCat.y,; acted on by H, the functor Av:ll2 . ek 5 K2 given by

restricting to the intersection K1 N K> and then !-éveraging is defined functorially in
C.

Lemma B.2.3 Suppose C is acted on by H, and equipped with a t-structure compat-
ible with the t-structure. Suppose moreover that the t-structure on C is compactly
generated, i.e., C=0 is compactly generated (in the sense of general category theory).

Then under the above hypotheses, if K»/K1 N K is affine, then Av;p2 ek
CK2¥2 pgg cohomological amplitude [—dim K, /K| N K3, 0].

We need the following result, which appeared already as [39] Lemma 4.1.3. We
include the proof for the reader’s convenience.

LemmaB.2.4 Let C € DGCat,yn; be equipped with a compactly generated t-structure.

Let F : Dy — Dy € DGCatpps be given, and suppose that the categories D; are
equipped with t-structures, and that F is left t-exact. Then:

de®F : CQ® D1 —» CR Dy

is left t-exact.

Proof Let F € €=0 be compact. Let DF : € — Vect denote the corresponding
continuous functor Hom (F, —). Note that DJ is left 7-exact because I € e=0,
We have induced functors:

D?@id@i C®D; > Vect® D; =D;.
The main observation is that § € € ® D; lies in (€ ® D;)= if and only if:

DF ® idp,(9) € D7°
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for all F as above. Indeed, for H € D;, the (possibly non-continuous) composite
functor:

DF Qidp, Homqp (3, -)
C®D; D; Vect

coincides with Homegp (5 K 3, —), as follows by observing that it is the right
adjoint to the functor k +— F X H. Taking H € Dfo, this immediately implies the
observation.

Therefore, we need to show that for § € (C ® Dl)zo, we have:

(DT @ idp,) o (ide ®F)(9) € D3°
for all compact F € €=, By functoriality, we have:
(DF Q@ idp,) o (ide ®F)(G) = F o (DF ® idp,)(9).

Because (DF ® idp,)(9) € DIZO by the above, we obtain the claim from left 7-
exactness of F'. O

Proof of Lemma B.2.3 The functor Av;p2 is right #-exact because it is a left adjoint to a
t-exact functor. So it remains to show the other bound.

First, suppose that C = D(H). Then D(H)X1-¥1 is compactly generated by
coherent D-modules. Therefore, for the z-structure on D(H)X1-¥1 compact objects
are closed under truncations. So it suffices to show that every compact object of
D(H)Kl 1,20 maps to D(H)Kzﬂﬁz,zf dim K3/K10K>

This follows immediately from the fact that !-pushforward is left 7-exact on coherent
objects, which is Theorem 3.3.1 of [51]. (The cohomological shift by dim K> /K1 N K>
arises because !-averaging is !-convolution with a dualizing D-module.)

For general C, we use the commutative diagram:

KLY ot _ pEYK Vi g e

\LAV}IIZ lAvfz ®ide

eKayp _ coact D(H)X2¥2 @ €.

The horizontal arrows are obviously conservative and z-exact up to shift (by assumption
on the action on C), while the right vertical arrow has the correct amplitude by the
above and Lemma B.2.4. This immediately implies the same for the left vertical arrow.

O

Remark B.2.5 In the case € = h-mod, the argument given amounts to using the
Beilinson-Bernstein localization functor to pass from the Lie algebra to D-modules.

Remark B.2.6 The above works just as well when H is a group scheme and the K; are
compact open subgroup schemes: indeed, there is a normal compact open subgroup
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scheme of H contained in the K;, reducing the problem to the finite-dimensional
version. But it is not clear how to show the lemma for H being the loop group, since
coact is no longer 7-exact up to shift (it maps into infinitely connective objects).

Remark B.2.7 The above works just as well in the setting of twisted D-modules.
B.2.6 Geometric proof of Lemma 5.2.1 for n large enough

We will show Lemma 5.2.1 for n > (0, o4y ) (alias: the Coxeter number of G minus
1).

The right exactness is immediately given by Lemma B.2.2. The issue in applying
Lemma B.2.3 is that we need Av; to be defined and functorial for subgroups of a group
scheme, not a group indscheme such as G(K).

But in the given range of n, I, and fn+1 are both contained in Ad_, 1)) G(O).
Since the existence and functoriality of Av, is really about convolution identities, this
means that for any category strongly acted onby Ad_, 1)) G(O), we can !-average
from (1, V) to (1,41, ¥), and this l-averaging coincides with the x-averaging up to
the shift by 2A from Theorem 2.3.1. Now Lemma B.2.3 applies and gives the desired
left z-exactness for m = n + 1, which evidently suffices.

Remark B.2.8 If for C we had D-modules on a reasonable indscheme X acted on by
G(K) (or the k-twisted version of this notion), then we could apply [51] directly,
without needing the general Lemma B.2.3. That is, we would not need any restrictions
onn.

B.3 Representation theoretic approach

We now indicate a representation theoretic approach to treat Lemma 5.2.1 for all n.

Proof of Lemma 5.2.1 Step 1.

Note that by the general formalism from “Appendix A”, ¢, y « : Whit="(g,—mod) —
Whit="'(g,—mod) is filtered for the KK filtration with associated semi-classical func-
tor:

QCoh™"(f + Lie I+/i,) — QCoh™"(f + Lie I-/1,)

given by push/pull along the correspondence:
f+LielFnLielt/i,ni,
f+Liel}/i, f+Lielkt/i,

up to cohomological shift and a determinant twist. The main observation is that this
functor is 7-exact. (The “up to cohomological shift” is compatible with the shift by
(m —n)A in Lemma 5.2.1.)
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Indeed, the pushforward in this correspondence is obviously 7-exact because the
map is affine. It remains to see that the left leg of the correspondence is flat (and in
fact, smooth).

This follows from the explicit description of both sides from the proof of Theorem
3.1.1. Indeed, first say n > O for simplicity. Then both sides are classifying stacks
over f + 17" Ad_, ;) b°[[t]] by loc. cit. Moreover, the relevant group schemes are
congruence subgroups of jets into the group scheme of regular centralizers. We then
obtain the claim from the smoothness of that group scheme.

If n = 0 and m > n, then the relevant map f + g[[¢]] N Lie Iofn-/G(O) N Im —
gll#11/G (O) factors through g"*8(0)/G(0O), which is the classifying stack over f +
be[[¢]] of jets into regular centralizers. So the same analysis applies.

Step 2. To show t, , «[(m — n)A] is t-exact, it suffices to show that it is left -
exact, since Lemma B.2.2 implies the right ¢#-exactness. For this, it suffices to show

that it suffices to show that for F € ’g\,(—modi"’w’o, tnm «(F)[(m — n)A] is also in
cohomological degree 0.

For n > 0, it suffices to take J to be a quotient of 1ndg” (). Indeed, such quotients

generate the abelian category under extensions and ﬁltered colimits. Similarly, for
n = 0, it suffices to take J to be a quotient of a Weyl module (i.e., a quotient of
A\ 1ndgf (V) for & € A a dominant coweight, where V* is the highest weight
representation of G, and is acted on by g[[7]] through the quotient g).

Here is a wrong conclusion to the argument, which we correct in what follows. The
modules 1ndg“ (¢¥) (resp. VA) have KK filtrations, so the quotient F inherits one as well.

Therefore, L,, m.«(F) has a canonical filtration. By Step 1, gr, ¢, m.«(F)[(m — n)A] is
concentrated in cohomological degree 0.

However, because the KK filtration on 1ndg” (y) is not bounded below, it is not clear

that the filtration on V() is bounded below in this case (and probably it is not). That
is, the argument from the proof of Theorem 4.2.1 does not adapt well to this setting.
So we give a different method below, which essentially uses different bookkeeping to
avoid this issue.

Step 3. Of course, it suffices to treat the case where G is not a torus, so we assume
this in one follows. We first additionally suppose that n > 0.

Let h € Q! be a rational number (greater than 1) to be specified later. This
choice defines a grading on the Kac-Moody algebra with degrees lying in hZ € Q
as follows. Note that the Kac-Moody algebra has canonical Ly:=¢9; and p-gradings.
Consider it as equipped with the grading —hp — (h — 1)Lg (s0 e.g., t e, has degree
—h(p, ) — (h — 1)i). . .

The subalgebras Lie I, Lie I,, are obviously graded. Moreover, the character
¥ : Liel, — k vanishes on homogeneous components apart from degree —1, so
we can use the KK formalism from “Appendix A”. Note that there is no problem
in using fractional indices, though our filtration will be graded similarly. (Clearing
denominators, it is the same as renormalizing the PBW filtration to have the same
associated graded, but with jumps only at multiples of the denominator of /.) Let us
refer to this as the KK filtration on g,—mod, etc. Note that if & = 1, this is recovering
the usual KK filtration.
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A straightforward calculation, which is performed in the next step, shows that we
can take / so that the induced KK filtration on indii“ei () to be bounded from below

(it is essential that n > 0 here).

Of course, the same boundedness occurs for the induced KK’ filtration on F, any
quotient of our induced module.

It is straightforward to see that the induced KK’ filtration on:

C*(Lie Fy, Iy N i, F® —s; )

is then bounded from below as well. First, observe that (for any # > 1) there is a
compact open subalgebra of Lie I » onwhichthe —hp—(h—1) Ly-degrees are negative.
It follows that the degrees on A’ ( Lie / n)v are bounded from below independently of i,
since a compact open subalgebra has finite codimension. This shows that the induced
filtration on:

C*(I,, F®—Y)

is bounded from below, or similarly for I, N I,,. The Harish-Chandra cohomology
appearing above differs from the latter group cohomology by tensoring with the exte-
rior algebra of Ad_,, 5 )n[1111 / Ad—, () nl[2]], so the result follows.

This Chevalley complex computes:

o 1 ﬁx
Hom . n (lndLie in Y, s (5)))

Fe—mo,

by definition of ¢, ;, » as *-averaging. To compute the associated graded, one takes
erk K'(F) e QCoh( f + Liel ,J; /1%, applies pull-push along the correspondence
(B.2.1), applies the cohomological shift by (m — n)A and the determinant twist, and
then applies global sections on the stack f + Lie I an / I

The upshot is that the resulting object of Vect is in cohomological degrees >
(m—n) A by the exactness of our pull-push operation and because of the cohomological
shift. This means the same is true for the Chevalley complex above. Because indﬁ’i‘C i v
generates Whit=""(g,—mod)=" under colimits, we finally obtain that ¢, , (F) is in
cohomological degrees > (m — n)A, hence is in degree (m — n)A, as was desired.

Step 4. It remains to define & and check the desired boundedness. For this, let a4
denote the highest root, and take:

. n(p, Amax)
1+ (n —1)(p, amax).

(E.g., forn =1, h is one less than the CoxeteAr number of G.)
We want to see that KK’ filtration on indii”ei (yr) is bounded below: in fact, we

will see FKK ' indgfei () = 0. It suffices to show that the non-zero graded degrees
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on:
erfXindf | () = Sym*(a((1))/ Lie 1)

are > (. Note that in the notation from the proof of Lemma 5.3.2, this associated graded
isan algebra generated by elements ‘;—‘;‘ (r > n(p, a)+1)and {—f (r = —n(p, B)—n+1),
which have gradings:

—h(p, o)+ Hh—Dr+1
hp, B)+ (h— Dr + 1.

We need to show that these numbers are each > 0 for « (resp. ) a positive root (resp.
or zero) and r in the appropriate range.
Regarding the “« inequality,” note that:

n(p, a)
Tl =D )

(B.2.2)

Then the bound on r means the KK’ degree of ‘;—‘3 is:

—h(p, )+ (h—Dr+1>—-h(p,a)+ " —-Dn@ a)+1)+1
=h(1+ @ - D@, a)—np a)

which is non-negative by (B.2.2).
For the second inequality, first note that:!04
nn—1) nn—1)
l < =
(ﬁ’ O‘ma): )

(n—1Dh =

. B.2.3
n—1 n—1 " ( )

Then the bound on r gives the degree of {—f as:

h(p. B)+ (h—Dr+1=h(p, B)+ (h—1)(—n(p,f)—n+1)+1
= (6, B)(n — (n — Dh)

which is non-negative by (B.2.3) (recall our normalization that 8 is O or a positive
root).

Step 5. Finally, we treat the case n = 0. Here are three arguments.

Observe that (e.g. by Theorems 5.1.1 and 5.3.4), it suffices to show that W :
Fe—mod® @ s Vect is t-exact.

First, this result can be found in the literature: at non-critical level, this is [26]
Proposition 2 plus the Sugawara construction, and at critical level this is [25] Theorem
3.2.

104 Here the manipulation for the potentially dangerous value n = 1 is obviously justified.
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Second, one can organize the above differently: [26] uses Arakawa exactness in
an essential way, and our generalization Corollary 7.2.4 of it, which removes the use
of the extended affine Kac-Moody algebra, allows one to use the Frenkel-Gaitsgory
method directly.

Finally, note that any object of ﬁk—modG(O) has a g-grading, and morphisms pre-
serve these gradings. Therefore, F (:= a quotient of V2) has canonical §-gradings, and
also inherits PBW and KK filtrations from V2. These satisfy the usual compatibility in
the KK formalism. Therefore, we can apply the method from Theorem 4.2.1 to obtain
the desired result.

O
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