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1. Introduction
1.1. Semi-infinite flag variety

This paper begins a series concerning D-modules on the semi-infinite flag variety of
Feigin-Frenkel.

Let G be a split reductive group over k a field of characteristic zero. Let B be a Borel
with radical N and reductive quotient B/N =T.

Let X be a smooth curve. We let z € X be a fixed k-point. Let O, = kl[t,]] and

K, = k((t;)) be the rings of Taylor and Laurent series based at x. Let D, and 595
denote the spectra of these rings.

Informally, the semi-infinite flag variety should be a quotient Fl7 = G(K,.)/
N(K,)T(O,), but this quotient is by an infinite-dimensional group and therefore leaves
the realm of usual algebraic geometry.

Still, we will explain in future work [37] how to make precise sense of D-modules on
Fl? , but we ask the reader to take on faith for this introduction that such a category
makes sense.! This category will not play any explicit role in the present paper, and will
be carefully discussed in [37]; however, it plays an important motivational role in this

introduction.
1.2. Why semi-infinite flags?

The desire for a theory of sheaves on the semi-infinite flag variety stretches back to the
early days of geometric representation theory: see [16], [18], [17], [13], and [3]. Among
these works, there are diverse goals and perspectives, showing the rich representation
theoretic nature of Fl? .

o [16] explains that the analogy between Wakimoto modules for an affine Kac-Moody
algebra §, , and Verma modules for the finite-dimensional algebra g should be un-
derstood through the Beilinson-Bernstein localization picture, with Fl? playing the
role of the finite-dimensional G/B.

o [18], [17] and [3] relate the semi-infinite flag variety to representations of Lusztig’s
small quantum group, following Finkelberg, Feigin-Frenkel and Lusztig.

! In fact, the definition is short: one takes the category D'(G(K.,)) from [8] (cf. also [36]) and imposes
the coinvariant condition with respect to the group indscheme N(K,)T(Oy).
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o As noted in [3], D(Fl?) = D(G(K,)/N(K;)T(O,)) plays the role of the universal
unramified principal series representation of G(K,) in the categorical setting of local
geometric Langlands (see [20] and [8] for some modern discussion of this framework
and its ambitions).

However, these references (except [16], which is not rigorous on these points) use ad
hoc finite-dimensional models for the semi-infinite flag variety.

Remark 1.2.1. One of our principal motivations in this work and its sequels is to study
D(Fl? ) from the perspective of the geometric Langlands program, and then to use
local to global methods to apply this to the study of geometric Eisenstein series in
the global unramified geometric Langlands program. But this present work is also
closely? connected to the above, earlier work, as we hope to explore further in the fu-
ture.

1.3.  The present series of papers will introduce the whole category D(Fl? ) and
study some interesting parts of its representation theory: e.g., we will explain how to
compute Exts between certain objects in terms of the Langlands dual group.

Studying the whole of D(FL? ) was neglected by previous works (presumably) due to
the technical, infinite-dimensional nature of its construction.

1.4. The role of the present paper

Whatever the definition of D(Fl? ) is, it is not obvious how to compute directly with
it. The primary problem is that we do not have such a good theory of perverse sheaves in
the infinite type setting: the usual theory [7] of middle extensions — which is so crucial
in connecting combinatorics (e.g., Langlands duality) and geometry — does not exist for
embeddings of infinite codimension.

Therefore, to study D(Fl? ), it is necessary to reduce our computations to finite-
dimensional ones. This paper performs those computations. The application to semi-
infinite flags is postponed to [37]; here the category D(Fl? ) plays only a motivational
role. (That said, the author finds the calculations, which concern twisted cohomologies
of Zastava spaces, to be interesting in their own right.)

1.5.  In the remainder of the introduction, we will discuss problems close to those
to be considered in [37], and discuss the contents of the present paper and their con-
nection to the above problems. This is by way of motivating the contents of the present
work.

2 But non-trivially, due to the ad hoc definitions in earlier works.
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1.6. D(F12) in terms of affine flags

One can show” that D(Fl? ) is equivalent to the category D(Fl%ffx) of D-modules on
the affine flag variety Fl%f; = G(K,)/I, where I C G(O,) is the Iwahori subgroup, in a
G(K,)-equivariant way.*

At first pass, this means that essentially” every question in local geometric Langlands
about D(Fl? ) has either been answered in the exhaustive works of Bezrukavnikov and
collaborators (especially [1], [2], and [9]), or else is completely out of reach (e.g., some
conjectures from [20]).

Thus, it would appear that there is nothing new to say about D(Fl? ).

1.7. The factorization perspective

However, there is a significant difference between the affine and semi-infinite flag
varieties: the latter factorizes in the sense of Beilinson-Drinfeld [6].

We refer to the introduction to [35] for an introduction to factorization. Modulo the
non-existence of Fl? , let us recall that this essentially means that for each finite set I,
we have a semi-infinite flag variety Flfl over X' whose fiber at a point (z;)ier € X! is
the product []¢, ., FIE . Here {x;};er is the unordered set in which we have forgotten
the multiplicities with which points appear.

However, it is well-known that the Iwahori subgroup (unlike G(O,,)) does not factor-

ize.f

Remark 1.7.1. The methods of the Bezrukavnikov school do not readily adapt to studying
F12 factorizably: they heavily rely on the ind-finite type and ind-proper nature of FI2,
which are not manifested in the factorization setting.

1.8.  As discussed in the introduction to [35], there are several reasons to care about
factorization structures.

¢ Most imminently (from the perspective of Remark 1.2.1), the theory of chiral homol-
ogy (cf. [6]) provides a way of constructing global invariants from factorizable local

3 This result will appear in [37].

4 This is compatible with the analogy with p-adic representation theory: cf. [14].

5 This is not completely true: for the study of Kac-Moody algebras, the semi-infinite flag variety has an
interesting global sections functor. It differs from the global sections functor of the affine flag variety in as
much as Wakimoto modules differ from Verma modules.

8 It is instructive to try and fail to define a factorization version of the Iwahori subgroup that lives over
X2 a point should be a pair of points &1, 22 in X, G-bundle on X with a trivialization away from z; and
z2, and with a reduction to the Borel B at the points z; and xz2. However, for this to define a scheme, we
need to ask for a reduction to B at the divisor-theoretic union of the points 1 and x2. Therefore, over a
point z in the diagonal X C X2, we are asking for a reduction to B on the first infinitesimal neighborhood
of x, which defines a subgroup of G(O,) smaller than the Iwahori group.
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ones. Therefore, identifying spectral and geometric factorization categories allows us
to compare globally defined invariants as well.

o Factorization structures also play a key, if sometimes subtle, role in the purely local
theory. Let us mention one manifestation of this: the localization theory [21] (at
critical level) for FIZVff has to do with the structure of the Kac-Moody algebra ge,s¢
as a bare Lie algebra. A factorizable localization theory for Fl? would connect to
the vertex algebra structure on its vacuum representation.

o In [18], [17], [3], and [10], sheaves on Fl are defined using factorization structures.
We anticipate the eventual comparison between our category D(Fl? ) and the pre-
vious ones to pass through the factorization structure of Fl? .

1.9. Main conjecture

Our main conjecture is about Langlands duality for certain factorization categories:
the geometric side concerns some D-modules on the semi-infinite flag variety, and the
spectral side concerns coherent sheaves on certain spaces of local systems.

See below for a more evocative description of the two sides.

1.10. Let B~ be a Borel opposite to B, and let N~ denote its unipotent radical.

Recall that for any category € acted on by G(K,) in the sense of [8], we can form
its Whittaker subcategory, Whit(C) C € cousisting of objects equivariant against a non-
degenerate character of N~ (K).

Moreover, up to certain twists (which we ignore in this introduction: see §2.8 for their
definitions), this makes sense factorizably.

For each finite set I, there is therefore a category Whitf, of Whittaker equivariant
D-modules on Fl)?l7 and the assignment I — Whit?l defines a factorization category in
the sense of [35]. This forms the geometric side of our conjecture.

o
1.11. For a point € X and an affine algebraic group I', let LocSys(D,,) denote
o
the prestack of de Rham local systems with structure group I" on D,.
Formally: we have the indscheme Connp of Lie(I")-valued 1-forms (i.e., connection

forms) on the punctured disc, which is equipped with the usual gauge action of I'(K,).
o
We form the quotient and denote this by LocSysy(Dy).

Remark 1.11.1. LocSys F(’lo)w) is not an algebraic stack of any kind because we quotient
by the loop group I'(K,), an indscheme of ind-infinite type. It might be considered
as a kind of semi-infinite Artin stack, the theory of which has unfortunately not been
developed.

o
The assignment z — LocSys (D, ) factorizes in an obvious way.



[ S. Raskin / Advances in Mathematics 388 (2021) 107856

1.12.  Recall that for a finite type (derived) scheme (or stack) Z, [27] has defined a
DG category IndCoh(Z) of ind-coherent sheaves on Z."
We would like to take as the spectral side of our equivalence the factorization category:

o
z +— IndCoh( LocSys3(Dy) x LocSys#(Dy)).
LocSySf(%z)

Here and everywhere, we use e.g. G to refer to the reductive group Langlands dual to
G, and B C G to refer to the corresponding Borel subgroup, ete. (cf. §1.41).

However, note that IndCoh has not been defined in this setting: the spaces of local
systems on the punctured disc are defined as the quotient of an indscheme of ind-infinite
type by a group of ind-infinite type.

We ignore this problem in what follows, describing a substitute in §1.15 below.

1.13.  We now formulate the following conjecture:

Main Conjecture. There is an equivalence of factorization categories:

Whitz = (x — IndCoh(LocSysB(Zo)x) X LocSysT(’Dz))) (1.13.1)
LocSys(Dy)

Remark 1.13.1. Identifying D-modules on the affine flag variety and on the semi-infinite
flag variety, one can show that fiberwise, this conjecture recovers the main result of
[1]. However, as noted in Remark 1.7.1, the methods of [1] are not amenable to the
factorizable setting.

1.14. What is contained in this paper?

In [18], Finkelberg and Mirkovic argue that their Zastava spaces provide finite-
dimensional models for the geometry of the semi-infinite flag variety.

In essence, we are using this model in the present paper: we compute some twisted
cohomology groups of Zastava spaces, and these computations will provide the main
input for our later study [37] of semi-infinite flag varieties.

In §1.15-1.21, we describe a certain factorization algebra Yy and its role in the main
conjecture (from §1.13). In §1.22-1.27, we recall some tactile aspects of the geometry of
Zastava spaces. Finally, in §1.28-1.37, we formulate the main results of this text: these
realize T (and its modules) as twisted cohomology groups on Zastava space.

7 For the reader unfamiliar with the theory of [27], we recall that this sheaf theoretic framework is very
close to the more familiar QCoh, but is the natural setting for Grothendieck’s functor f' of exceptional
inverse image (as opposed to the functor f*, which is adapted to QCoh).
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Remark 1.14.1. Some of the descriptions below may go a bit quickly for a reader who
is a non-expert in this area. We hope that for such a reader, the material that follows
helps to supplement what it is written more slowly in the body of the text.

1.15. The factorization algebra Y;

To describe the main results of this paper, we need to describe how we model the
spectral side of the main conjecture i.e., the category of ind-coherent sheaves on the
appropriate space of local systems.

We will do this using the graded factorization algebra Yy, introduced in [12].

After preliminary remarks about what graded factorization algebras are in §1.16, we
introduce Y in §1.17. Finally, in §1.20-1.21, we explain why factorization modules for
T are related to the spectral side of the main conjecture.

1.16. Let AP C A = {cocharacters of G} denote the ZZ°-span of the simple
coroots (relative to B).

Let Divgf];os denote the space of AP?-valued divisors on X. Le., its k-points are written:

> X (1.16.1)

for some finite set {z;} € X (k), \i € APs. For G of semi-simple rank 1, this space is the
union of the symmetric powers of X, while for general G, its connected components are
products of symmetric powers of X. }

For A € AP we let Div)g denote the connected component of Divé\;os of divisors of
total degree A (i.e., in the above we have S"X; = A).

A (]Xp"s)—gmded factorization algebra is the datum of D-modules:

A* € D(DivYg), X e Ares
plus symmetric and associative® isomorphisms:
A4 ~ A fi
ANTH ~ A"XKA \[Div

A

Y i 5 Y .
[Divig x Diviglais; o X Divgglais;

Here:
[Di A x Di F Jais; C Di A x Div¥
Weft X DUlVog|disj Wep X DlVeg

denotes the open locus of pairs of (colored) divisors with disjoint supports, which we

consider mapping to Divg‘; i through the map of addition of divisors (which is étale on
this locus).

& These terms should be understood in the homotopical sense, including higher compatibilities. We do not
emphasize these points in the introduction.



8 S. Raskin / Advances in Mathematics 388 (2021) 107856

Remark 1.16.1. The theory of graded factorization algebras closely imitates the theory
of factorization algebras from [6], with the above Divé\;% replacing the Ran space from

[6].
1.17. The ]\pos—graded Lie algebra 1 defines a Lie-* algebra’:
lYIX = D4 a coroot of G ﬁd ® Af,dR(kX) S D(Dlvé\ﬁfm)

In this notation, for a finite type scheme S, kg denotes its (D-module version of the)
constant sheaf; % denotes the corresponding graded component of fi; and A% : X —
Divg‘ﬁ denotes the diagonal embedding.

As in [6], we may form the chiral enveloping algebra of nx: we let Ty denote the
corresponding factorization algebra. For the reader unfamiliar with [6], we remind that
T} is associated to ny as a sort of Chevalley complex; in particular, the x-fiber of T at
a point (1.16.1) is:

@ Ca (i)™

where C, denotes the (homological) Chevalley complex of a Lie algebra (i.e., the complex
computing Lie algebra homology).

1.18.  Next, we recall that in the general setup of §1.16, to a graded factorization
algebra A and a closed point x € X, we can associate a DG category .ﬁlfmodffaCt of its
(A-graded) factorization modules at = € X.

First, let Divé\f;os’ww denote the indscheme of A-valued divisors on X that are APos-

valued on X \ x. So k-points of this space are sums:

where i € A and A; € AP and {z;} C X (k) finite. (To see the indscheme structure,
bound how small i can be.)

Then a factorization module for A is a D-module M € D(Divé\;os’wx) equipped with
an isomorphism:

add' (M) ~ AKX M|

. _Apos . APOS oo.z . Apos . APOS oo.g
[Diviz™ X Diveg lais; [Divgg ™™ x Diveg % ais;

which is associative with respect to the factorization structure on A, where add is the
map:

9 Here the structure of Lie-* algebra is defined in [6] (see also [19], [35] for derived versions). For the
reader’s sake, we simply note that this datum encodes the natural structure on nx inherited from the Lie
bracket on 1.
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. _APos . ]\pos,oo-a: . Apos,oo-w
Divgg x Diviy — Div g

of addition of divisors.
Factorization modules form a DG category in the obvious way.

Remark 1.18.1. In what follows, we will need unital versions of the above, i.e., unital
factorization algebras and unital modules. This is a technical requirement, and for the
sake of brevity we do not spell it out here, referring to [6] or [35] for details. However, this
is the reason that notations of the form .Afmodff,ffw appear below instead of A-mod™ .

However, we remark that whatever these unital structures are, chiral envelopes always
carry them, and in particular Tj does.

Remark 1.18.2. Note that the affine Grassmannian Grr , = T'(K,)/T(O,) with structure

2% 00T

group T embeds into DiVQ; as the locus of divisors supported at the point z. We

remind that the reduced scheme underlying Grr, is the discrete scheme A.
1.19.  The following provides the connection between Y and the main conjecture.
Principle.

(1) There is a canonical equivalence:

Ti-mod®t ~ IndCoh(LocSysB(Zo)@ﬁocsyST(Dx) X LocSys;(D;)) (1.19.1)

un,z .
LocSys;(Dy)

(p,) indicates the formal completion of LocSys (TODI) with
10

o
where LocSys (Dx)ﬁocsysf
respect to the map from LocSysj (D)

(2) Under this equivalence, the functor'!:

Ts-modet ORI, D(Divﬁéos’oo'x) - restriction, D(Grr ) ~ Rep(T)

un,r

~ QCoh(LocSys+(Dy))

corresponds to the functor of !-restriction along the map:

LocSysj(D,) — LocSysp (Zo)m)/\ X LocSys (D).
LocSys(Dy)

10 For a fixed k-point = € X, LOCSySB(Dz)ﬁocsysT(D,) is isomorphic to b)/N” - T, so the whole fiber
product is isomorphic to ﬁg/]\vf/\i" Here N’ is the formal group for N, i.e., the formal completion at the
identity.

'l Here and throughout the text, for an algebraic group I", Rep(I") denotes the derived (i.e., DG) category
of its representations, i.e., QCoh(BI").
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(8) The above two facts generalize to the factorization setting, where x is replaced by
several points allowed to move and collide.

Remark 1.19.1. We categorize the above assertion as a principle and not a theorem
because the right hand side of (1.19.1) is not defined factorizably (we remind that this is
because IndCoh is only defined in finite type situations, while LocSys leaves this world).
Therefore, the reader might take it simply as a definition.

For the reader familiar with derived deformation theory (as in [31], [27]) and [6], we
will explain heuristically in §1.20-1.21 why we take this principle as given. However, the
reader who is not familiar with these subjects may safely skip this material, as it plays
only a motivational role for us.

Remark 1.19.2. We note that (heuristically) ind-coherent sheaves on (1.19.1) should be
o -
a full subcategory of IndCoh( LocSys(Dy) X LocSys#(Dy)). "
LocSys;(Dx)
In [37], we will use the computations of the present paper to construct a functor:

Whit? — IndCoh ( LocSys 5 (’Zo)m)/\ X LocSys; (D)) = Ti—mod!aet

Y un,x
LocSys(Dy)

and identify a full subcategory of Whit? on which this functor is an equivalence. More-
over, this equivalence is factorizable, and therefore gives the main conjecture (from §1.13)
when restricted to these full subcategories.

1.20. As stated above, the reader may safely skip §1.20-1.21, which are included to
justify the principle of §1.19.

We briefly recall Lurie’s approach to deformation theory [31].

Suppose that X is a “nice enough” stack and = € X is a k-point, with the formal
completion of X at x denoted by X7. Then the fiber T% ,[—1] of the shifted tangent
complex of X at z identifies with the Lie algebra of the (derived) automorphism group
(alias: inertia) Aut,(X) := z xx z of X at z, and there is an identification of the DG
category IndCoh(X2) of ind-coherent sheaves on the formal completion of X at z with
T »[—1]-modules.

1.21. At the trivial local system, the fiber of the shifted tangent complex of
LocSys N(ﬁx) is the (derived) Lie algebra H;R(ﬁx, R kﬁm)' The philosophy of [6] indi-
cates that modules for this Lie algebra should be equivalent to factorization modules for
the chiral envelope of the Lie-*x algebra n ® kx on X.

12 This combines the facts that ind-coherent sheaves on a formal completion are a full subcategory of ind-
coherent sheaves of the whole space, and the fact that ind-coherent sheaves on the classifying stack of the
formal group of a unipotent group are a full subcategory of ind-coherent sheaves on the classifying stack of
the group.
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The ]\—graded variant of this—that is, the version in the setting of §1.16 in which
symmetric powers of the curve replace the Ran space from [6]—provides the principle of
§1.19.

Remark 1.21.1. To conclude this line of reasoning, we note that the objection of Re-
mark 1.19.1 really only applies factorizably. For a fixed point z € X, the relevant spaces
of local systems are locally of finite type. In effect, the above outlines the proof of asser-
tions (1) and (2) for such a single point.

1.22. Zastava spaces

Next, we describe the most salient features of Zastava spaces. We remark that this
geometry is reviewed in detail in §2.

o X pos
1.23.  There are two Zastava spaces, Z and Z, each fibered over Divé‘g : the rela-
o
tionship is that Z embeds into Z as an open, and for this reason, we sometimes refer to

o
Z as Zastava space and Z as open Zastava space.
For the purposes of this introduction, we content ourselves with a description of the
fibers of the maps:

ze .z

Nk

. Apos
Diveg .

To give this description, we will first recall the so-called central fibers of the Zastava
spaces.

1.24. Recall that e.g. Grg , denotes the affine Grassmannian G(K,)/G(O;) of G at
x. .

For z € X a geometric point and A € AP, define the central fiber 37 as the intersec-
tion:

Gry-,NGryy, = (N*(&)G(ogc) N N(&)X(tz)G(ox))/G(Om) C G(K,)/G(0,)
= GIG,QC

where ¢, is any uniformizer at . Here we recall that Gry- , = N7 (K;)G(0,)/G(Oy)
and Grg)x = N(K.)A(tz)G(04)/G(O,) embed into Grg,; as ind-locally closed sub-

schemes (of infinite dimension and codimension).'?

13 The requirement that A\ € AP°® is included so that this intersection is non-empty.
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(o
A small miracle: the intersections 3) are finite type, and equidimensional of dimension

v

(p, A).-

v o ~
Example 1.24.1. For A = & a simple coroot, one has 3¢ ~ Al \ {0}.

% X » —X
1.25.  Let Grg , denote the closure of Grgm in Grg ,.'" We remind that Grp , has
an (infinite) stratification by the ind-locally closed subschemes Gr)éff for 1 € APos,

We then define 350‘ as the corresponding intersection:

——X
Gry- . NGrg , C Grg s -

v

Again, this intersection is finite-dimensional, and equidimensional of dimension (p, ).

Example 1.25.1. For A=da simple coroot, one has 3% ~ Al

1.26. Now, for a k-point (1.16.1) of Divg‘ﬁ (for A == > A;), the corresponding fiber

of Z* along T is:

T13 (1.26.1)

and similarly for Z.
0« v " o\
Again, Z* and Z* are equidimensional of dimension (2p,\), and moreover, Z* is
actually smooth.

1.27.  Finally, there is a canonical map can : Z — G,, which is constructed (fiber-
wise) as follows.

First, define the map N~ (K,) — G, by:

N™(Ky) = (N7/[N7, N7])(K.)

~

a

H K, sum over coordinates K, f—Res(f-dty) G

simple roots

where Res denotes the residue map and ¢, is a coordinate in K.
Remark 1.27.1. The twists we mentioned in §1.10 are included so that we do not have to

choose a coordinate t;, but rather have a canonical residue map to G,. But we continue
to ignore these twists, reminding simply that they are spelled out in §2.8.

4 As a moduli problem, @;\3,1 can be defined analogously to Drinfeld’s compactification of Buné\;.
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It is clear that this map factors uniquely through the projection N~ (K,) — Gry-.

We now map (1.26.1) by embedding into the product of Gry- ,, and summing the
corresponding maps to G, over the points x;.

In what follows, we let ¥z € D(Z) (resp. 1/)% € D(%)) denote the !-pullback of
the Artin-Shreier (i.e., exponential) D-module on G, (normalized to be in the same
cohomological degree as the dualizing D-module of G,).

Remark 1.27.2. The above map N~ (K,) — G, is referred to as the Whittaker character,
and we refer to sheaves constructed out of the Artin-Shreier sheaf (e.g., w%, Yz) as
Whittaker sheaves.

1.28. Formulation of the main results of this paper

Here is a rough overview of the main results of this paper, to be expanded upon below:

Roughly, the first main result of this paper, Theorem 4.6.1, identifies T with certain
Whittaker cohomology groups on Zastava space; see [12] for more details. This theorem,
following [12] and [17], provides passage from the group G to the dual group G (via T3)
which is different from geometric Satake.

The second main result, Theorem 7.9.1 (see also Theorem 5.14.1) compares Theo-
rem 4.6.1 with the geometric Satake equivalence.

1.29.  We now give a more precise description of the above theorems.
Our first main result is the following.

! X pos
Theorem (Theorem J.0.1). 707*@3(@[1% ® IC%) € D(Div"™") is concentrated in cohomo-
logical degree zero, and identifies canonically with Y. Here 1C indicates the intersection

cohomology sheaf'> (by smoothness of the Zj‘, this just effects cohomological shifts on

o
the connected component of Z).
Moreover, the factorization structure on Zastava spaces induces a factorization algebra
!

structure on 70r*7d}:‘¢(1/J27 ® IC;), and the above equivalence upgrades to an equivalence of
factorization algebras.

In words: the (Divsgus—parametrized) cohomology of Zastava spaces twisted by the
Whittaker sheaf is Y.

Remark 1.29.1. We draw the reader’s attention to §1.35 below for a closely related result,
but which is less imminently related to the theme of semi-infinite flags.

o oy
5 Since Z is a union of the varieties Z*, we define this IC sheaf as the direct sum of the IC sheaves of the
connected components.
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1.30. Polar Zastava space

o
To formulate Theorem 5.14.1, we introduce a certain indscheme Z°°'* with a map

o o . A pos . . . ° o ) o
T L BT DlVé\H % where the geometry is certainly analogous to 7 : Z — Dlvfﬁ.

°% oo x

(Here we remind that Divfﬁp parametrizes A-valued divisors on X that are APos-

valued on X \ z.)
o
As with Z, for this introduction we only describe the fibers of the map 7°°. Namely,
at a point'® -z 4+ SO\ - x; of Divé\;m’ww, the fiber is:

. o X;
Grhy > [ [ 320
i
We refer the reader to §5 for more details on the definition.

1.31. We will explain in §5 how geometric Satake produces a functor Rep(é) —
D(Z%).

Though this functor is not so complicated, giving its definition here would require
further digressions, so we ask the reader to take this point on faith. Instead, for the
purposes of an overview, we refer to §1.33, where we explain what is going on when we
restrict to divisors supported at the point x, and certainly we refer to §5 where a detailed
construction of this functor is given.

Example 1.31.1. The above functor sends the trivial representation to the *-extension of

w% under the natural embedding Z «— Z°°'F.

We now obtain a functor:

v o 7o Xpos .
Rep(() — D(Z°°%) =% p(Diviy o).
For geometric reasons explained in §5, Theorem 4.6.1 allows us to upgrade this con-
struction to a functor:
Chevio™ : Rep(G) — Ta-modict .
We now have the following compatibility between geometric Satake and Theo-
rem 4.6.1.

Theorem (Theorem 5.14.1). The functor Chevs™>™ is canonically identified with the func-

n,x

tor CheviPS®, which by definition is the functor:

n,x ’

16 We remind that this means that i € A and \; € APos.
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Rep((Y) 2% Rep(53) 2 #i-mod(Rep(T)) 247 T -mod ™" .
Here ind°" is the chiral induction functor from Lie-* modules for i@ kx to factorization
modules for Tj.

Remark 1.31.2. Here we remind the reader that chiral induction is introduced (abelian
categorically) in [6] §3.7.15. Like the chiral enveloping algebra operation used to define
T}, chiral induction is again a kind of homological Chevalley complex.

Example 1.31.3. For the trivial representation, Example 1.31.1 reduces Theorem 5.14.1
to Theorem 4.6.1. Here, the claim is that Chevgeolm of the trivial representation is

the D-module on D(DIVCH oo ¥) obtained by pushforward from Yy along Divéfgos —

. A pos . . .
DlVé\ﬁ« o9 ie., the so-called vacuum representation of Ty (at x).

1.82.  Our last main result is the following, which we leave vague here.

Theorem (Theorem 7.9.1). A generalization of Theorem 5.1/.1 holds when we work fac-
torizably in the variable x, i.e., working at several points at once, allowing them to mowve
and to collide.

Somewhat more precisely, we define in §6 a DG category Rep(é)xz over X! (ie.,
with a D(X’)-module category structure) encoding the symmetric monoidal structure
on Rep(é) 1.7 Most of §6 is devoted to giving preliminary technical constructions that
allow us to formulate Theorem 7.9.1.

1.33. Interpretation in terms of Fl?

We now indicate briefly what e.g. Theorem 5.14.1 has to do with Fl? . This section
has nothing to do with the contents of the paper, and therefore can be skipped; we
include it only to make contact with our earlier motivation.

Fix a closed point z € X, and consider the spherical Whittaker category WhltSph

D(Grg ), which by definition is the Whittaker category (in the sense of §1.10) of
D(Grg,z). There is a canonical object in this category (supported on Gry- , € Grg,z),

and one can show (cf. Theorem 6.36.1) that the resulting functor:

geometric Satake
—>

Rep(G) Sphg , — Whit:?"

is an equivalence, where Sphs , == D(Grg, I)G(Oz) is the spherical Hecke category, and

the latter functor is convolution with this preferred object of Whltgph

17 The construction of Rep(G) xs is a categorification of the construction of [6] that associated a factoriza-
tion algebra with a usual commutative algebra.
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Let i3 : D(Fl?) — D(Grr,,) denote the functor encoding !-restriction along:

==} 2
2

Consider the problem of computing the composite functor:

0
2

Rep(G) ~ Whit™?" 22 Whit(G(K,) /B(0,)) 2220 Whit? 2255 D(Gry,)
~ Rep(T).

By base-change, this amounts to computing pullback-pushforward of Whittaker'®
sheaves along the correspondence:

G(Kw)/B(Ox) XOQ GrT,w GI‘BJ
Fl,2 \
GI‘G@ GI‘TJ .

One can see this is exactly the picture obtained by restricting the problem of The-
orem 5.14.1 to Gry, C Divé\éw’wx, and therefore we obtain an answer in terms of
factorization T z-modules. Namely, this result says that the resulting functor:

Rep(G) — Rep(7)
is computed as Lie algebra homology along n.
Remark 1.33.1. The point of upgrading Theorem 5.14.1 to Theorem 7.9.1 is to allow a
picture of this sort which is factorizable in terms of the point z, i.e., in which we replace
the point € X by a variable point in X’ for some finite set 1.
1.34. Methods
We now remark one what goes into the proofs of the above theorems.

1.85.  Our key computational tool is the following result.

Theorem (Limiting case of the Casselman-Shalika formula, Theorem 3./.1). The push-
!

forward Wf7dR(¢Z ®1Cz) € D(Divééos) is the (one-dimensional) skyscraper sheaf at the
zero divisor (concentrated in cohomological degree zero).

'8 1t is crucial here that our character be with respect to N ™, not N.
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In particular, the restriction of this pushforward to each Divéﬁ with 0 # X € Aros
vanishes.

We prove this using reasonably standard methods (cf. [13]) for studying sheaves on
Zastava spaces.

1.36.  Our other major tool is the study of Ty given in [12], where T is connected
to the untwisted cohomologies of Zastava spaces (in a less derived framework than in
Theorem 4.6.1).

1.87.  Finally, we remark that the proofs of Theorems 3.4.1, 4.6.1, and 5.14.1 are
elementary: they use only standard perverse sheaf theory, and do not require the use
of DG categories or non-holonomic D-modules. (In particular, these theorems work in
the f-adic setting, with the usual Artin-Shreier sheaf replacing the exponential sheaf.)
The reader uncomfortable with higher category theory should run into no difficulties

here by replacing the words DG category by triangulated category essentially everywhere

fact
un,x

(one exception: it is important that the definition of YTz—mod be understood higher
categorically).

However, Theorem 7.9.1 is not elementary in this sense. This is the essential reason
for the length of §6: we are trying to construct an isomorphism of combinatorial nature
in a higher categorical setting, and this is essentially impossible except in particularly
fortuitous circumstances. We show in §6, §7 and Appendix B that the theory of ULA

sheaves provides a suitable method for this particular problem.
1.38. Structure of the paper

§2 is a mostly self-contained review of the geometry of Zastava spaces. In §3 and §4,
we prove the limiting case of the Casselman-Shalika formula (Theorem 3.4.1) and use it
to realize T in the geometry of Zastava spaces (Theorem 4.6.1). Then in §5, we give our
first comparison (Theorem 5.14.1) between geometric Satake and the above construction
of Tj.

The remainder of the paper is dedicated to a generalization (Theorem 7.9.1) in-
volving the fusion structure from the geometric Satake theorem. In §6, we introduce
prerequisite ideas and discuss the factorizable geometric Satake theorem; in particular,
Theorem 6.36.1 proves a version of the factorizable Casselman-Shalika equivalence of
[22], which is a folklore result in the subject. In §7, we use this language to formulate a
comparison between geometric Satake and our construction of T using the factorizable
structures on both sides.

There are two appendices. Appendix A proves a technical categorical lemma from §6.
Appendix B introduces a general categorical language based on the theory of universally
locally acyclic (ULA) sheaves, and which is suitable for general use in §6. The ULA
methods are essential for §6-7.
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1.39. Conventions

For the remainder of this introduction, we establish the conventions for the remainder
of the text.

1.40. We fix a field k of characteristic zero throughout the paper. All schemes, etc,
are understood to be defined over k.

1.41. Lie theory

We fix the following notations from Lie theory.

Let G be a split reductive group over k, let B be a Borel subgroup of G with unipotent
radical N and let T' be the Cartan B/N. Let B~ be a Borel opposite to B, i.e., B"NB =
T. Let N~ denote the unipotent radical of B~.

Let & denote the corresponding Langlands dual group with corresponding Borel B,
who in turn has unipotent radical N and torus T = B/N, and similarly for B~ and N~.
Let g, b,n, ¢, b7, n", g, b, &, {, b~ and i~ denote the corresponding Lie algebras.

Let A denote the lattice of weights of T and let A denote the lattice of coweights. We
let AT (resp. AT) denote the dominant weights (resp. coweights), and let A% denote
the Z>%-span of the simple coroots.

Let Zg be the set of vertices in the Dynkin diagram of G. We recall that Zg is
canonically identified with the set of simple positive roots and coroots of G. For i € Z¢,
we let a; € A (resp. &; € A) denote the corresponding root (resp. coroot).

Moreover, we fix a choice of Chevalley generators {f;}ics. of n™.

Finally, we use the notation p € A for the half-sum of the positive roots of g, and
similarly for p € A.

1.42.  For an algebraic group I', let BI" denote the classifying stack Spec(k)/I" for I".

1.43. Let X be a smooth projective curve.

We let Bung denote the moduli stack of G-bundles on X. Recall that Bung is a
smooth Artin stack locally of finite type (though not quasi-compact).

Similarly, we let Bung, Buny, and Buny denote the corresponding moduli stacks of
bundles on X. However, we note that we will abuse notation in dealing specifically with
bundles of structure group N~: we will systematically incorporate a twist discussed in
detail in §2.8.

1.44. Categorical remarks
The ultimate result in this paper, Theorem 7.9.1, is about computing a certain fac-

torization functor between factorization (DG) categories. This means that we need to
work in a higher categorical framework (cf. [30], [32]) at this point.
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We will impose some notations and conventions below regarding this framework. With
that said, the reader may read up to §5 essentially without ever worrying about higher
categories.

1.45.  We impose the convention that essentially everything is assumed derived. We
will make this more clear below, but first, we note the only exception: schemes can be
understood as classical schemes throughout the body of the paper, since we deal only
with D-modules on them.

1.46. We find it convenient to assume higher category theory as the basic assump-
tion in our language. That is, we will understand “category” and “1-category” to mean

W

“(00, 1)-category,” “colimit” to (necessarily) mean “homotopy colimit,” “groupoid” to
mean “oo-groupoid” (aliases: homotopy type, space, etc.), and so on. We use the phrase
“set” interchangeably with “discrete groupoid,” i.e., a groupoid whose higher homotopy
groups at any basepoint vanish.

When we need to refer to the more traditional notion of category, we use the term
(1,1)-category.

As an example: we let Gpd denote the category (i.e., co-category) of groupoids (i.e.,
oo-groupoids).

1.47. DG categories

By DG category, we mean an (accessible) stable (co-)category enriched over k-vector
spaces.

We denote the category of DG categories under k-linear exact functors by DGCat
and the category of cocomplete'” DG categories under continuous®’ k-linear functors by
DGCatcont.

We consider DGCat,,,: as equipped with the symmetric monoidal structure ® from
[32] §6.3. For C,D € DGCateon: and for F € € and § € D, we let FX G denote the
induced object of € ® D, since this notation is compatible with geometric settings.

For € an algebra in DGCat,opn:, we let C—mod denote C—mod(DGCat,ypt): no other
interpretations of C-module category will be considered, and moreover, € should system-
atically be regarded as an algebra in DGCat ;.

For € a DG category equipped with a t-structure, we let €=° denote the subcategory
of coconnective objects, and CS? the subcategory of connective objects (i.e., the notation
is the standard notation for the convention of cohomological grading). We let €% denote
the heart of the t-structure.

9 We actually mean presentable, which differs from cocomplete by a set-theoretic condition that will
always be satisfied for us throughout this text.

20 There is some disagreement in the literature of the meaning of this word. By continuous functor,
we mean a functor commuting with filtered colimits. Similarly, by a cocomplete category, we mean one
admitting all colimits.
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We let Vect denote the DG category of k-vector spaces: this DG category has a t-
structure with heart Vect" the abelian category of k-vector spaces.

We use the material of the short note [24] freely, taking for granted the reader’s
comfort with the ideas of [24].

1.48.  For a scheme S locally of finite type, we let D(S) denote its DG category of
D-modules. For a map f: S — T, we let f' : D(T) — D(S) and f.4r : D(S) — D(T)
denote the corresponding functors.

We always equip D(S) with the perverse t-structure,?!

i.e., the one for which ICg
lies in the heart of the t-structure. In particular, if S is smooth of dimension d, then
the dualizing sheaf wg lies in degree —d and the constant sheaf kg lies in degree d. We
sometimes refer to objects in the heart of this ¢-structure as perverse sheaves (especially
if the object is holonomic), hoping this will not cause any confusion (since we do not

assume k = C, we are in no position to apply the Riemann-Hilbert correspondence).
1.49. Finally, we use the notation Oblv throughout for various forgetful functors.
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2. Review of Zastava spaces

2.1.  In this section, we review the geometry of Zastava spaces, introduced in [18]
and [13].

Note that this section plays a purely expository role; our only hope is that by em-
phasizing the role of local Zastava stacks, some of the basic geometry becomes more
transparent than other treatments.

21 Alias: the right (as opposed to left) t-structure. cf. [6] and [27].
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2.2. Remarks on G

For simplicity, we assume throughout this section that G has a simply-connected
derived group.

However, [3] §4.1 (cf. also [40] §7) explains how to remove this hypothesis, and the
basic geometry of Zastava spaces and Drinfeld compactifications remains exactly the
same. The reader may therefore either assume G has simply-connected derived group for
the rest of this text, or may refer to [40] for how to remove this hypothesis (we note that
this applies just as well for citations to [11], [12], and [13]).

2.3. The basic affine space

Recall that the map:

G/N — G/N = Spec(H*(I(G/N,0g,n))) = Spec(Fun(G)™)

is an open embedding. We call G/N the basic affine space and G/N the affine closure
of the basic affine space.

The following result is direct from the Peter-Weyl theorem.
Lemma 2.3.1. For S an affine test scheme,”” a map ¢ : S — G/N with o~1(G/N) dense
in S is equivalent to a Drinfeld structure on the trivial G-bundle G x S — S, i.e., a
sequence of maps for A € AT :

U)\ZKA@Os—)V)\@OS
k k

that are monomorphisms of quasi-coherent sheaves and satisfy the Plicker relations.
Remark 2.3.2. By dense, we mean scheme-theoretically, not topologically (e.g., for
Noetherian S, the difference here is only apparent in the presence of associated

points).

Example 2.3.3. For G = SLy, G/N identifies equivariantly with A2. The corresponding
map SLy — A2 here is given by:

b
(Lcl d) — (a,c) € A®.
2.4. Let T be the closure of T = B/N C G/N in G/N.

22 1t is important here that S is a classical scheme, i.e., not DG.
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Lemma 2.4.1.

(1) T is the toric variety Spec(k[A*]) (here k[AT] is the monoid algebra defined by the
monoid AT ). Here the map T = Spec(k[A]) — T corresponds to the embedding
AT — A and the map Fun(G)N — k[A"] realizes the latter as N -coinvariants of the
former.

(2) The action of T on G/N extends to an action of the monoid T on G/N (where the
coalgebra structure on Fun(T) = k[A*] is the canonical one, that is, defined by the
diagonal map for the monoid A™ ).

Here (1) follows again from the Peter-Weyl theorem and (2) follows similarly, noting
that V* @ AV C Fun(G)Y = Fun(G/N) has A-grading (relative to the right action of
T on G/N) equal to A € AT,

2.5.  Note that (after the choice of opposite Borel) T is canonically a retract of G/N,
i.e., the embedding T < G /N admits a canonical splitting:

GIN S T. (25.1)

Indeed, the retract corresponds to the map k[AT] — Fun(G)V sending X to the
canonical element in:

A MY CVre VMY C Fun(G)

(note that the embedding ¢V < V-V uses the opposite Borel).

By construction, this map factors as G/N — N~ \ (G/N) — T.

Let T act on G/N through the action induced by the adjoint action of T" on G.
Choosing a regular dominant coweight \g € A+ we obtain a G,-action on G/_N that
contracts®® onto T. The induced map G/N — T coincides with the one constructed
above.

Warning 2.5.1. The induced map G/N — T does not factor through 7. The inverse
image in G/N of T C T is the open Bruhat cell B~ N/N.

2.6.  Define the stack BB as G\G/N/T. Note that BB has canonical maps to BG
and BT

23 We recall that a contracting G, -action on an algebraic stack ) is an action of the multiplicative monoid
A' on Y. For schemes, this is a property of the underlying G,, action, but for stacks it is not. Therefore,
by the phrase “that contracts,” we rather mean that it canonically admits the structure of contracting
G, -action. See [15] for further discussion of these points.
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2.7. Local Zastava stacks

o
Let ¢ denote the stack B~ \ G/B = BB~ xpg BB and let ¢ denote the stack B~ \
(G/N)/T = BB~ xpg BB. We have the sequence of open embeddings:

BT < ¢ < ¢

where BT embeds as the open Bruhat cell.
The map BT — ( factors as:

BT = T\(T/T) < T\(T/T) = BT x T/T < (. (2.7.1)

One immediately verifies that the retraction G/N — T of (2.5.1) is B~ x T-
equivariant, where B~ acts on the left on W and T acts on the right, and the action on
T is similar but is induced by the T' x T-action and the homomorphism B~ xT — T'x T.
Therefore, we obtain a canonical map:

(=B \G/N/T — B~ \T/T — T\T/T.

Moreover, up to the choice of \g from [3] this retraction realizes BT x T/T as a defor-
mation retract of (.

We will identify T\T/T with BT x T/T in what follows by writing the former as
T\(T/T) and noting that T acts trivially here on T'/T.

In particular, we obtain a canonical map:

¢ —T/T. (2.7.2)

By Lemma 2.4.1 (2) we have an action of the monoid stack 7'/T on ¢. The morphism
¢ 5 BT x T/T £ T/T is T /T-equivariant.

Lemma 2.7.1. A map ¢ : S — T /T with = (Spec(k)) dense (where Spec(k) is realized as

pos

the open point T /T ) is canonically equivalent to a Aned .= —APos_yalued Cartier divisor

on S.
First, we recall the following standard result.

Lemma 2.7.2. A map S — G,,\A' with inverse image of the open point dense is equiv-
alent to the data of an effective Cartier divisor on S.

Proof. Tautologically, a map S — G,,\A! is equivalent to a line bundle £ on S with a
section s € T'(S, L).

We need to check that the morphism Og = £ is a monomorphism of quasi-coherent
sheaves under the density hypothesis. This is a local statement, so we can trivialize £.
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Now s is a function f whose locus of non-vanishing is dense, and it is easy to see that
this is equivalent to f being a non-zero divisor. O

Proof of Lemma 2.7.1. Let G’ C G denote the derived subgroup [G,G] of G and let
T'=TNG and N' = NN G'. Then with 7' defined as the closure of 7’ in the affine
closure of G’/N’, the induced map:

T )T —T/T

is an isomorphism, reducing to the case G = G'.
Because the derived group (assumed to be equal to G now) is assumed simply-
connected, we have canonical fundamental weights {9;}icz,, ¥i € AT. The map

[Ticz. Vi : T = Tliez, Gm extends to a map T — ;e A' inducing an isomorphism:

1€Lla
T/T = (AY/G,,)%e.

Because we use the right action of 7" on T, the functions on T are graded negatively,
and therefore we obtain the desired result. O

2.8. Twists

Fix an irreducible smooth projective curve X. We digress for a minute to normalize
certain twists.

Let Qx denote the sheaf of differentials on X. For an integer n, we will sometimes
use the notation Q7% for QF", there being no risk for confusion with n-forms because X
is a curve. )

We fix Q% a square root of Qx. This choice extends the definition of Q% to n € %Z.
We obtain the T-bundle:

1
PLem = p(03") = 2p(Q%?) (2.8.1)
We use the following notation:
Buny- :=Bung- x {P7"
Bunp

_1
Bung- = BunGmeaB x {2}

(‘: m

Here G,, x G, is the opposite Borel of PGLs.
1 1
Note that Bung - classifies extensions of * by 2% and therefore there is a canonical
map:

cang- : Bung- — H'(X,Qx) = G,.
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The choice of Chevalley generators {f;}icz, of n~ defines a map:

B7/[IN",N7] = [] (Gm x Ga).

i€Zla

By definition of P, this induces a map:

H v Buny- — H BunG;.

i€l i€la
We form the sequence:

HiEIG cang —
Buny- - ] Bung. 2™ T ¢, - 6,
i€la i€lg

and denote the composition by:
can : Buny- — G,. (2.8.2)

Remark 2.8.1. The above notation is obviously somewhat abusive, since the notation
Bunp- is often used without this twist. For our purposes, we prefer this convention
because it simplifies the notation.

2.9. For a pointed stack (Y, y € Y(k)) and a test scheme S, we say that X x S — )
is mon-degenerate if there exists U C X x S universally schematically dense relative to
S in the sense of [28] Exp. XVIII, and such that the induced map U — ) admits a
factorization as U — Spec(k) Ly (so this is a property for a map, not a structure).
We let Maps,, o, gegen. (X, V) denote the open substack of Maps(X, ) consisting of non-
degenerate maps X — ).

o
We consider ¢ and ¢ as pointed stacks via the embedding from BT and its canonical
base-point. We consider T/T as a pointed stack in the obvious way.

2.10. Zastava spaces
Observe that there is a canonical map:
¢ =BT (2.10.1)
given as the composition:
(=BB~ x BB — BB~ — BT.
BG
Let Z be the stack of P¢*"-twisted non-degenerate maps X — (, i.e., the fiber product:

Mapsnon—degen. (X’ C) B X {P%an}
unrg
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where the map Maps,,,,, _gegen. (X, () — Bunr is given by (2.10.1).
o o
Let Z C Z be the open substack of P&*"-twisted non-degenerate maps X — (. Note

that Z and zgf lie in Sch C PreStk. We call Z the Zastava space and % the open Zastava

o
space. We let 3 : Z — Z denote the corresponding open embedding.
We have a Cartesian square where all maps are open embeddings:

o

zZ zZ

Buny- x Bungp —— Buny- x Bunpg
Bung Bung

The vertical arrows realize the source as the subscheme of the target where the two
reductions are generically transverse.

2.11. Let Divééos = Maps X,T/T) denote the scheme of AP°*-divisors on

X (we include the subscript “eff” for emphasis that we are not taking A-valued divisors).

non—degen.(
We have the canonical map:

deg : ﬂo(Divéggos) — APos,

pos

For A € AP%% let Divg denote the corresponding connected component of DivYy

Remark 2.11.1. Writing A = 37 n;icv; as a sum of simple coroots, we see that Divig

is a product [

1€la
ieTe Sym™ X of the corresponding symmetric powers of the curve.
Recall that we have the canonical map r : ( — BT xT/T'. For any non-degenerate map
X x S — ¢, Warning 2.5.1 implies that the induced map to T'/T (given by composing
with the second projection) is non-degenerate as well.
Therefore we obtain the map:

. APOs
Tz — Dlvgﬁ

We let 7 denote the restriction of 7 to 20,7 . It is well-known that the morphism 7 is affine.
Let Z* (resp. %A) denote the fiber of Z (resp. %) over Divé\ff. We let 7 (resp. 761)')‘)
denote the restriction of 7 to Z* (resp. z%’\) We let 35‘ . 2% _s 2 denote the restriction
of the open embedding j.
Note that m admits a canonical section s : Divéf;os — Z, whose restriction to each
Div(’;\ff we denote by s*. Note that up to a choice of regular dominant coweight, the
situation is given by contraction.
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Each Z* is of finite type (and therefore the same holds for 4%’\) It is known (cf. [13]
Corollary 3.8) that Z* is a smooth variety.
For A = 0, we have 2° = 20 = Div%; = Spec(k).

We have a canonical (up to choice of Chevalley generators) map Z — G, defined as

the composition Z — Buny- — G,. For &; a positive simple coroot the induced map:

2% 5 Divii xG, = X x G, (2.11.1)

is an isomorphism that identifies %5” with X x Gy,.

The dimension of Z* and Z* is (2p,X) = (p, \) +dim Divé‘ﬂg (this follows e.g. from the
factorization property discussed in §2.12 below and then by the realization discussed in
§2.13 of the central fiber as an intersection of semi-infinite orbits in the Grassmannian,

v

that are known by [13] §6 to be equidimensional with dimension (p, A)).

Example 2.11.2. Let us explain in more detail the case of G = SLs. In this case, tensoring

1
with the bundle Q% identifies Z with the moduli of commutative diagrams:

in which the composition £ — £V is zero and the morphism ¢ is non-zero. The open
subscheme % is the locus where the induced map Coker(£ — &) — £V is an isomorphism.
The associated divisor of such a datum is defined by the injection £ — Q;(%.

Over a point = € X:, we have an identification of the fiber z%glc of 2(171 over x € X
(considering 1 € Z = Agy,, as the unique positive simple coroot) with G,,. Up to the

twist by our square root Qi, the point 1 € G,,, corresponds to a canonical extension of
Ox by Qx associated to the point x, that can be constructed explicitly using the Atiyah
sequence of the line bundle Ox ().

Recall that for a vector bundle &, the Atiyah sequence (cf. [4]) is a canonical short
exact sequence:

0—End(&) = At(&) = Tx — 0

whose splittings correspond to connections on €. For a line bundle £, we obtain a canon-
ical extension At(£) ® Q% of Ox by Q%. Taking £L = Ox(z), we obtain the extension

o
underlying the canonical point of Z1.
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Note that we have a canonical map £ = Ox(z) — At(Ox(z)) ® Q% that may be
thought of as a splitting of the Atiyah sequence with a pole of order 1, and this splitting
corresponds to the obvious connection on O x () with a pole of order 1. This defines the

o
corresponding point of Z' completely.
2.12. Factorization

Now we recall the crucial factorization property of Z.

Let add : Divsf;os X Divsf;os — Divé\;os denote the addition map for the commutative
monoid structure defined by addition of divisors. For A and [ fixed, we let add™*# denote
the induced map Divé‘ﬁ X Divgff — DiVi; A,

Define:
. Rpos . jpos . Apos . Apos
[DIVCﬁ- X DlVCﬁ- ]disj g Dchf-f X Dchf-f

as the moduli of pairs of disjoint APos_divisors. Note that the restriction of add to this
locus is étale.
Then we have canonical factorization isomorphisms:

. [\pos . [\pos ~ . [\pos . [\pos
Z x [Diveg xDiveg Jais; — (Z2x 2Z) R [Divggy X Divgg |ais;
Divé\ﬁ% Divé\goa X Divé\ggos

that are associative in the natural sense.
The morphisms 7 and s are compatible with the factorization structure.

2.13. The central fiber

By definition, the central fiber SX of the Zastava space 2 is the fiber product:

P —zN X

Diviﬁ-
where X — Divg\ff is the closed “diagonal” embedding, i.e., it is the closed subscheme

O v v
where the divisor is concentrated at a single point. We let 3* denote the open in 3*

corresponding to 2N 2, Similarly, we let 3 C Z be the closed corresponding to the
union of the 3*.
v v v v O v o v
We let B* (resp. 1) denote the closed embedding 3* < Z* (resp. 3% — Z*).

2.14. Twisted affine Grassmannian

Let Pg", Pg™ and PZ be the torsors induced by the T-torsor P7*" under the
embeddings of T into each of these groups.



S. Raskin / Advances in Mathematics 388 (2021) 107856 29

We let Grg, x denote the P& -twisted Beilinson-Drinfeld affine Grassmannian clas-
sifying a point z € X, a G-bundle Pg on X, and an isomorphism P&"|x\, ~ Pa|x\z-
More precisely, the S-points are:

S z:S —= X, Ps aG-bundle on X x S,
« an isomorphism Pg|xxs\r, ~ P& |xxs\r. |

Similarly for Grp,x, etc. We define Gry- x = Grp- x X@rp x X, where the map
X — Grp x being the tautological section.
Let @BJ( denote the union of closures of semi-infinite orbits, i.e., the indscheme:

x:S—=> X, 0: XxS—=G\(G/N)/T,
Grpx: S { « a factorization of ¢|(xxg)\r, through the }
canonical map Spec(k) — G\ (G/N)/T.

Here I',, denotes the graph of the map x.
2.15. In the above notation, we have a canonical isomorphism:

3 — GrN—7XG X @B’X.

re,x

Indeed, this is immediate from the definitions. ) §
Note that Grp, x has a canonical map to Gry x = HZ\e[\ Gr%,X. Letting Grg,x be the
fiber over the corresponding connected component of Grr x, we obtain:

C o %
3)\_>GTN*7X X GI‘BX.
Gra, x ’

os

2.16. By §2.7, we have an action of Divé\;os on Z so that the morphism 7 is Diviy -

equivariant. We let actz denote the action map Divé\gfm xZ — Z. We abuse notation in

X pos o
denoting the induced map Divf}é xXZ — Z by act% (that does not define an action on

o o
Z, i.e., this map does not factor through Z).
For A € A acting on Z* defines the map:

acty : Divly xZ* — Z.
For 7 € AP°s we use the notation actﬁz’/\ for the induced map:
acth™ : Divig x 2% — 271,
Similarly, we have the maps acté and act>".
Z

The following lemma is well-known (see e.g. [13]).
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Lemma 2.16.1. For every 5\,77 € /V\pos, the map act%’ﬁ (resp. act)(‘,’ﬁ) is finite (resp. a
Z

locally closed embedding). For fized \ the set of locally closed subschemes of ZA;

forms a stratification.
2.17. Intersection cohomology of Zastava

For A € AP we now review the description from [13] of the fibers of the intersection
cohomology D-module IC ;5 along the strata described above, i.e., the D-modules:

v

v v o . v
actg“’!(ICZ;) e DDV xZ7), i, fi € AP i+ i) = A.
Theorem 2.17.1.

(1) With notation as above, the regular holonomic D-module:
7,00, -5
actz,z” "(IC;x) € D(Divlg x2ZH) (2.17.1)

o .
is concentrated in constructible cohomological degree —dim Z#.
0.
(2) For x € X a point, the further x-restriction of (2.17.1) to 3% is a lisse sheaf in
o ~
constructible degree — dim Z# isomorphic to:

UR)(7) @ kg, [dim 27]

x

where U(n)(n) indicates the n-weight space.
(3) The -restriction of (2.17.1) to 3% is isomorphic to:

= dim 27] (2.17.2)

=
3(E

Sym(#[—2])(7]) ® w

for Sym(n[—2])(77) the 1j-weight space of the (DG) symmetric algebra Sym(n[—2]) €
Rep(T).

Remark 2.17.2. Recall from the above that Z/ is equidimensional with dim Z# = 2(p, i).

Remark 2.17.3. This theorem is a combination of Theorem 4.5 and Lemma 4.3 of [13]
using the inductive procedure of [13].
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2.18. Locality

For X a smooth (possibly affine) curve with choice of Qi, we obtain an identical
geometric picture. One can either realize this by restriction from a compactification,
or by reinterpreting e.g. the map Z — G, through residues instead of through global
cohomology.

3. Limiting case of the Casselman-Shalika formula

3.1.  The goal for this section is to prove Theorem 3.4.1, on the vanishing of the
IC-Whittaker cohomology groups of Zastava spaces. This vanishing will play a central
role in the remainder of the paper.

Remark 3.1.1. The method of proof is essentially by a reduction to the geometric
Casselman-Shalika formula of [22].

Remark 3.1.2. We are grateful to Dennis Gaitsgory for suggesting this result to us.
3.2. Artin-Schreier sheaves

We define the !-Artin-Schreier D-module ¥ € D(G,) to be the exponential local sys-
tem normalized cohomologically so that 1[—1] € D(G,)". Note that ¢ is multiplicative
with respect to !-pullback.

3.3, For A\ € AP°s| let Yo € D(Zx) denote the !-pullback of the Artin-Schreier
D-module ) along the composition:

can

zN Buny- — G,.

| .
Note that ¢,x ® IC;5 € D(Z1).
We then also define:

Yo

X!
25 =J (wzi)'
3.4. The main result of this section is the following:

Theorem 3.4.1. If A #0, then:

" !
12 ar(IC 55 @Y 5) = 0.

The proof will be given in §3.6 below.
This theorem is étale local on X, and therefore we may assume that we have X = Al.

1
In particular, we have a fixed trivialization of {2%.
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3.5. Central fibers via affine Schubert varieties

In the proof of Theorem 3.4.1 we will use Proposition 3.5.1 below. We note that it is
well-known, though we do not know a published reference.

Throughout §3.5, we work only with reduced schemes and indschemes, so all symbols
refer to the reduced indscheme underlying the corresponding indscheme. Note that this
restriction does not affect D-modules on the corresponding spaces.

Let T(K)x denote the group indscheme over X of meromorphic jets into 7' (so the
fiber of T(K)x at x € X is the loop group T'(K,)). Because we have chosen an identifi-
cation X ~ A', we have a canonical homomorphism:

GrT,X ’:Al XA—>T(

K)x x T'(K)
(@, A) = (@, A(t))
where ¢ is the uniformizer of A! (of course, the formula Gry x ~ Al x Ais only valid at
the reduced level). This induces an action of the X-group indscheme Gry x on Grg x,
Grg,x and Gry- x = Gr%77X.
Using this action, we obtain a canonical isomorphism:

34 =Gl x X GrBX—»GrB x X Gr
Gra,x Gra

)\+77

of X-schemes for every 7 € A.
Below, we let Grg,z denote the G(O,)-orbit through the point A(t) € Grg.., and

similarly for Gré‘; x-

Proposition 3.5.1. For 7 deep enough®* in the dominant chamber we have:

Uj /\+n
GrB_ X GrB X = GrB x X Gr .
Grg, x Grg
This equality also identifies:
7 A+7) A+1)
Grp_ ¢ X GrBX = GrB x X GrG7X
’ GTG,X GrG,X

Proof. It suffices to verify the result fiberwise and therefore we fix x =0 € X = A! (this
Y (O v
is really just a notational convenience here). We let 32 (resp. 3}) denote the fiber of 3*
[0
(resp. 3*) at z. Let t € K, be a coordinate at z.

Because there are only finitely many 0 < < A and because each 3“ is finite type,
for 1 deep enough in the dominant Chamber we have.

24 The implicit bound depends on A.
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38 = Gry- , NAd_;)(N(0,)) - f(t)

(f1(t) being regarded as a point in Grg,, here and the intersection symbol is short-hand
for fiber product over Grg ) for all 0 < 1 < A Choosmg 7 possibly larger, we can also
assume that 7 + [ is dominant for all 0 < i < A. Then we claim that such a choice i
suffices for the purposes of the proposition.

Observe that for each 0 < i < \ we have:

Grl_ NGt =ij(t) 30 C Gr%_’Iﬁ(N(Ox)-([L—kﬁ)(t)) CGrl_ NGt

Recall (cf. [34]) that @,A;f is a union of strata:

Grig i < X
while for fi:

n #+77 _
GrB_ N Grg

unless i > 0. Therefore, Gr”! B- o intersects Gt B, only in the strata Gr” +77 for0< <A
The above analysis therefore shows that:

Grﬁ >\+77

5- .NGrg

C GrB NGr )‘+77.

v

Now observe that B(O,) - (A4 7)(t) is open in Gr. Therefore, we have:

X —X+7
Gryy +" C Gry

giving the opposite inclusion above.

o
It remains to show that the equality identifies 3 in the desired way. We have already
shown that:

GrﬁB, N Gr)‘“’ C Gri’B,,x N Grg;ﬁ,

so it remains to prove the opposite inclusion. Suppose that y is a geometric point of
the right hand side. Then, by the Iwasawa decomposition, y € Gr’f;xn for some (unique)

e A and we wish to show that b= A
Because:

y € Gr”+" ﬂ(}r)"s'77 £ 0

we have i < A. We also have:
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+
yE€ Gr“ 1A Gr! o 70
which implies i > 0. Therefore, by construction of n we have:
Yy € Gr%_)w N (;‘rr[f;’r;7 - GrZ_J N Gr’é;77 - Gré;ﬁ

7& (because i + 17 and A+ 7 are assumed dominant) and

but Gr’”" ﬂGr)‘+" 0 if
el = A as desired. O

therefore we must havi

We continue to use the notation introduced in the proof of Proposition 3.5.1.
Recall that 8 (resp. +*) denotes the closed embedding 3o 2 (resp. 3* — Z;\).
For z € X, let 52\ (resp. 7;\) denote the closed embedding 39);‘ < ZA (resp. Sé — Z;\).

Corollary 3.5.2. For every x € X, the cohomology:

H;R( ;\7551!(1025\ éwzx)) (351)

is concentrated in non-negative cohomological degrees. For O # 5\, it is concentrated in
strictly positive cohomological degrees.

Remark 3.5.3. It follows a posteriori from Theorem 3.4.1 that the whole cohomology
vanishes for 0 # A

Proof. First, we claim that when either:

e 1 <0, or:
. i:OandS\#O

we have:

Hig (317% (ICg, éwgi)) =0. (3.5.2)

Indeed, from the smoothness of Z>‘ we see that fy)‘ '(IC )=

object is concentrated in perverse cohomological degrees:

A[ dlmZ)‘} so this

~dim(3Y) + dim(2Y) = dim(3}).

The same bound applies when we twist by the local system 5. This gives the desired

o [0
vanishing in negative degrees, as de Rham cohomology on 37 has amplitude > — dim(32)
with respect to the perverse t-structure.
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Moreover, from Proposition 3.5.1 and the Casselman-Shalika formula ([22] Theorem
1), we deduce that, for A # 0, the restriction of our rank one local system to every

o
irreducible component of 3} is moreover non-constant. This gives (3.5.2) for in the case
i=0and A #0.
To complete the argument, note that by Theorem 2.17.1 (3), for 0 < & < A, the

o.
l-restriction of IC ;5 to 3% lies in perverse cohomological degrees > (p, fi), with strict
inequality for i # A.
. !
By lisseness of .5, we deduce that for 0 < g2 < A, ﬁ;\’!(ICZ; @1 ;5) has l-restriction

to gg in perverse cohomological degrees strictly greater than (p, fi) = dim(gg). Therefore,
the non-positive de Rham cohomologies of these restrictions vanish.

Therefore, only the open stratum can contribute to the non-positive cohomology. We
now obtain the result by (3.5.2). O

Corollary 3.5.4. For 0 # e /VV’OS, we have:
% !
(i (32820 b0 ) =0

Proof. For 7 € A sufficiently deep in the dominant chamber (in particular, satisfying the
conclusion of Proposition 3.5.1), we will show:

62" (C )] = [M(IC5 )] € Ko(D}i(3)) (3.5.3)

in the Grothendieck group of complexes of (coherent and) holonomic D-modules on 35;.
Here the map ¢ is defined as:

N P A
3; — Grg_  NGrg' — Grg !l

It suffices to show that for each 0 < 1 < 5\, the l-restrictions of these classes coincide in
the Grothendieck group of:

7l 41
Grp- ,NGrg,'.

Indeed, these locally closed subvarieties form a stratification.
First, note that the !-restriction of IC

G to Grg'gv‘ has constant cohomologies (by
G(O,)-equivariance). Moreover, by [33] Theorems 11c and 6.1, the corresponding class

in the Grothendieck group is the dimension of the weight component:
dim (V0O () - [ 1)

Further !-restricting to Grz,,w N C%l“’gfgj’7 we obtain that the right hand side of our equa-

tion is given by:
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dim V= 0O (i —7p) - e naugl
By having U (1) act on a lowest weight vector of V‘wO(;\+’7), we observe that for 7 large
enough, we have?®:
Ve (i — ) = U()A — i) = Sym(#)(A - j).

The similar identification for the left hand side of (3.5.3) follows from the choice of 7

. L o
(so that Gr, N Grl"" identifies with 3#) and Theorem 2.17.1 (3).
Appealing to (3.5.3), we see that in order to deduce the corollary, it suffices to prove
that:

¢ [
( Hin (32,000 ) 8 82 0,)) ) =0
G,z
Even better: by the geometric Casselman-Shalika formula [22], this cohomology itself

vanishes. O

3.6. Now we give the proof of Theorem 3.4.1.

v

Proof of Theorem 3.4.1. We proceed by induction on (p,\), so we assume the re-
sult holds for all 0 < g < A. By factorization and induction, we see that F =

. I .
72 qr(IC 75 @1 45) is concentrated on the main diagonal X C Div)g.

< < !

The (x =!-)restriction of F to X is the #-pushforward along 3* — X of M (IC ;5 ®

¥ zx). Moreover, since 35‘ — X is a Zariski-locally trivial fibration, the cohomologies of
F on X are lisse and the fiber at € X is:

Hip (Siaﬁé\’!(lch éwzx))

Because 7 is affine and IC Z5 éwz 5 is a perverse sheaf, F lies in perverse degrees < 0.
Moreover, by Corollary 3.5.2; its !-fibers are concentrated in strictly positive degrees.
Since F is lisse along X, this implies that F is actually perverse. Now Corollary 3.5.4
provides the vanishing of the Euler characteristics of the fibers of F, giving the result. O

4. Identification of the Chevalley complex

4.1.  The goal for this section is to identify the Chevalley complex in the coho-
mology of Zastava space with coefficients in the Whittaker sheaf: this is the content of
Theorem 4.6.1.

25 We include the second isomorphism for the reader’s convenience, in comparing with the statement of
Theorem 2.17.1. We are not concerned here with a canonical choice of such isomorphism; for our purposes,
it is enough that these are two finite-dimensional vector spaces of the same dimensions.
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The argument combines Theorem 3.4.1 with results from [12].

Remark 4.1.1. Theorem 4.6.1 is one of the central results of this text: as explained in the
introduction, it provides a connection between Whittaker sheaves on the semi-infinite
flag variety and the factorization algebra T, and therefore relates to the main conjecture
of the introduction.

4.2.  We will use the language of graded factorization algebras.
The definition should encode the following: a Z>°-graded factorization algebra is a
system A,, € D(Sym" X) such that we have, for every pair m,n we have isomorphisms:

(Am X ‘An) |[Symm X xSym™ X]qis; — (‘Aern) |[Symm X xSym™ X]gis;

satisfying (higher) associativity and commutativity. Note that the addition map
Sym™ X x Sym™ X — Sym” "™ X is étale when restricted to the disjoint locus, and
therefore the restriction notation above is unambiguous.

Formally, the scheme Sym X =[], Sym™ X is naturally a commutative algebra under
correspondences, where the multiplication is induced by the maps:

[Sym"™ X x Sym™ X]ais;

/\

Sym"™ X x Sym™ X Sym™ ™ X

Therefore, as in [35] §6, we can apply the formalism of [35] §5 to obtain the desired
theory.

Remark 4.2.1. We will only be working with graded factorization algebras in the heart
of the t-structure, and therefore the language may be worked out by hand as in [6], i.e.,
without needing to appeal to [35].

Similarly, we have the notion of ]Xp"s—graded factorization algebra: it is a collection of
D-modules on the schemes Div)g with similar identifications as above.

4.3.  Recall that [12] has introduced a certain APos_graded commutative factorization

algebra, i.e., a commutative factorization D-module on Divééos. This algebra incarnates
the homological Chevalley complex of fi. In [12], this algebra is denoted by Y(ix): we
use the notation Tj instead. We denote the component of T on Divéﬁ by Ti‘ Recall
from [12] that each Té lies in D(Divj‘ﬁ-)o.26

€

26 We explicitly note that in this section we exclusively use the usual (perverse) t-structure.
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Remark 4.3.1. To remind the reader of the relation between Tj; and the homological
Chevalley complex C,(11) of 1, we recall that the x-fiber of T at a AP°*-colored divisor
22;1 5\2 - x; (here 5\1 € AP°® and the x; € X are distinct closed points) is canonically

identified with:

where C, (ﬁ)s‘i denotes the A-graded piece of the complex.
Remark 4.3.2. The /V\p"s—graded vector space:

n= D ne
& a positive coroot

gives rise to the D-module:

fiy = @ A% n (1% ® kx) € D(Divly)

& a positive coroot

where for A € /V\, AN X Div(’;\ﬁ is the diagonal embedding. The Lie algebra structure
on 1 gives a Lie-* structure on fiy.

Then Y is tautologically given as the factorization algebra associated to the chiral
enveloping algebra of this Lie-x algebra.

Remark 4.3.3. We emphasize the miracle mentioned above and crucially exploited in
[12] (and below): although C,e(11) is a cocommutative (DG) coalgebra that is very much
non-classical, its D-module avatar does lie in the heart of the ¢-structure. Of course, this
is no contradiction, since the x-fibers of a perverse sheaf need only live in degrees < 0.

4-4-  Observe that j. ar(IC ) naturally factorizes on Z. Therefore, 5*’de*,dR(IC§)

is naturally a factorization D-module in D(Divé\éos).
The following key identification is essentially proved in [12], but we include a proof
with detailed references to [12] for completeness.

Theorem 4.4.1. There is a canonical identification:
H (5", ar(IC4)) = Ty
of /v\pos—gmded factorization algebras.

Remark 4.4.2. To orient the reader on cohomological shifts, we note that for A € Aros
fixed, IC§X is concentrated in degree 0 and therefore the above H° is the maximal

cohomology group of the complex 5*7dR]*7dR(IC%X).
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Proof of Theorem 4.4.1. Let j : Divé\;os’Simple < DivA"" denote the open consisting of
simple divisors, i.e., its geometric points are divisors of the form Y 7 L Q; - K2 for ¢&; a

posmve simple coroot and the points {x;} pairwise distinct. For each \e APOG, we let

: Div )‘ Slmple —> Dlvcﬁ» denote the corresponding open embedding. Note that j and

each embeddlng 4 is affine.
Observe that Divé\éos’Simple has a factorization structure induced by that of Diveg.

The restriction of Ty to Divé\;fms’Sim’lC identifies canonically with the exterior product
over i € Zg of the corresponding sign (rank 1) local systems under the identification:

. S\,Simple ~ nq,simple
Div g o~ H Sym X
i€la

where \ = ZiGIG n;¢&; and on the right the subscript simple means simple effective
divisor in the same sense as above. Moreover, these identifications are compatible with
the factorlzatlon structure in the natural sense.

Let Zs‘mple and ZMsMPle denote the corresponding opens in Z and ZA obtained by
fiber product. Let s™Pl® and sAsimple denote the corresponding restrictions of s and s*.

Then ZAsimple =, Div(’:\f’;imple xGE™N as a DIV)\ SImPle_gcheme by (2.11.1), and these
identifications are compatible with factorization.

Therefore, we deduce an isomorphism:

HO (5simple,*,dR

Jrar(Csq 1)) =5 j(Ts)

Zsimple

s . AP°® simpl
of factorization D-modules on Div g ™ (

note that the sign local system appears on
the left by the Koszul rule of signs).
Therefore, we obtain a diagram:

JHO(smPlen A, (1C, ) ——= 37! (T)

o
Zsimple

l (4.4.1)
HO(S*’dR]*7dR(IC§)) Tﬁ

APOS

Note that the top horizontal arrow is a map of factorization algebras on Divé\é
By (the Verdier duals to) [12] Lemma 4.8 and Proposition 4.9, the vertical maps in

(4.4.1) are epimorphisms in the abelian category D(Divg\;os)@. Moreover, by the analysis
in [12] §4.10, there is a (necessarily unique) isomorphism:

H (5", ar(IC4)) = Ty

completing the square (4.4.1). By uniqueness, this isomorphism is necessarily an isomor-
phism of factorizable D-modules. O
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4.5.  Observe that the D-module ¢% canonically factorizes on % Therefore,
]*,dR(w%) factorizes in D(Z).

By Theorem 4.4.1, we have for each X € APo% we have a map:
P2ar(C ) = &) g HO (82970 15 (1C, )) = 5..4r(T3). (4.5.1)

These maps are compatible with factorization as we vary A

Lemma 4.5.1. The map (4.5.1) is an epimorphism in the abelian category D(Z:\)@,
Proof. This is a general phenomenon: for any closed embedding i : D — Z of finite
type schemes and any holonomic ¥ € D(Z)%, the map F — i, 4qrHO(i*4E(F)) is an
epimorphism. O

I .
4.6.  Applying 1)z ® — to (4.5.1) and using the canonical identifications s™"4%(¢)_5)
= wDiv;H7 we obtain maps:

‘ ! ‘
n 3]1\,(11%(1/’@ ® IC%X) — 5w.ar(T3).

Because everything above is compatible with factorization as we vary A, the maps r]j‘ are
as well. '

We let 7 : j*’dR(’l/JZDZ ® ICé) — 6. 4r(YTw) denote the induced map of factorizable

D-modules on Z.

Theorem 4.6.1. The map:

o ! ! Tw,dR
Tedr(Yg ©1Cs) = mwargsar(Pg ®1C) Tean), T drS«dr(Ta) = Ta  (4.6.1)

os

. . . . . AP
is an equivalence of factorization D-modules on Divyg

!
Remark 4.6.2. In particular, the theorem asserts that 7‘%*70;3(1/)% ® IC%) is concentrated
in cohomological degree 0.

Proof of Theorem 4.6.1. It suffices to show for fixed A € AP°® that nydR(nX) is an equiv-
alence.
Recall from [12] Corollary 4.5 that we have an equality:

rar(Cg )l = Y [acth jp(YPRICz:)] € Ko(D}o(27)), (4.6.2)
fi,i€APos
fitr=X
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in the Grothendieck group of (coherent and) holonomic D-modules. Therefore, because
1z is lisse, we obtain a similar equality:

Panlg, #1050 = 3 [aet2 4y (Y18 (420 ©10z0))) (4.6.3)

by the projection formula.
For every decomposition [i 4+ 7 = A, we have:

S . , ! . y y !
R anacty’ i (TIR (20 @1020)) = add?iy (TR 7l (620 @ 1Cz4) ).

By Theorem 3.4.1, this term vanishes for g # 0.

Therefore, we see that the left hand side of (4.6.1) is concentrated in degree 0, and
that it agrees in the Grothendieck group with the right hand side.

Moreover, by affineness of 7r;\, the functor 7rj;\7 4r s right exact. Therefore, by
Lemma, 4.5.1, the map ﬂ'i‘AdR(’qj‘) is an epimorphism in the heart of the ¢-structure;
since the source and target’agree in the Grothendieck group, we obtain that our map is
an isomorphism. O

5. Hecke functors: Zastava calculation over a point

5.1.  Next, we compare Theorem 4.6.1 with the geometric Satake equivalence.

More precisely, given a representation V' of the dual group é’, there are two ways to
associate a factorization Ys-module: one is through its Chevalley complex C,o (11, V'), and
the other is through a geometric procedure explained below, relying on geometric Satake
and Theorem 4.6.1. In what follows, we refer to these two operations as the spectral and
geometric Chevalley functors respectively.

The main result of this section, Theorem 5.14.1, identifies the two functors.

Notation 5.1.1. We fix a k-point x € X in what follows.
5.2. Polar Drinfeld structures

Suppose X is proper for the moment.
Recall the ind-algebraic stack Bun?voir from [22]: it parametrizes Pg a G-bundle on
X and non-zero maps®:

AN = Vi, (00 - )

defined for each dominant weight A and satisfying the Plucker relations.

1
27 Here if (p, A) is half integral, we appeal to our choice of 2%.
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Example 5.2.1. Let G = SLy. Then Bun?volm classifies the datum of an S Ls-bundle € and
1

a non-zero map Q% — &(co - x).”*

Example 5.2.2. For G = G,,, Bunﬁfc is the affine Grassmannian for T at x.
5.83. Hecke action

The key feature of Buny. is that Hecke functors at 2 act on D(Buny. ). More
precisely, the action of the Hecke groupoid on Bung lifts in the obvious way to an action
on Bunjy .

For definiteness, we introduce the following notation. Let H{¢ denote the Hecke stack
at x, parametrizing pairs of G-bundles on X identified away from x. Let hy and hy denote
the two projections H§ — Bung.

Define the Drinfeld-Hecke stack HE p,;, as the fiber product:

F=ammmie e}

X

¢ X DBuny
Bung

T

where we use the map h; : HE — Bung in order to form this fiber product. We abuse
-

notation in using the same notation for the two projections 5—(%7Drin — Buny- .

Example 5.3.1. Let G = SLy. Then HE, p,;, parametrizes a pair of SLo-bundles &; and

1
&, identified away from x and a non-zero map Q3% — &;(o0 - ). The two projections hq
and ho correspond to the maps to Bun?\,c;x sending a datum as above to:

(81,9)%( — 81(00 . l’))

(&2, Q)%( — &1(c0-z) = Ex(00 - z))
respectively.

We have the usual procedure for producing D-modules on H§ from objects of
Sphg . = D(Grg,.)%(©). These give Hecke functors acting on D(Bung), considering

& as a correspondence from Bung to itself. We normalize our Hecke functors so that
we !-pullback along h; and s-pushforward along hs. The same discussion applies for
D(Buny-).

We use x to denote the action by convolution of Sphg , on these categories.

28 Here we are slightly abusing notation in letting & denote the rank two vector bundle underlying our
S La-bundle.
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5.4. Polar Zastava space

We define:

o . —0o-x
Z°°% C Bung x Bunpy-
Bung

as the open characterized by the usual condition of generic transversality. We remark

that Zoow is an indscheme.
Note that z C Zoow is the fiber of Zoow along Buny- C Bun,. .

o
Remark 5.4.1. As in the case of usual Zastava, note that Z°°* is of local nature with
respect to X: i.e., the definition makes sense for any smooth curve, and is étale local
on the curve. Therefore, we typically remove our requirement that X is proper in what
follows.

5.5.  Let Divé\éos’m“ be the indscheme parametrizing A-valued divisors on X that
are AP°®-valued away from zx.
As for usual Zastava space, we have the map:

x . A pos .
Zoow B0, pyyArtteos.

% ,00-x

Remark 5.5.1. There is a canonical map deg : D1V H — A (considering the target

as a discrete k-scheme) of taking the total degree of a divisor.
5.6. Factorization patterns

. AP o . . L . _APos .
Note that Divg " is a unital factorization module space for DivY; . This means
that e.g. we have a correspondence:

H

N

pos Apos .
D1VA X D1V o0 D1Veff 0T

For this action, the left leg of the correspondence is the open embedding encoding dis-
jointness of pairs of divisors, while the right leg is given by addition. (For the sake

of clarity, let us note that the only reasonable notion of the support of a divisor in

% 00T

Divé\éo requires that = always lie in the support.)

Therefore, as in §4.2, we can talk about unital factorization modules in DivA! o

for a unital graded factorization algebra A € D(Dlveﬂ ) We denote this category by

fact
A-mod,;, .
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os

S . .. Apos . AP oo Lo
Remark 5.6.1. The factorization action of Dlvé\ff on DlVé\H °9% is commutative in the

pos

sense of [35] §7. Indeed, it comes from the obvious action of the monoid Divé\ff on

. AP 0.z
Div g .

Remark 5.6.2. We emphasize that there is no Ran space appearing here: all the geometry
occurs on finite-dimensional spaces of divisors.

o
5.7.  There is a similar picture to the above for Zastava. More precisely, Z°°'* is a
o

unital factorization module space for Z in a way compatible with the structure maps to
and from the spaces of divisors.
o
Therefore, for a unital factorization algebra B on Z, we can form the category
o o
B-modt(Z°07) Moreover, for M € B-mod2<t(Z>w), %fdﬁ(/\/l) is tautologically an
object of 7. 4r(B)-mod™® . We denote the corresponding functor by:

un,x*

o
T4« B-modiict (2°97) — 7, g5 (B)-modfet

un,x*
5.8. Construction of the geometric Chevalley functor

We now define a functor:

ChevE®™ : Rep(G) — Ti-modict

T un,T

using the factorization pattern for Zastava space.

Remark 5.8.1. Following our conventions, Rep(é) denotes the DG category of represen-
tations of G.

Remark 5.8.2. We will give a global interpretation of the induced functor to

D(Divé\;os’m'z) in §5.12; this phrasing may be easier to understand at first pass.

o
5.9.  First, observe that there is a natural “compactification” Z°°'% of Z°°*: for X
proper, it is the appropriate open locus in:
-

. —00-T —00
Z°% C Bung x Buny- .
Bung

Here mj;f'”” is defined analogously to M?\fof; we remark that it has a structure map
to Buny with fibers the variants of mj’v‘"f for other bundles. Again, Z°°* is of local
nature on the curve X.

The advantage of Z°°* is that there is a Hecke action here, so Sphg, , acts on D(Z°°°%).

Note that -pullback from Buny. commutes with Hecke functors.
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%,00x

There is again a canonical map to DlV H , and the factorization pattern of §5.7

carries over in this setting as well, that is, Z°°'® is a unital factorization module space
for Z.

Moreover, this factorization scheme is compatible with the Hecke action: more pre-
cisely, the action by correspondences of G(O,)\ Grg,; on Z°°'* upgrades to an action on
Z>% considered as a unital factorization module space for Z. Concretely, this implies
that for any unital factorization algebra B on Z, B-mod™*(Z>'#) carries a canonical
action of Rep(G) by convolution, extending the action of Rep(G) on D(Z°°%).

5.10. Define Y C Z°°% as the preimage of Buny- C Bun?fc in Z°°%. Again, Y is
of local nature on X.

Remark 5.10.1. The notation Z°° ? would be just as approprlate for Y as for the space

we have denoted in this way: both are polar versions of Z but for Z°° * we allow poles
for the N~ -bundle, while for Y we allow poles for the B-bundle.

There is a canonical map Y — G, which e.g. for X proper comes from the canonical
map Buny- — G,. We can !-pullback the exponential D-module ¢ on G, (normalized

as always to be in perverse degree —1): we denote the resulting D-module by ¢y € D(Y).
We then cohomologically renormalize: define i

P = y[—(2p, deg)].

Here we recall that we have a degree map Y C Z°% — /v\, so pairing with 2p, we obtain
an integer valued function on Y: we are shifting accordingly.

Remark 5.10.2. The reason for th'is shift is the normalization of Theorem 4.6.1: this shift

is implicit there in the notation ® IC% This is also the reason for our notation w}f

5.11.  Recall that j denotes the embedding Z — Z. We let 3°°* denote the map
ZOoT y ZOOT,
Let:
Saty : Rep(G)? = Sphgm
denote the geometric Satake equivalence. Then let:

Sat”*"¢ : Rep(G) — Sph¢

denote the induced functor.
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We then define Chevi™™ as the following composition:

o S(tna'ive _ {C
Rep(G) RN Sphg . L

900z

1 oo z,! ! o T
Jear(thg ®IC 5 )-modyrt (2°7) = (5 ©1C 5 )-mod ;" (2°%) =% Yy-modyy!

un,r*
(5.11.1)
Here in the last step, we have appealed to the identification:

0 !
Tar(thg ®IC,)) =Ty

of Theorem 4.6.1. We also abuse notation in not distinguishing between wbc and its
x-pushforward to Z°°".

Remark 5.11.1. The above construction has many steps, so let us spell out each in a
little more detail.
First, wy is canonically factorization module for we by functoriality. The same applies

i
for ¢y and wé, or the shifted versions w{f and w% ® IC§.
We can then *-extend to obtain that ¢1If (or rather, its #-extension to Z°°%*) is
!

canonically a factorization module for j, 4 R(’(/J% ® IC;).

v

! v
As in §5.9, there is an action of Rep(G) on j*’dR(@[J% ® ICZO’)' So for any V € Rep(G),
we can form

|
o
Next, we l-restrict to Z°% to obtain a factorization module

! o
FIENV ) € g ©1C ) -modit (277,
Finally, we apply the construction of §5.7 and Theorem 4.6.1 to observe that
TR ™ (Vi)
is a factorization module for T, completing the construction.

5.12. Global interpretation

As promised in Remark 5.8.2, we will now give a description of the functor Chevg*>™

in the case X is proper. 7
Since X is proper, we can speak about Bun - and its relatives. Let Whit € D(Buny-)

denote the canonical Whittaker sheaf, i.e., the !-pullback of the exponential sheaf on G,

(normalized as always to be in perverse degree —1). We then have the functor:
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Rep(G) — D(Diviy" )

given as the composition:

“ Sa naive . i o o ;')ricr ) < Dos .
Rep(() 5 Sphg; , —"% D(Buny-") — D(2°7) % D(Diviy™ o).

That is, we apply geometric Satake, convolve with the (x =!-)pushforward of Whit to
o

D(Bun?fc)7 I-pullback to Z°%, and then *-pushforward along 7°°<.
Since !-pullback from Bun]o\,o'_ac to Z°°% commutes with Hecke functors, up to the

cohomological shifts by degrees, this functor computes the object of D(Divé\éos’oo'x)

geom

underlying the factorization Tz-module coming from Chevy

5.13. Spectral Chevalley functor

We need some remarks on factorization modules for Tj:
Recall from Remark 4.3.2 that T is defined as the chiral enveloping algebra of the
graded Lie-* algebra ny € D(Divff;%). By Remark 5.6.1, we may speak of Lie-* modules

for nx on Divééos’oo'w: the definition follows [35] §7.19. Let nx—mod, denote the DG

category of Lie-* modules for nx supported on Gry, C Divé\;os’ww (this embedding is
as divisors supported at z). We have a tautological equivalence:

fix-mod, ~ fi-mod(Rep(T)) (5.13.1)

coming from identifying Rep(T) with the DG category of A—graded vector spaces.
Note that the right hand side of this equation is just the category of A-graded n-

representations.
Moreover, by [35] §7.19, we have an induction functor ind* : fix-mod, —
Tﬁfmodff‘,ffm.
We then define Chevi” : Rep(G) — Tﬁfmodff‘,ffz as the composition:
. v . v . Lo (513.1) ingeh
Rep(G) Oblv, Rep(B) Oblv, n—mod(Rep(7")) G2 fix-mod, 24 Tﬁ*modf?ﬁfz.
(5.13.2)

5.14. Formulation of the main result

We can now give the main result of this section.

spec

Theorem 5.14.1. There exists a canonical isomorphism between the functors Chev,”

geom
and Chevﬁ, i

The proof will be given in §5.16 below after some preliminary remarks.
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Remark 5.14.2. As stated, the result is a bit flimsy: we only claim that there is an iden-
tification of functors. The purpose of §7 is essentially to strengthen this identification so
that it preserves structure encoding something about the symmetric monoidal structure

v

of Rep(QG).
5.15. Equalizing the Hecke action

Suppose temporarily that X is a smooth proper curve. One then has the following
relationship between Hecke functors acting on Bung = and Hecke functors acting on
o0
Bun, - .

. . —_0o0T —_0o0T
Let « (resp. 8) denote the projection Z°°* — Buny - (resp. £Z%°'* — Bung ). Recall

that o' and ' commute with the actions of Sph .

°% oo x

Let 7°°® denote the canonical map Z°7% — Divé\;

Lemma 5.15.1. For ¥ € D(Buny ), G € D(Buny ), and 8 € Sphg ., there is a canon-
ical identification:

mixii (o §%9) 9 8(9))) = 7k (a(3) © (8% 9)).

Proof. By base-change, each of these functors is constructed using a kernel on some
correspondence between Buny- x G(O,)\ Grg, xBunyg — and Div3g®.

In both cases, one finds that this correspondence is just the Hecke groupoid (at z) for
Zastava, mapping via hy to mjo\,o;z and via ho to m?“", with the kernel being defined
by 8. O

5.16. 'We now give the proof of Theorem 5.14.1.

v

Proof of Theorem 5.14.1. As Rep(G) is semi-simple, we are reduced to showing this result
for V = V* an irreducible highest weight representation with highest weight A € A*.

Step 1. First, we introduce some notation that we will use below.

The commutative monoid structure on Divé\ém’omJ (given by addition of divisors)
induces a symmetric monoidal structure on D(Divi\;w’wx)), which we de note by *
here. Clearly D(Divg\;w) is a symmetric monoidal subcategory.

Apos - . o
In addition, Divgf; canonically acts on BunoBox and Z°°*. We again denote the
corresponding action on D-module categories by *.
Finally, for fi € A, we let J; , be the skyscraper D-module at the corresponding point

p

00 (which obviously lies in Grr, C Divé\ﬁ

2% oo

AP
fi-x € Diviy

Step 2. Next, we describe the strategy of the argument, which is similar to the proof of
Theorem 4.4.1.
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Let j : U — Divé\;os’oo'gj be the locally closed subscheme parametrizing divisors of
the form:

where x; € X are pairwise disjoint and distinct from z (this is the analogue of the open
Divé\éOb’Simple - Divé\;fm which appeared in the proof of Theorem 4.4.1).
We have an easy commutative diagram:

3" Cheviy™ (V) 513! ChexTE (V) = 1" By 5y L)

l l (5.16.1)

ChevE™™ (V) CheviPe (V7).

One easily sees that the right vertical map is an epimorphism (this is [12] Lemma
9.2).

It suffices to show that the left vertical map in (5.16.1) is an epimorphism, and
that there exists a (necessarily unique) isomorphism in the bottom row of the diagram
(5.16.1).

This statement is local on X, and therefore we can (and do) assume that X is proper
in what follows.

Step 3. We now recall some the chiral PBW theorem in our setting. We refer to [35]
§7.19 for proofs, (which closely follows [6] and [19] on these points).

For ¥ € D(Div;")), we let Sym™*(F) € D(Div’; )) denote its nth symmetric power
with respect to .

Then the chiral PBW theorem implies that Ty carries a canonical filtration indexed
by Z>° with gr,, Ts ~ Sym™*(iix) € D(Diviy ).

More generally, for any F € fix-mod,, Ind"(F) carries a canonical Z>-filtration (as
an object of D(DivAy ™)) with gr,, Ind"(F) ~ Sym™* (iix) * F.

spec

In particular, forgetting factorization module structures, Chev." (V') carries a canon-

ical increasing filtration with:

gr,, Chevi” (V) =~ & V(i) ® oy x Sym™” (ix).

€
Step 4. We now claim that Chevﬁe;)m(V;\) lies in the heart of the t-structure, and that
[Chevﬁe;)m(vj‘)] = [Chev:pzc(vj‘)] in the Grothendieck group.?’

29 Properly, we mean the following. Note that Divﬁgw’w'w has connected components indexed by A. We

mean that for every 1 € ]\7 the restriction of these two D-modules to the corresponding connected component
are (coherent and) holonomic D-modules, and the two coincide in the Grothendieck group of this component.
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By Lemma 5.15.1, for every representation V of G we have:

725t (0! (St (V) < Whit) & B'(I0pu, ) = (5162)

7252 (o} (Whit) @ B (Sata(V) % ICpung))-

Here ICpyn, indicates the x-extension of this D-module to m";“.

By definition, Chev:™>™ (V) is the left hand side of (5.16.2).

Now recall from [12] ’§8.7 that Sat, (V) * ICpun, carries a canonical (finite for finite-
dimensional V) filtration indexed by coweights with:

grﬂ(Satm(V) *ICBuny) V(1) ® 01,2 * ICBun, € D(BunoBo.m).
We find that 3'(Sat, (V) « ICgun,) carries a similar filtration with

gr; (B (Saty (V) x ICBuny, ) = V(i) ® 6.0 * ICy

where, as above, IC‘% € D(Z°°") is shorthand for the %-extension of this D-module.
By Theorem 4.6.1, we conclude that Chevi®>™ (V) carries a filtration with:

g1 (Chevi ™ (V) = V(j1) ® 01,0 % T
This immediately implies that Chevi"™ (V') is concentrated in degree 0.
Finally, the identification with Chev”**(V) in the Grothendieck group follows from
Step 3.

Step 5. We will use (a slight variant of) the following construction."

Suppose that Y is a variety and F € D(Y x AY)® is G,,-equivariant for the action
of G,, by homotheties on the second factor, and that F is concentrated in negative
(perverse) cohomological degrees.

For ¢ € k, let i, denote the embedding Y x {c} — Y x Al

Then, for each k € Z, the theory of vanishing cycles furnishes specialization maps:

H*(i3(F)) — H(i5,(F)) € D(Y)Y (5.16.3)

that are functorial in ¥, and which is an epimorphism for & = 0. Indeed, these maps
arise from the boundary map in the triangle®!:

iL(F) = U (F) 2L gun(F)

30 As Dennis Gaitsgory pointed out to us, one can argue somewhat more directly, by combining
Lemma 5.15.1 with Theorem 8.11 from [12] (and the limiting case of the Casselman-Shalika formula, The-
orem 3.4.1).

31 Qur nearby and vanishing cycles functors are normalized to preserve perversity.
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when we use G,,,-equivariance to identify ¥*"(F) with J[1]. The t-exactness of ®*™ and
the assumption that F is in degrees < 0 shows that (5.16.3) is an epimorphism for k = 0:

= HOH(W(F)) = HO(#4(F)) — H(ip(Fo)) — H(@"(F)) =0
Step 6. We now apply the previous discussion to see that:
Chevg"™(V) ~ Chev’*(V)

as objects of D(Divg\;os’wm) for V € Rep(G)? finite-dimensional.
Forget for the moment that we chose Chevalley generators { f;} and let W denote the
vector space (n~/[n",n"])*. Note that T acts on W through its adjoint action on n~.

o
Let W C W denote the open subscheme corresponding to non-degenerate characters.
Then we have a canonical map:

Yx W = G,

by imitating the construction of the map can : Z — G, of (2.8.2). Note that this map is
T-equivariant for the diagonal action on the source and the trivial action on the target.*?

Let W € D(Z2°°® x W)T denote the result of !-pulling back of the exponential D-
module on G, to Y x W and then x-extending. We then define:

W= (77 x idw)rar (777 X idW)!(Satgm(V) « W[—(2p, deg)])
e DDV > s )T

Here the T-equivariance now refers to the T-action coming from the trivial action on
Divé\;os’w'x. The notation for the cohomological shift is as in §5.10.

By T-equivariance, the cohomologies of our W are constant along the open stratum
Divé\;w’w'm xl/%/.

Moreover, note that W is concentrated in cohomological degrees < —rank(G) =
— dim(W): this again follows from Lemma 5.15.1, §8.7 of [12], and ind-affineness of

o

T,

Therefore, !-restricting to the line through our given non-degenerate character, Step
5 gives us the specialization map:

HO(Chevi™ (V) = HO (1355 " (Saty ™ (V) x wy[~(2p, deg)])))

e DDV )9,

32 We use the canonical T-action on Z, coming from the action of T on Buny- induced by its adjoint
action on N .
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By Step 5, this specialization map is an epimorphism.

However, the Zastava space version of Theorem 8.8 from [12] (which is implicit in
[12] and easy to deduce from there) implies that the right hand term coincides with
Chevi‘?;’c(V), and therefore this map is an isomorphism by our Grothendieck group cal-
culation.

Step 7. Finally, we observe that the isomorphism Chevi™>™ (V) ~ Chev">*(V) con-
structed above fits into the diagram (5.16.1). Indeed, this follows from funétoriality of
the specialization and the proof of Theorem 8.8 from [12], namely, that the construction
of [12] is characterized by Lemma 9.2 from [12].

Therefore, we do actually obtain an isomorphism of factorization modules, giving the

desired result. O
6. Around factorizable Satake

6.1.  Our goal in §7 is to prove a generalization of Theorem 5.14.1 in which we treat
several points {z1,...,2,} C X, allowing these points to move and collide (in the sense
of the Ran space formalism). This section plays a supplementary and technical role for
this purpose.

6.2. Generalizing the geometric side of Theorem 5.14.1 is an old idea: one should use
the Beilinson-Drinfeld affine Grassmannian Grg x: and the corresponding factorizable
version of the Satake category.

Therefore, we need a geometric Satake theorem over powers of the curve. This has
been treated in [23], but the treatment of [23] is inconvenient for us, relying too much on
specific aspects of perverse sheaves that do not generalize to non-holonomic D-modules.

6.3. The goal for this section is to give a treatment of factorizable geometric Satake
for D-modules.
However, most of the work here actually goes into treating formal properties of the

v

spectral side of this equivalence. Here we have DG categories Rep(G)x: which provide
factorizable versions of the category Rep(é) appearing in the Satake theory.

These categories arise from a general construction, taking € a symmetric monoidal
object of DGCatcppnt (S0 we assume the tensor product commutes with colimits in each
variable), and producing Cx: € D(X)-mod. As we will see, this construction is espe-

v

cially well-behaved for € rigid monoidal (as for € = Rep(G)).
6.4. Structure of this section
We treat the construction and general properties of the categories Cxr in §6.5-6.18,

especially treating the case where C is rigid. We specialize to the case where C is repre-
sentations of an affine algebraic group in §6.19.
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We then discuss the (naive) factorizable Satake theorem from §6.28 until the end of
this section.

6.5. Let € € ComAlg(DGCateopt) be a symmetric monoidal DG category. We denote
the monoidal operation in C by ®.

6.6. Factorization

Recall from [35] §7 that we have an operation attaching to each finite set I a D(XT)-
module category Cxr.%3
We will give an essentially self-contained treatment of this construction below, but

first give examples to give the reader a feeling for the construction.
Example 6.6.1. For I = %, we have Cx = C® D(X).

Example 6.6.2. Let I = {1,2}. Let j denote the open embedding U = X x X\ X — X xX.
Then we have a fiber square:

Cx2 C® D(X?)
l \Lide ®j'
(—®—)®idp x2
(G@G)@D(U) C® D(U).

We emphasize that (— ® —) indicates the tensor product morphism € ® € — C.

Example 6.6.3. If I" is an affine algebraic group and we take € = Rep(I"), then the above
says that Rep(I") x= parametrizes a representation of I" over X(%R with the structure of a
I' x I'-representation on the complement to the diagonal, compatible under the diagonal
embedding I" — I' x I.

6.7. For the general construction of €Cyr, we need the following combinatorics.
First, for any surjection p : I — J of finite sets, let U(p) denote the open subscheme
of points (z;);er with z; # x;; whenever p(i) # p(i').
Example 6.7.1. For p : [ — *, we have U(p) = X. For p : I 1, I, U(p) is the locus
Xéisj of pairwise disjoint points in X’.

We let 8; denote the (1,1)-category indexing data I L2754 K , where we allow
morphisms of diagrams that are contravariant in J and covariant in K, and surjective

termwise.

33 In [35], we use the notation T'(X]p, Locx: (€)) in place of Cx:.
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6.8. For every ¥ = (I 575 K) in 87, define Cx € D(X!)-mod as:
€y = D(U(p)) ® C¥K.

For ¥; — ¥y € 81, we have a canonical map Cx, = Cx, € D(XI)fmod constructed
as follows. If the morphism ¥; — X5 is induced by the diagram:

I%»h#&

X

I‘»-JQL»-KQ

then our functor is given as the tensor product of:

6®K1 — €®K2

X JF— K ®  Tpn
ke K, k k/EKQ(klleafl(k/) k )

and the D-module restriction along the map U(p2) — U(p1).
It is easy to upgrade this description to the homotopical level to define a functor:

8; — D(XT)-mod.
We define Cxr as the limit of this functor.

Example 6.8.1. It is immediate to see that this description recovers our earlier formulae
for I =% and I = {1,2}.

Remark 6.8.2. This construction unwinds to say the following: we have an object F €
€ ® D(XT) such that for every p : I — J, its restriction to C ® D(U(p)) has been lifted
to an object of €®7 @ D(U(p)).

Example 6.8.3. For € = Rep(I") with I" an affine algebraic group, this construction is a
derived version of the construction of [23] §2.5.

Remark 6.8.4. Obviously each Cx is a commutative algebra in D(X?)-mod. Indeed, each
term Cy = D(U(p)) ® C®K is so, and the structure functors are canonically symmetric
monoidal. We have an obvious symmetric monoidal functor:

Loc = Locyr : C®1 — @1

for each I, with these functors being compatible under diagonal maps.
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6.9. Factorization

It follows from [35] §7 that the assignment I — Cxr defines a commutative unital
chiral category on Xygr. For the sake of completeness, the salient pieces of structure here
are twofold:

(1) For every pair of finite sets I; and I, we have a symmetric monoidal map:
exll ® GXIQ — GXll I

of D(X 1 II72).module categories that is an equivalence after tensoring with D([X 't x
X" giss)-
(2) For every Iy — I, an identification:

Cxn ® D(X2)~Cyr,.
D(X11)

These should satisfy the obvious compatibilities, which we do not spell out here be-
cause in the homotopical setting they are a bit difficult to say: we refer to [35] §7 for a
precise formulation.

We will construct these maps in §6.10 and 6.11.

6.10. First, suppose I = I [] I».

Define a functor 8; — &7, as follows. We send [ LT3 Ktol —» Image(p|r,) —
Image(q o p|r,). It is easy to see that this actually defines a functor. We have a similar
functor 81 — 8y,, so we obtain §; — 81, x 8p,.

Given I 5 J % K as above, let e.g. Ij L Ji % K, denote the corresponding object
of 811 .
We have a canonical map:

U(p) = Up1) x Ulq) € X1 x X2 = X1,

We also have a canonical map C®K1 @ @®K> — C®X induced by tensor product and the
obvious map K; [[ Ko — K. Together, we obtain maps:

(D(U(p1)) ® €951) @ (D(U(p2)) @ €#52) — D(U(p)) ® €
that in passage to the limit define
C’le X GXIQ — exl.

That this map is an equivalence over the disjoint locus follows from a cofinality argument.
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6.11. Next, suppose for f: Iy — I is given. We obtain 87, — 81, by restriction.

P a
Moreover, for any given Iy — J — K € 81,, we have the functorial identifications:

D) © X = (DW(pef) | © DX") @ e)

that give a map:

ele ® D(XIQ)%ele.
D(X1)

An easy cofinality argument shows that this map is an equivalence.
6.12. A variant
We now discuss a variant of the preceding material a categorical level down.

6.13.  First, if A is a commutative algebra in Vect, then there is an assignment
I+ Axr € D(X') defining a commutative factorization algebra. Indeed, it is given by
the same procedure as before—we have:

Ayr = im  jpsar(A®K ®@wy () € D(XT). (6.13.1)
IS 75 K)es;

The structure maps are as before.

6.14. More generally, when € is as before and A € € is a commutative algebra, we
can attach a (commutative) factorization algebra I — Axr € Cxr.

We will need this construction in this generality below. However, the above formula
does not make sense, since there is no way to make sense of jj, . 4r(Wy(p)) ® A®K as an
object of €x1. So we need the following additional remarks:

We do have Ax: defined as an object of D(X’) ® € by the above formula. Moreover,
as in §6.10, for every p: I — J we have canonical multiplication maps:

B A = A€ D(xHwe

where I; is the fiber of I at j € J, and where our exterior product should be understood
as a mix of the tensor product for € and the exterior product of D-modules. This map
is an equivalence over U(p).

This says that for every p as above, the restriction of Axr to U(p) has a canonical
structure as an object of D(U(p)) ® C®7  lifting its structure of an object of D(U(p)) @ C.
Moreover, this is compatible with further restrictions in the natural sense. This is exactly
the data needed to upgrade Axr to an object of Cxr (which we denote by the same name).
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6.15. ULA objects

For the remainder of the section, assume that C is compactly generated and rigid:
recall that rigidity means that this means that the unit 1e is compact and every V € €
compact admits a dual.

Under this rigidity assumption, we discuss ULA aspects of the categories Cxr: we refer
the reader to Appendix B for the terminology here, which we assume for the remainder
of this section.

6.16.  Recall that QCoh(X’,Cxs) denotes the object of QCoh(X!)-mod obtained
from Cx: € D(XT)-mod by induction along the (symmetric monoidal) forgetful functor
D(XT) — QCoh(XT).

Proposition 6.16.1. For F € €®! compact, Locx:(F) € Cx1 is ULA.

We will deduce this from the following lemma.
Let 1¢ , = Locyr(le) denote the unit for the (D(X')-linear) symmetric monoidal
structure on Cxr.

Lemma 6.16.2. 1¢ , is ULA.
Proof. By l-affineness (see [25]) of X4 and X, the induction functor:
D(X)-mod — QCoh(X)-mod

commutes with limits.?*

It follows that QCoh(X?, @) is computed by a similar limit as defines €y, but with
QCoh(U(p)) replacing D(U(p)) everywhere.

Since this limit is finite and since each of the terms corresponding to Oblv(le,,) €
QCoh(X*,Cx1) is compact, we obtain the claim. O

Proof of Proposition 6.16.1. Since the functor C®/ — €y is symmetric monoidal and
since each compact object in C®! admits a dual by assumption, we immediately obtain
the result from Lemma 6.16.2. O

Remark 6.16.3. Proposition 6.16.1 fails for more general C: the tensor product C® € — C
typically fails to preserve compact objects, which implies that Locyx2 does not preserve
compact objects.

34 To fill in the details: 1-affineness means that QCoh(X)-mod (resp. D(X)-mod) canonically identifies with
ShvCat(X) (resp. ShvCat(X4r)), where we refer to [25] for the definition of ShvCat. Our induction functor
then corresponds to pullback for sheaves of categories. By [25] §1.1.5, pullback for sheaves of categories
always commutes with limits.
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6.17.  We now deduce the following result about the categories Cx: (for the termi-
nology, see Definition B.6.1).

Theorem 6.17.1. Cx: is ULA over XT.
We will use the following lemma, which is implicit but not quite stated in [25].

Lemma 6.17.2. Let S be a (possibly DG) scheme (almost) of finite type, and let i : T —
S be a closed subscheme with complement j : U < S. For D € QCoh(S)-mod, the
composite functor:

Ker(4*:D - Dy)—=D—-D ® QCoh(S}) (6.17.1)
QCoh(S)

is an equivalence, where S} is the formal completion of S along T.
Proof. By [25] Proposition 4.1.5, the restriction functor:
QCoh(S4)-mod — QCoh(S)-mod

is fully-faithful with essential image being those module categories on which objects of
QCoh(U) C QCoh(S) act by zero. But the endofunctor Ker(j*) of QCoh(S)-mod is a
localization functor for the same subcategory, giving the claim. O

Proof of Theorem 6.17.1. Suppose § € QCoh(X’, Cx1) is some object with:
HomQCoh(leeXI)(j) ® OblV LOCXI (?), 9) = 0

for all P € QCoh(X') perfect and all F € C®! compact. Then by Proposition 6.16.1, it
suffices to show that G = 0.

Fix p: I — J. We will show by decreasing induction on |J| that the restriction of G
to U(p) is zero.

We have the closed embedding X dJisj — U(p) with complement being the union:

Up\ Xh) = U U@

In particular, the inductive hypothesis implies that the restriction of G to this complement
is zero.

Let X denote the formal completion of X, L‘{isj in U(p) and let i, : X — U(p) denote
the embedding. By Lemma 6.17.2, it suffices to show that:

i%(9) = 0 € QCoh(X, Cx:) := QCoh(X',Cxs) ®  QCoh(X).
QCoh(X7T)
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The map X — XéR factors through X(;l]isj,dR (embedded via p), so by factorization we
have:

QCoh(X',€x1) ® QCoh(X)=Cyx:r ® QCoh(X)~eC® © QCoh(X).
QCoh(XT) D(xT)

P

This identification is compatible with the functors Loc in the following way. Let & :
e®l — ©®7 denote the map induced by the tensor structure on €. We then have a
commutative diagram:

Locyr
el Cy: QCoh(X”,Cy1)

I I

id
e’ B9% _ 097 @ QCoh(X),

by construction.
Since QCoh(X) is compactly generated by objects of the form i5(P) with P €
QCoh(U (p)) perfect (and with set-theoretic support in X, ), we reduce to the following:
Each F € €%/ compact then defines a continuous functor Fyy : €®/ © QCoh(X) —
QCoh(X), and our claim amounts to showing that an object in €®7 @ QCoh(X) is zero
if and only if each functor Fy annihilates it, but this is obvious e.g. from the theory of
dualizable categories. O

6.18. Dualizability

Next, we record the following technical result.

Lemma 6.18.1. For every D € D(X!)-mod, the canonical map:
Cyi ® D= lim (e@K ® D(U(p))) ® D
D(XT) U575 K)es; D(XT)

~  lim (e®K®D(U(p)) ® @)
IST5K)es; D(xT)

s an equivalence.

This proof is digressive, so we postpone the proof to Appendix A, assuming it for the
remainder of this section.

We obtain the following consequence.?’

35 We remark that this result is strictly weaker than the above, and more direct to prove.
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Corollary 6.18.2. Cx: is dualizable and self-dual as a D(XT)-module category.

Remark 6.18.3. In fact, one can avoid the full strength of Lemma 6.18.1 for our purposes:
we include it because it gives an aesthetically nicer treatment, and because it appears to
be an important technical result that should be included for the sake of completeness.

With that said, we apply it below only for D = Sphg xr, and here it is easier: it
follows from the dualizability of Sphg yr as a D(X T-module category, which is much
more straightforward.

6.19. Let I' be an affine algebraic group. We now specialize the above to the case
C = Rep(I).

6.20. Induction

Our main tool in treating Rep(I") yr is the good behavior of the induction functor
Av:, : D(XT) — Rep(I') yr introduced below.

6.21.  The symmetric monoidal forgetful functor Oblv : Rep(I') — Vect induces
a conservative functor Oblvyx: : Rep(I')x: — D(XT) compatible with D(X')-linear
symmetric monoidal structures.

We abuse notation in also letting Oblvy: denote the QCoh(X?)-linear functor:

Oblvy: : QCoh(X !, Rep(I")x1) — QCoh(X7)

promising the reader to always take caution to make clear which functor we mean in the
sequel.

6.22.  Applying the discussion of §6.14, we obtain Op xr € Rep(I")x: factorizable

corresponding to the regular representation Op € Rep(I') of I' (so we are not distin-

guishing between the sheaf Or and its global sections in this notation).*%

Proposition 6.22.1.

(1) The functor Oblvy: : Rep(I')x:1 — D(XT) admits a D(XT)-linear right adjoint®”
Avir e D(XT) = Rep(I")x1 compatible with factorization.*®

(2) The functor Avy: , maps wx: to the factorization algebra Op x1 introduced above.

*

36 The D-module Oblvx:(Op xr) € D(X') (or its shift cohomologically up by |I|, depending on one’s
conventions) appears in [6] as factorization algebra associated with the constant D x-scheme I" X x! - x7T.
37 The superscript w stands for weak, and is included for compatibility with [20] §20.

38 More generally, the proof below shows that the analogous statement holds more generally for any sym-
metric monoidal functor F : € — D € DGCat.opn: with € rigid, where this is generalizing the forgetful
functor Oblv : Rep(I") — Vect.
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Proof. By Proposition B.7.1 and Theorem 6.17.1, it suffices to show that Oblv x: maps

the ULA generators Locx: (V) of Rep(I") x: to ULA objects of D(X?), which is obvious.
For the second part, note that the counit map Op — k € ComAlg(Vect) induces a map

Oblvyr Op x1 = wxr € D(X 1) factorizably, and therefore induces factorizable maps:

OF,XI — AV§I7*(OJ)(I).

By factorization, it is enough to show that this map is an equivalence for I = %, where
it is clear. O

6.23. Coalgebras

We now realize the categories Rep(I") x: in more explicit terms.

Lemma 6.23.1. The functor Oblvy: is comonadic, i.e., satisfies the conditions of the
comonadic Barr-Beck theorem.

In fact, we will prove the following strengthening:
Lemma 6.23.2. For any D € D(X!)-mod, the forgetful functor:

OblVXI ®ld® : Rep(F)Xz (o] D—D
D(XT)

18 comonadic.

Proof. Using Lemma 6.18.1, we deduce that Oblv xr ® idp arises by passage to the limit
over 8; from the compatible system of functors:

Rep(I")*" ® D(U(p)) bl D = D(U(p)) oo D.

Therefore, it suffices to show that each of these functors is conservative and commutes
with Oblv-split totalizations.

But by [25] Theorem 2.2.2 and Lemma 5.5.4, the functor Rep(I'™) ® € — & is
comonadic for any & € DGCat,yy;. This obviously gives the claim. O

6.24. t-structures

It turns out that the categories Rep(I") xr admit particularly favorable ¢-structures.

Proposition 6.24.1. There is a unique t-structure on Rep(I')x: (resp. QCoh(X7,
Rep(I")xr)) such that Oblvxr is t-exact. This t-structure is left and right complete.
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Proof. We first treat the quasi-coherent case.

For every (I 573 K) € 8y, the category:
Rep(I")®7 @ QCoh(U(p)) = QCoh(BI'Y x U(p))

admits a canonical ¢-structure, since it is quasi-coherent sheaves on an algebraic stack.
This t-structure is left and right complete, and the forgetful functor to QCoh(U(p)) is
obviously t-exact. Moreover, the structure functors corresponding to maps in 8; are t-
exact, and therefore we obtain a t-structure with the desired properties on the limit,
which is QCoh(X !, Rep(I") x1).

We now deduce the D-module version. We have the adjoint functors®’:

ind
QCoh(X!,Rep(I") x1) ﬁ Rep(I") xr.

Since the monad Oblvind is ¢t-exact on QCoh(X’ Rep(I")x:) and since Oblv is conser-
vative, it follows that Rep(I')x: admits a unique t-structure such that the functor’
Oblv[dim(X7)] = Oblv[|I]] : Rep(I")x: — QCoh(XT Rep(I")x:) is t-exact. Since this
functor is continuous and commutes with limits (being a right adjoint), this t-structure
on Rep(I')xr is left and right complete.

It remains to see that Oblvy: : Rep(I") x1 — D(XT) is t-exact. This is immediate: we
see that the ¢-structure we have constructed is the unique one for which the composition

v Oblv
Rep(I") x1 Obivilr, QCoh(Rep(I") x1) — =5 QCoh(X7) is t-exact, and this composition
coincides with Rep(I") xr

Oblv v

—=4 D(x1) Obiviiri, QCoh(X7). We obtain the claim, since
the standard ¢-structure on D(XT) is the unique one for which Oblvx:[|I]] : D(XT) —
QCoh(X1) is t-exact. O

Proposition 6.24.2. The functor Avy:, : D(X') — Rep(I')x: is t-ezact for the t-
structure of Proposition 6.2/.1, and similarly for the corresponding quasi-coherent func-
tor QCoh(XT) — QCoh(X!,Rep(I") x1).

*

We will use the following result of [6]. We include a proof for completeness.

Lemma 6.24.3. Let A € Vect” be a classical (unital) commutative algebra and let I —
Axr € D(XT) be the corresponding factorization algebra. Then Axr[—|I|] € D(XT)Y.

Proof. We can assume |I| > 1, since otherwise the result is clear.

39 Apologies are due to the reader for using the different functors Oblv and Oblvy: in almost the same
breath.

40 We use a cohomological shift here since for S smooth, Oblv : D(S) — QCoh(S) only t-exact up to shift
by the dimension, since Oblv(ws) = Og. This is because we are working with the so-called left forgetful
functor, not the right one.
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Choose 4, j € I distinct. Let I — I be the set obtained by contracting i and j onto a
single element (so |I| = |I]| — 1).

The map I — I defines a diagonal closed embedding A : XT — X1, Let j : U < X!
denote the complement, which here is affine.

Since A'(Axr) = Ayr, the result follows inductively if we show that the map
Judrd (Axr) = Ay arA'(Ax1)[1] is surjective after taking cohomology in degree —|I|.

Writing I = {i} [[ I using the evident splitting, we obtain the following commutative
diagram from unitality of A and from the commutative factorization structure:

wx & AXT E—— j*7deI(wX |E AXT) A*,dR(Axf)[l]

| |

Ax R A1 Juari (Ax B Ayr) ~

| |

Axr Jeard (Axr) A, arAN(Ax)[1]

The top line is obviously (by induction) a short exact sequence in the |I|-shifted heart of
the t-structure. Since the right vertical map is an isomorphism, this implies the claim. O

Proof of Proposition 6.24.2. E.g., in the quasi-coherent setting: it suffices to show that
AV,
by construction, which we have just seen is in the heart of the t-structure (since Oblv :
D(X') — QCoh(X7) is t-exact only after a shift by |I|).

It follows that this functor is right t-exact, since it is given by tensoring with something

*

o Oblvy: is t-exact. This composition is given by tensoring with O yr € D(XT)

in the heart. But it is also left t-exact, since it is right adjoint to the ¢-exact functor
OblVXI . O

Corollary 6.24.4. Rep(I") x1 is the derived category of the heart of this t-structure.
Proof. At the level of bounded below derived categories, this is a formal consequence of

the corresponding fact for D(X?) and the fact that Oblvx: and AvYy 1
To treat unbounded derived categories, it suffices to show that the derived category

are t-exact.

*

of Rep(I" )2 ; is left complete, but this is clear: the category has finite homological di-

mension. O
6.25. Constructibility
We now show how to recover Rep(I")x: from a holonomic version.

This material is not necessary for our purposes, but we include it for completeness.
The reader may safely skip straight to §6.28.
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6.26.  Let Dpoi(XT) € D(X!) denote the ind-completion of the subcategory of
D(X!) formed by compact objects (i.e., coherent D-modules) that are holonomic in
the usual sense. We emphasize that we allow infinite direct sums of holonomic objects
to be counted as such.

Definition 6.26.1. Define the holonomic subcategory Rep(I") x1 o, of Rep(I”) x1 to consist
of those objects that map into Dy, (X?) under the forgetful functor.

Remark 6.26.2. We have:
Rep(I") x71 pot = Jim Rep(I)®X @ Dpoi(U(p)) C
(I—»J—>K)

lim  Rep(I")®X @ D(U(p)) = Rep(I') x1.
U515 K)

(6.26.1)

Indeed, the key point is that Rep(I")* ® Dy, (U(p)) — Rep(I")®% @ D(U(p)) is actually
fully-faithful, and this follows from the general fact that tensoring a fully-faithful functor
(here Dy, (U(p)) — D(U(p)) with a dualizable category (here Rep(I")®¥) gives a fully-
faithful functor.

Since e.g. for each p: I — J, Dy (X”) is dualizable as a Dy (X!)-module category
(for the same reason as for the non-holonomic categories), we deduce that Rep(I")xr po
satisfies the same factorization patterns at Rep(I")x:, but with holonomic D-module
categories being used everywhere. Indeed, the arguments we gave were basically formal
cofinality arguments, and therefore apply verbatim.

6.27.  We have the following technical result.
Proposition 6.27.1. The functor:

Rep(I')x1 phor  ® D(XI) — Rep(I') xr
Dh,ol(XI)

is an equivalence.

Remark 6.27.2. In light of (6.26.1), this amounts to commuting a limit with a tensor
product. However, we are not sure how to use this perspective to give a direct argument,
since D(X7') is (almost surely) not dualizable as a Dy, (X7)-module category.

Proof of Proposition 6.27.1. The idea is to appeal to use Proposition B.8.1.

Step 1. Let V € Rep(I")®! be given. We claim that Locx: (V) lies in Rep(I") x1 po and
that the induced object of Rep(I)x1 1oy ®  D(XT)is ULA in this category (consid-
)

hol
ered as a D(X!)-module category in the obvious way) if V is compact.
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Indeed, that Locx: (V) is holonomic follows since Oblvx: (V) is lisse. The ULA con-
dition then follows from Proposition B.5.1 and Remark B.5.2.

Step 2. Next, we claim that Rep(1”) x1 5, is generated as a Dpoi(XT)-module category by
the objects Locx:(V), V € Rep(I')®!, i.e., the minimal Dy, (X!)-module subcategory
of Rep(I") xr1 o containing the Locxr (V') is the whole category.

Indeed, this follows as in the proof of Theorem 6.17.1.

Step 3. We now claim that Rep(I')x:py  ®  D(X') is ULA as a D(X)-module
Dhol(XI)

category.

We have to show that Rep(I')xr ®  QCoh(X') is generated as a QCoh(X7)-
Dhol(XI)

module category by objects coming from Locxr (V). But this is clear from Step 2.

Step 4. Finally, we apply Proposition B.8.1 to obtain the result:
Our functor sends a set of ULA generators to ULA objects. And moreover, by

Remark 6.26.2, this functor is an equivalence after tensoring with D(X7, ) for each

disj
p: I — J, giving the result. O

Remark 6.27.3. Taking (6.26.1) as a definition of Cxr p,, for general rigid €, the above
argument shows that the analogue of Proposition 6.27.1 is true in this generality.

6.28. The naive Satake functor
We now specialize the above to I' = G.
6.29. Digression: more on twists

We will work with Grassmannians and loop groups twisted by P7*" as in §2.14.

To define Gry x: for H € {T, B, N~, G}, one exactly follows §2.14.

Similarly, we have a group scheme (resp. group indscheme) H(O)x: (resp. H(K)x1)
over X' for H as above, and H(K)x: acts canonically on Grg x: (as H is a subgroup of

G by assumption). Trivializing P5°" locally on X, the picture becomes the usual picture
for factorizable versions of the arc and loop groups: cf. [6] and [29] for example.

6.30.  Let Sphg 1 denote the spherical Hecke category D(Grg x1)¢©@x1. The as-
signment I — Sphg y: defines a factorization monoidal category.

Our goal for the remainder of this section is to construct and study certain monoidal
functors:

Sat"4¢ : Rep(G) xr — Sphg xr

compatible with factorization.
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Remark 6.30.1. We follow Gaitsgory in calling this functor naive because it is an equiv-
alence only on the hearts of the ¢-structures (indeed, it is not an equivalence on Exts
between unit objects, since equivariant cohomology appears in the right hand side but
not the left).

7)7,((17/[)6.

6.31.  The following results provide toy models for constructing the functors Sat’y;

Lemma 6.31.1. For D € DGCatcppt, the map:

{F : Rep(I") = D € DGCatcont} — Op—comod(D)
F— F(OF>

is an equivalence.

Proof. Since Rep(I") is self-dual and since Rep(I") @ D O, Vect @D = D is comonadic
(cf. the proof of Lemma 6.23.1), we obtain the claim. O

Lemma 6.31.2. For D € Alg(DGCatcont) a monoidal (in the cocomplete sense) DG cate-
gory, the map:

{F : Rep(I') = D continuous and lax monoidal} — Alg(Or—comod(D))
F— F(OF)

is an equivalence. Here Op—comod(D) is equipped with the obvious monoidal structure,
induced from that of D.

Remark 6.31.3. Here is a heuristic for Lemma 6.31.2:
Given A € Or—comod(D), the corresponding functor Rep(I") — D is given by the

formula V +— (V®A)! (where the invariants here are of course derived). If A is moreover
equipped with a I'-equivariant algebra structure, we obtain the canonical maps:

VoA freWeoA) - (VeaAdeWeA =(VeaWeA A - (VoW oA
as desired, where the last map comes from the multiplication on A.

Proof of Lemma 6.31.2. This follows e.g. from the identification of the monoidal struc-
ture of Rep(I') ® D with the Day convolution structure on the functor category

Hompgcat..,., (Rep(I"), D), identifying the two via self-duality of Rep(I"). O

6.32.  We will use the following more sophisticated version of the above lemmas.



S. Raskin / Advances in Mathematics 388 (2021) 107856 67

Lemma 6.32.1. For D € D(XT)-mod, the functor:

{F :Rep(I')x1 — D € D(X')-mod} — Rep(I)x: ® D =22
D(XT)

F’—) F(OF,XI)

Orp x1-comod(D)

is an equivalence. Giving a lax monoidal structure in the left hand side amounts to giving
an algebra structure on the right hand side.

Proof. By Lemma 6.18.1, D(X)-linear functors Rep(I") xr — D are equivalent to objects
of Rep(F)Xz p(x1) D.
The result then follows from Lemma 6.23.2 and Lemma 6.31.2. O

6.33. Construction of the functor

By Lemma 6.32.1, to construct Sat’%’* as a lax monoidal functor, we need to specify

an object of Rep(é)xz ®p(x1) Sphg xr with an algebra structure.
Such objects 7—[3?1 € Rep(é)Xz ®@p(x1) Sphg xr are defined factorizably in Appendix
B of [23] (they go by the name chiral Hecke algebra and were probably first constructed

by Beilinson).*! For each I, H%" is concentrated in cohomological degree —|I|.

Example 6.33.1. For I = %, HS® comes from the regular representation of G under geo-
metric Satake.

Remark 6.33.2. We emphasize that the general construction (and the data required to
define the output) is purely abelian categorical, and comes from the usual construction
of the geometric Satake equivalence.

naive

Lemma 6.33.3. The laz monoidal functors Sat'yr"® are actually monoidal.

Proof. We need to check that some maps between some objects of Sph; xr are isomor-
phisms. It suffices to do this after restriction to strata on X', and by factorization, we
reduce to the case I = x where it follows from usual geometric Satake and the construc-
tion of the chiral Hecke algebra. 0O

6.34. We have the following important fact:

naive

Proposition 6.34.1. Sat'y7"® is t-exact.

We begin with the following.

41 In the notation of [23], we have HSL = R% [d] = FRE [d].
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Lemma 6.34.2. The functor Sphg x1 — Sphg x1 defined by convolution with HXI 18
t-exact.

Proof. Recall that for each I and J, there is the exterior convolution functor:

Sth7XI ® Sth“XA] — Sth7XI]_[J

which is a morphism of D(X’II/)-module categories.> The relation to usual convolution
is that for J = I, convolution is obtained by applying exterior convolution and then !-
restricting to the diagonal.

The usual semi-smallness argument shows that exterior convolution is t-exact. There-
fore, since 5", lies in degree —|I|, we deduce from the above that convolution with H5"
has cohomologlcal amplitude [—|I],0]: in particular, it is right t-exact.

It remains to see that this convolution functor is left ¢-exact. For a given partition
p:l — J, letip: XdJZS] — X! denote the embedding of the corresponding stratum

of X!. The !l-restriction of H, to X},

ais; 18 concentrated in cohomological degree —|J|,

and is the object corresponding to the regular representation under geometric Satake.
It follows that the functor of convolution with ip,*,dRii,(H%’I) is left t-exact from the
exactness of convolution in the Satake category for a point. We now obtain the claim by
dévissage. O

Proof of Proposition 6.34.1. First, we claim that our functor is left ¢t-exact.

We can write Satmwe

as a composition of tensoring F with the delta D-module on
the unit of Grg x1, convolving with Hek &1, and then taking invariants with respect to the
diagonal actions for the G7. The first step is obviously t-exact, and the second step is
t-exact by Lemma 6.34.2; the third step is obviously left ¢-exact.

It remains to show that it is right t-exact.

First, let V € Rep(G)¥ = Rep(G)®/Y. We claim that convolution with
Saty4*¢(Locx1(V)) is t-exact (as an endofunctor of Sphg x1)-

It suffices to show this for V finite-dimensional, and then duality of V' and monoidal-
ity of Sat’t%’** reduces us to showing exactness in either direction: we show that this
convolution functor is left ¢t-exact. This then follows by the same stratification argument
as in the proof of Lemma 6.34.2.

In particular, convolving with the unit, we see that Sat’%*®(Locxs(V)) is concen-
trated in cohomological degree —|I|, and more generally, Sat’s;"*¢ o Locxr is t-exact up
to this same cohomological shift.

For simplicity, we localize on X to assume X is affine. Then by Theorem 6.17.1,
Rep(G)f( 7 is generated under colimits by objects of the form ind Oblv(Locyr (V') for
V € Rep(I'")SMI: indeed, this follows from the observation that ind Oblv is t-exact,

42 We emphasize that I and J play an asymmetric role in the definition, i.e., the definition depends on an
ordered pair of finite sets, not just a pair of finite sets.
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which is true since after applying Oblv again, it is given by tensoring with the ind-vector
bundle of differential operators on X’. The same reasoning shows that ind Oblv is t-exact
on Sphg xr, giving the result. O

6.35. The naive Satake theorem

We will not need the following result, but include a proof for completeness. Since we
are not going to use it, we permit ourselves to provide substandard detail.

Theorem 6.35.1. The functor Saty’*® induces an equivalence between the hearts of the
t-structures:

Satgl : Rep(é)zl = Sphgyxl.

We will give an argument in §6.37.

Remark 6.35.2. In the setting of perverse sheaves, Theorem 6.35.1 is proved in [23] Ap-
pendix B. We provide a different argument from [23] that more easily deals with the
problem of non-holonomic D-modules.

6.36. Spherical Whittaker sheaves

Our argument for Satake will appeal to the following. Let WhltSp denote the cate-
gory of Whittaker D-modules on Grg x1, i.e., D-modules equivariant against N~ (K) xz
equipped with its standard character (we use the ﬁ(wx) twist here).

We have a canonical functor Sphg xr — Whit? " given by convolution with the unit
Whit“?" S WhutX, ,

(i.e., the * and !-extensions coincide here).

object unit i.e., the canonical object cleanly extended from Gry- x:

Theorem 6.36.1 (Frenkel-Gaitsgory-Vilonen, Gaitsgory, Beraldo). The composite func-
tor:

naive

Rep(G) x1 —— Sphg 1 — Whit$?

s an equivalence.

Proof. We will appeal to Proposition B.8.1.
It is easy to see that the unit object of Whlti?,h is ULA: this follows from the usual

cleanness argument. We then formally deduce from dualizability of ULA objects in
Rep(GY) x1 and monoidality of Sat3%“® that the above functor sends ULA objects to
ULA objects.

Then since these sheaves of categories are locally constant along strata (by factoriz-
ability), we obtain the claim by noting that this functor is an equivalence over a point,
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as follows from [22] and the comparison of local and global*® definitions of spherical
Whittaker categories, as has been done e.g. in the unpublished work [26]. O

We also use the following fact about Whittaker categories.

Lemma 6.36.2. The object AVG(O)XI7*(unitWhitsph) € Sphg x1 lies in cohomological de-
xT ’

grees > —|I|. The adjunction map:
unitSPhG,XI — AVG(O)XI7*(unitWhit§éz:I}L)

is an equivalence on cohomology in degree —|I|. (Here unitsph , , s the delta D-module

on X s-pushed forward to Grg xr using the tautological section).

Proof. The corresponding fact over a point is obvious: the fact that Sphg , — Whit3? " s
t-exact on hearts of ¢t-structures implies that its right adjoint is left t-exact, so applying
the above averaging to the unit, one obtains an object in degrees > 0. The adjunction
map is an equivalence on Oth cohomology because Sphg , — Whit’P "is an equivalence
on hearts of t-structures.

We then deduce that from factorization that for each p : I — J, the !-restriction of:

Coker(unitsph,  ; = AVG(0) o1+ (unitWhit;pIh )

to the corresponding stratum X, ; defined by p is concentrated in cohomological degrees
> —|J|, which immediately gives the claim. O

6.37. We now deduce factorizable Satake.

Proof of Theorem 6.35.1. We have an adjunction Sphg y1 =— Whit;?lh where the
left adjoint is convolution with the unit and the right adjoint is x-averaging with respect

to G(O)XI .
From Theorem 6.36.1, we obtain the adjunction:

Sth7xl Rep(é)xl

Sathyve

naive

Since Sat'y7"“ is t-exact, we obtain a corresponding adjunction between the hearts of
the t-structure. Lemma 6.36.2 implies that the left adjoint is fully-faithful at the abelian

naive,Q

categorical level, and the right adjoint Sat;; is conservative by Theorem 6.36.1, so

we obtain the claim. O

43 TI.e., using Drinfeld’s compactifications as in [22].
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7. Hecke functors: Zastava with moving points

7.1.  Asin §5, the main result of this section, Theorem 7.9.1, will compare geomet-
rically and spectrally defined Chevalley functors. However, in this section, we work over
powers of the curve: we are giving a compatibility now between Theorem 4.6.1 and the
factorizable Satake theorem of §6.

7.2. Structure of this section

In §7.3-7.9, we give moving points analogues of the constructions of §5 and formulate
our main theorem.

The remainder of the section is dedicated to deducing this theorem from Theo-
rem 7.9.1.

There are two main difficulties in proving the main theorem: working over powers
of the curve presents difficulties, and the fact that we are giving a combinatorial (i.e.,
involving Langlands duality) comparison of functors in the derived setting.

The former we treat by exploiting ULA objects: cf. Appendix B and §6. These at once
exhibit good functoriality properties and provide a method for passing from information
over the disjoint locus Xéisj to the whole of X7.

We treat the homotopical difficulties by exploiting a useful ¢-structure on factorization
Ti-modules, cf. Proposition 7.11.1.

7.8.  Define the indscheme Divé\;o;’fo‘x over X' as parametrizing an I-tuple z = (z;)

of points of X and a A-valued divisor on X that is AP°*-valued on X \ {;}.

Warning 7.3.1. The notation oo -z in the superscript belies that x is a dynamic variable:
it is used to denote our I-tuple of points in X. We maintain this convention in what
follows, keeping the subscript X! to indicate that we work over powers of the curve now.

Remark 7.3.2. We again have a degree map Divé\;j};’fo'z — A

Let Tﬁ*modfj;j:XI denote the DG category of unital factorization modules for T on

. AP 0.z
DlVeH,XI
fact

The two functors we will compare will go from Rep(é’)xz to Ti—mod,,;, x1-
7.4. Geometric Chevalley functor

To construct the geometric Chevalley functor, we imitate much of the geometry that
appeared in §5.2-5.14.

7.5.  For starters, define Bun?\,ofixz — XTI as parametrizing © = (7;)ier € X!, a
G-bundle Pg on X, and non-zero maps:
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Q?}(ﬁ’)‘) — V7;\G (00 - x)

defined for each dominant weight A and satisfying the Plucker relations, in the notation
of §5.2. Here the notation of twisting by Ox(co - ) makes sense in S-points: for z =
(Ti)ier : S — X', we take the sum of the Cartier divisors on X x S associated with the
graphs of the maps z; to define Oxys(x).

7.6. We can imitate the other constructions in the same fashion, glvmg the ind-

scheme Z‘X”” (resp. 2°%) over X! and the map 75" ZOO"" — Div HX?“” (resp.

001/‘ oo
it 2% %Dlveﬁxl ).

Let Yx: be the inverse image of X! x Buny- C Bunjovojxf. We have a distinguished
object ¢y , € D(Yx1), obtained by -pullback from wx: XWhit € D(X! xBuny-), and
an object 1/)11521 obtained from ty_, by cohomologically shifting according to degrees,

T

just as in §5.10.
We also have a D(X')-linear action of Sphg x: on D(Z%%).
We obtain a D(XT)-linear functor:

Chevie;’(“;l : Rep(G) x1 — Tﬁ*modfﬁsfxl

gcom

imitating our earlier functor Chev Indeed, we use the naive Satake functor, con-

o
volve with (the *-pushforward of) wyxj, I-restrict to 25", and then x-pushforward to

po
D1vA

off, XI ¥ exactly as in §5.11. That is, our functor is the suitable composition:

. tnu.Lue *1#1 IC
Rep(G)x1 —— Sph, x1 —— Juan(tby 10, 2)-modiit (2357) —

Oocj_

! 2 T ac
("/}% ® IC%)medZa;z:t( g{o]w) 22 T mOduntXI
7.7. Spectral Chevalley functor

spec

a x1> we will use the following.

To construct Chev
Lemma 7.7.1. The category tix-modyr of Lie-x modules on X1 for iix € Rep(T)x
is canonically identified with the category ﬁfmod(Rep(Tv))Xz, i.e., the D(XT)-module
category associated with the symmetric monoidal DG category ﬁfmod(Rep(T)) by the
procedure of §0.0.

Proof. Let I' € X x X! be the union of the graphs of the projections X! — X. Let «
(resp. 3) denote the projection from I' to X (resp. X7).
Since [ is proper, one finds that:

Beara' : D(X) — D(XT)
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!
is colax symmetric monoidal, and in particular maps Lie coalgebras for (D(X), ®) to Lie

!
coalgebras for (D(X'), ®).
Moreover, if L € D(X) is a Lie-x algebra and compact as a D-module, then its

Verdier dual DL is a Lie coalgebra in (D(X), Q'@), and L-modules on X' are equivalent
to ﬂ*7dRa!(DL)—comodules. We have an obvious translation of this for the graded case,
where e.g. D(Grp x1) replaces D(XT). (See [39] Proposition 4.5.2 for a non-derived
version of this; essentially the same argument works in general.)

One then easily finds that for V' € Vect, one has:

ﬂ*’dRa!(V Ruwx) = (I—»Jl—i»nil()eSI jp,*,dR(V®K ® Wy (p))
where the notation is as in §6. We remark that this limit is a “logarithm” of the one
appearing in (6.13.1): we use the addition maps VX — VEK for K — K’ to give the
structure maps in the limit, i.e., the canonical structure of commutative algebra on V in
(Vect, @).
Moreover, this identification is compatible with Lie cobrackets, so that the Lie coal-
gebra (V) ® wx maps to the Lie coalgebra:

5*7dR04!(ﬁv Quwx) = (1_»Jli»nll<)esl jp»*ydR((ﬁv)@K ® WU(p))'

This immediately gives the claim. O

Remark 7.7.2. We identify fix-mody: and fi-mod(Rep(T))ys in what follows. We em-
phasize that although the A-grading does not appear explicitly in the notation, it is
implicit in the fact that fix is always considered as A-graded.

We obtain the restriction functor:

Rep(B) xr — fix-mody.
Using the chiral induction functor ind*" : fix-mody: — Tﬁfmodffﬁ’txz and the restriction
functor from G to B, we obtain:

Chevi’Sr : Rep(G)x1 — Ti-modcty
as desired.

7.8.  For convenience, we record the following consequence of Lemma 7.7.1. The
reader may skip this section.

Recall from [35] §6.12 and §8.14 that the external fusion construction defines a lax
unital factorization category structure on the assignment:

fact
I'— Yg-mod,,;, x1-
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Corollary 7.8.1. The lax factorization structure is a true factorization structure. Le., for
every I, J € Set«oo, the external fusion functor:

[Ti-modicyr @ Ta-modic'ss]  ®  D(XT x X7]uis;)
D(XI]_[J)

— T modfacxl]_[J & D([XI X XJ]disj)
D(XIU‘])

is an equivalence.

Proof. The corresponding result for Lie-x modules over ny follows from Lemma 7.7.1.
Using the adjoint functors (ind”, Oblv®"), we see that factorization modules for Tj are
modules for a monad on Lie-* modules, and the two monads obviously match up e.g. by
the chiral PBW theorem. 0O

7.9. Formulation of the main theorem

spec
X!
with factorization as we vary the finite set I (here we use the external fuszon construction

fact
Ti-mod,, xr1)-

Observe that formation of each of the functors Chev and Chevgc‘”n are compatible

Theorem 7.9.1. The factorization functors I — Chevhpecl and I — Chevgem} are canon-
ically isomorphic as factorization functors.

The proof of Theorem 7.9.1 will occupy the remainder of this section.

Remark 7.9.2. Here is the idea of the argument: since both functors factorize, we know
the result over strata of X! by Theorem 5.14.1. We glue these isomorphisms over all of
X' by analyzing ULA objects.

Remark 7.9.3. This theorem is somewhat loose as stated, as it does not specify how they
are isomorphic. This is because the construction of the isomorphism is somewhat difficult,
due in part to the difficulty of constructing anything at all in the higher categorical
setting.

However, we remark that for G simply-connected, we will see that such an isomorphism
of factorization functors is uniquely characterized as such. Similarly, for G a torus, it is
easy to write down such an isomorphism by hand (just as it is easy to write down the
(naive) geometric Satake by hand in this case). This should be taken to indicate the
existence of a canonical isomorphism in general. We refer to Remark 7.10.2 and §7.22
for further discussion of this point.

7.10.  First, we observe the following.

Lemma 7.10.1. Chev%pi(c] and Chevi“T} are canonically isomorphic for I = x.
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Proof. We are comparing two D(X)-linear functors:
Rep(G)x = Rep(G) ® D(X) — YTa—modiacty
or equivalently, two continuous functors:
Rep(G) — Ta—modinct, .

By lisseness along X, we obtain the result from Theorem 5.14.1 (alternatively: the meth-
ods of Theorem 5.14.1 work when the point z is allowed to vary, giving the result). O

Remark 7.10.2. In what follows, we will see that the isomorphism of Theorem 7.9.1
is uniquely pinned down by a choice of isomorphism over X, i.e., an isomorphism as
in Lemma 7.10.1. Indeed, this will follow from Proposition 7.18.2. Note that we have
constructed such an isomorphism explicitly in the proof of Theorem 5.14.1, and therefore
this completely pins down Theorem 7.9.1.

7.11. Digression: a t-structure on factorization modules

We now construct a convenient t-structure for Y z-modules.

Proposition 7.11.1.

(1) There is a (necessarily unique) t-structure on Tﬁfmodffrffxf such that the forgetful
functor:

Oblv*" : Ts-mod™', — D(Divi%:) (7.11.1)

n’

is t-ezact.
(2) With respect to this t-structure, the chiral induction functor:

. ch . x fact
ind”" : fix -modxr — Yy-mod,; s

1s t-exact with respect to the t-structure on the left hand side coming from Proposi-
tion 7.7.1.
(8) This t-structure is left and right complete.

Proof. Note that we have a commutative diagram:

fact .
Yi-mod, i xr —— fix-modxr

\LOblv“h L (7.11.2)

Nl

D(Div’y ¢7°") = D(Gry,x1)
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%,00-x

where we use 4 to denote the map Grp xr — DlVeH X7

Define (T3 modiastxz) as the subcategory generated under colimits by n Xfmodf(?
by ind®"*. This defines a ¢-structure in the usual way. Note that an object lies in
('I“;;modff,ffxz)>0 if and only if its image under Oblv*" lies in fiy-mod3)

The main observation is that the composition Oblv®" 0ind" is t-exact:

The PBW theorem for factorization modules [35] §7.19 says that for M € nx—modxr,
ind”"(M) has a filtration as an object of D(Dlv 0o ¥) with subquotients given by

eff, X1
symmetric group invariants of the #-pushforward of:

fix[1]R ... Kix[1]®M e D((Diviy )" x Grpxr )

n times

along the addition map to DIV 7°'". Formation of this exterior product is obviously

I
t-exact, the x-pushforward ope;f;t)fon is t-exact by finiteness, and the S, -invariants are
t-exact as we work in characteristic 0. So we obtain our claim.

Then from the commutative diagram (7.11.2), we see that Oblv" o ind®" is left t-exact.
This immediately implies the ¢-exactness of ind®".

It remains to show that Oblv" is t-exact. By the above computation of Oblv*" ind",
it is right t-exact.

Suppose M € T;;modfaCth with i' Oblv*"(M) € D(Grpx1)”°. By factorization
and since Ty € D(Diveff )9, we deduce that Oblv®"(M) is in degree > 0. By the
commutative diagram (7.11.2), this hypothesis is equivalent to assuming that M €
(Ti-mode’s1)>?, so we deduce our left t-exactness.

Finally, that this ¢-structure is left and right complete follows immediately from
(). o

Corollary 7.11.2. The functor ChevSpec : Rep(G) xr — Tﬁ*modfj\,rftxl is t-exact.
7.12. ULA objects

Next, we discuss the behavior of ULA objects under the Chevalley functors.
In the discussion that follows, we use the term ULA as an abbreviation for ULA over
X7,

7.13.  We begin with a technical remark on the spectral side.

Proposition 7.13.1.

(1) The functor Chevi®SS, maps ULA objects in Rep(G)x: to ULA objects in Ys-

X7
fact
mod,,,, x1-

(2) For every V € Rep(G)®!, the object Oblv*" Chev’Sr (Locx1 (V) € D(DlV off X i)

underlying Chevip;c, (Locx1 (V) is ind-ULA.
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More precisely, if V' is compact, then for every A e /V\, the restriction of this
D-module to the locus of divisors of total degree X is ULA.*

Proof. The functor Rep(é)xz — nx—mody: preserves ULA objects by the same argu-

ment as in Proposition 6.16.1, and then the first part follows from D(X7')-linearity of
: ch

the adjoint functors fx-mody: % Ti-modincty ;.

For the second part, we claim more generally that Oblv" ind°® maps ULA objects in
Rep(B)Xz to objects in D(Dlveff Xfo ¥) whose restriction to each degree is ULA.

To this end, we immediately reduce to the case of one-dimensional representations of
B! , since every compact object of Rep(B)®I admits a finite filtration with such objects
as the subquotients.

In the case of the trivial representation of B, the corresponding object is the vacuum
representation, which in this setting is obtained by *-pushforward from wy: X T along
the obvious map:

AP°® co-x
eff, X1

X! x Divlg” — Div

Since this map is a closed embedding, we obtain the claim since wyxr K Y obviously has
the corresponding property.

The general case of a 1-dimensional representation differs from this situation by a

translation on Divé\;:);’fc'z, giving the claim here as well. O
7.14. Next, we make the following observation on the geometric side.
Proposition 7.14.1.

(1) For every V € Rep(G)®T, Oblv" Chev} "7 (Locxr (V) € D(DlvCff Xfo'r) is ind-
ULA.
More precisely, for V compact and A\ € /V\, the restriction of Oblve" x
Chevy"{r (Locx1 (V) to the locus of divisors of total degree X is ULA.

(2) For V € Rep(G)®19, Chevy™{r(Locy: (V) € Ty ~modi2"ys lies in cohomological

degree —|I|.

Proof. As in Proposition 7.13.1 suffices to show that for V € Rep(é’)®17@ compact,
Chevgeom(LocXI( )) admits a filtration by A with ji-subquotient ind®"(¢*) @ V(j1),
where V(1) is the fi-weight space of V and ¢# € Rep(B)®"? is the corresponding one
dimensional representation.

44 Note that this claim is wrong if we do not restrict to components, since ULA objects are compact.
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This follows exactly as in Step 4 of the proof of Theorem 5.14.1: the weight space of
V € Rep(G)® appears as a semi-infinite integral & la Mirkovic-Vilonen by the appropri-
ate moving points version of Lemma 5.15.1. O

7.15.  We now deduce the following key result, comparing Chevﬁ?;r? and Chevi‘?;(cf
on ULA objects.

Proposition 7.15.1. The two functors:

ChevE*y} oLocx: : Rep(G)®! — Tﬁfmodff,ffxz

spec N\RT fact
Chevy"; o Locxr : Rep(G)®" — Ti-mody, x1

are isomorphic.
More precisely, there exists a unique such isomorphism extending the isomorphism
between these functors over Xéisj coming from Lemma 7.10.1 and factorization.

geom

Proof. It suffices to produce an isomorphism between the restrictions of Chev; {7 and

RI,Q

v

Chevi"$: to the category of compact objects in the heart of Rep(G)

Suppose V€ Rep(G)®"Y is compact. By [38] IV.2.8," ULAness of

Chevi‘j;{”}(Loc x7(V)) and perversity (up to shift) imply that as a D-module,
Chevi®y7 (Locyr(V)) is concentrated in one degree, and as such, it is middle extended
from this disjoint locus. The same conclusion holds for Chevi"y; (Locy:(V)) for the same
reason.

Apos,oo~m
eff, X1

torization module structures, we deduce that the factorization module structures on

Chev&“ YT (Locy:(V)) and Chev’{; (Locx:(V)) are compatible with the middle exten-

sion construction, and we obtain that these two are isomorphic as factorization modules
for T4. O

Since the isomorphism above over Div X xrX éisj is compatible with fac-

Corollary 7.15.2. The functor Chevi*T} is t-exact.

Proof. For simplicity, we localize to assume that X is affine.
geom

First, we claim that Chev 'y is right t-exact.
Indeed, as in the proof of Proposition 6.34.1, Rep(é)§9 is generated under colimits
! v
by objects of the form ind Oblv(Locx:(V)) = Dxr ® Locy: (V) for V € Rep(G!)SHI =
Rep(G)2L<H1.

45 Note that [38] only formulates its claim for complements to smooth Cartier divisors, since this reference
only defines the ULA condition in this case. However, the claim from [38] is still true in this generality, as
one sees by combining Beilinson’s theory [5] and Corollary B.5.3.
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! X pos
The functor Dxr ® — is t-exact on D(Divgp 1) (since after applying forgetful
functors, it is given by tensoring with the ind-vector bundle that is the pullback of
differential operators on X?), and since:

!
Chevy {7 (Dx1 ® Locx: (V)

Prop. 7.15.1

! !
= Dx1 ® Chevy"{r (Locy: (V) Dx1 @ Chevi”$; (Locx: (V)
we obtain the result from Corollary 7.11.2.
For left t-exactness: let p : I — J be given, and let ¢, denote the corresponding locally
closed embedding X dJisj — X'. Note that the functors i;o Cheve®Y} are left t-exact by

X1
geom geom

factorization. Therefore, since Chevﬁ7X, is filtered by the functors ip’*’dRi;, Chevﬁ7xl, we

obtain the claim. O

Warning 7.15.3. It is not clear at this point that the isomorphisms of Proposition 7.15.1
are compatible with restrictions to diagonals. Here we note that, as in the proof of [38],
this question reduces to the abelian category, and here it becomes a concrete, yes-or-
no question. The problem is that the isomorphism of Proposition 7.15.1 was based on
middle extending from Xéisj C X! and for X7 — X1, Xéisj and Xctl]isj
one another. We will deal with this problem in §7.22.

do not speak to

7.16. Factoring through Rep(B) x1
Next, we construct a functor:

’Chev%?%r? : Rep(G) x1 — Rep(B) xr
so that the composition:

'Chev®°?™ . ich
v a,x1 “ . de .
Rep(G) xr ———= Rep(B) xr — fix-modyr ——s Tﬁ—modff,ffxz

. . . geom
identifies with Chevﬁ) I
Lemma 7.16.1. The t-exact functor:

x - ind°"
Rep(B) x1 — fix -modyr —— Tﬁ*mod,ffﬁfxf

1s fully-faithful on the hearts of the t-structures.

Proof. The functor Rep(é) x1 — fix—modx: is obviously fully-faithful (even at the de-
rived level), as is clear by writing both categories as limits and using the fully-faithfulness
of the functors Rep(B)®” — ii-mod(Rep(T)®".
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So it remains to show that ind*" : fix—mody: — Tﬁfmodffﬁfxz is fully-faithful at the
abelian categorical level.

This follows from the chiral PBW theorem, as in the proof of Proposition 7.11.1.
Indeed, let Oblv*" denote the right adjoint to ind®. Then for M € ﬁXfmod?(I7

Oblv" ind“" (M) is filtered as a D-module with associated graded terms:

Sn
i addy, v ar (ﬁx[l] K...Riy[l] K i*,dR(M)) € D(Gryx1) (7.16.1)

n times

where add,, is the addition map:

. APos\n . IV\I)OS,OO%E . ]\1)05700.1‘
(Diveg )™ X DlVeH,XI — Dlvef-f,XI
.. . . VPOS . .
and i is the embedding Grp yr < DIVQH Xfo ¥, It suffices to show that H? of this term
vanishes for n # 0.

Observe that we have a fiber square:

. APos . ]\Pos .
Grellyr % oox Grefly ) % Grpyr ———— (Divly )™ x Div g "
Xt X1 e ’ ’
n times
\L add,,
i . AP°% 0oz
Gry x1 Dchﬁ‘,X’

where Gr%ffXI is the locus of points in X! x Diveg of pairs ((z;)ier, D) so that D is zero
when restricted to X \ {z;} (so the reduced fiber of Gr‘;ffxl over a point z € X = X!
is the discrete scheme AP).

Let I' C X x X! be the incidence divisor, as in the proof of Lemma 7.7.1. For A given,
we have a canonical map ﬁ;\ I — GreTffXI over X!, sending (z,(x;)"_,) € T to the

divisor A - . More generally, for every datum (S\T)?:l with A, € AP%% we obtain a map:

BOT= T x L T Grfflyr x L x Grsfy
T,X T,.X
X xI xXro Xt

By base-change, the l-restriction of fix[1] K ... Kax[1] Ki,qr(M) to Griy, x ... x
X XTI
GreTffX I ;1 Grp x1 is the direct sum of terms:

! !

_ ! ! ! v L !
B (P % @ k(1)) & . @ P! (5% @ ke [1]) & 9l (M),

where the p; are the projections and ¢ is the map I' — X, and where the sum runs
over all n-tuples (&,)"_; of positive coroots. Since kx[1] = wx[—1], these terms are
concentrated in cohomological degree > n, which gives the claim. 0O
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Proposition 7.16.2. The functor Chevi'yy |Rep(é)®1 factors through Rep(f})gl C YTi-
’ X

fact
modun7xl .

Proof. Since Rep(é)fﬁ is generated under colimits by objects of the form ind x

! " " "
Oblv(Locx:(V)) = Dxr ®Locy: (V) for V € Rep(GT)SHI = Rep(G)21:<HI Rep(G)z, is
generated under (for emphasis: possibly non-filtered) colimits by the top cohomologies of
| v
such objects, i.e., by objects of the form D x:®Locx: (V) for V € Rep(G)®! concentrated
in degree |I|.
But we have seen that such objects map into Rep(B)i,, giving the claim. O

geom

X7
that Rep(G) x1 is the derived category of its heart. These functors factorize as one varies
1.

We now obtain the desired functor 'Chev from Corollary 6.24.4, i.e., from the fact

7.17. Kernels

By Lemma 6.32.1, the functor 'Chevﬁe)o(n,l is defined by a kernel:

K™ € Rep(G x B)x1.

Recall that the object of Rep(B)y: underlying KET™ is /Chevif;r?(oé’x]).

We recall that one recovers the functor /Chevﬁe;nl1 from the kernel fK%??m by the

. ! .

following construction. First, for F € Rep(G) xr, observe that F ® KXxr € Rep(G x G x
B) x1. Then for each p : I — J, we restrict to U(p) and form invariants with respect to
G, which acts diagonally through the embedding;:

W Agsxl o L

G (G x G x B

Let XY7° € Rep(G' x B)x: denote the kernel defining the tautological functor

Rep(G) — Rep(B), i.e., for each p: [ — J, K |u(p) is given by the regular representa-

tion O, considered as a (G, B?)-bimodule by restriction from its (G, G7)-bimodule
structure (i.e., forgetting I7° down to Rep(G)x1, we recover O y; from §6).

7.18.  We have the following preliminary observations about these kernels.

Lemma 7.18.1. K%7™ and K5 are concentrated in cohomological degree —|I| in Rep(G'x
B)yr.

Proof. For K;?fc, this follows from Lemma 6.24.3.
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By construction, we recover X5°7™ as an object of Rep(B)x: by evaluating /Chevifsg?
on O 1. Since this object is concentrated in degree —|/| by Lemma 6.24.3, we obtain

geom

the claim from t-exactness of Chev; (7. O

Proposition 7.18.2. The group'® of automorphisms of K37 restricting to the identity

automorphism on Xéisj is trivial.
Proof. Note that the underlying object of Gpd underlying this group is a set by
Lemma 7.18.1.

Then automorphisms of XY/ inject into automorphisms of Oy 1 € Rep(G) 7, so it
suffices to verify the claim here.

By adjunction, we have*:

HomRep(é)XI (Oé,XI’ OG,XI) = HOmD(XI)(Oé,XI,WXI).

Therefore, it suffices to show that:

Hompx1)(Og xr,wxr) — HomD(Xéi,sj)(j!(O@,XI)’wXéisj) (7.18.1)
is an injection, where j denotes the open embedding Xéisj — X1,

Note that j'(Og 1) = j'(Locx1(Og)) is obviously ind-lisse, so ji is defined on it. Let
i denote the closed embedding of the union of all diagonal divisors into X7, so j is the
complementary open embedding. We then have the long exact sequence:

0— Hom(i*’dRi*’dR(Oé,XI),OJxI) — Hom(Og xr,wxr) — Hom(j!jl((‘)é’x,),wxz) =

Hom(j!(oé,xf)’joisj) — ...
We can compute the first term as:
Hom(i*’dRi*’dR(Oé’X[),OJxl) = Hom(i*’dR(Oé,XI%i!(sz))

which we then see vanishes, since i*4%(0 & x1) is obviously concentrated in cohomological
degrees < —|I] (since O y; is in degree, —|1|), while i*(wx1) is the dualizing sheaf of
a variety of dimension | \ — 1, and therefore is concentrated in cohomological degrees
>—|I|+1. O

Remark 7.18.3. Note that by factorization and by the |I| = 1 case, we have an iso-
g
tion 7.18.2 that there is at most one isomorphism extending this given isomorphism,

morphism between X and X7/ over the disjoint locus. We deduce from Proposi-

46 Here by group, we mean a group object of Gpd.
47 We emphasize here that Hom means the groupoid of maps, not the whole chain complex of maps. In
particular, these Homs are actually sets, not more general groupoids.
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geom
X7
of restriction of representations that extends the known isomorphism over the disjoint

or equivalently, there is at most one isomorphism between 'Chev and the functor

locus.
7.19. Commutative structure

The following discussion will play an important role in the sequel.
By factorization:

I'— :Kiﬁ?m = /CheVE?;r?(OGJ(I) € Rep(é X B)XI

is a factorization algebra in a commutative factorization category.

Lemma 7.19.1. I — X7 is a commutative factorization algebra.

Remark 7.19.2. Since each term J57™ is concentrated in cohomological degree —|I],
this factorization algebra is classical, i.e., of the kind considered in [6]. In particular, its
commutativity is a property, not a structure.

Proof of Lemma 7.19.1. Let = denote the functor:
Z: Rep(G x B)x ® Rep(G x B)x — Rep(G' x B) x2.
By [6] §3.4, we only need to show that there is a map:
E(KE™ K KE™) — KE™ € Rep(G' x Rep(B) x» (7.19.1)

extending the factorization isomorphism on X2\ X.

Let i denote diagonal embedding X <+ X2 and let j denote the complementary open
embedding Xgisj — X2

Since i'(X%5™) = K5 is in cohomological degree —1, we have a short exact se-
quence:

geom

0 = KE™ = juard (KES™) = iwar(KET™)[1] = 0

in the shifted heart of the ¢-structure.
Therefore, the obstruction to a map (7.19.1) is the existence of a non-zero map:

KEM R KE™ = ih ar(KE™)[1].

We know (from the I = * case of §7.10) that K™ = Locx (0p5), so K™ K Kx is
similarly localized. It follows that i*F (K™ K K5°™) is concentrated in cohomolog-
ical degree —3, while K§"[1] is concentrated in cohomological degree —2, giving the
claim. O



84 S. Raskin / Advances in Mathematics 388 (2021) 107856

7.20. Lemma 7.19.1 endows X5°™ with the structure of commutative algebra object
of Rep(G x B) x. Moreover, the Beilinson-Drinfeld theory [6] §3.4 implies that KET™ can
be recovered from K5°™ equipped with its commutative algebra structure.

geom

Using Lemma 6.32.1, it follows that the factorization functor Chev is induced

from a symmetric monoidal functor F; : Rep(G)) = Rep(B).

Moreover, since K™ is isomorphic to O a.x in Rep(G x B)x, the underlying functor
of this symmetric monoidal functor Fj is isomorphic to the forgetful functor. It follows
that Fy factors through the full subcategory Rep(G) C Rep(B). In what follows, we
denote the resulting symmetric monoidal functor Rep(G) — Rep(G) by F.

Therefore, we obtain a symmetric monoidal functor F : Rep(G) — Rep(G) induc-
ing the factorization functor 'Chev&®™
Rep(B) and applying the functoriality of the construction € — (I — €y:) from §6. More-
over, F' is isomorphic to idRep(é) as a functor, so in particular, is a symmetric monoidal

by composing F' with the restriction functor to

equivalence.

7.21.  We claim that F' is equivalent as a symmetric monoidal functor to the identity
functor. Indeed, this follows from the next lemma.

Lemma 7.21.1. Let F : Rep(G) — Rep(G) be a symmetric monoidal equivalence such that
for every X € AT, (VA) is equivalent to V> in Rep(G). Then F is (non-canonically)
equivalent as a symmetric monoidal functor to the identity functor.

Proof. By*® the Tannakian formalism, Fis given by restriction along an isomorphism
Y G =5 G. We need to show that @ is an inner automorphism. We now obtain the
result, since the outer automorphism group of a reductive group is the automorphism
group of its based root datum and since our assumption implies that the corresponding
isomorphism is the identity on /V\Jr, and therefore the identity for all of A O

7.22. Trivializing the central gerbe

The above shows that there exists an isomorphism of the factorization functors
Chev&®™ and Chevi™*.

However, the above technique is not strong enough yet to produce a particular iso-
morphism. Indeed, the isomorphism of Lemma 7.21.1 is non-canonical: the center Z(G)
acts by automorphisms on the symmetric monoidal functor idRep(é)'

Unwinding the above constructions, we see that factorizable isomorphisms between
ChevE®™™ and Chevi”*® form a trivial Z(G)-gerbe.

48 1n fact, if k is not algebraically closed, there may be a non-trivial G-torsor on Spec(k) obstructing this
argument. But one can a priori see that this torsor is trivial using the observations of §7.25. (Alternatively,
one may assume k is algebraically closed in what follows, and then observe that the ultimate isomorphism
we produce is manifestly Galois equivariant.)
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In order to trivialize this gerbe, it suffices (by Proposition 7.18.2; cf. Remark 7.18.3)
to show the following.

Proposition 7.22.1. There exists a (necessarily unique) isomorphism of factorization
functors Chevi®™™ ~ Chev’*® whose restriction to X is the one given by Lemma 7.10.1.

Remark 7.22.2. Even when Z(G’) = *, this assertion is not obvious: c¢f. Warning 7.15.3.

Essentially, the difficulty is that the identity functor of Rep(G) admits many automor-
phisms that are not tensor automorphisms.

7.23.  We will deduce the above proposition using the following setup.

v

Lemma 7.23.1. Suppose that we are given a symmetric monoidal functor F : Rep(G) —

Rep(G) such that F is (abstractly) isomorphic to the identity as a tensor functor, and
such that we are given a fized isomorphism:

. G -~ G
o ReST oF ~ ResT

of symmetric monoidal functors Rep(G) — Rep(T) (Res indicates the restriction functor
here).
Then there exists an isomorphism of symmetric monoidal functors between F and the

identity functor on Rep(G) inducing o if and only if, for every V € Rep(G)? irreducible,
there exists an isomorphism By : F(V) = V & Rep(G) inducing the map:

a(V): Resg F(V)~ Resg(V) € Rep(T)

upon application of Resg.
Moreover, a symmetric monoidal isomorphism between F' and the identity compatible
with « is unique if it exists. At the level of objects, it is given by the maps By .

Remark 7.23.2. In words: an isomorphism « as above may not be compatible with any
tensor isomorphism between F' and the identity. Indeed, consider the case where G is
adjoint, so that a tensor isomorphism between F' and the identity is unique if it exists,
while there are many choices for a as above. However, if this isomorphism exists, it is
unique. Moreover, the lemma provides an objectwise criterion to test whether or not
such an isomorphism exists.

Proof. Choose some isomorphism ~ between F' and the identity functor (of symmetric
monoidal functors). From «a, we obtain a symmetric monoidal automorphism of ResqG:, .
By Tannakian theory, this is given by the action of some ¢ € T'(k).

Since the symmetric monoidal automorphism group of the identity functor of Rep(é)
is the center of this group, it suffices to show that ¢ lies in the center of G. (Moreover,

we immediately deduce the uniqueness from this observation).
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To this end, it suffices to show that ¢ acts by a scalar on every irreducible represen-
tation on G. But by Schur’s lemma, this follows from our hypothesis. O

7.24.  We now indicate how to apply Lemma 7.23.1 in our setup.

7.25.  First, we give factorizable identifications of the composite functors:

/Chey&eom
a,x1

Rep(G) y1 ———=— Rep(B) x: — Rep(T) xr

with the functors induced from Resg.

Indeed, we have done this implicitly already in the proof of Proposition 7.14.1: one
rewrites the functors Chev® Xn} using (the appropriate generalization of) Lemma 5.15.1,
and then uses the (factorlzable“ form of the) Mirkovic-Vilonen identification of restric-
tion as cohomology along semi-infinite orbits.

7.26. Now suppose that V € Rep(é)o is irreducible.
Then for € X, Theorem 5.14.1 produces a certain isomorphism between Chevgeom(V)

and Chevi***(V) in Rep(B)¥ C Ts-modis,”.

To check that the conditions of Lemma 7.23.1 are satisfied, it suffices to show that
this isomorphism induces the isomorphism of §7.25 when we map to Rep(T).

Fort this, recall that the isomorphism of Theorem 5.14.1 was constructed using a
related isomorphism from [12] Theorem 8.8. The isomorphism of [12] has the property
above, as is noted in [12]. Since the construction in Theorem 5.14.1 for reducing to the

setting of [12] is compatible with further restriction to Rep(T"), we obtain the claim.
Appendix A. Proof of Lemma 6.18.1

A.1.  Suppose that we have a diagram i — C; € DGCat,,p; of categories with each
C; dualizable with dual €} in the sense of [24].

In this case, we can form the dual diagram i — C'.

We can ask: when is € = lim;egor C; dualizable with dual colim;ecg €;? More precisely,
there is a canonical Vect valued pairing between the limit and colimit here, and we can
ask when it realizes the two categories as mutually dual.

As in [24], we recall that this occurs if and only if colim;eg €; is dualizable, which
occurs if and only if, for every D € DGCat,¢, the canonical map:

(lim €;) ® D — lim, (€;®D)

i€Jop

is an equivalence.

49 This generalization is straightforward given the Mirkovic-Vilonen theory and the methods of this section
and §6.
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This section gives a criterion, Lemma A.2.1, in which this occurs, and which we will
use to deduce Lemma 6.18.1 in §A.3

A.2. A dualizability condition
Suppose we have a diagram:

€2

L r

Ci ——=C3

of dualizable categories. Let C denote the fiber product of this diagram.
The main result of this section is the following.

Lemma A.2.1. Suppose that ¥ and F have right adjoints ¢ and G respectively. Suppose
in addition that G is fully-faithful.

Then if each C; is dualizable, C is dualizable as well. Moreover, for each D €
DGCatcont, the canonical map:

CODC®D x CaDd (A.2.1)
C3®D

s an equivalence.
The proof of this lemma is given in §A.7.

A.3. Proof of Lemma 6.18.1

We now explain how to deduce Lemma 6.18.1.

Proof that Lemma A.2.1 implies Lemma 6.18.1. Fix I a finite set. We proceed by induc-
tion on |I], the case |I| = 1 being obvious.

Recall that we have € € DGCat,pp¢ rigid and symmetric monoidal, and X a smooth
curve.

By l-affineness of X!, and X! (cf. [25]), we easily reduce to checking the cor-
responding fact in the quasi-coherent setting. Note that by rigidity of QCoh(X7),
dualizability questions in QCoh(X!)-mod are equivalent to dualizability questions in
DGCatcont-

Let U C X! be the complement of the diagonally embedded X — X!. We can then
express Cyr as a fiber product:
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QCoh(X?!,Cx1) —= QCoh(X!,Cx:) ®  QCoh(U)
QCoh(X1)

!

QCoh(XT) ® € QCoh(U) ® C.

The two structure functors involved in defining this pullback admit continuous right
adjoints, and the right adjoint to the bottom functor is fully-faithful. Moreover, the
bottom two terms are obviously dualizable. Therefore, by Lemma A.2.1, it suffices to
see that formation of the limit involved in defining the top right term commutes with
tensor products over QCoh(U).

Note that U is covered by the open subsets U(p) for p : I — J with [J| > 1. By
Zariski descent for sheaves of categories, it suffices to check the commutation of tensor
products and limits after restriction to each U(p). But this follows from factorization
and induction, using the same cofinality result as in §6.10. O

A.4. The remainder of this section is devoted to the proof of Lemma A.2.1.
A.5. Gluing

Define the glued category Glue to consist of the triples (¥, G, n) where F € €1, G € Ca,
and 7 is a morphism 7 : ¥(G) — F(F) € Cs.
Note that the limit € := €; x¢e, Cq is a full subcategory of Glue.

Lemma A.5.1. The functor C < Glue admits a continuous right adjoint.

Proof. We construct this right adjoint explicitly:
For (F,9,n) as above, define F € C; as the fiber product:

F— G(9)

e

F — = GF(%).

Since G is fully-faithful, the map e : F(F) — FG¥(SG) ~ ¢(9) is an isomorphism, and
therefore (F,9G,¢) defines an object of C. It is easy to see that the resulting functor is
the desired right adjoint. O

A.6. Let D € DGCat,py; be given.
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Define Gluep as with Glue, but instead use the diagram:

Co®D

l P ®idp

F®id-
oD 22 e, gD

Lemma A.6.1. The canonical functor:
Glue ® D — Gluep
s an equivalence.

Proof. First, we give a description of functors Glue — & € DGCat,,,; for a test object &:
We claim that such a functor is equivalent to the datum of a pair & : €; — € and
& 1 Co — € of continuous functors, plus a natural transformation:

SipF — &o

of functors C; — €.

Indeed, given a functor = : Glue — & as above, we obtain such a datum as follows:
for F € €1, we let & (F) = Z(F[-1],0,0), for G € C3 we let £1(9G) == E(0,9,0) (here we
write objects of Glue as triples as above). The natural transformation comes from the
boundary morphism for the exact triangle Glue:

(F,0,0) = (F, oF(F), 15) — (0, pF(F),0) 5

where ng is the adjunction map Y F(F) — F(F). It is straightforward to see that this
construction is an equivalence.
This universal property then makes the above property clear. O

A.7.  We now deduce the lemma.

Proof of Lemma A.2.1. We need to see that for every D € DGCatcope, the map (A.2.1)
is an equivalence.

First, observe that each of these categories is a full subcategory of Gluep. Indeed, for
the left hand side of (A.2.1), this follows from Lemma A.5.1, and for the right hand side,
this follows from Lemma A.6.1. Moreover, this is compatible with the above functor by
construction.

Let L denote the right adjoint to i : € < Glue, and let Lp denote the right adjoint
to the embedding:

i@:61®® X 62®D‘—>G|UED.
C3®D
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We need to show that:
(ioL)@id'D =4poLp
as endofunctors of Gluep, since the image of the left hand side is the left hand side of
(A.2.1), and the image of the right hand side is the right hand side of (A.2.1).
But writing Gluep as Glue ® D, this becomes clear. O
Appendix B. Universal local acyclicity

B.1. Notation

Let S be a scheme of finite type and let € be a D(S)-module category in DGCateop-
Let QCoh(S, €) denote the category € ®p(s) QCoh(S).

Remark B.1.1. Everything in this section works with S a general DG scheme almost
of finite type. The reader comfortable with derived algebraic geometry may therefore

happily understand scheme in the derived sense everywhere here.

B.2.  The adjoint functors®:

QCoh(S) D(S)
Oblv
induce adjoint functors:
ind
QCoh(S5,€) ———=¢C.
Oblv

Lemma B.2.1. The functor Oblv : € — QCoh(S, C) is conservative.

Proof. This is shown in [27] in the case € = D(S).
In the general case, it suffices to show that ind : QCoh(S, C) — € generates the target
under colimits. It suffices to show that the functor:

QCoh(S)® € — D(S)® € — D(S) D(%S) C

generates, as it factors through ind. But the first term generates by the [27] result, and
the second term obviously generates. O

50 Throughout this section, we use only the “left” forgetful and induction functors from [27].
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B.3. Universal local acyclicity

We have the following notion.

Definition B.3.1. F € € is wundversally locally acyclic (ULA) over S if Oblv(F) €
QCoh(S, €) is compact.

Notation B.3.2. We let @UL4 C @ denote the full (non-cocomplete) subcategory of ULA
objects.

B.4.  We have the following basic consequences of the definition.

!
Proposition B.4.1. For every F € CUEA and for every compact § € D(S), @ T is
compact in C.

Proof. Since ind : QCoh(S) — D(S) generates the target, objects of the form ind(P) €
D(S) for P € QCoh(S) perfect generate the compact objects in the target under finite
colimits and direct summands. ’
Therefore, it suffices to see that ind(P) ® F is compact for every perfect P € QCoh(S).
To this end, it suffices to show:

mdm%@Obhﬁﬂ)Eiimu?)éﬂf (B.4.1)

since the left hand side is obviously compact by the ULA condition on . We have an
obvious map from the left hand side to the right hand side. To show it is an isomorphism,
we localize to assume S is affine, and then by continuity this allows us to check the claim
when P = Og. Then the claim follows because ind and Oblv are D(S)-linear functors. O

Corollary B.4.2. Any F € CUVEA 4s compact in C.

Example B.4.3. Suppose that S is smooth and € = D(S). Then F is ULA if and only if F
is compact with lisse cohomologies. Indeed, if F is ULA, the cohomologies of Oblv(F) €
QCoh(S) are coherent sheaves and therefore the cohomologies of F are lisse.

Proposition B.4.4. Suppose that F' : € — D is a morphism in D(S)-mod with a D(S)-
linear right adjoint G. Then F maps ULA objects to ULA objects.

Proof. We have the commutative diagram:

e r D

l Oblv l Oblv

QCoh(S, €) —= QCoh(S, D)
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and the functor QCoh(S, C) — QCoh(S, D) preserves compact objects by assumption on
F. O

B.5. Reformulations

For F € €, let Home(F, —) : € — D(S) denote the (possibly non-continuous) functor
right adjoint to D(S) — € given by tensoring with F.

Proposition B.5.1. For F € C, the following conditions are equivalent.

(1) F is ULA.
(2) Home(F,—) : € — D(S) is continuous and D(S)-linear.
(3) For every M € D(S)-mod and every M € M compact, the induced object:

FXR MeC @ M
D(S) D(S)

is compact.

Proof. First, we show (1) implies (2).

By Proposition B.4.1, the functor D(S) — € of tensoring with F preserves compact
objects, so its right adjoint is continuous. We need to show that Home(F, —) is D(S)-
linear.

Observe first that Oblv Home(F, —) computes”’ Homqcaps,e)(Oblv(F), Oblv(—)) :

!

€ — QCoh(S). Indeed, both are right adjoints to (— ® F) o ind = ind o(— ® Oblv(JF)),
where we have identified these functors by (B.4.1).
Then observe that:

Homgeons,e) (ObIvV(F), —) : QCoh(S, €) — QCoh(S)

is a morphism of QCoh(S)-module categories: this follows from rigidity of QCoh(S). This
now easily gives the claim since Oblv is conservative.

Next, we show that (2) implies (3).

Let M and M € M be as given. The composite functor:

Vet —2M, 2= D(s) @ M TN 6 o g
D(S) D(S)

obviously sends k € Vect to I D%) M. But this composite functor also obviously admits

a continuous right adjoint: the first functor does because M is compact, and the second
functor does because D(S) — € admits a D(S)-linear right adjoint by assumption.

51 The notation indicates internal Hom for QCoh(S, €) considered as a QCoh(S)-module category.
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It remains to show that (3) implies (1), but this is tautological: take M = QCoh(S). O

Remark B.5.2. Note that conditions (2) and (3) make sense for any algebra A €
DGCat,opn: replacing D(S) and any F € C a right A-module category in DGCatcop-
That (2) implies (3) holds in this generality follows by the same argument.

Here is a sample application of this perspective.

Corollary B.5.3. For G € D(U) holonomic and F € CUEA | 51(§ ® j'(F)) € € is defined,
and the natural map:

! !

M8 @5 (F) =9 eF
is an isomorphism. In particular, ji(F) is defined.

Proof. We begin by showing that there is an isomorphism:

j'(Home(¥, -)) = Home, (7'(5), j'(-))
as functors € — D(U). Indeed, we have:

Juarj (Home(F, —)) = juar(wr) @ Home(F, —) = Home (F, ju ar(wu) @ (—))

and the right hand side obviously identifies with j. qrHome, (G (F), 7' ().
Now for any J € €, we see:

Home (ji(S) ® F, F) = Hompys) (j:(S), Home (. F)) = Homp e (S, j'Home (¥, F)) =
Hom p(rry (G, Home (5 (%), 5(F))) = Home, (S ® 5'(F),5'(F))
as desired. O

B.6.  'We now discuss a ULA condition for D(S)-module categories themselves.

Definition B.6.1. C as above is ULA over S if QCoh(S,C) is compactly generated by
objects of the form P ® Oblv(F) with F € CYL4 and P € QCoh(S) perfect.

Example B.6.2. D(S) is ULA. Indeed, wg is ULA with Oblv(wg) = Og.
Lemma B.6.3. If C is ULA, then C is compactly generated.

Proof. Immediate from conservativity of Oblv. O
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B.7. In this setting, we have the following converse to Proposition B.4.4.

Proposition B.7.1. For € ULA, a D(S)-linear functor F' : € — D admits a D(S)-linear
right adjoint if and only if F' preserves ULA objects.

Proof. We have already seen one direction in Proposition B.4.4. For the converse, suppose
F preserves ULA objects.

Since C is compactly generated and F' preserves compact objects, F' admits a contin-
uous right adjoint G.

We will check linearity using Proposition B.5.1:

Suppose that F € D(S). We want to show that the natural transformation:

! !

FRG(-) = GIF®-)

of functors D — C is an equivalence.
It is easy to see that it is enough to show that for any § € €VL4 | the natural trans-
formation of functors D — D(S) induced by applying Home (G, —) is an equivalence.
But this follows from the simple identity Hom, (F(G), —) = Home (G, G(—)). Indeed,
we see:

Hom (5,5 ® G(—)) = T ® Home (S, G(—)) = F & Homp (F(5), (~)) =
Hom (F(), @ (—)) = Homo (S, G(F ® (—)))

as desired. O

B.8.  Suppose that i : T'<— S is closed with complement j: U — S.
Given a D(S)-module category C, define:

D(S) D(S)

Similarly, given a morphism F : € — D in D(S)-mod, let Fy; : €y — Dy and Fr : Cr —
Dt be the induced functors.

Proposition B.8.1. Suppose F' : C — D is a morphism in D(S)-mod with C ULA as a
D(S)-module category. Then F is an equivalence if and only if it preserves ULA objects
and the functors Fy and Fr are equivalences.

Remark B.8.2. Note that a result of this form is not true without ULA hypotheses: the
restriction functor D(S) — D(U) @ D(T) is D(S)-linear and an equivalence over T' and
over U, but not an equivalence.
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Proof of Proposition B.8.1. By Proposition B.7.1, the functor F' admits a D(S)-linear
right adjoint G. We need to check that the unit and counit of this adjunction are equiv-
alences.

By the usual Cousin dévissage, we reduce to checking that the unit and counit are
equivalences for objects pushed forward from U and T. But by D(S)-linearity of our
functors, this follows from our assumption. 0O
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