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1. Introduction

1.1. Semi-infinite flag variety

This paper begins a series concerning D-modules on the semi-infinite flag variety of 
Feigin-Frenkel.

Let G be a split reductive group over k a field of characteristic zero. Let B be a Borel 
with radical N and reductive quotient B/N = T .

Let X be a smooth curve. We let x ∈ X be a fixed k-point. Let Ox = k[[tx]] and 

Kx = k((tx)) be the rings of Taylor and Laurent series based at x. Let Dx and 
o
Dx

denote the spectra of these rings.
Informally, the semi-infinite flag variety should be a quotient Fl

∞
2
x := G(Kx)/

N(Kx)T (Ox), but this quotient is by an infinite-dimensional group and therefore leaves 
the realm of usual algebraic geometry.

Still, we will explain in future work [37] how to make precise sense of D-modules on 
Fl

∞
2
x , but we ask the reader to take on faith for this introduction that such a category 

makes sense.1 This category will not play any explicit role in the present paper, and will 
be carefully discussed in [37]; however, it plays an important motivational role in this 
introduction.

1.2. Why semi-infinite flags?

The desire for a theory of sheaves on the semi-infinite flag variety stretches back to the 
early days of geometric representation theory: see [16], [18], [17], [13], and [3]. Among 
these works, there are diverse goals and perspectives, showing the rich representation 
theoretic nature of Fl

∞
2
x .

• [16] explains that the analogy between Wakimoto modules for an affine Kac-Moody 
algebra ĝκ,x and Verma modules for the finite-dimensional algebra g should be un-
derstood through the Beilinson-Bernstein localization picture, with Fl

∞
2
x playing the 

role of the finite-dimensional G/B.
• [18], [17] and [3] relate the semi-infinite flag variety to representations of Lusztig’s 

small quantum group, following Finkelberg, Feigin-Frenkel and Lusztig.

1 In fact, the definition is short: one takes the category D!(G(Kx)) from [8] (cf. also [36]) and imposes 
the coinvariant condition with respect to the group indscheme N(Kx)T (Ox).
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• As noted in [3], D(Fl
∞
2
x ) = D(G(Kx)/N(Kx)T (Ox)) plays the role of the universal 

unramified principal series representation of G(Kx) in the categorical setting of local 
geometric Langlands (see [20] and [8] for some modern discussion of this framework 
and its ambitions).

However, these references (except [16], which is not rigorous on these points) use ad 
hoc finite-dimensional models for the semi-infinite flag variety.

Remark 1.2.1. One of our principal motivations in this work and its sequels is to study 
D(Fl

∞
2
x ) from the perspective of the geometric Langlands program, and then to use 

local to global methods to apply this to the study of geometric Eisenstein series in 
the global unramified geometric Langlands program. But this present work is also 
closely2 connected to the above, earlier work, as we hope to explore further in the fu-
ture.

1.3. The present series of papers will introduce the whole category D(Fl
∞
2
x ) and 

study some interesting parts of its representation theory: e.g., we will explain how to 
compute Exts between certain objects in terms of the Langlands dual group.

Studying the whole of D(Fl
∞
2
x ) was neglected by previous works (presumably) due to 

the technical, infinite-dimensional nature of its construction.

1.4. The role of the present paper

Whatever the definition of D(Fl
∞
2
x ) is, it is not obvious how to compute directly with 

it. The primary problem is that we do not have such a good theory of perverse sheaves in 
the infinite type setting: the usual theory [7] of middle extensions — which is so crucial 
in connecting combinatorics (e.g., Langlands duality) and geometry — does not exist for 
embeddings of infinite codimension.

Therefore, to study D(Fl
∞
2
x ), it is necessary to reduce our computations to finite-

dimensional ones. This paper performs those computations. The application to semi-
infinite flags is postponed to [37]; here the category D(Fl

∞
2
x ) plays only a motivational 

role. (That said, the author finds the calculations, which concern twisted cohomologies 
of Zastava spaces, to be interesting in their own right.)

1.5. In the remainder of the introduction, we will discuss problems close to those 
to be considered in [37], and discuss the contents of the present paper and their con-
nection to the above problems. This is by way of motivating the contents of the present 
work.

2 But non-trivially, due to the ad hoc definitions in earlier works.
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1.6. D(Fl
∞
2
x ) in terms of affine flags

One can show3 that D(Fl
∞
2
x ) is equivalent to the category D(FlaffG,x) of D-modules on 

the affine flag variety FlaffG,x = G(Kx)/I, where I ⊆ G(Ox) is the Iwahori subgroup, in a 
G(Kx)-equivariant way.4

At first pass, this means that essentially5 every question in local geometric Langlands 
about D(Fl

∞
2
x ) has either been answered in the exhaustive works of Bezrukavnikov and 

collaborators (especially [1], [2], and [9]), or else is completely out of reach (e.g., some 
conjectures from [20]).

Thus, it would appear that there is nothing new to say about D(Fl
∞
2
x ).

1.7. The factorization perspective

However, there is a significant difference between the affine and semi-infinite flag 
varieties: the latter factorizes in the sense of Beilinson-Drinfeld [6].

We refer to the introduction to [35] for an introduction to factorization. Modulo the 
non-existence of Fl

∞
2
x , let us recall that this essentially means that for each finite set I, 

we have a semi-infinite flag variety Fl
∞
2
XI over XI whose fiber at a point (xi)i∈I ∈ XI is 

the product 
∏

{xi}i∈I
Fl

∞
2
xi . Here {xi}i∈I is the unordered set in which we have forgotten 

the multiplicities with which points appear.
However, it is well-known that the Iwahori subgroup (unlike G(Ox)) does not factor-

ize.6

Remark 1.7.1. The methods of the Bezrukavnikov school do not readily adapt to studying 
Fl

∞
2
x factorizably: they heavily rely on the ind-finite type and ind-proper nature of FlaffG , 

which are not manifested in the factorization setting.

1.8. As discussed in the introduction to [35], there are several reasons to care about 
factorization structures.

• Most imminently (from the perspective of Remark 1.2.1), the theory of chiral homol-
ogy (cf. [6]) provides a way of constructing global invariants from factorizable local 

3 This result will appear in [37].
4 This is compatible with the analogy with p-adic representation theory: cf. [14].
5 This is not completely true: for the study of Kac-Moody algebras, the semi-infinite flag variety has an 

interesting global sections functor. It differs from the global sections functor of the affine flag variety in as 
much as Wakimoto modules differ from Verma modules.
6 It is instructive to try and fail to define a factorization version of the Iwahori subgroup that lives over 

X2: a point should be a pair of points x1, x2 in X, G-bundle on X with a trivialization away from x1 and 
x2, and with a reduction to the Borel B at the points x1 and x2. However, for this to define a scheme, we 
need to ask for a reduction to B at the divisor-theoretic union of the points x1 and x2. Therefore, over a 
point x in the diagonal X ⊆ X2, we are asking for a reduction to B on the first infinitesimal neighborhood 
of x, which defines a subgroup of G(Ox) smaller than the Iwahori group.
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ones. Therefore, identifying spectral and geometric factorization categories allows us 
to compare globally defined invariants as well.

• Factorization structures also play a key, if sometimes subtle, role in the purely local 
theory. Let us mention one manifestation of this: the localization theory [21] (at 
critical level) for FlaffG has to do with the structure of the Kac-Moody algebra ĝcrit
as a bare Lie algebra. A factorizable localization theory for Fl

∞
2
x would connect to 

the vertex algebra structure on its vacuum representation.
• In [18], [17], [3], and [10], sheaves on Fl

∞
2
x are defined using factorization structures. 

We anticipate the eventual comparison between our category D(Fl
∞
2
x ) and the pre-

vious ones to pass through the factorization structure of Fl
∞
2
x .

1.9. Main conjecture

Our main conjecture is about Langlands duality for certain factorization categories: 
the geometric side concerns some D-modules on the semi-infinite flag variety, and the 
spectral side concerns coherent sheaves on certain spaces of local systems.

See below for a more evocative description of the two sides.

1.10. Let B− be a Borel opposite to B, and let N− denote its unipotent radical.
Recall that for any category C acted on by G(Kx) in the sense of [8], we can form 

its Whittaker subcategory, Whit(C) ⊆ C consisting of objects equivariant against a non-
degenerate character of N−(K).

Moreover, up to certain twists (which we ignore in this introduction: see §2.8 for their 
definitions), this makes sense factorizably.

For each finite set I, there is therefore a category Whit
∞
2
XI of Whittaker equivariant 

D-modules on Fl
∞
2
XI , and the assignment I #→ Whit

∞
2
XI defines a factorization category in 

the sense of [35]. This forms the geometric side of our conjecture.

1.11. For a point x ∈ X and an affine algebraic group Γ , let LocSysΓ (
o
Dx) denote 

the prestack of de Rham local systems with structure group Γ on 
o
Dx.

Formally: we have the indscheme ConnΓ of Lie(Γ )-valued 1-forms (i.e., connection 
forms) on the punctured disc, which is equipped with the usual gauge action of Γ (Kx). 
We form the quotient and denote this by LocSysΓ (

o
Dx).

Remark 1.11.1. LocSysΓ (
o
Dx) is not an algebraic stack of any kind because we quotient 

by the loop group Γ (Kx), an indscheme of ind-infinite type. It might be considered 
as a kind of semi-infinite Artin stack, the theory of which has unfortunately not been 
developed.

The assignment x #→ LocSysΓ (
o
Dx) factorizes in an obvious way.
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1.12. Recall that for a finite type (derived) scheme (or stack) Z, [27] has defined a 
DG category IndCoh(Z) of ind-coherent sheaves on Z.7

We would like to take as the spectral side of our equivalence the factorization category:

x #→ IndCoh
(
LocSysB̌(

o
Dx) ×

LocSysŤ (
o
Dx)

LocSysŤ (Dx)
)
.

Here and everywhere, we use e.g. Ǧ to refer to the reductive group Langlands dual to 
G, and B̌ ⊆ Ǧ to refer to the corresponding Borel subgroup, etc. (cf. §1.41).

However, note that IndCoh has not been defined in this setting: the spaces of local 
systems on the punctured disc are defined as the quotient of an indscheme of ind-infinite 
type by a group of ind-infinite type.

We ignore this problem in what follows, describing a substitute in §1.15 below.

1.13. We now formulate the following conjecture:

Main Conjecture. There is an equivalence of factorization categories:

Whit∞
2 $−→

(
x #→ IndCoh

(
LocSysB̌(

o
Dx) ×

LocSysŤ (
o
Dx)

LocSysŤ (Dx)
))

. (1.13.1)

Remark 1.13.1. Identifying D-modules on the affine flag variety and on the semi-infinite 
flag variety, one can show that fiberwise, this conjecture recovers the main result of 
[1]. However, as noted in Remark 1.7.1, the methods of [1] are not amenable to the 
factorizable setting.

1.14. What is contained in this paper?

In [18], Finkelberg and Mirkovic argue that their Zastava spaces provide finite-
dimensional models for the geometry of the semi-infinite flag variety.

In essence, we are using this model in the present paper: we compute some twisted 
cohomology groups of Zastava spaces, and these computations will provide the main 
input for our later study [37] of semi-infinite flag varieties.

In §1.15-1.21, we describe a certain factorization algebra Υň and its role in the main 
conjecture (from §1.13). In §1.22-1.27, we recall some tactile aspects of the geometry of 
Zastava spaces. Finally, in §1.28-1.37, we formulate the main results of this text: these 
realize Υň (and its modules) as twisted cohomology groups on Zastava space.

7 For the reader unfamiliar with the theory of [27], we recall that this sheaf theoretic framework is very 
close to the more familiar QCoh, but is the natural setting for Grothendieck’s functor f ! of exceptional 
inverse image (as opposed to the functor f∗, which is adapted to QCoh).
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Remark 1.14.1. Some of the descriptions below may go a bit quickly for a reader who 
is a non-expert in this area. We hope that for such a reader, the material that follows 
helps to supplement what it is written more slowly in the body of the text.

1.15. The factorization algebra Υň

To describe the main results of this paper, we need to describe how we model the 
spectral side of the main conjecture i.e., the category of ind-coherent sheaves on the 
appropriate space of local systems.

We will do this using the graded factorization algebra Υň, introduced in [12].
After preliminary remarks about what graded factorization algebras are in §1.16, we 

introduce Υň in §1.17. Finally, in §1.20-1.21, we explain why factorization modules for 
Υň are related to the spectral side of the main conjecture.

1.16. Let Λ̌pos ⊆ Λ̌ := {cocharacters of G} denote the Z!0-span of the simple 
coroots (relative to B).

Let DivΛ̌pos

eff denote the space of Λ̌pos-valued divisors on X. I.e., its k-points are written:
∑

λ̌i · xi (1.16.1)

for some finite set {xi} ⊆ X(k), λ̌i ∈ Λ̌pos. For G of semi-simple rank 1, this space is the 
union of the symmetric powers of X, while for general G, its connected components are 
products of symmetric powers of X.

For λ̌ ∈ Λ̌pos, we let Divλ̌
eff denote the connected component of DivΛ̌pos

eff of divisors of 
total degree λ̌ (i.e., in the above we have 

∑
λ̌i = λ̌).

A (Λ̌pos)-graded factorization algebra is the datum of D-modules:

Aλ̌ ∈ D(Divλ̌
eff), λ̌ ∈ Λ̌pos

plus symmetric and associative8 isomorphisms:

Aλ̌+µ̌|[Divλ̌
eff ×Divµ̌

eff ]disj ' Aλ̌ ! Aµ̌|[Divλ̌
eff ×Divµ̌

eff ]disj .

Here:

[Divλ̌
eff ×Divµ̌

eff ]disj ⊆ Divλ̌
eff ×Divµ̌

eff

denotes the open locus of pairs of (colored) divisors with disjoint supports, which we 
consider mapping to Divλ̌+µ̌

eff through the map of addition of divisors (which is étale on 
this locus).

8 These terms should be understood in the homotopical sense, including higher compatibilities. We do not 
emphasize these points in the introduction.
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Remark 1.16.1. The theory of graded factorization algebras closely imitates the theory 
of factorization algebras from [6], with the above DivΛ̌pos

eff replacing the Ran space from 
[6].

1.17. The Λ̌pos-graded Lie algebra ň defines a Lie-∗ algebra9:

ňX := ⊕α̌ a coroot of G ňα̌ ⊗ ∆α̌
∗,dR(kX) ∈ D(DivΛ̌pos

eff ).

In this notation, for a finite type scheme S, kS denotes its (D-module version of the) 
constant sheaf; ňα̌ denotes the corresponding graded component of ň; and ∆α̌ : X →
Divα̌

eff denotes the diagonal embedding.
As in [6], we may form the chiral enveloping algebra of ňX : we let Υň denote the 

corresponding factorization algebra. For the reader unfamiliar with [6], we remind that 
Υň is associated to ňX as a sort of Chevalley complex; in particular, the ∗-fiber of Υň at 
a point (1.16.1) is:

⊗
i
C•(ň)λ̌i

where C• denotes the (homological) Chevalley complex of a Lie algebra (i.e., the complex 
computing Lie algebra homology).

1.18. Next, we recall that in the general setup of §1.16, to a graded factorization 
algebra A and a closed point x ∈ X, we can associate a DG category A–modfact

x of its 
(Λ̌-graded) factorization modules at x ∈ X.

First, let DivΛ̌pos,∞·x
eff denote the indscheme of Λ̌-valued divisors on X that are Λ̌pos-

valued on X \ x. So k-points of this space are sums:

µ̌ · x +
∑

λ̌i · xi

where µ̌ ∈ Λ̌ and λ̌i ∈ Λ̌pos and {xi} ⊆ X(k) finite. (To see the indscheme structure, 
bound how small µ̌ can be.)

Then a factorization module for A is a D-module M ∈ D(DivΛ̌pos,∞·x
eff ) equipped with 

an isomorphism:

add!(M)|[DivΛ̌pos
eff ×DivΛ̌pos,∞·x

eff ]disj
' A !M |[DivΛ̌pos

eff ×DivΛ̌pos,∞·x
eff ]disj

which is associative with respect to the factorization structure on A, where add is the 
map:

9 Here the structure of Lie-∗ algebra is defined in [6] (see also [19], [35] for derived versions). For the 
reader’s sake, we simply note that this datum encodes the natural structure on ňX inherited from the Lie 
bracket on ň.
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DivΛ̌pos

eff ×DivΛ̌pos,∞·x
eff → DivΛ̌pos,∞·x

eff

of addition of divisors.
Factorization modules form a DG category in the obvious way.

Remark 1.18.1. In what follows, we will need unital versions of the above, i.e., unital
factorization algebras and unital modules. This is a technical requirement, and for the 
sake of brevity we do not spell it out here, referring to [6] or [35] for details. However, this 
is the reason that notations of the form A–modfact

un,x appear below instead of A–modfact
x . 

However, we remark that whatever these unital structures are, chiral envelopes always 
carry them, and in particular Υň does.

Remark 1.18.2. Note that the affine Grassmannian GrT,x = T (Kx)/T (Ox) with structure 

group T embeds into DivΛ̌pos,∞·x
eff as the locus of divisors supported at the point x. We 

remind that the reduced scheme underlying GrT,x is the discrete scheme Λ̌.

1.19. The following provides the connection between Υň and the main conjecture.

Principle.

(1) There is a canonical equivalence:

Υň–modfact
un,x ' IndCoh

(
LocSysB̌(

o
Dx)∧LocSysŤ (Dx) ×

LocSysŤ (
o
Dx)

LocSysŤ (Dx)
)

(1.19.1)

where LocSysB̌(
o
Dx)∧LocSysŤ (Dx) indicates the formal completion of LocSysB̌(

o
Dx) with 

respect to the map from LocSysŤ (Dx).10
(2) Under this equivalence, the functor11:

Υň–modfact
un,x

Oblv−−−→ D(DivΛ̌pos,∞·x
eff ) !−restriction−−−−−−−−→ D(GrT,x) ' Rep(Ť )

' QCoh(LocSysŤ (Dx))

corresponds to the functor of !-restriction along the map:

LocSysŤ (Dx) → LocSysB̌(
o
Dx)∧ ×

LocSysŤ (
o
Dx)

LocSysŤ (Dx).

10 For a fixed k-point x ∈ X, LocSysB̌(
o
Dx)∧LocSysŤ (Dx) is isomorphic to b̌∧

0 /Ň∧ · Ť , so the whole fiber 
product is isomorphic to ň∧

0 /Ň∧Ť . Here Ň∧ is the formal group for Ň , i.e., the formal completion at the 
identity.
11 Here and throughout the text, for an algebraic group Γ , Rep(Γ ) denotes the derived (i.e., DG) category 
of its representations, i.e., QCoh(BΓ ).
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(3) The above two facts generalize to the factorization setting, where x is replaced by 
several points allowed to move and collide.

Remark 1.19.1. We categorize the above assertion as a principle and not a theorem 
because the right hand side of (1.19.1) is not defined factorizably (we remind that this is 
because IndCoh is only defined in finite type situations, while LocSys leaves this world). 
Therefore, the reader might take it simply as a definition.

For the reader familiar with derived deformation theory (as in [31], [27]) and [6], we 
will explain heuristically in §1.20-1.21 why we take this principle as given. However, the 
reader who is not familiar with these subjects may safely skip this material, as it plays 
only a motivational role for us.

Remark 1.19.2. We note that (heuristically) ind-coherent sheaves on (1.19.1) should be 

a full subcategory of IndCoh
(
LocSysB̌(

o
Dx) ×

LocSysŤ (
o
Dx)

LocSysŤ (Dx)
)
.12

In [37], we will use the computations of the present paper to construct a functor:

Whit
∞
2
x → IndCoh

(
LocSysB̌(

o
Dx)∧ ×

LocSysŤ (
o
Dx)

LocSysŤ (Dx)
)

:= Υň–modfact
un,x

and identify a full subcategory of Whit
∞
2
x on which this functor is an equivalence. More-

over, this equivalence is factorizable, and therefore gives the main conjecture (from §1.13) 
when restricted to these full subcategories.

1.20. As stated above, the reader may safely skip §1.20-1.21, which are included to 
justify the principle of §1.19.

We briefly recall Lurie’s approach to deformation theory [31].
Suppose that X is a “nice enough” stack and x ∈ X is a k-point, with the formal 

completion of X at x denoted by X∧
x . Then the fiber TX,x[−1] of the shifted tangent 

complex of X at x identifies with the Lie algebra of the (derived) automorphism group 
(alias: inertia) Autx(X) := x ×X x of X at x, and there is an identification of the DG 
category IndCoh(X∧

x ) of ind-coherent sheaves on the formal completion of X at x with 
TX,x[−1]-modules.

1.21. At the trivial local system, the fiber of the shifted tangent complex of 
LocSysŇ (

o
Dx) is the (derived) Lie algebra H∗

dR(
o
Dx, ̌n⊗ k o

Dx
). The philosophy of [6] indi-

cates that modules for this Lie algebra should be equivalent to factorization modules for 
the chiral envelope of the Lie-∗ algebra ň ⊗ kX on X.

12 This combines the facts that ind-coherent sheaves on a formal completion are a full subcategory of ind-
coherent sheaves of the whole space, and the fact that ind-coherent sheaves on the classifying stack of the 
formal group of a unipotent group are a full subcategory of ind-coherent sheaves on the classifying stack of 
the group.
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The Λ̌-graded variant of this—that is, the version in the setting of §1.16 in which 
symmetric powers of the curve replace the Ran space from [6]—provides the principle of 
§1.19.

Remark 1.21.1. To conclude this line of reasoning, we note that the objection of Re-
mark 1.19.1 really only applies factorizably. For a fixed point x ∈ X, the relevant spaces 
of local systems are locally of finite type. In effect, the above outlines the proof of asser-
tions (1) and (2) for such a single point.

1.22. Zastava spaces

Next, we describe the most salient features of Zastava spaces. We remark that this 
geometry is reviewed in detail in §2.

1.23. There are two Zastava spaces, 
o
Z and Z, each fibered over DivΛ̌pos

eff : the rela-
tionship is that 

o
Z embeds into Z as an open, and for this reason, we sometimes refer to 

Z as Zastava space and 
o
Z as open Zastava space.

For the purposes of this introduction, we content ourselves with a description of the 
fibers of the maps:

o
Z

o
π

Z

π

DivΛ̌pos

eff .

To give this description, we will first recall the so-called central fibers of the Zastava 
spaces.

1.24. Recall that e.g. GrG,x denotes the affine Grassmannian G(Kx)/G(Ox) of G at 
x.

For x ∈ X a geometric point and λ̌ ∈ Λ̌pos, define the central fiber
o
Zλ̌
x as the intersec-

tion:

GrN−,x ∩Grλ̌B,x =
(
N−(Kx)G(Ox)

⋂
N(Kx)λ̌(tx)G(Ox)

)
/G(Ox) ⊆ G(Kx)/G(Ox)

= GrG,x

where tx is any uniformizer at x. Here we recall that GrN−,x = N−(Kx)G(Ox)/G(Ox)
and Grλ̌B,x = N(Kx)λ̌(tx)G(Ox)/G(Ox) embed into GrG,x as ind-locally closed sub-
schemes (of infinite dimension and codimension).13

13 The requirement that λ̌ ∈ Λ̌pos is included so that this intersection is non-empty.



12 S. Raskin / Advances in Mathematics 388 (2021) 107856

A small miracle: the intersections 
o
Zλ̌
x are finite type, and equidimensional of dimension 

(ρ, ̌λ).

Example 1.24.1. For λ̌ = α̌ a simple coroot, one has 
o
Zα̌
x ' A1 \ {0}.

1.25. Let Grλ̌B,x denote the closure of Grλ̌B,x in GrG,x.14 We remind that Grλ̌B,x has 
an (infinite) stratification by the ind-locally closed subschemes Grλ̌−µ̌

B,x for µ̌ ∈ Λ̌pos.
We then define Zλ̌

x as the corresponding intersection:

GrN−,x ∩Grλ̌B,x ⊆ GrG,x .

Again, this intersection is finite-dimensional, and equidimensional of dimension (ρ, ̌λ).

Example 1.25.1. For λ̌ = α̌ a simple coroot, one has Zα̌
x ' A1.

1.26. Now, for a k-point (1.16.1) of Divλ̌
eff (for λ̌ :=

∑
λ̌i), the corresponding fiber 

of 
o
Z λ̌ along 

o
π is:

∏ o
Zλ̌i
xi

(1.26.1)

and similarly for Z.
Again, 

o
Z λ̌ and Z λ̌ are equidimensional of dimension (2ρ, ̌λ), and moreover, 

o
Z λ̌ is 

actually smooth.

1.27. Finally, there is a canonical map can : Z → Ga, which is constructed (fiber-
wise) as follows.

First, define the map N−(Kx) → Ga by:

N−(Kx) → (N−/[N−, N−])(Kx)

'
∏

simple roots
Kx

sum over coordinates−−−−−−−−−−−−−→ Kx
f )→Res(f ·dtx)−−−−−−−−−→ Ga

where Res denotes the residue map and tx is a coordinate in Kx.

Remark 1.27.1. The twists we mentioned in §1.10 are included so that we do not have to 
choose a coordinate tx, but rather have a canonical residue map to Ga. But we continue 
to ignore these twists, reminding simply that they are spelled out in §2.8.

14 As a moduli problem, Grλ̌B,x can be defined analogously to Drinfeld’s compactification of Bunλ̌
B .
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It is clear that this map factors uniquely through the projection N−(Kx) → GrN− .
We now map (1.26.1) by embedding into the product of GrN−,xi

and summing the 
corresponding maps to Ga over the points xi.

In what follows, we let ψZ ∈ D(Z) (resp. ψ o
Z

∈ D(
o
Z)) denote the !-pullback of 

the Artin-Shreier (i.e., exponential) D-module on Ga (normalized to be in the same 
cohomological degree as the dualizing D-module of Ga).

Remark 1.27.2. The above map N−(Kx) → Ga is referred to as the Whittaker character, 
and we refer to sheaves constructed out of the Artin-Shreier sheaf (e.g., ψ o

Z
, ψZ) as 

Whittaker sheaves.

1.28. Formulation of the main results of this paper

Here is a rough overview of the main results of this paper, to be expanded upon below:
Roughly, the first main result of this paper, Theorem 4.6.1, identifies Υň with certain 

Whittaker cohomology groups on Zastava space; see [12] for more details. This theorem, 
following [12] and [17], provides passage from the group G to the dual group Ǧ (via Υň) 
which is different from geometric Satake.

The second main result, Theorem 7.9.1 (see also Theorem 5.14.1) compares Theo-
rem 4.6.1 with the geometric Satake equivalence.

1.29. We now give a more precise description of the above theorems.
Our first main result is the following.

Theorem (Theorem 4.6.1). oπ∗,dR(ψ o
Z

!
⊗ IC o

Z
) ∈ D(DivΛ̌pos

eff ) is concentrated in cohomo-
logical degree zero, and identifies canonically with Υň. Here IC indicates the intersection 

cohomology sheaf15 (by smoothness of the 
o
Z λ̌, this just effects cohomological shifts on 

the connected component of 
o
Z).

Moreover, the factorization structure on Zastava spaces induces a factorization algebra 

structure on 
o
π∗,dR(ψ o

Z

!
⊗ IC o

Z
), and the above equivalence upgrades to an equivalence of 

factorization algebras.

In words: the (DivΛ̌pos

eff -parametrized) cohomology of Zastava spaces twisted by the 
Whittaker sheaf is Υň.

Remark 1.29.1. We draw the reader’s attention to §1.35 below for a closely related result, 
but which is less imminently related to the theme of semi-infinite flags.

15 Since 
o
Z is a union of the varieties 

o
Zλ̌, we define this IC sheaf as the direct sum of the IC sheaves of the 

connected components.
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1.30. Polar Zastava space

To formulate Theorem 5.14.1, we introduce a certain indscheme 
o
Z∞·x with a map 

o
π∞·x :

o
Z∞·x → DivΛ̌pos,∞·x

eff , where the geometry is certainly analogous to 
o
π :

o
Z → DivΛ̌

eff . 
(Here we remind that DivΛ̌pos,∞·x

eff parametrizes Λ̌-valued divisors on X that are Λ̌pos-
valued on X \ x.)

As with 
o
Z, for this introduction we only describe the fibers of the map 

o
π∞·x. Namely, 

at a point16 µ̌ · x +
∑

λ̌i · xi of DivΛ̌pos,∞·x
eff , the fiber is:

Grµ̌B,x ×
∏

i

o
Zλ̌i
xi
.

We refer the reader to §5 for more details on the definition.

1.31. We will explain in §5 how geometric Satake produces a functor Rep(Ǧ) →
D(

o
Z∞·x).
Though this functor is not so complicated, giving its definition here would require 

further digressions, so we ask the reader to take this point on faith. Instead, for the 
purposes of an overview, we refer to §1.33, where we explain what is going on when we 
restrict to divisors supported at the point x, and certainly we refer to §5 where a detailed 
construction of this functor is given.

Example 1.31.1. The above functor sends the trivial representation to the ∗-extension of 
ψ o
Z

under the natural embedding 
o
Z ↪→

o
Z∞·x.

We now obtain a functor:

Rep(Ǧ) → D(
o
Z∞·x)

o
π∞·x
∗,dR−−−→ D(DivΛ̌pos,∞·x

eff ).

For geometric reasons explained in §5, Theorem 4.6.1 allows us to upgrade this con-
struction to a functor:

Chevgeom
ň,x : Rep(Ǧ) → Υň–modfact

un,x.

We now have the following compatibility between geometric Satake and Theo-
rem 4.6.1.

Theorem (Theorem 5.14.1). The functor Chevgeom
ň,x is canonically identified with the func-

tor Chevspec
ň,x , which by definition is the functor:

16 We remind that this means that µ̌ ∈ Λ̌ and λ̌i ∈ Λ̌pos.
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Rep(Ǧ) Res−−→ Rep(B̌) Res−−→ ň–mod(Rep(Ť )) indch

−−−→ Υň–modfact
un,x.

Here indch is the chiral induction functor from Lie-* modules for ň⊗kX to factorization 
modules for Υň.

Remark 1.31.2. Here we remind the reader that chiral induction is introduced (abelian 
categorically) in [6] §3.7.15. Like the chiral enveloping algebra operation used to define 
Υň, chiral induction is again a kind of homological Chevalley complex.

Example 1.31.3. For the trivial representation, Example 1.31.1 reduces Theorem 5.14.1
to Theorem 4.6.1. Here, the claim is that Chevgeom

ň,x of the trivial representation is 
the D-module on D(DivΛ̌pos,∞·x

eff ) obtained by pushforward from Υň along DivΛ̌pos

eff ↪→
DivΛ̌pos,∞·x

eff , i.e., the so-called vacuum representation of Υň (at x).

1.32. Our last main result is the following, which we leave vague here.

Theorem (Theorem 7.9.1). A generalization of Theorem 5.14.1 holds when we work fac-
torizably in the variable x, i.e., working at several points at once, allowing them to move 
and to collide.

Somewhat more precisely, we define in §6 a DG category Rep(Ǧ)XI over XI
dR (i.e., 

with a D(XI)-module category structure) encoding the symmetric monoidal structure 
on Rep(Ǧ)XI .17 Most of §6 is devoted to giving preliminary technical constructions that 
allow us to formulate Theorem 7.9.1.

1.33. Interpretation in terms of Fl
∞
2
x

We now indicate briefly what e.g. Theorem 5.14.1 has to do with Fl
∞
2
x . This section 

has nothing to do with the contents of the paper, and therefore can be skipped; we 
include it only to make contact with our earlier motivation.

Fix a closed point x ∈ X, and consider the spherical Whittaker category Whitsphx ⊆
D(GrG,x), which by definition is the Whittaker category (in the sense of §1.10) of 
D(GrG,x). There is a canonical object in this category (supported on GrN−,x ⊆ GrG,x), 
and one can show (cf. Theorem 6.36.1) that the resulting functor:

Rep(Ǧ) geometric Satake−−−−−−−−−−−→ SphG,x → Whitsphx

is an equivalence, where SphG,x := D(GrG,x)G(Ox) is the spherical Hecke category, and 
the latter functor is convolution with this preferred object of Whitsphx .

17 The construction of Rep(Ǧ)XI is a categorification of the construction of [6] that associated a factoriza-
tion algebra with a usual commutative algebra.



16 S. Raskin / Advances in Mathematics 388 (2021) 107856

Let i∞
2 ,! : D(Fl

∞
2
x ) → D(GrT,x) denote the functor encoding !-restriction along:

i
∞
2 : GrT,x = B(Kx)/N(Kx)T (Ox) ↪→ G(Kx)/N(Kx)T (Ox) = Fl

∞
2
x .

Consider the problem of computing the composite functor:

Rep(Ǧ) ' Whitsphx
pullback−−−−−→ Whit(G(Kx)/B(Ox)) pushforward−−−−−−−−→ Whit

∞
2
x

i
∞
2 ,!

−−−→ D(GrT,x)

' Rep(Ť ).

By base-change, this amounts to computing pullback-pushforward of Whittaker18
sheaves along the correspondence:

G(Kx)/B(Ox) ×
Fl

∞
2

x

GrT,x GrB,x

GrG,x GrT,x .

One can see this is exactly the picture obtained by restricting the problem of The-
orem 5.14.1 to GrT,x ⊆ DivΛ̌pos,∞·x

eff , and therefore we obtain an answer in terms of 
factorization Υň-modules. Namely, this result says that the resulting functor:

Rep(Ǧ) → Rep(Ť )

is computed as Lie algebra homology along ň.

Remark 1.33.1. The point of upgrading Theorem 5.14.1 to Theorem 7.9.1 is to allow a 
picture of this sort which is factorizable in terms of the point x, i.e., in which we replace 
the point x ∈ X by a variable point in XI for some finite set I.

1.34. Methods

We now remark one what goes into the proofs of the above theorems.

1.35. Our key computational tool is the following result.

Theorem (Limiting case of the Casselman-Shalika formula, Theorem 3.4.1). The push-
forward πλ̌

∗,dR(ψZ
!
⊗ ICZ) ∈ D(DivΛ̌pos

eff ) is the (one-dimensional) skyscraper sheaf at the 
zero divisor (concentrated in cohomological degree zero).

18 It is crucial here that our character be with respect to N−, not N .
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In particular, the restriction of this pushforward to each Divλ̌
eff with 0 ,= λ̌ ∈ Λ̌pos

vanishes.

We prove this using reasonably standard methods (cf. [13]) for studying sheaves on 
Zastava spaces.

1.36. Our other major tool is the study of Υň given in [12], where Υň is connected 
to the untwisted cohomologies of Zastava spaces (in a less derived framework than in 
Theorem 4.6.1).

1.37. Finally, we remark that the proofs of Theorems 3.4.1, 4.6.1, and 5.14.1 are 
elementary: they use only standard perverse sheaf theory, and do not require the use 
of DG categories or non-holonomic D-modules. (In particular, these theorems work in 
the (-adic setting, with the usual Artin-Shreier sheaf replacing the exponential sheaf.) 
The reader uncomfortable with higher category theory should run into no difficulties 
here by replacing the words DG category by triangulated category essentially everywhere 
(one exception: it is important that the definition of Υň–modfact

un,x be understood higher 
categorically).

However, Theorem 7.9.1 is not elementary in this sense. This is the essential reason 
for the length of §6: we are trying to construct an isomorphism of combinatorial nature 
in a higher categorical setting, and this is essentially impossible except in particularly 
fortuitous circumstances. We show in §6, §7 and Appendix B that the theory of ULA 
sheaves provides a suitable method for this particular problem.

1.38. Structure of the paper

§2 is a mostly self-contained review of the geometry of Zastava spaces. In §3 and §4, 
we prove the limiting case of the Casselman-Shalika formula (Theorem 3.4.1) and use it 
to realize Υň in the geometry of Zastava spaces (Theorem 4.6.1). Then in §5, we give our 
first comparison (Theorem 5.14.1) between geometric Satake and the above construction 
of Υň.

The remainder of the paper is dedicated to a generalization (Theorem 7.9.1) in-
volving the fusion structure from the geometric Satake theorem. In §6, we introduce 
prerequisite ideas and discuss the factorizable geometric Satake theorem; in particular, 
Theorem 6.36.1 proves a version of the factorizable Casselman-Shalika equivalence of 
[22], which is a folklore result in the subject. In §7, we use this language to formulate a 
comparison between geometric Satake and our construction of Υň using the factorizable 
structures on both sides.

There are two appendices. Appendix A proves a technical categorical lemma from §6. 
Appendix B introduces a general categorical language based on the theory of universally 
locally acyclic (ULA) sheaves, and which is suitable for general use in §6. The ULA 
methods are essential for §6-7.



18 S. Raskin / Advances in Mathematics 388 (2021) 107856

1.39. Conventions

For the remainder of this introduction, we establish the conventions for the remainder 
of the text.

1.40. We fix a field k of characteristic zero throughout the paper. All schemes, etc, 
are understood to be defined over k.

1.41. Lie theory

We fix the following notations from Lie theory.
Let G be a split reductive group over k, let B be a Borel subgroup of G with unipotent 

radical N and let T be the Cartan B/N . Let B− be a Borel opposite to B, i.e., B−∩B $−→
T . Let N− denote the unipotent radical of B−.

Let Ǧ denote the corresponding Langlands dual group with corresponding Borel B̌, 
who in turn has unipotent radical Ň and torus Ť = B̌/Ň , and similarly for B̌− and Ň−.

Let g, b, n, t, b−, n−, ǧ, b̌, ň, ť, b̌− and ň− denote the corresponding Lie algebras.
Let Λ denote the lattice of weights of T and let Λ̌ denote the lattice of coweights. We 

let Λ+ (resp. Λ̌+) denote the dominant weights (resp. coweights), and let Λ̌pos denote 
the Z!0-span of the simple coroots.

Let IG be the set of vertices in the Dynkin diagram of G. We recall that IG is 
canonically identified with the set of simple positive roots and coroots of G. For i ∈ IG, 
we let αi ∈ Λ (resp. α̌i ∈ Λ̌) denote the corresponding root (resp. coroot).

Moreover, we fix a choice of Chevalley generators {fi}i∈IG of n−.
Finally, we use the notation ρ ∈ Λ for the half-sum of the positive roots of g, and 

similarly for ρ̌ ∈ Λ̌.

1.42. For an algebraic group Γ , let BΓ denote the classifying stack Spec(k)/Γ for Γ .

1.43. Let X be a smooth projective curve.
We let BunG denote the moduli stack of G-bundles on X. Recall that BunG is a 

smooth Artin stack locally of finite type (though not quasi-compact).
Similarly, we let BunB , BunN , and BunT denote the corresponding moduli stacks of 

bundles on X. However, we note that we will abuse notation in dealing specifically with 
bundles of structure group N−: we will systematically incorporate a twist discussed in 
detail in §2.8.

1.44. Categorical remarks

The ultimate result in this paper, Theorem 7.9.1, is about computing a certain fac-
torization functor between factorization (DG) categories. This means that we need to 
work in a higher categorical framework (cf. [30], [32]) at this point.
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We will impose some notations and conventions below regarding this framework. With 
that said, the reader may read up to §5 essentially without ever worrying about higher 
categories.

1.45. We impose the convention that essentially everything is assumed derived. We 
will make this more clear below, but first, we note the only exception: schemes can be 
understood as classical schemes throughout the body of the paper, since we deal only 
with D-modules on them.

1.46. We find it convenient to assume higher category theory as the basic assump-
tion in our language. That is, we will understand “category” and “1-category” to mean 
“(∞, 1)-category,” “colimit” to (necessarily) mean “homotopy colimit,” “groupoid” to 
mean “∞-groupoid” (aliases: homotopy type, space, etc.), and so on. We use the phrase 
“set” interchangeably with “discrete groupoid,” i.e., a groupoid whose higher homotopy 
groups at any basepoint vanish.

When we need to refer to the more traditional notion of category, we use the term 
(1, 1)-category.

As an example: we let Gpd denote the category (i.e., ∞-category) of groupoids (i.e., 
∞-groupoids).

1.47. DG categories

By DG category, we mean an (accessible) stable (∞-)category enriched over k-vector 
spaces.

We denote the category of DG categories under k-linear exact functors by DGCat
and the category of cocomplete19 DG categories under continuous20 k-linear functors by 
DGCatcont.

We consider DGCatcont as equipped with the symmetric monoidal structure ⊗ from 
[32] §6.3. For C, D ∈ DGCatcont and for F ∈ C and G ∈ D, we let F ! G denote the 
induced object of C ⊗ D, since this notation is compatible with geometric settings.

For C an algebra in DGCatcont, we let C–mod denote C–mod(DGCatcont): no other 
interpretations of C-module category will be considered, and moreover, C should system-
atically be regarded as an algebra in DGCatcont.

For C a DG category equipped with a t-structure, we let C!0 denote the subcategory 
of coconnective objects, and C"0 the subcategory of connective objects (i.e., the notation 
is the standard notation for the convention of cohomological grading). We let C♥ denote 
the heart of the t-structure.

19 We actually mean presentable, which differs from cocomplete by a set-theoretic condition that will 
always be satisfied for us throughout this text.
20 There is some disagreement in the literature of the meaning of this word. By continuous functor, 
we mean a functor commuting with filtered colimits. Similarly, by a cocomplete category, we mean one 
admitting all colimits.
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We let Vect denote the DG category of k-vector spaces: this DG category has a t-
structure with heart Vect♥ the abelian category of k-vector spaces.

We use the material of the short note [24] freely, taking for granted the reader’s 
comfort with the ideas of [24].

1.48. For a scheme S locally of finite type, we let D(S) denote its DG category of 
D-modules. For a map f : S → T , we let f ! : D(T ) → D(S) and f∗,dR : D(S) → D(T )
denote the corresponding functors.

We always equip D(S) with the perverse t-structure,21 i.e., the one for which ICS

lies in the heart of the t-structure. In particular, if S is smooth of dimension d, then 
the dualizing sheaf ωS lies in degree −d and the constant sheaf kS lies in degree d. We 
sometimes refer to objects in the heart of this t-structure as perverse sheaves (especially 
if the object is holonomic), hoping this will not cause any confusion (since we do not 
assume k = C, we are in no position to apply the Riemann-Hilbert correspondence).

1.49. Finally, we use the notation Oblv throughout for various forgetful functors.
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2. Review of Zastava spaces

2.1. In this section, we review the geometry of Zastava spaces, introduced in [18]
and [13].

Note that this section plays a purely expository role; our only hope is that by em-
phasizing the role of local Zastava stacks, some of the basic geometry becomes more 
transparent than other treatments.

21 Alias: the right (as opposed to left) t-structure. cf. [6] and [27].
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2.2. Remarks on G

For simplicity, we assume throughout this section that G has a simply-connected 
derived group.

However, [3] §4.1 (cf. also [40] §7) explains how to remove this hypothesis, and the 
basic geometry of Zastava spaces and Drinfeld compactifications remains exactly the 
same. The reader may therefore either assume G has simply-connected derived group for 
the rest of this text, or may refer to [40] for how to remove this hypothesis (we note that 
this applies just as well for citations to [11], [12], and [13]).

2.3. The basic affine space

Recall that the map:

G/N → G/N := Spec(H0(Γ(G/N,OG/N ))) = Spec(Fun(G)N )

is an open embedding. We call G/N the basic affine space and G/N the affine closure 
of the basic affine space.

The following result is direct from the Peter-Weyl theorem.

Lemma 2.3.1. For S an affine test scheme,22 a map ϕ : S → G/N with ϕ−1(G/N) dense 
in S is equivalent to a Drinfeld structure on the trivial G-bundle G × S → S, i.e., a 
sequence of maps for λ ∈ Λ+:

σλ : (λ ⊗
k

OS → V λ ⊗
k

OS

that are monomorphisms of quasi-coherent sheaves and satisfy the Plücker relations.

Remark 2.3.2. By dense, we mean scheme-theoretically, not topologically (e.g., for 
Noetherian S, the difference here is only apparent in the presence of associated 
points).

Example 2.3.3. For G = SL2, G/N identifies equivariantly with A2. The corresponding 
map SL2 → A2 here is given by:

(
a b
c d

)
#→ (a, c) ∈ A2.

2.4. Let T be the closure of T = B/N ⊆ G/N in G/N .

22 It is important here that S is a classical scheme, i.e., not DG.
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Lemma 2.4.1.

(1) T is the toric variety Spec(k[Λ+]) (here k[Λ+] is the monoid algebra defined by the 
monoid Λ+). Here the map T = Spec(k[Λ]) → T corresponds to the embedding 
Λ+ → Λ and the map Fun(G)N → k[Λ+] realizes the latter as N -coinvariants of the 
former.

(2) The action of T on G/N extends to an action of the monoid T on G/N (where the 
coalgebra structure on Fun(T ) = k[Λ+] is the canonical one, that is, defined by the 
diagonal map for the monoid Λ+).

Here (1) follows again from the Peter-Weyl theorem and (2) follows similarly, noting 
that V λ ⊗ (λ,∨ ⊆ Fun(G)N = Fun(G/N) has Λ-grading (relative to the right action of 
T on G/N) equal to λ ∈ Λ+.

2.5. Note that (after the choice of opposite Borel) T is canonically a retract of G/N , 
i.e., the embedding T ↪→ G/N admits a canonical splitting:

G/N → T . (2.5.1)

Indeed, the retract corresponds to the map k[Λ+] → Fun(G)N sending λ to the 
canonical element in:

(λ ⊗ (λ,∨ ⊆ V λ ⊗ V λ,∨ ⊆ Fun(G)

(note that the embedding (λ,∨ ↪→ V λ,∨ uses the opposite Borel).
By construction, this map factors as G/N → N− \ (G/N) → T .
Let T act on G/N through the action induced by the adjoint action of T on G. 

Choosing a regular dominant coweight λ0 ∈ Λ̌+ we obtain a Gm-action on G/N that 
contracts23 onto T . The induced map G/N → T coincides with the one constructed 
above.

Warning 2.5.1. The induced map G/N → T does not factor through T . The inverse 
image in G/N of T ⊆ T is the open Bruhat cell B−N/N .

2.6. Define the stack BB as G\G/N/T . Note that BB has canonical maps to BG
and BT .

23 We recall that a contracting Gm-action on an algebraic stack Y is an action of the multiplicative monoid 
A1 on Y. For schemes, this is a property of the underlying Gm action, but for stacks it is not. Therefore, 
by the phrase “that contracts,” we rather mean that it canonically admits the structure of contracting 
Gm-action. See [15] for further discussion of these points.
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2.7. Local Zastava stacks

Let 
o
ζ denote the stack B− \ G/B = BB− ×BG BB and let ζ denote the stack B− \

(G/N)/T = BB− ×BG BB. We have the sequence of open embeddings:

BT ↪→
o
ζ ↪→ ζ

where BT embeds as the open Bruhat cell.
The map BT ↪→ ζ factors as:

BT = T\(T/T ) ↪→ T\(T/T ) = BT × T/T ↪→ ζ. (2.7.1)

One immediately verifies that the retraction G/N → T of (2.5.1) is B− × T -
equivariant, where B− acts on the left on G/N and T acts on the right, and the action on 
T is similar but is induced by the T ×T -action and the homomorphism B−×T → T ×T . 
Therefore, we obtain a canonical map:

ζ = B−\G/N/T → B−\T/T → T\T/T.

Moreover, up to the choice of λ0 from [3] this retraction realizes BT × T/T as a defor-
mation retract of ζ.

We will identify T\T/T with BT × T/T in what follows by writing the former as 
T\(T/T ) and noting that T acts trivially here on T/T .

In particular, we obtain a canonical map:

ζ → T/T. (2.7.2)

By Lemma 2.4.1 (2) we have an action of the monoid stack T/T on ζ. The morphism 
ζ

r−→ BT × T/T
p2−→ T/T is T/T -equivariant.

Lemma 2.7.1. A map ϕ : S → T/T with ϕ−1(Spec(k)) dense (where Spec(k) is realized as 
the open point T/T ) is canonically equivalent to a Λ̌neg := −Λ̌pos-valued Cartier divisor 
on S.

First, we recall the following standard result.

Lemma 2.7.2. A map S → Gm\A1 with inverse image of the open point dense is equiv-
alent to the data of an effective Cartier divisor on S.

Proof. Tautologically, a map S → Gm\A1 is equivalent to a line bundle L on S with a 
section s ∈ Γ(S, L).

We need to check that the morphism OS
s−→ L is a monomorphism of quasi-coherent 

sheaves under the density hypothesis. This is a local statement, so we can trivialize L. 
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Now s is a function f whose locus of non-vanishing is dense, and it is easy to see that 
this is equivalent to f being a non-zero divisor. !

Proof of Lemma 2.7.1. Let G′ ⊆ G denote the derived subgroup [G, G] of G and let 
T ′ = T ∩ G′ and N ′ = N ∩ G′. Then with T

′ defined as the closure of T ′ in the affine 
closure of G′/N ′, the induced map:

T
′
/T ′ → T/T

is an isomorphism, reducing to the case G = G′.
Because the derived group (assumed to be equal to G now) is assumed simply-

connected, we have canonical fundamental weights {ϑi}i∈IG , ϑi ∈ Λ+. The map ∏
i∈IG

ϑi : T →
∏

i∈IG
Gm extends to a map T →

∏
i∈IG

A1 inducing an isomorphism:

T/T
$−→ (A1/Gm)IG .

Because we use the right action of T on T , the functions on T are graded negatively, 
and therefore we obtain the desired result. !

2.8. Twists

Fix an irreducible smooth projective curve X. We digress for a minute to normalize 
certain twists.

Let ΩX denote the sheaf of differentials on X. For an integer n, we will sometimes 
use the notation Ωn

X for Ω⊗n
X , there being no risk for confusion with n-forms because X

is a curve.
We fix Ω

1
2
X a square root of ΩX . This choice extends the definition of Ωn

X to n ∈ 1
2Z. 

We obtain the T -bundle:

Pcan
T := ρ̌(Ω−1

X ) := 2ρ̌(Ω− 1
2

X ). (2.8.1)

We use the following notation:

BunN− := BunB− ×
BunT

{Pcan
T }

BunG−
a

:= BunGm!Ga
×

BunGm

{Ω− 1
2

X }.

Here Gm !Ga is the opposite Borel of PGL2.
Note that BunG−

a
classifies extensions of Ω− 1

2
X by Ω

1
2
X and therefore there is a canonical 

map:

canG−
a

: BunG−
a
→ H1(X,ΩX) = Ga.
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The choice of Chevalley generators {fi}i∈IG of n− defines a map:

B−/[N−, N−] →
∏

i∈IG

(Gm !Ga).

By definition of Pcan
T , this induces a map:

∏

i∈IG

ri : BunN− →
∏

i∈IG

BunG−
a
.

We form the sequence:

BunN− →
∏

i∈IG

BunG−
a

∏
i∈IG

can
G−

a−−−−−−−−−→
∏

i∈IG

Ga → Ga

and denote the composition by:

can : BunN− → Ga. (2.8.2)

Remark 2.8.1. The above notation is obviously somewhat abusive, since the notation 
BunN− is often used without this twist. For our purposes, we prefer this convention 
because it simplifies the notation.

2.9. For a pointed stack (Y, y ∈ Y(k)) and a test scheme S, we say that X×S → Y
is non-degenerate if there exists U ⊆ X × S universally schematically dense relative to 
S in the sense of [28] Exp. XVIII, and such that the induced map U → Y admits a 
factorization as U → Spec(k) y−→ Y (so this is a property for a map, not a structure). 
We let Mapsnon−degen.(X, Y) denote the open substack of Maps(X, Y) consisting of non-
degenerate maps X → Y.

We consider 
o
ζ and ζ as pointed stacks via the embedding from BT and its canonical 

base-point. We consider T/T as a pointed stack in the obvious way.

2.10. Zastava spaces

Observe that there is a canonical map:

ζ → BT (2.10.1)

given as the composition:

ζ = BB− ×
BG

BB → BB− → BT.

Let Z be the stack of Pcan
T -twisted non-degenerate maps X → ζ, i.e., the fiber product:

Mapsnon−degen.(X, ζ) ×
BunT

{Pcan
T }
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where the map Mapsnon−degen.(X, ζ) → BunT is given by (2.10.1).
Let 

o
Z ⊆ Z be the open substack of Pcan

T -twisted non-degenerate maps X →
o
ζ. Note 

that Z and 
o
Z lie in Sch ⊆ PreStk. We call Z the Zastava space and 

o
Z the open Zastava 

space. We let  :
o
Z → Z denote the corresponding open embedding.

We have a Cartesian square where all maps are open embeddings:

o
Z Z

BunN− ×
BunG

BunB BunN− ×
BunG

BunB

The vertical arrows realize the source as the subscheme of the target where the two 
reductions are generically transverse.

2.11. Let DivΛ̌pos

eff = Mapsnon−degen.(X, T/T ) denote the scheme of Λ̌pos-divisors on 
X (we include the subscript “eff” for emphasis that we are not taking Λ̌-valued divisors).

We have the canonical map:

deg : π0(DivΛ̌pos

eff ) → Λ̌pos.

For λ̌ ∈ Λ̌pos let Divλ̌
eff denote the corresponding connected component of DivΛ̌pos

eff .

Remark 2.11.1. Writing λ̌ =
∑

i∈IG
niα̌i as a sum of simple coroots, we see that Divλ̌

eff
is a product 

∏
i∈IG

Symni X of the corresponding symmetric powers of the curve.

Recall that we have the canonical map r : ζ → BT×T/T . For any non-degenerate map 
X × S → ζ, Warning 2.5.1 implies that the induced map to T/T (given by composing r
with the second projection) is non-degenerate as well.

Therefore we obtain the map:

π : Z → DivΛ̌pos

eff .

We let oπ denote the restriction of π to 
o
Z. It is well-known that the morphism π is affine.

Let Z λ̌ (resp. 
o
Z λ̌) denote the fiber of Z (resp. 

o
Z) over Divλ̌

eff . We let πλ̌ (resp. oπλ̌) 
denote the restriction of π to Z λ̌ (resp. 

o
Z λ̌). We let λ̌ :

o
Z λ̌ → Z λ̌ denote the restriction 

of the open embedding .
Note that π admits a canonical section s : DivΛ̌pos

eff → Z, whose restriction to each 
Divλ̌

eff we denote by sλ̌. Note that up to a choice of regular dominant coweight, the 
situation is given by contraction.
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Each Z λ̌ is of finite type (and therefore the same holds for 
o
Zλ̌). It is known (cf. [13]

Corollary 3.8) that 
o
Z λ̌ is a smooth variety.

For λ̌ = 0, we have 
o
Z0 = Z0 = Div0

eff = Spec(k).
We have a canonical (up to choice of Chevalley generators) map Z → Ga defined as 

the composition Z → BunN−
can−−→ Ga. For α̌i a positive simple coroot the induced map:

Z α̌i → Divα̌i
eff ×Ga = X ×Ga (2.11.1)

is an isomorphism that identifies 
o
Zα̌i with X ×Gm.

The dimension of Z λ̌ and 
o
Z λ̌ is (2ρ, ̌λ) = (ρ, ̌λ) +dim Divλ̌

eff (this follows e.g. from the 
factorization property discussed in §2.12 below and then by the realization discussed in 
§2.13 of the central fiber as an intersection of semi-infinite orbits in the Grassmannian, 
that are known by [13] §6 to be equidimensional with dimension (ρ, ̌λ)).

Example 2.11.2. Let us explain in more detail the case of G = SL2. In this case, tensoring 
with the bundle Ω

1
2
X identifies Z with the moduli of commutative diagrams:

L

ϕ

0 Ω
1
2
X

ϕ∨

E Ω− 1
2

X 0

L∨

in which the composition L → L∨ is zero and the morphism ϕ is non-zero. The open 

subscheme 
o
Z is the locus where the induced map Coker(L → E) → L∨ is an isomorphism. 

The associated divisor of such a datum is defined by the injection L ↪→ Ω− 1
2

X .
Over a point x ∈ X, we have an identification of the fiber 

o
Z1

x of 
o
Z1 over x ∈ X

(considering 1 ∈ Z = Λ̌SL2 as the unique positive simple coroot) with Gm. Up to the 

twist by our square root Ω
1
2
X , the point 1 ∈ Gm corresponds to a canonical extension of 

OX by ΩX associated to the point x, that can be constructed explicitly using the Atiyah 
sequence of the line bundle OX(x).

Recall that for a vector bundle E, the Atiyah sequence (cf. [4]) is a canonical short 
exact sequence:

0 → End(E) → At(E) → TX → 0

whose splittings correspond to connections on E. For a line bundle L, we obtain a canon-
ical extension At(L) ⊗ Ω1

X of OX by Ω1
X . Taking L = OX(x), we obtain the extension 

underlying the canonical point of 
o
Z1

x.
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Note that we have a canonical map L = OX(x) → At(OX(x)) ⊗ Ω1
X that may be 

thought of as a splitting of the Atiyah sequence with a pole of order 1, and this splitting 
corresponds to the obvious connection on OX(x) with a pole of order 1. This defines the 

corresponding point of 
o
Z1 completely.

2.12. Factorization

Now we recall the crucial factorization property of Z.
Let add : DivΛ̌pos

eff × DivΛ̌pos

eff → DivΛ̌pos

eff denote the addition map for the commutative 
monoid structure defined by addition of divisors. For λ̌ and µ̌ fixed, we let addλ̌,µ̌ denote 
the induced map Divλ̌

eff × Divµ̌
eff → Divλ̌+µ̌

eff .
Define:

[DivΛ̌pos

eff ×DivΛ̌pos

eff ]disj ⊆ DivΛ̌pos

eff ×DivΛ̌pos

eff

as the moduli of pairs of disjoint Λ̌pos-divisors. Note that the restriction of add to this 
locus is étale.

Then we have canonical factorization isomorphisms:

Z ×
DivΛ̌pos

eff

[DivΛ̌pos

eff ×DivΛ̌pos

eff ]disj $−→ (Z × Z) ×
DivΛ̌pos

eff ×DivΛ̌pos
eff

[DivΛ̌pos

eff ×DivΛ̌pos

eff ]disj

that are associative in the natural sense.
The morphisms π and s are compatible with the factorization structure.

2.13. The central fiber

By definition, the central fiber Zλ̌ of the Zastava space Z λ̌ is the fiber product:

Zλ̌ := Z λ̌ ×
Divλ̌

eff

X

where X → Divλ̌
eff is the closed “diagonal” embedding, i.e., it is the closed subscheme 

where the divisor is concentrated at a single point. We let 
o
Zλ̌ denote the open in Zλ̌

corresponding to 
o
Z λ̌ ↪→ Z λ̌. Similarly, we let Z ⊆ Z be the closed corresponding to the 

union of the Zλ̌.
We let βλ̌ (resp. γλ̌) denote the closed embedding Zλ̌ ↪→ Z λ̌ (resp. 

o
Zλ̌ ↪→

o
Z λ̌).

2.14. Twisted affine Grassmannian

Let Pcan
G , Pcan

B and Pcan
B− be the torsors induced by the T -torsor Pcan

T under the 
embeddings of T into each of these groups.
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We let GrG,X denote the Pcan
G -twisted Beilinson-Drinfeld affine Grassmannian clas-

sifying a point x ∈ X, a G-bundle PG on X, and an isomorphism Pcan
G |X\x ' PG|X\x. 

More precisely, the S-points are:

S #→
{

x : S → X, PG a G-bundle on X × S,
α an isomorphism PG|X×S\Γx

' Pcan
G |X×S\Γx

}
.

Similarly for GrB,X , etc. We define GrN−,X := GrB−,X ×GrT,XX, where the map 
X → GrT,X being the tautological section.

Let GrB,X denote the union of closures of semi-infinite orbits, i.e., the indscheme:

GrB,X : S #→
{ x : S → X, ϕ : X × S → G \ (G/N)/T ,

α a factorization of ϕ|(X×S)\Γx
through the

canonical map Spec(k) → G \ (G/N)/T .

}
.

Here Γx denotes the graph of the map x.

2.15. In the above notation, we have a canonical isomorphism:

Z
$−→ GrN−,X ×

GrG,X

GrB,X .

Indeed, this is immediate from the definitions.
Note that GrB,X has a canonical map to GrT,X =

∐
λ̌∈Λ̌ Grλ̌T,X . Letting Grλ̌B,X be the 

fiber over the corresponding connected component of GrT,X , we obtain:

Zλ̌ $−→ GrN−,X ×
GrG,X

Grλ̌B,X .

2.16. By §2.7, we have an action of DivΛ̌pos

eff on Z so that the morphism π is DivΛ̌pos

eff -
equivariant. We let actZ denote the action map DivΛ̌pos

eff ×Z → Z. We abuse notation in 

denoting the induced map DivΛ̌pos

eff ×
o
Z → Z by act o

Z
(that does not define an action on 

o
Z, i.e., this map does not factor through 

o
Z).

For λ̌ ∈ Λ̌ acting on Z λ̌ defines the map:

actλ̌Z : DivΛ̌pos

eff ×Z λ̌ → Z.

For η̌ ∈ Λ̌pos we use the notation actη̌,λ̌Z for the induced map:

actη̌,λ̌Z : Divη̌
eff ×Z λ̌ → Z λ̌+η̌.

Similarly, we have the maps actλ̌o
Z

and actλ̌,η̌o
Z

.
The following lemma is well-known (see e.g. [13]).
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Lemma 2.16.1. For every λ̌, η̌ ∈ Λ̌pos, the map actλ̌,η̌Z (resp. actλ̌,η̌o
Z

) is finite (resp. a 

locally closed embedding). For fixed λ̌ the set of locally closed subschemes of Z λ̌:

{actη̌,µ̌o
Z

(Divη̌
eff ×

o
Z µ̌)} µ̌+η̌=λ̌

µ̌,η̌∈Λ̌pos

forms a stratification.

2.17. Intersection cohomology of Zastava

For λ̌ ∈ Λ̌pos we now review the description from [13] of the fibers of the intersection 
cohomology D-module ICZλ̌ along the strata described above, i.e., the D-modules:

actη̌,µ̌,!o
Z

(ICZλ̌) ∈ D(Divη̌
eff ×

o
Z µ̌), η̌, µ̌ ∈ Λ̌pos, µ̌ + η̌ = λ̌.

Theorem 2.17.1.

(1) With notation as above, the regular holonomic D-module:

actη̌,µ̌,!o
Z

(ICZλ̌) ∈ D(Divη̌
eff ×

o
Z µ̌) (2.17.1)

is concentrated in constructible cohomological degree − dim
o
Z µ̌.

(2) For x ∈ X a point, the further ∗-restriction of (2.17.1) to 
o
Zµ̌
x is a lisse sheaf in 

constructible degree − dim
o
Z µ̌ isomorphic to:

U(ň)(η̌) ⊗ ko
Zµ̌
x
[dim

o
Z µ̌]

where U(ň)(η̌) indicates the η̌-weight space.
(3) The !-restriction of (2.17.1) to 

o
Zµ̌
x is isomorphic to:

Sym(ň[−2])(η̌) ⊗ ωo
Zµ̌
x
[− dim

o
Z µ̌] (2.17.2)

for Sym(ň[−2])(η̌) the η̌-weight space of the (DG) symmetric algebra Sym(ň[−2]) ∈
Rep(Ť ).

Remark 2.17.2. Recall from the above that 
o
Zµ̌ is equidimensional with dimZ µ̌ = 2(ρ, µ̌).

Remark 2.17.3. This theorem is a combination of Theorem 4.5 and Lemma 4.3 of [13]
using the inductive procedure of [13].
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2.18. Locality

For X a smooth (possibly affine) curve with choice of Ω
1
2
X , we obtain an identical 

geometric picture. One can either realize this by restriction from a compactification, 
or by reinterpreting e.g. the map Z → Ga through residues instead of through global 
cohomology.

3. Limiting case of the Casselman-Shalika formula

3.1. The goal for this section is to prove Theorem 3.4.1, on the vanishing of the 
IC-Whittaker cohomology groups of Zastava spaces. This vanishing will play a central 
role in the remainder of the paper.

Remark 3.1.1. The method of proof is essentially by a reduction to the geometric 
Casselman-Shalika formula of [22].

Remark 3.1.2. We are grateful to Dennis Gaitsgory for suggesting this result to us.

3.2. Artin-Schreier sheaves

We define the !-Artin-Schreier D-module ψ ∈ D(Ga) to be the exponential local sys-
tem normalized cohomologically so that ψ[−1] ∈ D(Ga)♥. Note that ψ is multiplicative 
with respect to !-pullback.

3.3. For λ̌ ∈ Λ̌pos, let ψZλ̌ ∈ D(Z λ̌) denote the !-pullback of the Artin-Schreier 
D-module ψ along the composition:

Z λ̌ → BunN−
can−−→ Ga.

Note that ψZλ̌

!
⊗ ICZλ̌ ∈ D(Z λ̌)♥.

We then also define:

ψ o
Zλ̌

= λ̌,!(ψZλ̌).

3.4. The main result of this section is the following:

Theorem 3.4.1. If λ̌ ,= 0, then:

πλ̌
∗,dR(ICZλ̌

!
⊗ψZλ̌) = 0.

The proof will be given in §3.6 below.
This theorem is étale local on X, and therefore we may assume that we have X = A1. 

In particular, we have a fixed trivialization of Ω
1
2
X .
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3.5. Central fibers via affine Schubert varieties

In the proof of Theorem 3.4.1 we will use Proposition 3.5.1 below. We note that it is 
well-known, though we do not know a published reference.

Throughout §3.5, we work only with reduced schemes and indschemes, so all symbols 
refer to the reduced indscheme underlying the corresponding indscheme. Note that this 
restriction does not affect D-modules on the corresponding spaces.

Let T (K)X denote the group indscheme over X of meromorphic jets into T (so the 
fiber of T (K)X at x ∈ X is the loop group T (Kx)). Because we have chosen an identifi-
cation X ' A1, we have a canonical homomorphism:

GrT,X ' A1 × Λ̌ → T (K)X ' A1 × T (K)
(x, λ̌) #→ (x, λ̌(t))

where t is the uniformizer of A1 (of course, the formula GrT,X ' A1 × Λ̌ is only valid at 
the reduced level). This induces an action of the X-group indscheme GrT,X on GrB,X , 
GrG,X and GrN−,X = Gr0B−,X .

Using this action, we obtain a canonical isomorphism:

Zλ̌ = Gr0B−,X ×
GrG,X

Grλ̌B,X
$−→ Grη̌B−,X ×

GrG,X

Grλ̌+η̌
B,X

of X-schemes for every η̌ ∈ Λ̌.
Below, we let Grλ̌G,x denote the G(Ox)-orbit through the point λ̌(t) ∈ GrG,x, and 

similarly for Grλ̌G,X .

Proposition 3.5.1. For η̌ deep enough24 in the dominant chamber we have:

Grη̌B−,X ×
GrG,X

Grλ̌+η̌
B,X = Grη̌B−,X ×

GrG,X

Grλ̌+η̌
G,X .

This equality also identifies:

Grη̌B−,X ×
GrG,X

Grλ̌+η̌
B,X = Grη̌B−,X ×

GrG,X

Grλ̌+η̌
G,X .

Proof. It suffices to verify the result fiberwise and therefore we fix x = 0 ∈ X = A1 (this 
is really just a notational convenience here). We let Zλ̌

x (resp. 
o
Zλ̌
x) denote the fiber of Zλ̌

(resp. 
o
Zλ̌) at x. Let t ∈ Kx be a coordinate at x.

Because there are only finitely many 0 " µ̌ " λ̌ and because each 
o
Zµ̌
x is finite type, 

for η̌ deep enough in the dominant chamber we have:

24 The implicit bound depends on λ̌.
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o
Zµ̌
x = GrN−,x ∩Ad−η̌(t)(N(Ox)) · µ̌(t)

(µ̌(t) being regarded as a point in GrG,x here and the intersection symbol is short-hand 
for fiber product over GrG,x) for all 0 " µ̌ " λ̌. Choosing η̌ possibly larger, we can also 
assume that η̌ + µ̌ is dominant for all 0 " µ̌ " λ̌. Then we claim that such a choice η̌
suffices for the purposes of the proposition.

Observe that for each 0 " µ̌ " λ̌ we have:

Grη̌B−,x ∩Grµ̌+η̌
B,x = η̌(t) ·

o
Zµ̌
x ⊆ Grη̌B−,x ∩

(
N(Ox) · (µ̌ + η̌)(t)

)
⊆ Grη̌B−,x ∩Grµ̌+η̌

G,x .

Recall (cf. [34]) that Grλ̌+η̌
B,x is a union of strata:

Grµ̌+η̌
B,x , µ̌ " λ̌

while for µ̌:

Grη̌B−,x ∩Grµ̌+η̌
B,x = ∅

unless µ̌ # 0. Therefore, Grη̌B−,x intersects Grµ̌B,x only in the strata Grµ̌+η̌
B,x for 0 " µ̌ " λ̌.

The above analysis therefore shows that:

Grη̌B−,x ∩Grλ̌+η̌
B,x ⊆ Grη̌B−,x ∩Grλ̌+η̌

G,x .

Now observe that B(Ox) · (λ̌ + η̌)(t) is open in Grλ̌. Therefore, we have:

Grλ̌+η̌
G,x ⊆ Grλ̌+η̌

B

giving the opposite inclusion above.
It remains to show that the equality identifies 

o
Zλ̌
x in the desired way. We have already 

shown that:

Grη̌B−,x ∩Grλ̌+η̌
B,x ⊆ Grη̌B−,x ∩Grλ̌+η̌

G,x ,

so it remains to prove the opposite inclusion. Suppose that y is a geometric point of 
the right hand side. Then, by the Iwasawa decomposition, y ∈ Grµ̌+η̌

B,x for some (unique) 
µ̌ ∈ Λ̌ and we wish to show that µ̌ = λ̌.

Because:

y ∈ Grµ̌+η̌
B,x ∩Grλ̌+η̌

G,x ,= ∅

we have µ̌ " λ̌. We also have:
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y ∈ Grµ̌+η̌
B,x ∩Grη̌B−,x ,= ∅

which implies µ̌ # 0. Therefore, by construction of η we have:

y ∈ Grη̌B−,x ∩Grµ̌+η̌
B,x ⊆ Grη̌B−,x ∩Grµ̌+η̌

G,x ⊆ Grµ̌+η̌
G,x

but Grµ̌+η̌
G,x ∩ Grλ̌+η̌

G,x = ∅ if µ̌ ,= λ̌ (because µ̌ + η̌ and λ̌ + η̌ are assumed dominant) and 
therefore we must have µ̌ = λ̌ as desired. !

We continue to use the notation introduced in the proof of Proposition 3.5.1.
Recall that βλ̌ (resp. γλ̌) denotes the closed embedding Zλ̌ ↪→ Z λ̌ (resp. 

o
Zλ̌ ↪→

o
Z λ̌). 

For x ∈ X, let βλ̌
x (resp. γλ̌

x ) denote the closed embedding Zλ̌
x ↪→ Z λ̌ (resp. 

o
Zλ̌
x ↪→

o
Z λ̌).

Corollary 3.5.2. For every x ∈ X, the cohomology:

H∗
dR

(
Zλ̌
x,β

λ̌,!
x (ICZλ̌

!
⊗ψZλ̌)

)
(3.5.1)

is concentrated in non-negative cohomological degrees. For 0 ,= λ̌, it is concentrated in 
strictly positive cohomological degrees.

Remark 3.5.3. It follows a posteriori from Theorem 3.4.1 that the whole cohomology 
vanishes for 0 ,= λ̌.

Proof. First, we claim that when either:

• i < 0, or:
• i = 0 and λ̌ ,= 0

we have:

Hi
dR

(o
Zλ̌
x, γ

λ̌,!
x (IC o

Zλ̌

!
⊗ψ o

Zλ̌
)
)

= 0. (3.5.2)

Indeed, from the smoothness of 
o
Zλ̌, we see that γλ̌,!

x (IC o
Zλ̌

) = ωo
Zλ̌
x

[− dim
o
Z λ̌], so this 

object is concentrated in perverse cohomological degrees:

# − dim(
o
Zλ̌
x) + dim(

o
Z λ̌) = dim(

o
Zλ̌
x).

The same bound applies when we twist by the local system ψZλ̌ . This gives the desired 

vanishing in negative degrees, as de Rham cohomology on 
o
Zλ̌
x has amplitude # − dim(

o
Zλ̌
x)

with respect to the perverse t-structure.
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Moreover, from Proposition 3.5.1 and the Casselman-Shalika formula ([22] Theorem 
1), we deduce that, for λ̌ ,= 0, the restriction of our rank one local system to every 

irreducible component of 
o
Zλ̌
x is moreover non-constant. This gives (3.5.2) for in the case 

i = 0 and λ̌ ,= 0.
To complete the argument, note that by Theorem 2.17.1 (3), for 0 " µ̌ " λ̌, the 

!-restriction of ICZλ̌ to 
o
Zµ̌
x lies in perverse cohomological degrees # (ρ, µ̌), with strict 

inequality for µ̌ ,= λ̌.
By lisseness of ψZλ̌ , we deduce that for 0 " µ̌ < λ̌, βλ̌,!

x (ICZλ̌

!
⊗ψZλ̌) has !-restriction 

to 
o
Zµ̌
x in perverse cohomological degrees strictly greater than (ρ, µ̌) = dim(

o
Zµ̌
x). Therefore, 

the non-positive de Rham cohomologies of these restrictions vanish.
Therefore, only the open stratum can contribute to the non-positive cohomology. We 

now obtain the result by (3.5.2). !

Corollary 3.5.4. For 0 ,= λ̌ ∈ Λ̌pos, we have:

χ

(
H∗

dR

(
Zλ̌
x,β

λ̌,!
x (ICZλ̌

!
⊗ψZλ̌)

))
= 0.

Proof. For η̌ ∈ Λ̌ sufficiently deep in the dominant chamber (in particular, satisfying the 
conclusion of Proposition 3.5.1), we will show:

[βλ̌,!
x (ICZλ̌)] = [ι!(IC

Grλ̌+η̌
G,x

)] ∈ K0(Db
hol(Zλ̌

x)) (3.5.3)

in the Grothendieck group of complexes of (coherent and) holonomic D-modules on Zλ̌
x. 

Here the map ι is defined as:

Zλ̌
x

$−→ Grη̌B−,x ∩Grλ̌+η̌
G,x → Grλ̌+η̌

G,x .

It suffices to show that for each 0 " µ̌ " λ̌, the !-restrictions of these classes coincide in 
the Grothendieck group of:

Grη̌B−,x ∩Grµ̌+η̌
G,x .

Indeed, these locally closed subvarieties form a stratification.
First, note that the !-restriction of IC

Grλ̌+η̌
G,x

to Grλ̌+µ̌
G,x has constant cohomologies (by 

G(Ox)-equivariance). Moreover, by [33] Theorems 11c and 6.1, the corresponding class 
in the Grothendieck group is the dimension of the weight component:

dim
(
V −w0(λ̌+η̌)(−µ̌− η̌)

)
· [ωGrλ̌+µ̌

G,x

].

Further !-restricting to Grη̌B−,x ∩ Grµ̌+η̌
G,x , we obtain that the right hand side of our equa-

tion is given by:
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dimV −w0(λ̌+η̌)(−µ̌− η̌) · [ωGrη̌
B−,x

∩Grµ̌+η̌
G,x

].

By having U(ň) act on a lowest weight vector of V −w0(λ̌+η̌), we observe that for η̌ large 
enough, we have25:

V −w0(λ̌+η̌)(−µ̌− η̌) ' U(ň)(λ̌− µ̌) ' Sym(ň)(λ̌− µ̌).

The similar identification for the left hand side of (3.5.3) follows from the choice of η̌
(so that Grη̌B−,x ∩ Grµ̌+η̌

G,x identifies with 
o
Zµ̌
x) and Theorem 2.17.1 (3).

Appealing to (3.5.3), we see that in order to deduce the corollary, it suffices to prove 
that:

χ

(
H∗

dR

(
Zλ̌
x, ι

!(IC
Grλ̌+η̌

G,x

)
!
⊗ βλ̌,!

x (ψZλ̌)
))

= 0.

Even better: by the geometric Casselman-Shalika formula [22], this cohomology itself 
vanishes. !

3.6. Now we give the proof of Theorem 3.4.1.

Proof of Theorem 3.4.1. We proceed by induction on (ρ, ̌λ), so we assume the re-
sult holds for all 0 < µ̌ < λ̌. By factorization and induction, we see that F :=
πλ̌
∗,dR(ICZλ̌

!
⊗ψZλ̌) is concentrated on the main diagonal X ⊆ Divλ̌

eff .

The (∗ =!-)restriction of F to X is the ∗-pushforward along Zλ̌ → X of βλ̌,!(ICZλ̌

!
⊗

ψZλ̌). Moreover, since Zλ̌ → X is a Zariski-locally trivial fibration, the cohomologies of 
F on X are lisse and the fiber at x ∈ X is:

H∗
dR

(
Zλ̌
x,β

λ̌,!
x (ICZλ̌

!
⊗ψZλ̌)

)
.

Because πλ̌ is affine and ICZλ̌

!
⊗ψZλ̌ is a perverse sheaf, F lies in perverse degrees " 0. 

Moreover, by Corollary 3.5.2, its !-fibers are concentrated in strictly positive degrees. 
Since F is lisse along X, this implies that F is actually perverse. Now Corollary 3.5.4
provides the vanishing of the Euler characteristics of the fibers of F, giving the result. !

4. Identification of the Chevalley complex

4.1. The goal for this section is to identify the Chevalley complex in the coho-
mology of Zastava space with coefficients in the Whittaker sheaf: this is the content of 
Theorem 4.6.1.

25 We include the second isomorphism for the reader’s convenience, in comparing with the statement of 
Theorem 2.17.1. We are not concerned here with a canonical choice of such isomorphism; for our purposes, 
it is enough that these are two finite-dimensional vector spaces of the same dimensions.
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The argument combines Theorem 3.4.1 with results from [12].

Remark 4.1.1. Theorem 4.6.1 is one of the central results of this text: as explained in the 
introduction, it provides a connection between Whittaker sheaves on the semi-infinite 
flag variety and the factorization algebra Υň, and therefore relates to the main conjecture 
of the introduction.

4.2. We will use the language of graded factorization algebras.
The definition should encode the following: a Z!0-graded factorization algebra is a 

system An ∈ D(Symn X) such that we have, for every pair m, n we have isomorphisms:
(
Am ! An

)
|[Symm X×Symn X]disj

$−→
(
Am+n

)
|[Symm X×Symn X]disj

satisfying (higher) associativity and commutativity. Note that the addition map 
Symm X × Symn X → Symm+n X is étale when restricted to the disjoint locus, and 
therefore the restriction notation above is unambiguous.

Formally, the scheme SymX =
∐

n Symn X is naturally a commutative algebra under 
correspondences, where the multiplication is induced by the maps:

[Symn X × Symm X]disj

Symn X × Symm X Symm+n X.

Therefore, as in [35] §6, we can apply the formalism of [35] §5 to obtain the desired 
theory.

Remark 4.2.1. We will only be working with graded factorization algebras in the heart 
of the t-structure, and therefore the language may be worked out by hand as in [6], i.e., 
without needing to appeal to [35].

Similarly, we have the notion of Λ̌pos-graded factorization algebra: it is a collection of 
D-modules on the schemes Divλ̌

eff with similar identifications as above.

4.3. Recall that [12] has introduced a certain Λ̌pos-graded commutative factorization 
algebra, i.e., a commutative factorization D-module on DivΛ̌pos

eff . This algebra incarnates 
the homological Chevalley complex of ň. In [12], this algebra is denoted by Υ(ňX): we 
use the notation Υň instead. We denote the component of Υň on Divλ̌

eff by Υλ̌
ň . Recall 

from [12] that each Υλ̌
ň lies in D(Divλ̌

eff)♥.26

26 We explicitly note that in this section we exclusively use the usual (perverse) t-structure.
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Remark 4.3.1. To remind the reader of the relation between Υň and the homological 
Chevalley complex C•(ň) of ň, we recall that the ∗-fiber of Υň at a Λ̌pos-colored divisor ∑n

i=1 λ̌i · xi (here λ̌i ∈ Λ̌pos and the xi ∈ X are distinct closed points) is canonically 
identified with:

n
⊗
i=1

C•(ň)λ̌i

where C•(ň)λ̌i denotes the λ̌i-graded piece of the complex.

Remark 4.3.2. The Λ̌pos-graded vector space:

ň = ⊕
α̌ a positive coroot

ňα̌

gives rise to the D-module:

ňX := ⊕
α̌ a positive coroot

∆α̌
∗,dR(ňα̌ ⊗ kX) ∈ D(DivΛ̌

eff)

where for λ̌ ∈ Λ̌, ∆λ̌ : X → Divλ̌
eff is the diagonal embedding. The Lie algebra structure 

on ň gives a Lie-∗ structure on ňX .
Then Υň is tautologically given as the factorization algebra associated to the chiral 

enveloping algebra of this Lie-∗ algebra.

Remark 4.3.3. We emphasize the miracle mentioned above and crucially exploited in 
[12] (and below): although C•(ň) is a cocommutative (DG) coalgebra that is very much 
non-classical, its D-module avatar does lie in the heart of the t-structure. Of course, this 
is no contradiction, since the ∗-fibers of a perverse sheaf need only live in degrees " 0.

4.4. Observe that ∗,dR(IC o
Z

) naturally factorizes on Z. Therefore, s∗,dR∗,dR(IC o
Z

)
is naturally a factorization D-module in D(DivΛ̌pos

eff ).
The following key identification is essentially proved in [12], but we include a proof 

with detailed references to [12] for completeness.

Theorem 4.4.1. There is a canonical identification:

H0(s∗,dR∗,dR(IC o
Z

)) $−→ Υň

of Λ̌pos-graded factorization algebras.

Remark 4.4.2. To orient the reader on cohomological shifts, we note that for λ̌ ∈ Λ̌pos

fixed, IC o
Zλ̌

is concentrated in degree 0 and therefore the above H0 is the maximal 
cohomology group of the complex s∗,dR∗,dR(IC o

Zλ̌
).
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Proof of Theorem 4.4.1. Let j : DivΛ̌pos,simple
eff ↪→ DivΛ̌pos

eff denote the open consisting of 
simple divisors, i.e., its geometric points are divisors of the form 

∑n
i=1 α̌i · xi for α̌i a 

positive simple coroot and the points {xi} pairwise distinct. For each λ̌ ∈ Λ̌pos, we let 
jλ̌ : Divλ̌,simple

eff → Divλ̌
eff denote the corresponding open embedding. Note that j and 

each embedding jλ̌ is affine.
Observe that DivΛ̌pos,simple

eff has a factorization structure induced by that of Diveff . 
The restriction of Υň to DivΛ̌pos,simple

eff identifies canonically with the exterior product 
over i ∈ IG of the corresponding sign (rank 1) local systems under the identification:

Divλ̌,simple
eff '

∏

i∈IG

Symni,simple X

where λ̌ =
∑

i∈IG
niα̌i and on the right the subscript simple means simple effective 

divisor in the same sense as above. Moreover, these identifications are compatible with 
the factorization structure in the natural sense.

Let 
o
Zsimple and 

o
Z λ̌,simple denote the corresponding opens in 

o
Z and 

o
Z λ̌ obtained by 

fiber product. Let ssimple and sλ̌,simple denote the corresponding restrictions of s and sλ̌.
Then 

o
Z λ̌,simple $−→ Divλ̌,simple

eff ×G(ρ,λ̌)
m as a Divλ̌,simple

eff -scheme by (2.11.1), and these 
identifications are compatible with factorization.

Therefore, we deduce an isomorphism:

H0(ssimple,∗,dR∗,dR(IC o
Zsimple))

$−→ j!(Υň)

of factorization D-modules on DivΛ̌pos,simple
eff (note that the sign local system appears on 

the left by the Koszul rule of signs).
Therefore, we obtain a diagram:

j!H0(ssimple,∗,dR∗(IC o
Zsimple))

$
j!j!(Υň)

H0(s∗,dR∗,dR(IC o
Z

)) Υň

(4.4.1)

Note that the top horizontal arrow is a map of factorization algebras on DivΛ̌pos

eff .
By (the Verdier duals to) [12] Lemma 4.8 and Proposition 4.9, the vertical maps in 

(4.4.1) are epimorphisms in the abelian category D(DivΛ̌pos

eff )♥. Moreover, by the analysis 
in [12] §4.10, there is a (necessarily unique) isomorphism:

H0(s∗,dR∗,dR(IC o
Z

)) $−→ Υň

completing the square (4.4.1). By uniqueness, this isomorphism is necessarily an isomor-
phism of factorizable D-modules. !
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4.5. Observe that the D-module ψ o
Z

canonically factorizes on 
o
Z. Therefore, 

∗,dR(ψ o
Z

) factorizes in D(Z).
By Theorem 4.4.1, we have for each λ̌ ∈ Λ̌pos we have a map:

λ̌∗,dR(IC o
Zλ̌

) → sλ̌∗,dR H0
(
sλ̌,∗,dRλ̌∗,dR(IC o

Zλ̌
)
)

= s∗,dR(Υλ̌
ň). (4.5.1)

These maps are compatible with factorization as we vary λ̌.

Lemma 4.5.1. The map (4.5.1) is an epimorphism in the abelian category D(Z λ̌)♥.

Proof. This is a general phenomenon: for any closed embedding i : D → Z of finite 
type schemes and any holonomic F ∈ D(Z)♥, the map F → i∗,dRH0(i∗,dR(F)) is an 
epimorphism. !

4.6. Applying ψZ
!
⊗− to (4.5.1) and using the canonical identifications sλ̌,!,dR(ψZλ̌)

$−→ ωDivλ̌
eff

, we obtain maps:

ηλ̌ : λ̌∗,dR(ψ o
Zλ̌

!
⊗ IC o

Zλ̌
) → s∗,dR(Υλ̌

ň).

Because everything above is compatible with factorization as we vary λ̌, the maps ηλ̌ are 
as well.

We let η : ∗,dR(ψ o
Z

!
⊗ IC o

Z
) → s∗,dR(Υň) denote the induced map of factorizable 

D-modules on Z.

Theorem 4.6.1. The map:

o
π∗,dR(ψ o

Z

!
⊗ IC o

Z
) = π∗,dR∗,dR(ψ o

Z

!
⊗ IC o

Z
) π∗,dR(η)−−−−−→ π∗,dRs∗,dR(Υň) = Υň (4.6.1)

is an equivalence of factorization D-modules on DivΛ̌pos

eff .

Remark 4.6.2. In particular, the theorem asserts that oπ∗,dR(ψ o
Z

!
⊗ IC o

Z
) is concentrated 

in cohomological degree 0.

Proof of Theorem 4.6.1. It suffices to show for fixed λ̌ ∈ Λ̌pos that πλ̌
∗,dR(ηλ̌) is an equiv-

alence.
Recall from [12] Corollary 4.5 that we have an equality:

[λ̌∗,dR(IC o
Zλ̌

)] =
∑

µ̌,η̌∈Λ̌pos

µ̌+η̌=λ̌

[actη̌,µ̌Z,∗,dR(Υη̌
ň ! ICZµ̌)] ∈ K0(Db

hol(Z λ̌)), (4.6.2)
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in the Grothendieck group of (coherent and) holonomic D-modules. Therefore, because 
ψZ is lisse, we obtain a similar equality:

[λ̌∗,dR(ψ o
Zλ̌

!
⊗ IC o

Zλ̌
)] =

∑

µ̌,η̌∈Λ̌pos

µ̌+η̌=λ̌

[actη̌,µ̌Z,∗,dR

(
Υη̌

ň ! (ψZµ̌

!
⊗ ICZµ̌)

)
] (4.6.3)

by the projection formula.
For every decomposition µ̌ + η̌ = λ̌, we have:

πλ̌
∗,dR actη̌,µ̌Z,∗,dR

(
Υη̌

ň ! (ψZµ̌

!
⊗ ICZµ̌)

)
= addη̌,µ̌

∗,dR

(
Υη̌

ň ! πµ̌
∗,dR(ψZµ̌

!
⊗ ICZµ̌)

)
.

By Theorem 3.4.1, this term vanishes for µ̌ ,= 0.
Therefore, we see that the left hand side of (4.6.1) is concentrated in degree 0, and 

that it agrees in the Grothendieck group with the right hand side.
Moreover, by affineness of πλ̌, the functor πλ̌

∗,dR is right exact. Therefore, by 

Lemma 4.5.1, the map πλ̌
∗,dR(ηλ̌) is an epimorphism in the heart of the t-structure; 

since the source and target agree in the Grothendieck group, we obtain that our map is 
an isomorphism. !

5. Hecke functors: Zastava calculation over a point

5.1. Next, we compare Theorem 4.6.1 with the geometric Satake equivalence.
More precisely, given a representation V of the dual group Ǧ, there are two ways to 

associate a factorization Υň-module: one is through its Chevalley complex C•(ň, V ), and 
the other is through a geometric procedure explained below, relying on geometric Satake 
and Theorem 4.6.1. In what follows, we refer to these two operations as the spectral and 
geometric Chevalley functors respectively.

The main result of this section, Theorem 5.14.1, identifies the two functors.

Notation 5.1.1. We fix a k-point x ∈ X in what follows.

5.2. Polar Drinfeld structures

Suppose X is proper for the moment.
Recall the ind-algebraic stack Bun∞·x

N− from [22]: it parametrizes PG a G-bundle on 
X and non-zero maps27:

Ω⊗(ρ̌,λ)
X → V λ

PG
(∞ · x)

defined for each dominant weight λ and satisfying the Plucker relations.

27 Here if (ρ̌, λ) is half integral, we appeal to our choice of Ω
1
2
X .
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Example 5.2.1. Let G = SL2. Then Bun∞·x
N− classifies the datum of an SL2-bundle E and 

a non-zero map Ω
1
2
X → E(∞ · x).28

Example 5.2.2. For G = Gm, Bun∞·x
N− is the affine Grassmannian for T at x.

5.3. Hecke action

The key feature of Bun∞·x
N− is that Hecke functors at x act on D(Bun∞·x

N− ). More 
precisely, the action of the Hecke groupoid on BunG lifts in the obvious way to an action 
on Bun∞·x

N− .
For definiteness, we introduce the following notation. Let Hx

G denote the Hecke stack
at x, parametrizing pairs of G-bundles on X identified away from x. Let h1 and h2 denote 
the two projections Hx

G → BunG.
Define the Drinfeld-Hecke stack Hx

G,Drin as the fiber product:

Hx
G ×

BunG

Bun∞·x
N−

where we use the map h1 : Hx
G → BunG in order to form this fiber product. We abuse 

notation in using the same notation for the two projections Hx
G,Drin → Bun∞·x

N− .

Example 5.3.1. Let G = SL2. Then Hx
G,Drin parametrizes a pair of SL2-bundles E1 and 

E2 identified away from x and a non-zero map Ω
1
2
X → E1(∞ · x). The two projections h1

and h2 correspond to the maps to Bun∞·x
N− sending a datum as above to:

(
E1,Ω

1
2
X → E1(∞ · x)

)

(
E2,Ω

1
2
X → E1(∞ · x) $−→ E2(∞ · x)

)

respectively.

We have the usual procedure for producing D-modules on Hx
G from objects of 

SphG,x := D(GrG,x)G(Ox). These give Hecke functors acting on D(BunG), considering 
Hx

G as a correspondence from BunG to itself. We normalize our Hecke functors so that 
we !-pullback along h1 and ∗-pushforward along h2. The same discussion applies for 
D(Bun∞·x

N− ).
We use 4 to denote the action by convolution of SphG,x on these categories.

28 Here we are slightly abusing notation in letting E denote the rank two vector bundle underlying our 
SL2-bundle.
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5.4. Polar Zastava space

We define:
o
Z∞·x ⊆ BunB ×

BunG

Bun∞·x
N−

as the open characterized by the usual condition of generic transversality. We remark 

that 
o
Z∞·x is an indscheme.

Note that 
o
Z ⊆

o
Z∞·x is the fiber of 

o
Z∞·x along BunN− ⊆ Bun∞·x

N− .

Remark 5.4.1. As in the case of usual Zastava, note that 
o
Z∞·x is of local nature with 

respect to X: i.e., the definition makes sense for any smooth curve, and is étale local 
on the curve. Therefore, we typically remove our requirement that X is proper in what 
follows.

5.5. Let DivΛ̌pos,∞·x
eff be the indscheme parametrizing Λ̌-valued divisors on X that 

are Λ̌pos-valued away from x.
As for usual Zastava space, we have the map:

o
Z∞·x

o
π∞·x
−−−→ DivΛ̌pos,∞·x

eff .

Remark 5.5.1. There is a canonical map deg : DivΛ̌pos,∞·x
eff → Λ̌ (considering the target 

as a discrete k-scheme) of taking the total degree of a divisor.

5.6. Factorization patterns

Note that DivΛ̌pos,∞·x
eff is a unital factorization module space for DivΛ̌pos

eff . This means 
that e.g. we have a correspondence:

H

DivΛ̌pos

eff ×DivΛ̌pos,∞·x
eff DivΛ̌pos,∞·x

eff .

For this action, the left leg of the correspondence is the open embedding encoding dis-
jointness of pairs of divisors, while the right leg is given by addition. (For the sake 
of clarity, let us note that the only reasonable notion of the support of a divisor in 
DivΛ̌pos,∞·x

eff requires that x always lie in the support.)
Therefore, as in §4.2, we can talk about unital factorization modules in DivΛ̌pos,∞·x

eff
for a unital graded factorization algebra A ∈ D(DivΛ̌pos

eff ). We denote this category by 
A–modfact

un,x.



44 S. Raskin / Advances in Mathematics 388 (2021) 107856

Remark 5.6.1. The factorization action of DivΛ̌pos

eff on DivΛ̌pos,∞·x
eff is commutative in the 

sense of [35] §7. Indeed, it comes from the obvious action of the monoid DivΛ̌pos

eff on 
DivΛ̌pos,∞·x

eff .

Remark 5.6.2. We emphasize that there is no Ran space appearing here: all the geometry 
occurs on finite-dimensional spaces of divisors.

5.7. There is a similar picture to the above for Zastava. More precisely, 
o
Z∞·x is a 

unital factorization module space for 
o
Z in a way compatible with the structure maps to 

and from the spaces of divisors.
Therefore, for a unital factorization algebra B on 

o
Z, we can form the category 

B–modfact
un (

o
Z∞·x). Moreover, for M ∈ B–modfact

un (
o
Z∞·x), oπ∞·x

∗,dR(M) is tautologically an 

object of oπ∗,dR(B)–modfact
un,x. We denote the corresponding functor by:

o
π∞·x
∗,dR : B–modfact

un (
o
Z∞·x) → o

π∗,dR(B)–modfact
un,x.

5.8. Construction of the geometric Chevalley functor

We now define a functor:

Chevgeom
ň,x : Rep(Ǧ) → Υň–modfact

un,x

using the factorization pattern for Zastava space.

Remark 5.8.1. Following our conventions, Rep(Ǧ) denotes the DG category of represen-
tations of Ǧ.

Remark 5.8.2. We will give a global interpretation of the induced functor to
D(DivΛ̌pos,∞·x

eff ) in §5.12; this phrasing may be easier to understand at first pass.

5.9. First, observe that there is a natural “compactification” Z∞·x of 
o
Z∞·x: for X

proper, it is the appropriate open locus in:

Z∞·x ⊆ Bun∞·x
B ×

BunG

Bun∞·x
N− .

Here Bun∞·x
B is defined analogously to Bun∞·x

N− ; we remark that it has a structure map 
to BunT with fibers the variants of Bun∞·x

N− for other bundles. Again, Z∞·x is of local 
nature on the curve X.

The advantage of Z∞·x is that there is a Hecke action here, so SphG,x acts on D(Z∞·x). 
Note that !-pullback from Bun∞·x

N− commutes with Hecke functors.
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There is again a canonical map to DivΛ̌pos,∞·x
eff , and the factorization pattern of §5.7

carries over in this setting as well, that is, Z∞·x is a unital factorization module space 
for Z.

Moreover, this factorization scheme is compatible with the Hecke action: more pre-
cisely, the action by correspondences of G(Ox)\ GrG,x on Z∞·x upgrades to an action on 
Z∞·x considered as a unital factorization module space for Z. Concretely, this implies 
that for any unital factorization algebra B on Z, B–modfact

un (Z∞·x) carries a canonical 
action of Rep(Ǧ) by convolution, extending the action of Rep(Ǧ) on D(Z∞·x).

5.10. Define Y ⊆ Z∞·x as the preimage of BunN− ⊆ Bun∞·x
N− in Z∞·x. Again, Y is 

of local nature on X.

Remark 5.10.1. The notation 
o
Z∞·x would be just as appropriate for Y as for the space 

we have denoted in this way: both are polar versions of 
o
Z, but for 

o
Z∞·x we allow poles 

for the N−-bundle, while for Y we allow poles for the B-bundle.

There is a canonical map Y → Ga which e.g. for X proper comes from the canonical 
map BunN− → Ga. We can !-pullback the exponential D-module ψ on Ga (normalized 
as always to be in perverse degree −1): we denote the resulting D-module by ψY ∈ D(Y).

We then cohomologically renormalize: define ψIC
Y by:

ψIC
Y := ψY[−(2ρ,deg)].

Here we recall that we have a degree map Y ⊆ Z∞·x → Λ̌, so pairing with 2ρ, we obtain 
an integer valued function on Y: we are shifting accordingly.

Remark 5.10.2. The reason for this shift is the normalization of Theorem 4.6.1: this shift 
is implicit there in the notation 

!
⊗ IC o

Z
. This is also the reason for our notation ψIC

Y .

5.11. Recall that  denotes the embedding 
o
Z ↪→ Z. We let ∞·x denote the map 

o
Z∞·x ↪→ Z∞·x.

Let:

Sat♥x : Rep(Ǧ)♥ $−→ Sph♥G,x

denote the geometric Satake equivalence. Then let:

Satnaivex : Rep(Ǧ) → SphG,x

denote the induced functor.
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We then define Chevgeom
ň,x as the following composition:

Rep(Ǧ) Satnaive
x−−−−−→ SphG,x

−)ψIC
Y−−−−→

∗,dR(ψ o
Z

!
⊗ IC o

Z
)–modfact

un (Z∞·x) ∞·x,!
−−−−→ (ψ o

Z

!
⊗ IC o

Z
)–modfact

un (
o
Z∞·x)

o
π∞·x
∗,dR−−−→ Υň–modfact

un,x.

(5.11.1)
Here in the last step, we have appealed to the identification:

o
π∗,dR(ψ o

Z

!
⊗ IC o

Z
)) = Υň

of Theorem 4.6.1. We also abuse notation in not distinguishing between ψIC
Y and its 

∗-pushforward to Z∞·x.

Remark 5.11.1. The above construction has many steps, so let us spell out each in a 
little more detail.

First, ωY is canonically factorization module for ω o
Z

by functoriality. The same applies 

for ψY and ψ o
Z

, or the shifted versions ψIC
Y and ψ o

Z

!
⊗ IC o

Z
.

We can then ∗-extend to obtain that ψIC
Y (or rather, its ∗-extension to Z∞·x) is 

canonically a factorization module for ∗,dR(ψ o
Z

!
⊗ IC o

Z
).

As in §5.9, there is an action of Rep(Ǧ) on ∗,dR(ψ o
Z

!
⊗ IC o

Z
). So for any V ∈ Rep(Ǧ), 

we can form

V 4 ψIC
Y ∈ ∗,dR(ψ o

Z

!
⊗ IC o

Z
)–modfact

un (Z∞·x).

Next, we !-restrict to 
o
Z∞x to obtain a factorization module

∞·x,!(V 4 ψIC
Y ) ∈ ψ o

Z

!
⊗ IC o

Z
)–modfact

un (
o
Z∞·x).

Finally, we apply the construction of §5.7 and Theorem 4.6.1 to observe that
o
π∞·x
∗,dR

∞·x,!(V 4 ψIC
Y )

is a factorization module for Υň, completing the construction.

5.12. Global interpretation

As promised in Remark 5.8.2, we will now give a description of the functor Chevgeom
ň,x

in the case X is proper.
Since X is proper, we can speak about BunN− and its relatives. Let Whit ∈ D(BunN−)

denote the canonical Whittaker sheaf, i.e., the !-pullback of the exponential sheaf on Ga

(normalized as always to be in perverse degree −1). We then have the functor:
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Rep(Ǧ) → D(DivΛ̌pos,∞·x
eff )

given as the composition:

Rep(Ǧ) Satnaive
x−−−−−→ SphG,x

−)Whit−−−−−→ D(Bun∞·x
N− ) → D(

o
Z∞·x)

o
π∞·x
∗,dR−−−→ D(DivΛ̌pos,∞·x

eff ).

That is, we apply geometric Satake, convolve with the (∗ =!-)pushforward of Whit to 

D(Bun∞·x
N− ), !-pullback to 

o
Z∞·x, and then ∗-pushforward along 

o
π∞·x.

Since !-pullback from Bun∞·x
N− to Z∞·x commutes with Hecke functors, up to the 

cohomological shifts by degrees, this functor computes the object of D(DivΛ̌pos,∞·x
eff )

underlying the factorization Υň-module coming from Chevgeom
ň,x .

5.13. Spectral Chevalley functor

We need some remarks on factorization modules for Υň:
Recall from Remark 4.3.2 that Υň is defined as the chiral enveloping algebra of the 

graded Lie-∗ algebra ňX ∈ D(DivΛ̌pos

eff ). By Remark 5.6.1, we may speak of Lie-∗ modules 
for ňX on DivΛ̌pos,∞·x

eff : the definition follows [35] §7.19. Let ňX–modx denote the DG 

category of Lie-∗ modules for ňX supported on GrT,x ⊆ DivΛ̌pos,∞·x
eff (this embedding is 

as divisors supported at x). We have a tautological equivalence:

ňX–modx ' ň–mod(Rep(Ť )) (5.13.1)

coming from identifying Rep(Ť ) with the DG category of Λ̌-graded vector spaces. 
Note that the right hand side of this equation is just the category of Λ̌-graded ň-
representations.

Moreover, by [35] §7.19, we have an induction functor indch : ňX–modx →
Υň–modfact

un,x.
We then define Chevspec

ň,x : Rep(Ǧ) → Υň–modfact
un,x as the composition:

Rep(Ǧ) Oblv−−−→ Rep(B̌) Oblv−−−→ ň–mod(Rep(Ť ))
(5.13.1)
' ňX–modx indch

−−−→ Υň–modfact
un,x.

(5.13.2)

5.14. Formulation of the main result

We can now give the main result of this section.

Theorem 5.14.1. There exists a canonical isomorphism between the functors Chevspec
ň,x

and Chevgeom
ň,x .

The proof will be given in §5.16 below after some preliminary remarks.
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Remark 5.14.2. As stated, the result is a bit flimsy: we only claim that there is an iden-
tification of functors. The purpose of §7 is essentially to strengthen this identification so 
that it preserves structure encoding something about the symmetric monoidal structure 
of Rep(Ǧ).

5.15. Equalizing the Hecke action

Suppose temporarily that X is a smooth proper curve. One then has the following 
relationship between Hecke functors acting on Bun∞·x

B and Hecke functors acting on 
Bun∞·x

N− .
Let α (resp. β) denote the projection Z∞·x → Bun∞·x

N− (resp. Z∞·x → Bun∞·x
B ). Recall 

that α! and β! commute with the actions of SphG,x.
Let π∞·x denote the canonical map Z∞·x → DivΛ̌pos,∞·x

eff .

Lemma 5.15.1. For F ∈ D(Bun∞·x
N− ), G ∈ D(Bun∞·x

B ), and S ∈ SphG,x, there is a canon-
ical identification:

π∞·x
∗,dR

(
α!(S 4 F)

!
⊗ β!(G)

)
) ' π∞·x

∗,dR

(
α!(F)

!
⊗ β!(S 4 G)

)
.

Proof. By base-change, each of these functors is constructed using a kernel on some 
correspondence between Bun∞·x

N− ×G(Ox)\ GrG,x ×Bun∞·x
B and Div∞·x

eff .
In both cases, one finds that this correspondence is just the Hecke groupoid (at x) for 

Zastava, mapping via h1 to Bun∞·x
N− and via h2 to Bun∞·x

B , with the kernel being defined 
by S. !

5.16. We now give the proof of Theorem 5.14.1.

Proof of Theorem 5.14.1. As Rep(Ǧ) is semi-simple, we are reduced to showing this result 
for V = V λ̌ an irreducible highest weight representation with highest weight λ̌ ∈ Λ̌+.

Step 1. First, we introduce some notation that we will use below.
The commutative monoid structure on DivΛ̌pos,∞·x

eff (given by addition of divisors) 
induces a symmetric monoidal structure on D(DivΛ̌pos,∞·x

eff )), which we de note by 4

here. Clearly D(DivΛ̌pos

eff ) is a symmetric monoidal subcategory.
In addition, DivΛ̌pos

eff canonically acts on Bun∞·x
B and 

o
Z∞·x. We again denote the 

corresponding action on D-module categories by 4.
Finally, for µ̌ ∈ Λ̌, we let δµ̌,x be the skyscraper D-module at the corresponding point 

µ̌ · x ∈ DivΛ̌pos,∞·x
eff (which obviously lies in GrT,x ⊆ DivΛ̌pos,∞·x

eff .

Step 2. Next, we describe the strategy of the argument, which is similar to the proof of 
Theorem 4.4.1.
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Let j : U ↪→ DivΛ̌pos,∞·x
eff be the locally closed subscheme parametrizing divisors of 

the form:

w0(λ̌) · x +
∑

α̌i · xi

where xi ∈ X are pairwise disjoint and distinct from x (this is the analogue of the open 
DivΛ̌pos,simple

eff ⊆ DivΛ̌pos

eff which appeared in the proof of Theorem 4.4.1).
We have an easy commutative diagram:

j!j! Chevgeom
ň,x (V λ̌) $

j!j! Chevspec
ň,x (V λ̌) = j!j!(δw0(λ̌),x 4 Υň)

Chevgeom
ň,x (V λ̌) Chevspec

ň,x (V λ̌).

(5.16.1)

One easily sees that the right vertical map is an epimorphism (this is [12] Lemma 
9.2).

It suffices to show that the left vertical map in (5.16.1) is an epimorphism, and 
that there exists a (necessarily unique) isomorphism in the bottom row of the diagram 
(5.16.1).

This statement is local on X, and therefore we can (and do) assume that X is proper 
in what follows.

Step 3. We now recall some the chiral PBW theorem in our setting. We refer to [35]
§7.19 for proofs, (which closely follows [6] and [19] on these points).

For F ∈ D(DivΛ̌pos

eff )), we let Symn,)(F) ∈ D(DivΛ̌pos

eff )) denote its nth symmetric power 
with respect to 4.

Then the chiral PBW theorem implies that Υň carries a canonical filtration indexed 
by Z!0 with grn Υň ' Symn,)(ňX) ∈ D(DivΛ̌pos

eff ).
More generally, for any F ∈ ňX–modx, Indch(F) carries a canonical Z!0-filtration (as 

an object of D(DivΛ̌pos,∞·x
eff )) with grn Indch(F) ' Symn,)(ňX) 4 F.

In particular, forgetting factorization module structures, Chevspec
ň,x (V ) carries a canon-

ical increasing filtration with:

grn Chevspec
ň,x (V ) ' ⊕

µ̌∈Λ̌
V (µ̌) ⊗ δµ̌,x 4 Symn,)(ňX).

Step 4. We now claim that Chevgeom
ň,x (V λ̌) lies in the heart of the t-structure, and that 

[Chevgeom
ň,x (V λ̌)] = [Chevspec

ň,x (V λ̌)] in the Grothendieck group.29

29 Properly, we mean the following. Note that DivΛ̌pos,∞·x
eff has connected components indexed by Λ̌. We 

mean that for every η̌ ∈ Λ̌, the restriction of these two D-modules to the corresponding connected component 
are (coherent and) holonomic D-modules, and the two coincide in the Grothendieck group of this component.
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By Lemma 5.15.1, for every representation V of Ǧ we have:

π∞·x
∗,dR

(
α!(Satx(V ) 4 Whit)

!
⊗ β!(ICBunB )

)
'

π∞·x
∗,dR

(
α!(Whit)

!
⊗ β!(Satx(V ) 4 ICBunB )

)
.

(5.16.2)

Here ICBunB indicates the ∗-extension of this D-module to Bun∞·x
B .

By definition, Chevgeom
ň,x (V ) is the left hand side of (5.16.2).

Now recall from [12] §8.7 that Satx(V ) 4 ICBunB carries a canonical (finite for finite-
dimensional V ) filtration indexed by coweights with:

grµ̌(Satx(V ) 4 ICBunB ) ' V (µ̌) ⊗ δµ̌,x 4 ICBunB ∈ D(Bun∞·x
B ).

We find that β!(Satx(V ) 4 ICBunB ) carries a similar filtration with

grµ̌(β!(Satx(V ) 4 ICBunB )) ' V (µ̌) ⊗ δµ̌,x 4 IC o
Z

where, as above, IC o
Z
∈ D(

o
Z∞·x) is shorthand for the ∗-extension of this D-module.

By Theorem 4.6.1, we conclude that Chevgeom
ň,x (V ) carries a filtration with:

grµ̌(Chevgeom
ň,x (V )) ' V (µ̌) ⊗ δµ̌,x 4 Υň.

This immediately implies that Chevgeom
ň,x (V ) is concentrated in degree 0.

Finally, the identification with Chevspec
ň,x (V ) in the Grothendieck group follows from 

Step 3.

Step 5. We will use (a slight variant of) the following construction.30
Suppose that Y is a variety and F ∈ D(Y × A1)Gm is Gm-equivariant for the action 

of Gm by homotheties on the second factor, and that F is concentrated in negative 
(perverse) cohomological degrees.

For c ∈ k, let ic denote the embedding Y × {c} ↪→ Y ×A1.
Then, for each k ∈ Z, the theory of vanishing cycles furnishes specialization maps:

Hk(i!1(F)) → Hk(i!0(F)) ∈ D(Y )♥ (5.16.3)

that are functorial in F, and which is an epimorphism for k = 0. Indeed, these maps 
arise from the boundary map in the triangle31:

i!0(F) → Φun(F) var−−→ Ψun(F) +1−−→

30 As Dennis Gaitsgory pointed out to us, one can argue somewhat more directly, by combining 
Lemma 5.15.1 with Theorem 8.11 from [12] (and the limiting case of the Casselman-Shalika formula, The-
orem 3.4.1).
31 Our nearby and vanishing cycles functors are normalized to preserve perversity.
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when we use Gm-equivariance to identify Ψun(F) with F1[1]. The t-exactness of Φun and 
the assumption that F is in degrees < 0 shows that (5.16.3) is an epimorphism for k = 0:

. . . → H−1(Ψun(F)) = H0(i!1(F)) → H0(i!0(F0)) → H0(Φun(F)) = 0

Step 6. We now apply the previous discussion to see that:

Chevgeom
ň,x (V ) ' Chevspec

ň,x (V )

as objects of D(DivΛ̌pos,∞·x
eff ) for V ∈ Rep(Ǧ)♥ finite-dimensional.

Forget for the moment that we chose Chevalley generators {fi} and let W denote the 
vector space (n−/[n−, n−])∗. Note that T acts on W through its adjoint action on n−. 
Let 

o
W ⊆ W denote the open subscheme corresponding to non-degenerate characters.

Then we have a canonical map:

Y ×W → Ga

by imitating the construction of the map can : Z → Ga of (2.8.2). Note that this map is 
T -equivariant for the diagonal action on the source and the trivial action on the target.32

Let W ∈ D(Z∞·x × W )T denote the result of !-pulling back of the exponential D-
module on Ga to Y ×W and then ∗-extending. We then define:

W̃ := (oπ∞·x × idW )∗,dR (∞·x × idW )!
(

Satnaivex (V ) 4 W[−(2ρ,deg)]
)

∈ D(DivΛ̌pos,∞·x
eff ×W )T .

Here the T -equivariance now refers to the T -action coming from the trivial action on 
DivΛ̌pos,∞·x

eff . The notation for the cohomological shift is as in §5.10.
By T -equivariance, the cohomologies of our W̃ are constant along the open stratum 

DivΛ̌pos,∞·x
eff ×

o
W .

Moreover, note that W̃ is concentrated in cohomological degrees " − rank(G) =
− dim(W ): this again follows from Lemma 5.15.1, §8.7 of [12], and ind-affineness of 
o
π∞·x.

Therefore, !-restricting to the line through our given non-degenerate character, Step 
5 gives us the specialization map:

H0(Chevgeom
ň,x (V )) → H0(o

π∞·x
∗,dR

∞·x,!(Satnaivex (V ) 4 ωY[−(2ρ,deg)]))
)

∈ D(DivΛ̌pos,∞·x
eff )♥.

32 We use the canonical T -action on Z, coming from the action of T on BunN− induced by its adjoint 
action on N−.
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By Step 5, this specialization map is an epimorphism.
However, the Zastava space version of Theorem 8.8 from [12] (which is implicit in 

[12] and easy to deduce from there) implies that the right hand term coincides with 
Chevspec

ň,x (V ), and therefore this map is an isomorphism by our Grothendieck group cal-
culation.

Step 7. Finally, we observe that the isomorphism Chevgeom
ň,x (V ) ' Chevspec

ň,x (V ) con-
structed above fits into the diagram (5.16.1). Indeed, this follows from functoriality of 
the specialization and the proof of Theorem 8.8 from [12], namely, that the construction 
of [12] is characterized by Lemma 9.2 from [12].

Therefore, we do actually obtain an isomorphism of factorization modules, giving the 
desired result. !

6. Around factorizable Satake

6.1. Our goal in §7 is to prove a generalization of Theorem 5.14.1 in which we treat 
several points {x1, . . . , xn} ⊆ X, allowing these points to move and collide (in the sense 
of the Ran space formalism). This section plays a supplementary and technical role for 
this purpose.

6.2. Generalizing the geometric side of Theorem 5.14.1 is an old idea: one should use 
the Beilinson-Drinfeld affine Grassmannian GrG,XI and the corresponding factorizable 
version of the Satake category.

Therefore, we need a geometric Satake theorem over powers of the curve. This has 
been treated in [23], but the treatment of [23] is inconvenient for us, relying too much on 
specific aspects of perverse sheaves that do not generalize to non-holonomic D-modules.

6.3. The goal for this section is to give a treatment of factorizable geometric Satake 
for D-modules.

However, most of the work here actually goes into treating formal properties of the 
spectral side of this equivalence. Here we have DG categories Rep(Ǧ)XI which provide 
factorizable versions of the category Rep(Ǧ) appearing in the Satake theory.

These categories arise from a general construction, taking C a symmetric monoidal 
object of DGCatcont (so we assume the tensor product commutes with colimits in each 
variable), and producing CXI ∈ D(XI)–mod. As we will see, this construction is espe-
cially well-behaved for C rigid monoidal (as for C = Rep(Ǧ)).

6.4. Structure of this section

We treat the construction and general properties of the categories CXI in §6.5-6.18, 
especially treating the case where C is rigid. We specialize to the case where C is repre-
sentations of an affine algebraic group in §6.19.
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We then discuss the (naive) factorizable Satake theorem from §6.28 until the end of 
this section.

6.5. Let C ∈ ComAlg(DGCatcont) be a symmetric monoidal DG category. We denote 
the monoidal operation in C by ⊗.

6.6. Factorization

Recall from [35] §7 that we have an operation attaching to each finite set I a D(XI)-
module category CXI .33

We will give an essentially self-contained treatment of this construction below, but 
first give examples to give the reader a feeling for the construction.

Example 6.6.1. For I = ∗, we have CX = C ⊗D(X).

Example 6.6.2. Let I = {1, 2}. Let j denote the open embedding U = X×X\X ↪→ X×X.
Then we have a fiber square:

CX2 C ⊗D(X2)

idC ⊗j!

(
C ⊗ C

)
⊗D(U)

(−⊗−)⊗idD(X2)
C ⊗D(U).

We emphasize that (− ⊗−) indicates the tensor product morphism C ⊗ C → C.

Example 6.6.3. If Γ is an affine algebraic group and we take C = Rep(Γ ), then the above 
says that Rep(Γ )X2 parametrizes a representation of Γ over X2

dR with the structure of a 
Γ ×Γ -representation on the complement to the diagonal, compatible under the diagonal 
embedding Γ ↪→ Γ × Γ .

6.7. For the general construction of CXI , we need the following combinatorics.
First, for any surjection p : I $ J of finite sets, let U(p) denote the open subscheme 

of points (xi)i∈I with xi ,= xi′ whenever p(i) ,= p(i′).

Example 6.7.1. For p : I → ∗, we have U(p) = XI . For p : I id−→ I, U(p) is the locus 
XI

disj of pairwise disjoint points in XI .

We let SI denote the (1, 1)-category indexing data I
p
$ J

q
$ K, where we allow 

morphisms of diagrams that are contravariant in J and covariant in K, and surjective 
termwise.

33 In [35], we use the notation Γ(XI
dR, LocXI

dR
(C)) in place of CXI .
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6.8. For every Σ = (I
p
$ J

q
$ K) in SI , define CΣ ∈ D(XI)–mod as:

CΣ = D(U(p)) ⊗ C⊗K .

For Σ1 → Σ2 ∈ SI , we have a canonical map CΣ1 → CΣ2 ∈ D(XI)–mod constructed 
as follows. If the morphism Σ1 → Σ2 is induced by the diagram:

I
p1

J1
q1

K1

α

I
p2

J2
q2

K2

then our functor is given as the tensor product of:

C⊗K1 → C⊗K2

!
k∈K1

Fk #→ !
k′∈K2

( ⊗
k′′∈α−1(k′)

Fk′′)

and the D-module restriction along the map U(p2) → U(p1).
It is easy to upgrade this description to the homotopical level to define a functor:

SI → D(XI)–mod.

We define CXI as the limit of this functor.

Example 6.8.1. It is immediate to see that this description recovers our earlier formulae 
for I = ∗ and I = {1, 2}.

Remark 6.8.2. This construction unwinds to say the following: we have an object F ∈
C ⊗D(XI) such that for every p : I $ J , its restriction to C ⊗D(U(p)) has been lifted 
to an object of C⊗J ⊗D(U(p)).

Example 6.8.3. For C = Rep(Γ ) with Γ an affine algebraic group, this construction is a 
derived version of the construction of [23] §2.5.

Remark 6.8.4. Obviously each CXI is a commutative algebra in D(XI)–mod. Indeed, each 
term CΣ = D(U(p)) ⊗ C⊗K is so, and the structure functors are canonically symmetric 
monoidal. We have an obvious symmetric monoidal functor:

Loc = LocXI : C⊗I → CXI

for each I, with these functors being compatible under diagonal maps.
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6.9. Factorization

It follows from [35] §7 that the assignment I #→ CXI defines a commutative unital 
chiral category on XdR. For the sake of completeness, the salient pieces of structure here 
are twofold:

(1) For every pair of finite sets I1 and I2, we have a symmetric monoidal map:

CXI1 ⊗ CXI2 → CXI1
∐

I2

of D(XI1
∐

I2)-module categories that is an equivalence after tensoring with D([XI1×
XI2 ]disj).

(2) For every I1 $ I2, an identification:

CXI1 ⊗
D(XI1 )

D(XI2) ' CXI2 .

These should satisfy the obvious compatibilities, which we do not spell out here be-
cause in the homotopical setting they are a bit difficult to say: we refer to [35] §7 for a 
precise formulation.

We will construct these maps in §6.10 and 6.11.

6.10. First, suppose I = I1
∐

I2.
Define a functor SI → SI1 as follows. We send I

p
$ J

q
$ K to I1 $ Image(p|I1) $

Image(q ◦ p|I1). It is easy to see that this actually defines a functor. We have a similar 
functor SI → SI2 , so we obtain SI → SI1 × SI2 .

Given I
p
$ J

q
$ K as above, let e.g. I1

p1$ J1
q1$ K1 denote the corresponding object 

of SI1 .
We have a canonical map:

U(p) ↪→ U(p1) × U(q1) ⊆ XI1 ×XI2 = XI .

We also have a canonical map C⊗K1 ⊗ C⊗K2 → C⊗K induced by tensor product and the 
obvious map K1

∐
K2 → K. Together, we obtain maps:

(D(U(p1)) ⊗ C⊗K1) ⊗ (D(U(p2)) ⊗ C⊗K2) → D(U(p)) ⊗ CK

that in passage to the limit define

CXI1 ⊗ CXI2 → CXI .

That this map is an equivalence over the disjoint locus follows from a cofinality argument.
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6.11. Next, suppose for f : I1 $ I2 is given. We obtain SI2 → SI1 by restriction.
Moreover, for any given I2

p
$ J

q
$ K ∈ SI2 , we have the functorial identifications:

D(U(p)) ⊗ C⊗K ' (D(U(p ◦ f)) ⊗
D(XI1 )

D(XI2)) ⊗ C⊗K)

that give a map:

CXI1 ⊗
D(XI1 )

D(XI2) → CXI2 .

An easy cofinality argument shows that this map is an equivalence.

6.12. A variant

We now discuss a variant of the preceding material a categorical level down.

6.13. First, if A is a commutative algebra in Vect, then there is an assignment 
I #→ AXI ∈ D(XI) defining a commutative factorization algebra. Indeed, it is given by 
the same procedure as before—we have:

AXI := lim
(I

p#J
q#K)∈SI

jp,∗,dR(A⊗K ⊗ ωU(p)) ∈ D(XI). (6.13.1)

The structure maps are as before.

6.14. More generally, when C is as before and A ∈ C is a commutative algebra, we 
can attach a (commutative) factorization algebra I #→ AXI ∈ CXI .

We will need this construction in this generality below. However, the above formula 
does not make sense, since there is no way to make sense of jp,∗,dR(ωU(p)) ⊗A⊗K as an 
object of CXI . So we need the following additional remarks:

We do have AXI defined as an object of D(XI) ⊗ C by the above formula. Moreover, 
as in §6.10, for every p : I $ J we have canonical multiplication maps:

!
j∈J

AXIj → AXI ∈ D(XI) ⊗ C

where Ij is the fiber of I at j ∈ J , and where our exterior product should be understood 
as a mix of the tensor product for C and the exterior product of D-modules. This map 
is an equivalence over U(p).

This says that for every p as above, the restriction of AXI to U(p) has a canonical 
structure as an object of D(U(p)) ⊗C⊗J , lifting its structure of an object of D(U(p)) ⊗C. 
Moreover, this is compatible with further restrictions in the natural sense. This is exactly 
the data needed to upgrade AXI to an object of CXI (which we denote by the same name).
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6.15. ULA objects

For the remainder of the section, assume that C is compactly generated and rigid: 
recall that rigidity means that this means that the unit 1C is compact and every V ∈ C

compact admits a dual.
Under this rigidity assumption, we discuss ULA aspects of the categories CXI : we refer 

the reader to Appendix B for the terminology here, which we assume for the remainder 
of this section.

6.16. Recall that QCoh(XI , CXI ) denotes the object of QCoh(XI)–mod obtained 
from CXI ∈ D(XI)–mod by induction along the (symmetric monoidal) forgetful functor 
D(XI) → QCoh(XI).

Proposition 6.16.1. For F ∈ C⊗I compact, LocXI (F) ∈ CXI is ULA.

We will deduce this from the following lemma.
Let 1CXI = LocXI (1C) denote the unit for the (D(XI)-linear) symmetric monoidal 

structure on CXI .

Lemma 6.16.2. 1CXI is ULA.

Proof. By 1-affineness (see [25]) of XdR and X, the induction functor:

D(X)–mod → QCoh(X)–mod

commutes with limits.34
It follows that QCoh(XI , CXI ) is computed by a similar limit as defines CXI , but with 

QCoh(U(p)) replacing D(U(p)) everywhere.
Since this limit is finite and since each of the terms corresponding to Oblv(1CXI ) ∈

QCoh(XI , CXI ) is compact, we obtain the claim. !

Proof of Proposition 6.16.1. Since the functor C⊗I → CXI is symmetric monoidal and 
since each compact object in C⊗I admits a dual by assumption, we immediately obtain 
the result from Lemma 6.16.2. !

Remark 6.16.3. Proposition 6.16.1 fails for more general C: the tensor product C ⊗C → C

typically fails to preserve compact objects, which implies that LocX2 does not preserve 
compact objects.

34 To fill in the details: 1-affineness means that QCoh(X)–mod (resp. D(X)–mod) canonically identifies with 
ShvCat(X) (resp. ShvCat(XdR)), where we refer to [25] for the definition of ShvCat. Our induction functor 
then corresponds to pullback for sheaves of categories. By [25] §1.1.5, pullback for sheaves of categories 
always commutes with limits.
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6.17. We now deduce the following result about the categories CXI (for the termi-
nology, see Definition B.6.1).

Theorem 6.17.1. CXI is ULA over XI .

We will use the following lemma, which is implicit but not quite stated in [25].

Lemma 6.17.2. Let S be a (possibly DG) scheme (almost) of finite type, and let i : T ↪→
S be a closed subscheme with complement j : U ↪→ S. For D ∈ QCoh(S)–mod, the 
composite functor:

Ker(j∗ : D → DU ) ↪→ D → D ⊗
QCoh(S)

QCoh(S∧
T ) (6.17.1)

is an equivalence, where S∧
T is the formal completion of S along T .

Proof. By [25] Proposition 4.1.5, the restriction functor:

QCoh(S∧
T )–mod → QCoh(S)–mod

is fully-faithful with essential image being those module categories on which objects of 
QCoh(U) ⊆ QCoh(S) act by zero. But the endofunctor Ker(j∗) of QCoh(S)–mod is a 
localization functor for the same subcategory, giving the claim. !

Proof of Theorem 6.17.1. Suppose G ∈ QCoh(XI , CXI ) is some object with:

HomQCoh(XI ,CXI )(P ⊗ Oblv LocXI (F),G) = 0

for all P ∈ QCoh(XI) perfect and all F ∈ C⊗I compact. Then by Proposition 6.16.1, it 
suffices to show that G = 0.

Fix p : I $ J . We will show by decreasing induction on |J | that the restriction of G
to U(p) is zero.

We have the closed embedding XJ
disj ↪→ U(p) with complement being the union:

U(p) \ (XJ
disj) =

⋃

I
q#J ′ q

′
#
(=
J,q′q=p

U(q).

In particular, the inductive hypothesis implies that the restriction of G to this complement 
is zero.

Let X denote the formal completion of XJ
disj in U(p) and let ip : X ↪→ U(p) denote 

the embedding. By Lemma 6.17.2, it suffices to show that:

i∗p(G) = 0 ∈ QCoh(X,CXI ) := QCoh(XI ,CXI ) ⊗
QCoh(XI)

QCoh(X).
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The map X → XI
dR factors through XJ

disj,dR (embedded via p), so by factorization we 
have:

QCoh(XI ,CXI ) ⊗
QCoh(XI)

QCoh(X) = CXI ⊗
D(XI)

QCoh(X) ' C⊗J ⊗ QCoh(X).

This identification is compatible with the functors Loc in the following way. Let 
p
⊗ :

C⊗I → C⊗J denote the map induced by the tensor structure on C. We then have a 
commutative diagram:

C⊗I
LocXI

p
⊗

CXI QCoh(XI ,CXI )

i∗p

C⊗J
id⊗OX

C⊗J ⊗ QCoh(X),

by construction.
Since QCoh(X) is compactly generated by objects of the form i∗p(P) with P ∈

QCoh(U(p)) perfect (and with set-theoretic support in XJ
disj), we reduce to the following:

Each F ∈ C⊗J compact then defines a continuous functor FF : C⊗J ⊗ QCoh(X) →
QCoh(X), and our claim amounts to showing that an object in C⊗J ⊗ QCoh(X) is zero 
if and only if each functor FF annihilates it, but this is obvious e.g. from the theory of 
dualizable categories. !

6.18. Dualizability

Next, we record the following technical result.

Lemma 6.18.1. For every D ∈ D(XI)–mod, the canonical map:

CXI ⊗
D(XI)

D = lim
(I

p#J
q#K)∈SI

(
C⊗K ⊗D(U(p))

)
⊗

D(XI)
D

→ lim
(I

p#J
q#K)∈SI

(
C⊗K ⊗D(U(p)) ⊗

D(XI)
D
)

is an equivalence.

This proof is digressive, so we postpone the proof to Appendix A, assuming it for the 
remainder of this section.

We obtain the following consequence.35

35 We remark that this result is strictly weaker than the above, and more direct to prove.
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Corollary 6.18.2. CXI is dualizable and self-dual as a D(XI)-module category.

Remark 6.18.3. In fact, one can avoid the full strength of Lemma 6.18.1 for our purposes: 
we include it because it gives an aesthetically nicer treatment, and because it appears to 
be an important technical result that should be included for the sake of completeness.

With that said, we apply it below only for D = SphG,XI , and here it is easier: it 
follows from the dualizability of SphG,XI as a D(XI)-module category, which is much 
more straightforward.

6.19. Let Γ be an affine algebraic group. We now specialize the above to the case 
C = Rep(Γ ).

6.20. Induction

Our main tool in treating Rep(Γ )XI is the good behavior of the induction functor 
Avw

XI ,∗ : D(XI) → Rep(Γ )XI introduced below.

6.21. The symmetric monoidal forgetful functor Oblv : Rep(Γ ) → Vect induces 
a conservative functor OblvXI : Rep(Γ )XI → D(XI) compatible with D(XI)-linear 
symmetric monoidal structures.

We abuse notation in also letting OblvXI denote the QCoh(XI)-linear functor:

OblvXI : QCoh(XI ,Rep(Γ )XI ) → QCoh(XI)

promising the reader to always take caution to make clear which functor we mean in the 
sequel.

6.22. Applying the discussion of §6.14, we obtain OΓ,XI ∈ Rep(Γ )XI factorizable 
corresponding to the regular representation OΓ ∈ Rep(Γ ) of Γ (so we are not distin-
guishing between the sheaf OΓ and its global sections in this notation).36

Proposition 6.22.1.

(1) The functor OblvXI : Rep(Γ )XI → D(XI) admits a D(XI)-linear right adjoint37
Avw

XI ,∗ : D(XI) → Rep(Γ )XI compatible with factorization.38
(2) The functor Avw

XI ,∗ maps ωXI to the factorization algebra OΓ,XI introduced above.

36 The D-module OblvXI (OΓ,XI ) ∈ D(XI) (or its shift cohomologically up by |I|, depending on one’s 
conventions) appears in [6] as factorization algebra associated with the constant DX -scheme Γ ×XI → XI .
37 The superscript w stands for weak, and is included for compatibility with [20] §20.
38 More generally, the proof below shows that the analogous statement holds more generally for any sym-
metric monoidal functor F : C → D ∈ DGCatcont with C rigid, where this is generalizing the forgetful 
functor Oblv : Rep(Γ ) → Vect.
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Proof. By Proposition B.7.1 and Theorem 6.17.1, it suffices to show that OblvXI maps 
the ULA generators LocXI (V ) of Rep(Γ )XI to ULA objects of D(XI), which is obvious.

For the second part, note that the counit map OΓ → k ∈ ComAlg(Vect) induces a map 
OblvXI OΓ,XI → ωXI ∈ D(XI) factorizably, and therefore induces factorizable maps:

OΓ,XI → Avw
XI ,∗(ωXI ).

By factorization, it is enough to show that this map is an equivalence for I = ∗, where 
it is clear. !

6.23. Coalgebras

We now realize the categories Rep(Γ )XI in more explicit terms.

Lemma 6.23.1. The functor OblvXI is comonadic, i.e., satisfies the conditions of the 
comonadic Barr-Beck theorem.

In fact, we will prove the following strengthening:

Lemma 6.23.2. For any D ∈ D(XI)–mod, the forgetful functor:

OblvXI ⊗ idD : Rep(Γ )XI ⊗
D(XI)

D → D

is comonadic.

Proof. Using Lemma 6.18.1, we deduce that OblvXI ⊗ idD arises by passage to the limit 
over SI from the compatible system of functors:

Rep(Γ )⊗K ⊗D(U(p)) ⊗
D(XI)

D → D(U(p)) ⊗
D(XI)

D.

Therefore, it suffices to show that each of these functors is conservative and commutes 
with Oblv-split totalizations.

But by [25] Theorem 2.2.2 and Lemma 5.5.4, the functor Rep(Γn) ⊗ E → E is 
comonadic for any E ∈ DGCatcont. This obviously gives the claim. !

6.24. t-structures

It turns out that the categories Rep(Γ )XI admit particularly favorable t-structures.

Proposition 6.24.1. There is a unique t-structure on Rep(Γ )XI (resp. QCoh(XI ,

Rep(Γ )XI )) such that OblvXI is t-exact. This t-structure is left and right complete.
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Proof. We first treat the quasi-coherent case.
For every (I

p
$ J

q
$ K) ∈ SI , the category:

Rep(Γ )⊗J ⊗ QCoh(U(p)) = QCoh(BΓ J × U(p))

admits a canonical t-structure, since it is quasi-coherent sheaves on an algebraic stack. 
This t-structure is left and right complete, and the forgetful functor to QCoh(U(p)) is 
obviously t-exact. Moreover, the structure functors corresponding to maps in SI are t-
exact, and therefore we obtain a t-structure with the desired properties on the limit, 
which is QCoh(XI , Rep(Γ )XI ).

We now deduce the D-module version. We have the adjoint functors39:

QCoh(XI ,Rep(Γ )XI )
ind

Rep(Γ )XI .
Oblv

Since the monad Oblv ind is t-exact on QCoh(XI , Rep(Γ )XI ) and since Oblv is conser-
vative, it follows that Rep(Γ )XI admits a unique t-structure such that the functor40
Oblv[dim(XI)] = Oblv[|I|] : Rep(Γ )XI → QCoh(XI , Rep(Γ )XI ) is t-exact. Since this 
functor is continuous and commutes with limits (being a right adjoint), this t-structure 
on Rep(Γ )XI is left and right complete.

It remains to see that OblvXI : Rep(Γ )XI → D(XI) is t-exact. This is immediate: we 
see that the t-structure we have constructed is the unique one for which the composition 

Rep(Γ )XI
Oblv[|I|]−−−−−→ QCoh(Rep(Γ )XI ) OblvXI−−−−−→ QCoh(XI) is t-exact, and this composition 

coincides with Rep(Γ )XI

OblvXI−−−−−→ D(XI) Oblv[|I|]−−−−−→ QCoh(XI). We obtain the claim, since 
the standard t-structure on D(XI) is the unique one for which OblvXI [|I|] : D(XI) →
QCoh(XI) is t-exact. !

Proposition 6.24.2. The functor Avw
XI ,∗ : D(XI) → Rep(Γ )XI is t-exact for the t-

structure of Proposition 6.24.1, and similarly for the corresponding quasi-coherent func-
tor QCoh(XI) → QCoh(XI , Rep(Γ )XI ).

We will use the following result of [6]. We include a proof for completeness.

Lemma 6.24.3. Let A ∈ Vect♥ be a classical (unital) commutative algebra and let I #→
AXI ∈ D(XI) be the corresponding factorization algebra. Then AXI [−|I|] ∈ D(XI)♥.

Proof. We can assume |I| > 1, since otherwise the result is clear.

39 Apologies are due to the reader for using the different functors Oblv and OblvXI in almost the same 
breath.
40 We use a cohomological shift here since for S smooth, Oblv : D(S) → QCoh(S) only t-exact up to shift 
by the dimension, since Oblv(ωS) = OS . This is because we are working with the so-called left forgetful 
functor, not the right one.
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Choose i, j ∈ I distinct. Let I $ I be the set obtained by contracting i and j onto a 
single element (so |I| = |I| − 1).

The map I $ I defines a diagonal closed embedding ∆ : XI → XI . Let j : U ↪→ XI

denote the complement, which here is affine.
Since ∆!(AXI ) = AXI , the result follows inductively if we show that the map 

j∗,dRj!(AXI ) → ∆∗,dR∆!(AXI )[1] is surjective after taking cohomology in degree −|I|.
Writing I = {i} 

∐
I using the evident splitting, we obtain the following commutative 

diagram from unitality of A and from the commutative factorization structure:

ωX !AXI j∗,dRj!(ωX !AXI ) ∆∗,dR(AXI )[1]

$AX !AXI j∗,dRj!(AX !AXI )

AXI j∗,dRj!(AXI ) ∆∗,dR∆!(AXI )[1]

The top line is obviously (by induction) a short exact sequence in the |I|-shifted heart of 
the t-structure. Since the right vertical map is an isomorphism, this implies the claim. !

Proof of Proposition 6.24.2. E.g., in the quasi-coherent setting: it suffices to show that 
Avw

XI ,∗ ◦ OblvXI is t-exact. This composition is given by tensoring with OΓ,XI ∈ D(XI)
by construction, which we have just seen is in the heart of the t-structure (since Oblv :
D(XI) → QCoh(XI) is t-exact only after a shift by |I|).

It follows that this functor is right t-exact, since it is given by tensoring with something 
in the heart. But it is also left t-exact, since it is right adjoint to the t-exact functor 
OblvXI . !

Corollary 6.24.4. Rep(Γ )XI is the derived category of the heart of this t-structure.

Proof. At the level of bounded below derived categories, this is a formal consequence of 
the corresponding fact for D(XI) and the fact that OblvXI and Avw

XI ,∗ are t-exact.
To treat unbounded derived categories, it suffices to show that the derived category 

of Rep(Γ )♥XI is left complete, but this is clear: the category has finite homological di-
mension. !

6.25. Constructibility

We now show how to recover Rep(Γ )XI from a holonomic version.
This material is not necessary for our purposes, but we include it for completeness. 

The reader may safely skip straight to §6.28.
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6.26. Let Dhol(XI) ⊆ D(XI) denote the ind-completion of the subcategory of 
D(XI) formed by compact objects (i.e., coherent D-modules) that are holonomic in 
the usual sense. We emphasize that we allow infinite direct sums of holonomic objects 
to be counted as such.

Definition 6.26.1. Define the holonomic subcategory Rep(Γ )XI ,hol of Rep(Γ )XI to consist 
of those objects that map into Dhol(XI) under the forgetful functor.

Remark 6.26.2. We have:

Rep(Γ )XI ,hol ' lim
(I

p#J
q#K)

Rep(Γ )⊗K ⊗Dhol(U(p)) ⊆

lim
(I

p#J
q#K)

Rep(Γ )⊗K ⊗D(U(p)) =: Rep(Γ )XI .
(6.26.1)

Indeed, the key point is that Rep(Γ )⊗K⊗Dhol(U(p)) → Rep(Γ )⊗K⊗D(U(p)) is actually 
fully-faithful, and this follows from the general fact that tensoring a fully-faithful functor 
(here Dhol(U(p)) ↪→ D(U(p)) with a dualizable category (here Rep(Γ )⊗K) gives a fully-
faithful functor.

Since e.g. for each p : I $ J , Dhol(XJ) is dualizable as a Dhol(XI)-module category 
(for the same reason as for the non-holonomic categories), we deduce that Rep(Γ )XI ,hol

satisfies the same factorization patterns at Rep(Γ )XI , but with holonomic D-module 
categories being used everywhere. Indeed, the arguments we gave were basically formal 
cofinality arguments, and therefore apply verbatim.

6.27. We have the following technical result.

Proposition 6.27.1. The functor:

Rep(Γ )XI ,hol ⊗
Dhol(XI)

D(XI) → Rep(Γ )XI

is an equivalence.

Remark 6.27.2. In light of (6.26.1), this amounts to commuting a limit with a tensor 
product. However, we are not sure how to use this perspective to give a direct argument, 
since D(XI) is (almost surely) not dualizable as a Dhol(XI)-module category.

Proof of Proposition 6.27.1. The idea is to appeal to use Proposition B.8.1.

Step 1. Let V ∈ Rep(Γ )⊗I be given. We claim that LocXI (V ) lies in Rep(Γ )XI ,hol and 
that the induced object of Rep(Γ )XI ,hol ⊗

Dhol(XI)
D(XI) is ULA in this category (consid-

ered as a D(XI)-module category in the obvious way) if V is compact.
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Indeed, that LocXI (V ) is holonomic follows since OblvXI (V ) is lisse. The ULA con-
dition then follows from Proposition B.5.1 and Remark B.5.2.

Step 2. Next, we claim that Rep(Γ )XI ,hol is generated as a Dhol(XI)-module category by 
the objects LocXI (V ), V ∈ Rep(Γ )⊗I , i.e., the minimal Dhol(XI)-module subcategory 
of Rep(Γ )XI ,hol containing the LocXI (V ) is the whole category.

Indeed, this follows as in the proof of Theorem 6.17.1.

Step 3. We now claim that Rep(Γ )XI ,hol ⊗
Dhol(XI)

D(XI) is ULA as a D(XI)-module 

category.
We have to show that Rep(Γ )XI ⊗

Dhol(XI)
QCoh(XI) is generated as a QCoh(XI)-

module category by objects coming from LocXI (V ). But this is clear from Step 2.

Step 4. Finally, we apply Proposition B.8.1 to obtain the result:
Our functor sends a set of ULA generators to ULA objects. And moreover, by 

Remark 6.26.2, this functor is an equivalence after tensoring with D(XJ
disj) for each 

p : I $ J , giving the result. !

Remark 6.27.3. Taking (6.26.1) as a definition of CXI ,hol for general rigid C, the above 
argument shows that the analogue of Proposition 6.27.1 is true in this generality.

6.28. The naive Satake functor

We now specialize the above to Γ = Ǧ.

6.29. Digression: more on twists

We will work with Grassmannians and loop groups twisted by Pcan
T as in §2.14.

To define GrH,XI for H ∈ {T, B, N−, G}, one exactly follows §2.14.
Similarly, we have a group scheme (resp. group indscheme) H(O)XI (resp. H(K)XI ) 

over XI for H as above, and H(K)XI acts canonically on GrG,XI (as H is a subgroup of 
G by assumption). Trivializing Pcan

T locally on X, the picture becomes the usual picture 
for factorizable versions of the arc and loop groups: cf. [6] and [29] for example.

6.30. Let SphG,XI denote the spherical Hecke category D(GrG,XI )G(O)XI . The as-
signment I #→ SphG,XI defines a factorization monoidal category.

Our goal for the remainder of this section is to construct and study certain monoidal 
functors:

SatnaiveXI : Rep(Ǧ)XI → SphG,XI

compatible with factorization.
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Remark 6.30.1. We follow Gaitsgory in calling this functor naive because it is an equiv-
alence only on the hearts of the t-structures (indeed, it is not an equivalence on Exts 
between unit objects, since equivariant cohomology appears in the right hand side but 
not the left).

6.31. The following results provide toy models for constructing the functors SatnaiveXI .

Lemma 6.31.1. For D ∈ DGCatcont, the map:

{F : Rep(Γ ) → D ∈ DGCatcont} → OΓ –comod(D)
F #→ F (OΓ )

is an equivalence.

Proof. Since Rep(Γ ) is self-dual and since Rep(Γ ) ⊗D Oblv−−−→ Vect⊗D = D is comonadic 
(cf. the proof of Lemma 6.23.1), we obtain the claim. !

Lemma 6.31.2. For D ∈ Alg(DGCatcont) a monoidal (in the cocomplete sense) DG cate-
gory, the map:

{F : Rep(Γ ) → D continuous and lax monoidal} → Alg(OΓ –comod(D))
F #→ F (OΓ )

is an equivalence. Here OΓ –comod(D) is equipped with the obvious monoidal structure, 
induced from that of D.

Remark 6.31.3. Here is a heuristic for Lemma 6.31.2:
Given A ∈ OΓ –comod(D), the corresponding functor Rep(Γ ) → D is given by the 

formula V #→ (V ⊗A)Γ (where the invariants here are of course derived). If A is moreover 
equipped with a Γ -equivariant algebra structure, we obtain the canonical maps:

(V ⊗A)Γ ⊗ (W ⊗A)Γ → (V ⊗A⊗W ⊗A)Γ = (V ⊗W ⊗A⊗A)Γ → (V ⊗W ⊗A)Γ

as desired, where the last map comes from the multiplication on A.

Proof of Lemma 6.31.2. This follows e.g. from the identification of the monoidal struc-
ture of Rep(Γ ) ⊗ D with the Day convolution structure on the functor category 
HomDGCatcont(Rep(Γ ), D), identifying the two via self-duality of Rep(Γ ). !

6.32. We will use the following more sophisticated version of the above lemmas.
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Lemma 6.32.1. For D ∈ D(XI)–mod, the functor:

{F : Rep(Γ )XI → D ∈ D(XI)–mod} → Rep(Γ )XI ⊗
D(XI)

D
Lem. 6.23.2= OΓ,XI–comod(D)

F #→ F (OΓ,XI )

is an equivalence. Giving a lax monoidal structure in the left hand side amounts to giving 
an algebra structure on the right hand side.

Proof. By Lemma 6.18.1, D(XI)-linear functors Rep(Γ )XI → D are equivalent to objects 
of Rep(Γ )XI ⊗D(XI) D.

The result then follows from Lemma 6.23.2 and Lemma 6.31.2. !

6.33. Construction of the functor

By Lemma 6.32.1, to construct SatnaiveXI as a lax monoidal functor, we need to specify 
an object of Rep(Ǧ)XI ⊗D(XI) SphG,XI with an algebra structure.

Such objects Hch
XI ∈ Rep(Ǧ)XI ⊗D(XI) SphG,XI are defined factorizably in Appendix 

B of [23] (they go by the name chiral Hecke algebra and were probably first constructed 
by Beilinson).41 For each I, Hch

XI is concentrated in cohomological degree −|I|.

Example 6.33.1. For I = ∗, Hch
X comes from the regular representation of Ǧ under geo-

metric Satake.

Remark 6.33.2. We emphasize that the general construction (and the data required to 
define the output) is purely abelian categorical, and comes from the usual construction 
of the geometric Satake equivalence.

Lemma 6.33.3. The lax monoidal functors SatnaiveXI are actually monoidal.

Proof. We need to check that some maps between some objects of SphG,XI are isomor-
phisms. It suffices to do this after restriction to strata on XI , and by factorization, we 
reduce to the case I = ∗ where it follows from usual geometric Satake and the construc-
tion of the chiral Hecke algebra. !

6.34. We have the following important fact:

Proposition 6.34.1. SatnaiveXI is t-exact.

We begin with the following.

41 In the notation of [23], we have Hch
Xd = Rd

X [d] = fRd
X [d].
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Lemma 6.34.2. The functor SphG,XI → SphG,XI defined by convolution with Hch
XI is 

t-exact.

Proof. Recall that for each I and J , there is the exterior convolution functor:

SphG,XI ⊗ SphG,XJ → SphG,XI
∐

J

which is a morphism of D(XI
∐

J )-module categories.42 The relation to usual convolution 
is that for J = I, convolution is obtained by applying exterior convolution and then !-
restricting to the diagonal.

The usual semi-smallness argument shows that exterior convolution is t-exact. There-
fore, since Hch

XI lies in degree −|I|, we deduce from the above that convolution with Hch
XI

has cohomological amplitude [−|I|, 0]: in particular, it is right t-exact.
It remains to see that this convolution functor is left t-exact. For a given partition 

p : I $ J , let ip : XJ
disj → XI denote the embedding of the corresponding stratum 

of XI . The !-restriction of Hch
XI to XJ

disj is concentrated in cohomological degree −|J |, 
and is the object corresponding to the regular representation under geometric Satake. 
It follows that the functor of convolution with ip,∗,dRi!p(Hch

XI ) is left t-exact from the 
exactness of convolution in the Satake category for a point. We now obtain the claim by 
dévissage. !

Proof of Proposition 6.34.1. First, we claim that our functor is left t-exact.
We can write SatnaiveXI as a composition of tensoring F with the delta D-module on 

the unit of GrG,XI , convolving with Hch
XI , and then taking invariants with respect to the 

diagonal actions for the ǦJ . The first step is obviously t-exact, and the second step is 
t-exact by Lemma 6.34.2; the third step is obviously left t-exact.

It remains to show that it is right t-exact.
First, let V ∈ Rep(ǦI)♥ = Rep(Ǧ)⊗I,♥. We claim that convolution with

SatnaiveXI (LocXI (V )) is t-exact (as an endofunctor of SphG,XI ).
It suffices to show this for V finite-dimensional, and then duality of V and monoidal-

ity of SatnaiveXI reduces us to showing exactness in either direction: we show that this 
convolution functor is left t-exact. This then follows by the same stratification argument 
as in the proof of Lemma 6.34.2.

In particular, convolving with the unit, we see that SatnaiveXI (LocXI (V )) is concen-
trated in cohomological degree −|I|, and more generally, SatnaiveXI ◦ LocXI is t-exact up 
to this same cohomological shift.

For simplicity, we localize on X to assume X is affine. Then by Theorem 6.17.1, 
Rep(Ǧ)"0

XI is generated under colimits by objects of the form indOblv(LocXI (V )) for 
V ∈ Rep(Γ I)"|I|: indeed, this follows from the observation that ind Oblv is t-exact, 

42 We emphasize that I and J play an asymmetric role in the definition, i.e., the definition depends on an 
ordered pair of finite sets, not just a pair of finite sets.
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which is true since after applying Oblv again, it is given by tensoring with the ind-vector 
bundle of differential operators on XI . The same reasoning shows that indOblv is t-exact 
on SphG,XI , giving the result. !

6.35. The naive Satake theorem

We will not need the following result, but include a proof for completeness. Since we 
are not going to use it, we permit ourselves to provide substandard detail.

Theorem 6.35.1. The functor SatnaiveXI induces an equivalence between the hearts of the 
t-structures:

Sat♥XI : Rep(Ǧ)♥XI

$−→ Sph♥G,XI .

We will give an argument in §6.37.

Remark 6.35.2. In the setting of perverse sheaves, Theorem 6.35.1 is proved in [23] Ap-
pendix B. We provide a different argument from [23] that more easily deals with the 
problem of non-holonomic D-modules.

6.36. Spherical Whittaker sheaves

Our argument for Satake will appeal to the following. Let WhitsphXI denote the cate-
gory of Whittaker D-modules on GrG,XI , i.e., D-modules equivariant against N−(K)XI

equipped with its standard character (we use the ρ̌(ωX)-twist here).
We have a canonical functor SphG,XI → WhitsphXI given by convolution with the unit

object unitWhitsph
XI

∈ WhitsphXI , i.e., the canonical object cleanly extended from GrN−,XI

(i.e., the ∗ and !-extensions coincide here).

Theorem 6.36.1 (Frenkel-Gaitsgory-Vilonen, Gaitsgory, Beraldo). The composite func-
tor:

Rep(Ǧ)XI

Satnaive
XI−−−−−→ SphG,XI → WhitsphXI

is an equivalence.

Proof. We will appeal to Proposition B.8.1.
It is easy to see that the unit object of WhitsphXI is ULA: this follows from the usual 

cleanness argument. We then formally deduce from dualizability of ULA objects in 
Rep(Ǧ)XI and monoidality of SatnaiveXI that the above functor sends ULA objects to 
ULA objects.

Then since these sheaves of categories are locally constant along strata (by factoriz-
ability), we obtain the claim by noting that this functor is an equivalence over a point, 
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as follows from [22] and the comparison of local and global43 definitions of spherical 
Whittaker categories, as has been done e.g. in the unpublished work [26]. !

We also use the following fact about Whittaker categories.

Lemma 6.36.2. The object AvG(O)XI ,∗(unitWhitsph
XI

) ∈ SphG,XI lies in cohomological de-
grees # −|I|. The adjunction map:

unitSphG,XI → AvG(O)XI ,∗(unitWhitsph
XI

)

is an equivalence on cohomology in degree −|I|. (Here unitSphG,XI is the delta D-module 
on XI ∗-pushed forward to GrG,XI using the tautological section).

Proof. The corresponding fact over a point is obvious: the fact that SphG,x → Whitsphx is 
t-exact on hearts of t-structures implies that its right adjoint is left t-exact, so applying 
the above averaging to the unit, one obtains an object in degrees # 0. The adjunction 
map is an equivalence on 0th cohomology because SphG,x → Whitsphx is an equivalence 
on hearts of t-structures.

We then deduce that from factorization that for each p : I $ J , the !-restriction of:

Coker(unitSphG,XI → AvG(O)XI ,∗(unitWhitsph
XI

))

to the corresponding stratum XJ
disj defined by p is concentrated in cohomological degrees 

> −|J |, which immediately gives the claim. !

6.37. We now deduce factorizable Satake.

Proof of Theorem 6.35.1. We have an adjunction SphG,XI WhitsphXI where the 

left adjoint is convolution with the unit and the right adjoint is ∗-averaging with respect 
to G(O)XI .

From Theorem 6.36.1, we obtain the adjunction:

SphG,XI Rep(Ǧ)XI .
Satnaive

XI

Since SatnaiveXI is t-exact, we obtain a corresponding adjunction between the hearts of 
the t-structure. Lemma 6.36.2 implies that the left adjoint is fully-faithful at the abelian 
categorical level, and the right adjoint Satnaive,♥XI is conservative by Theorem 6.36.1, so 
we obtain the claim. !

43 I.e., using Drinfeld’s compactifications as in [22].
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7. Hecke functors: Zastava with moving points

7.1. As in §5, the main result of this section, Theorem 7.9.1, will compare geomet-
rically and spectrally defined Chevalley functors. However, in this section, we work over 
powers of the curve: we are giving a compatibility now between Theorem 4.6.1 and the 
factorizable Satake theorem of §6.

7.2. Structure of this section

In §7.3-7.9, we give moving points analogues of the constructions of §5 and formulate 
our main theorem.

The remainder of the section is dedicated to deducing this theorem from Theo-
rem 7.9.1.

There are two main difficulties in proving the main theorem: working over powers 
of the curve presents difficulties, and the fact that we are giving a combinatorial (i.e., 
involving Langlands duality) comparison of functors in the derived setting.

The former we treat by exploiting ULA objects: cf. Appendix B and §6. These at once 
exhibit good functoriality properties and provide a method for passing from information 
over the disjoint locus XI

disj to the whole of XI .
We treat the homotopical difficulties by exploiting a useful t-structure on factorization 

Υň-modules, cf. Proposition 7.11.1.

7.3. Define the indscheme DivΛ̌pos,∞·x
eff,XI over XI as parametrizing an I-tuple x = (xi)

of points of X and a Λ̌-valued divisor on X that is Λ̌pos-valued on X \ {xi}.

Warning 7.3.1. The notation ∞ ·x in the superscript belies that x is a dynamic variable: 
it is used to denote our I-tuple of points in X. We maintain this convention in what 
follows, keeping the subscript XI to indicate that we work over powers of the curve now.

Remark 7.3.2. We again have a degree map DivΛ̌pos,∞·x
eff,XI → Λ̌.

Let Υň–modfact
un,XI denote the DG category of unital factorization modules for Υň on 

DivΛ̌pos,∞·x
eff,XI .

The two functors we will compare will go from Rep(Ǧ)XI to Υň–modfact
un,XI .

7.4. Geometric Chevalley functor

To construct the geometric Chevalley functor, we imitate much of the geometry that 
appeared in §5.2-5.14.

7.5. For starters, define Bun∞·x
N−,XI → XI as parametrizing x = (xi)i∈I ∈ XI , a 

G-bundle PG on X, and non-zero maps:
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Ω⊗(ρ̌,λ)
X → V λ

PG
(∞ · x)

defined for each dominant weight λ and satisfying the Plucker relations, in the notation 
of §5.2. Here the notation of twisting by OX(∞ · x) makes sense in S-points: for x =
(xi)i∈I : S → XI , we take the sum of the Cartier divisors on X × S associated with the 
graphs of the maps xi to define OX×S(x).

7.6. We can imitate the other constructions in the same fashion, giving the ind-
scheme 

o
Z∞·x

XI (resp. Z∞·x) over XI and the map 
o
π∞·x
XI :

o
Z∞·x

XI → DivΛ̌pos,∞·x
eff,XI (resp. 

π∞·x
XI : Z∞·x

XI → DivΛ̌pos,∞·x
eff,XI ).

Let YXI be the inverse image of XI × BunN− ⊆ Bun∞·x
N−,XI . We have a distinguished 

object ψYXI ∈ D(YXI ), obtained by !-pullback from ωXI !Whit ∈ D(XI ×BunN−), and 
an object ψIC

YXI
obtained from ψYXI by cohomologically shifting according to degrees, 

just as in §5.10.
We also have a D(XI)-linear action of SphG,XI on D(Z∞·x

XI ).
We obtain a D(XI)-linear functor:

Chevgeom
ň,XI : Rep(Ǧ)XI → Υň–modfact

un,XI

imitating our earlier functor Chevgeom
ň,x . Indeed, we use the naive Satake functor, con-

volve with (the ∗-pushforward of) ψIC
YXI

, !-restrict to 
o
Z∞·x

XI , and then ∗-pushforward to 

DivΛ̌pos,∞·x
eff,XI , exactly as in §5.11. That is, our functor is the suitable composition:

Rep(Ǧ)XI

Satnaive
XI−−−−−→ SphG,XI

−)ψ
YIC
XI−−−−−→ ∗,dR(ψ o

Z

!
⊗ IC o

Z
)–modfact

un (Z∞·x
XI ) →

(ψ o
Z

!
⊗ IC o

Z
)–modfact

un (
o
Z∞·x

XI )
o
π∞·x
∗,dR−−−→ Υň–modfact

un,XI .

7.7. Spectral Chevalley functor

To construct Chevspec
ň,XI , we will use the following.

Lemma 7.7.1. The category ňX–modXI of Lie-∗ modules on XI for ňX ∈ Rep(Ť )X
is canonically identified with the category ň–mod(Rep(Ť ))XI , i.e., the D(XI)-module 
category associated with the symmetric monoidal DG category ň–mod(Rep(Ť )) by the 
procedure of §6.6.

Proof. Let Γ ⊆ X ×XI be the union of the graphs of the projections XI → X. Let α
(resp. β) denote the projection from Γ to X (resp. XI).

Since β is proper, one finds that:

β∗,dRα
! : D(X) → D(XI)
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is colax symmetric monoidal, and in particular maps Lie coalgebras for (D(X), 
!
⊗) to Lie 

coalgebras for (D(XI), 
!
⊗).

Moreover, if L ∈ D(X) is a Lie-∗ algebra and compact as a D-module, then its 
Verdier dual DL is a Lie coalgebra in (D(X), 

!
⊗), and L-modules on XI are equivalent 

to β∗,dRα!(DL)-comodules. We have an obvious translation of this for the graded case, 
where e.g. D(GrT,XI ) replaces D(XI). (See [39] Proposition 4.5.2 for a non-derived 
version of this; essentially the same argument works in general.)

One then easily finds that for V ∈ Vect, one has:

β∗,dRα
!(V ⊗ ωX) = lim

(I#J#K)∈SI

jp,∗,dR(V ⊕K ⊗ ωU(p))

where the notation is as in §6. We remark that this limit is a “logarithm” of the one 
appearing in (6.13.1): we use the addition maps V ⊕K → V ⊕K′ for K $ K ′ to give the 
structure maps in the limit, i.e., the canonical structure of commutative algebra on V in 
(Vect, ⊕).

Moreover, this identification is compatible with Lie cobrackets, so that the Lie coal-
gebra (ň∨) ⊗ ωX maps to the Lie coalgebra:

β∗,dRα
!(ň∨ ⊗ ωX) = lim

(I#J#K)∈SI

jp,∗,dR((ň∨)⊕K ⊗ ωU(p)).

This immediately gives the claim. !

Remark 7.7.2. We identify ňX–modXI and ň–mod(Rep(Ť ))XI in what follows. We em-
phasize that although the Λ̌-grading does not appear explicitly in the notation, it is 
implicit in the fact that ňX is always considered as Λ̌-graded.

We obtain the restriction functor:

Rep(B̌)XI → ňX–modXI .

Using the chiral induction functor indch : ňX–modXI → Υň–modfact
un,XI and the restriction 

functor from Ǧ to B̌, we obtain:

Chevspec
ň,XI : Rep(Ǧ)XI → Υň–modfact

un,XI

as desired.

7.8. For convenience, we record the following consequence of Lemma 7.7.1. The 
reader may skip this section.

Recall from [35] §6.12 and §8.14 that the external fusion construction defines a lax 
unital factorization category structure on the assignment:

I #→ Υň–modfact
un,XI .
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Corollary 7.8.1. The lax factorization structure is a true factorization structure. I.e., for 
every I, J ∈ Set<∞, the external fusion functor:

[Υň–modfact
un,XI ⊗ Υň–modfact

un,XJ ] ⊗
D(XI

∐
J )

D([XI ×XJ ]disj)

→ Υň–modfact
un,XI

∐
J ⊗

D(XI
∐

J )
D([XI ×XJ ]disj)

is an equivalence.

Proof. The corresponding result for Lie-∗ modules over ňX follows from Lemma 7.7.1. 
Using the adjoint functors (indch, Oblvch), we see that factorization modules for Υň are 
modules for a monad on Lie-∗ modules, and the two monads obviously match up e.g. by 
the chiral PBW theorem. !

7.9. Formulation of the main theorem

Observe that formation of each of the functors Chevspec
ň,XI and Chevgeom

ň,XI are compatible 
with factorization as we vary the finite set I (here we use the external fusion construction 
Υň–modfact

un,XI ).

Theorem 7.9.1. The factorization functors I #→ Chevspec
ň,XI and I #→ Chevgeom

ň,XI are canon-
ically isomorphic as factorization functors.

The proof of Theorem 7.9.1 will occupy the remainder of this section.

Remark 7.9.2. Here is the idea of the argument: since both functors factorize, we know 
the result over strata of XI by Theorem 5.14.1. We glue these isomorphisms over all of 
XI by analyzing ULA objects.

Remark 7.9.3. This theorem is somewhat loose as stated, as it does not specify how they 
are isomorphic. This is because the construction of the isomorphism is somewhat difficult, 
due in part to the difficulty of constructing anything at all in the higher categorical 
setting.

However, we remark that for G simply-connected, we will see that such an isomorphism 
of factorization functors is uniquely characterized as such. Similarly, for G a torus, it is 
easy to write down such an isomorphism by hand (just as it is easy to write down the 
(naive) geometric Satake by hand in this case). This should be taken to indicate the 
existence of a canonical isomorphism in general. We refer to Remark 7.10.2 and §7.22
for further discussion of this point.

7.10. First, we observe the following.

Lemma 7.10.1. Chevspec
ň,XI and Chevgeom

ň,XI are canonically isomorphic for I = ∗.
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Proof. We are comparing two D(X)-linear functors:

Rep(Ǧ)X = Rep(Ǧ) ⊗D(X) → Υň–modfact
un,X

or equivalently, two continuous functors:

Rep(Ǧ) → Υň–modfact
un,X .

By lisseness along X, we obtain the result from Theorem 5.14.1 (alternatively: the meth-
ods of Theorem 5.14.1 work when the point x is allowed to vary, giving the result). !

Remark 7.10.2. In what follows, we will see that the isomorphism of Theorem 7.9.1
is uniquely pinned down by a choice of isomorphism over X, i.e., an isomorphism as 
in Lemma 7.10.1. Indeed, this will follow from Proposition 7.18.2. Note that we have 
constructed such an isomorphism explicitly in the proof of Theorem 5.14.1, and therefore 
this completely pins down Theorem 7.9.1.

7.11. Digression: a t-structure on factorization modules

We now construct a convenient t-structure for Υň-modules.

Proposition 7.11.1.

(1) There is a (necessarily unique) t-structure on Υň–modfact
un,XI such that the forgetful 

functor:

Oblvch : Υň–modfact
un,XI → D(Div∞·x

eff,XI ) (7.11.1)

is t-exact.
(2) With respect to this t-structure, the chiral induction functor:

indch : ňX–modXI → Υň–modfact
un,XI

is t-exact with respect to the t-structure on the left hand side coming from Proposi-
tion 7.7.1.

(3) This t-structure is left and right complete.

Proof. Note that we have a commutative diagram:

Υň–modfact
un,XI

Oblvch

ňX–modXI

D(DivΛ̌pos,∞·x
eff,XI ) i!

D(GrT,XI )

(7.11.2)
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where we use i to denote the map GrT,XI → DivΛ̌pos,∞·x
eff,XI .

Define (Υň–modfact
un,XI )"0 as the subcategory generated under colimits by ňX–mod"0

XI

by indch. This defines a t-structure in the usual way. Note that an object lies in 
(Υň–modfact

un,XI )>0 if and only if its image under Oblvch lies in ňX–mod>0
XI .

The main observation is that the composition Oblvch ◦ indch is t-exact:
The PBW theorem for factorization modules [35] §7.19 says that for M ∈ ňX–modXI , 

indch(M) has a filtration as an object of D(DivΛ̌pos,∞·x
eff,XI ) with subquotients given by 

symmetric group invariants of the ∗-pushforward of:

ňX [1] ! . . .! ňX [1]︸ ︷︷ ︸
n times

!M ∈ D
(
(DivΛ̌pos

eff )n × GrT,XI

)

along the addition map to DivΛ̌pos,∞·x
eff,XI . Formation of this exterior product is obviously 

t-exact, the ∗-pushforward operation is t-exact by finiteness, and the Sn-invariants are 
t-exact as we work in characteristic 0. So we obtain our claim.

Then from the commutative diagram (7.11.2), we see that Oblvch ◦ indch is left t-exact. 
This immediately implies the t-exactness of indch.

It remains to show that Oblvch is t-exact. By the above computation of Oblvch indch, 
it is right t-exact.

Suppose M ∈ Υň–modfact
un,XI with i! Oblvch(M) ∈ D(GrT,XI )>0. By factorization 

and since Υň ∈ D(DivΛ̌pos

eff )♥, we deduce that Oblvch(M) is in degree > 0. By the 
commutative diagram (7.11.2), this hypothesis is equivalent to assuming that M ∈
(Υň–modfact

un,XI )>0, so we deduce our left t-exactness.
Finally, that this t-structure is left and right complete follows immediately from 

(1). !

Corollary 7.11.2. The functor Chevspec
ň,XI : Rep(Ǧ)XI → Υň–modfact

un,XI is t-exact.

7.12. ULA objects

Next, we discuss the behavior of ULA objects under the Chevalley functors.
In the discussion that follows, we use the term ULA as an abbreviation for ULA over 

XI .

7.13. We begin with a technical remark on the spectral side.

Proposition 7.13.1.

(1) The functor Chevspec
ň,XI maps ULA objects in Rep(Ǧ)XI to ULA objects in Υň–

modfact
un,XI .

(2) For every V ∈ Rep(Ǧ)⊗I , the object Oblvch Chevspec
ň,XI (LocXI (V )) ∈ D(DivΛ̌pos,∞·x

eff,XI )
underlying Chevspec

ň,XI (LocXI (V )) is ind-ULA.
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More precisely, if V is compact, then for every λ̌ ∈ Λ̌, the restriction of this 
D-module to the locus of divisors of total degree λ̌ is ULA.44

Proof. The functor Rep(B̌)XI → ňX–modXI preserves ULA objects by the same argu-
ment as in Proposition 6.16.1, and then the first part follows from D(XI)-linearity of 

the adjoint functors ňX–modXI

indch

Υň–modfact
un,XI .

For the second part, we claim more generally that Oblvch indch maps ULA objects in 
Rep(B̌)XI to objects in D(DivΛ̌pos,∞·x

eff,XI ) whose restriction to each degree is ULA.
To this end, we immediately reduce to the case of one-dimensional representations of 

B̌I , since every compact object of Rep(B̌)⊗I admits a finite filtration with such objects 
as the subquotients.

In the case of the trivial representation of B̌, the corresponding object is the vacuum
representation, which in this setting is obtained by ∗-pushforward from ωXI !Υň along 
the obvious map:

XI × DivΛ̌pos

eff → DivΛ̌pos,∞·x
eff,XI .

Since this map is a closed embedding, we obtain the claim since ωXI !Υň obviously has 
the corresponding property.

The general case of a 1-dimensional representation differs from this situation by a 
translation on DivΛ̌pos,∞·x

eff,XI , giving the claim here as well. !

7.14. Next, we make the following observation on the geometric side.

Proposition 7.14.1.

(1) For every V ∈ Rep(Ǧ)⊗I , Oblvch Chevgeom
ň,XI (LocXI (V )) ∈ D(DivΛ̌pos,∞·x

eff,XI ) is ind-
ULA.

More precisely, for V compact and λ̌ ∈ Λ̌, the restriction of Oblvch ×
Chevgeom

ň,XI (LocXI (V )) to the locus of divisors of total degree λ̌ is ULA.
(2) For V ∈ Rep(Ǧ)⊗I,♥, Chevgeom

ň,XI (LocXI (V )) ∈ Υň–modfact
un,XI lies in cohomological 

degree −|I|.

Proof. As in Proposition 7.13.1 suffices to show that for V ∈ Rep(Ǧ)⊗I,♥ compact, 
Chevgeom

ň,XI (LocXI (V )) admits a filtration by Λ̌I with µ̌-subquotient indch((µ̌) ⊗ V (µ̌), 
where V (µ̌) is the µ̌-weight space of V and (µ̌ ∈ Rep(B̌)⊗I,♥ is the corresponding one 
dimensional representation.

44 Note that this claim is wrong if we do not restrict to components, since ULA objects are compact.
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This follows exactly as in Step 4 of the proof of Theorem 5.14.1: the weight space of 
V ∈ Rep(Ǧ)⊗I appears as a semi-infinite integral à la Mirkovic-Vilonen by the appropri-
ate moving points version of Lemma 5.15.1. !

7.15. We now deduce the following key result, comparing Chevgeom
ň,XI and Chevspec

ň,XI

on ULA objects.

Proposition 7.15.1. The two functors:

Chevgeom
ň,XI ◦LocXI : Rep(Ǧ)⊗I → Υň–modfact

un,XI

Chevspec
ň,XI ◦LocXI : Rep(Ǧ)⊗I → Υň–modfact

un,XI

are isomorphic.
More precisely, there exists a unique such isomorphism extending the isomorphism 

between these functors over XI
disj coming from Lemma 7.10.1 and factorization.

Proof. It suffices to produce an isomorphism between the restrictions of Chevgeom
ň,XI and 

Chevspec
ň,XI to the category of compact objects in the heart of Rep(Ǧ)⊗I,♥.

Suppose V ∈ Rep(Ǧ)⊗I,♥ is compact. By [38] IV.2.8,45 ULAness of
Chevgeom

ň,XI (LocXI (V )) and perversity (up to shift) imply that as a D-module,
Chevgeom

ň,XI (LocXI (V )) is concentrated in one degree, and as such, it is middle extended 
from this disjoint locus. The same conclusion holds for Chevspec

ň,XI (LocXI (V )) for the same 
reason.

Since the isomorphism above over DivΛ̌pos,∞·x
eff,XI ×XIXI

disj is compatible with fac-
torization module structures, we deduce that the factorization module structures on 
Chevgeom

ň,XI (LocXI (V )) and Chevspec
ň,XI (LocXI (V )) are compatible with the middle exten-

sion construction, and we obtain that these two are isomorphic as factorization modules 
for Υň. !

Corollary 7.15.2. The functor Chevgeom
ň,XI is t-exact.

Proof. For simplicity, we localize to assume that X is affine.
First, we claim that Chevgeom

ň,XI is right t-exact.
Indeed, as in the proof of Proposition 6.34.1, Rep(Ǧ)"0

XI is generated under colimits 
by objects of the form indOblv(LocXI (V )) = DXI

!
⊗ LocXI (V ) for V ∈ Rep(ǦI)"|I| =

Rep(Ǧ)⊗I,"|I|.

45 Note that [38] only formulates its claim for complements to smooth Cartier divisors, since this reference 
only defines the ULA condition in this case. However, the claim from [38] is still true in this generality, as 
one sees by combining Beilinson’s theory [5] and Corollary B.5.3.



S. Raskin / Advances in Mathematics 388 (2021) 107856 79

The functor DXI

!
⊗ − is t-exact on D(DivΛ̌pos,∞·x

eff,XI ) (since after applying forgetful 
functors, it is given by tensoring with the ind-vector bundle that is the pullback of 
differential operators on XI), and since:

Chevgeom
ň,XI (DXI

!
⊗ LocXI (V ))

= DXI

!
⊗ Chevgeom

ň,XI (LocXI (V )) Prop. 7.15.1= DXI

!
⊗ Chevspec

ň,XI (LocXI (V ))

we obtain the result from Corollary 7.11.2.
For left t-exactness: let p : I $ J be given, and let ip denote the corresponding locally 

closed embedding XJ
disj → XI . Note that the functors i!p Chevgeom

ň,XI are left t-exact by 
factorization. Therefore, since Chevgeom

ň,XI is filtered by the functors ip,∗,dRi!p Chevgeom
ň,XI , we 

obtain the claim. !

Warning 7.15.3. It is not clear at this point that the isomorphisms of Proposition 7.15.1
are compatible with restrictions to diagonals. Here we note that, as in the proof of [38], 
this question reduces to the abelian category, and here it becomes a concrete, yes-or-
no question. The problem is that the isomorphism of Proposition 7.15.1 was based on 
middle extending from XI

disj ⊆ XI , and for XJ ↪→ XI , XI
disj and XJ

disj do not speak to 
one another. We will deal with this problem in §7.22.

7.16. Factoring through Rep(B̌)XI

Next, we construct a functor:

′Chevgeom
ň,XI : Rep(Ǧ)XI → Rep(B̌)XI

so that the composition:

Rep(Ǧ)XI

′Chevgeom
ň,XI

−−−−−−−→ Rep(B̌)XI → ňX–modXI
indch

−−−→ Υň–modfact
un,XI

identifies with Chevgeom
ň,XI .

Lemma 7.16.1. The t-exact functor:

Rep(B̌)XI → ňX–modXI
indch

−−−→ Υň–modfact
un,XI

is fully-faithful on the hearts of the t-structures.

Proof. The functor Rep(B̌)XI → ňX–modXI is obviously fully-faithful (even at the de-
rived level), as is clear by writing both categories as limits and using the fully-faithfulness 
of the functors Rep(B̌)⊗J → ň–mod(Rep(Ť )⊗J .
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So it remains to show that indch : ňX–modXI → Υň–modfact
un,XI is fully-faithful at the 

abelian categorical level.
This follows from the chiral PBW theorem, as in the proof of Proposition 7.11.1. 

Indeed, let Oblvch denote the right adjoint to indch. Then for M ∈ ňX–mod♥XI , 
Oblvch indch(M) is filtered as a D-module with associated graded terms:

i! addn,∗,dR

(
ňX [1] ! . . .! ňX [1]︸ ︷︷ ︸

n times

! i∗,dR(M)
)Sn

∈ D(GrT,XI ) (7.16.1)

where addn is the addition map:

(DivΛ̌pos

eff )n × DivΛ̌pos,∞·x
eff,XI → DivΛ̌pos,∞·x

eff,XI

and i is the embedding GrT,XI ↪→ DivΛ̌pos,∞·x
eff,XI . It suffices to show that H0 of this term 

vanishes for n ,= 0.
Observe that we have a fiber square:

GreffT,XI ×
XI

. . . ×
XI

GreffT,XI

︸ ︷︷ ︸
n times

×
XI

GrT,XI (DivΛ̌pos

eff )n × DivΛ̌pos,∞·x
eff,XI

addn

GrT,XI
i DivΛ̌pos,∞·x

eff,XI

where GreffT,XI is the locus of points in XI ×Diveff of pairs ((xi)i∈I , D) so that D is zero 

when restricted to X \ {xi} (so the reduced fiber of GreffT,XI over a point x ∈ X
∆−→ XI

is the discrete scheme Λ̌pos).
Let Γ ⊆ X×XI be the incidence divisor, as in the proof of Lemma 7.7.1. For λ̌ given, 

we have a canonical map βλ̌ : Γ → GreffT,XI over XI , sending (x, (xi)ni=1) ∈ Γ to the 
divisor λ̌ · x. More generally, for every datum (λ̌r)nr=1 with λ̌r ∈ Λ̌pos, we obtain a map:

β(λ̌r)nr=1 : Γ ×
XI

. . . ×
XI

Γ → GreffT,XI ×
XI

. . . ×
XI

GreffT,XI .

By base-change, the !-restriction of ňX [1] ! . . . ! ňX [1] ! i∗,dR(M) to GreffT,XI ×
XI

. . . ×
XI

GreffT,XI ×
XI

GrT,XI is the direct sum of terms:

β
(α̌r)nr=1
∗,dR

(
p!
1φ

!(ňα̌1
!
⊗ kX [1])

!
⊗ . . .

!
⊗ p!

nφ
!(ňα̌n

!
⊗ kX [1])

!
⊗ p!

n+1(M)
)
,

where the pi are the projections and ϕ is the map Γ → X, and where the sum runs 
over all n-tuples (α̌r)nr=1 of positive coroots. Since kX [1] = ωX [−1], these terms are 
concentrated in cohomological degree # n, which gives the claim. !
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Proposition 7.16.2. The functor Chevgeom
ň,XI |Rep(Ǧ)♥

XI
factors through Rep(B̌)♥XI ⊆ Υň–

modfact
un,XI .

Proof. Since Rep(Ǧ)"0
XI is generated under colimits by objects of the form ind×

Oblv(LocXI (V )) = DXI

!
⊗LocXI (V ) for V ∈ Rep(ǦI)"|I| = Rep(Ǧ)⊗I,"|I|, Rep(Ǧ)♥XI is 

generated under (for emphasis: possibly non-filtered) colimits by the top cohomologies of 
such objects, i.e., by objects of the form DXI

!
⊗LocXI (V ) for V ∈ Rep(Ǧ)⊗I concentrated 

in degree |I|.
But we have seen that such objects map into Rep(B̌)♥XI , giving the claim. !

We now obtain the desired functor ′Chevgeom
ň,XI from Corollary 6.24.4, i.e., from the fact 

that Rep(Ǧ)XI is the derived category of its heart. These functors factorize as one varies 
I.

7.17. Kernels

By Lemma 6.32.1, the functor ′Chevgeom
ň,XI is defined by a kernel:

Kgeom
XI ∈ Rep(Ǧ× B̌)XI .

Recall that the object of Rep(B̌)XI underlying Kgeom
XI is ′Chevgeom

ň,XI (OǦ,XI ).
We recall that one recovers the functor ′Chevgeom

ň,XI from the kernel Kgeom
XI by the 

following construction. First, for F ∈ Rep(Ǧ)XI , observe that F
!
⊗ KXI ∈ Rep(Ǧ × Ǧ ×

B̌)XI . Then for each p : I $ J , we restrict to U(p) and form invariants with respect to 
ǦJ , which acts diagonally through the embedding:

ǦJ
∆ǦJ×1
↪→ (Ǧ× Ǧ× B̌)J .

Let Kspec
XI ∈ Rep(Ǧ × B̌)XI denote the kernel defining the tautological functor 

Rep(Ǧ) → Rep(B̌), i.e., for each p : I $ J , Kspec
XI |U(p) is given by the regular representa-

tion OǦJ considered as a (ǦJ , B̌J)-bimodule by restriction from its (ǦJ , ǦJ)-bimodule 
structure (i.e., forgetting Kspec

XI down to Rep(Ǧ)XI , we recover OǦ,XI from §6).

7.18. We have the following preliminary observations about these kernels.

Lemma 7.18.1. Kgeom
XI and Kspec

XI are concentrated in cohomological degree −|I| in Rep(Ǧ×
B̌)XI .

Proof. For Kspec
XI , this follows from Lemma 6.24.3.
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By construction, we recover Kgeom
XI as an object of Rep(B̌)XI by evaluating ′Chevgeom

ň,XI

on OǦ,XI . Since this object is concentrated in degree −|I| by Lemma 6.24.3, we obtain 
the claim from t-exactness of Chevgeom

ň,XI . !

Proposition 7.18.2. The group46 of automorphisms of Kspec
XI restricting to the identity 

automorphism on XI
disj is trivial.

Proof. Note that the underlying object of Gpd underlying this group is a set by 
Lemma 7.18.1.

Then automorphisms of Kspec
XI inject into automorphisms of OǦ,XI ∈ Rep(Ǧ)XI , so it 

suffices to verify the claim here.
By adjunction, we have47:

HomRep(Ǧ)XI
(OǦ,XI ,OǦ,XI ) = HomD(XI)(OǦ,XI ,ωXI ).

Therefore, it suffices to show that:

HomD(XI)(OǦ,XI ,ωXI ) → HomD(XI
disj)(j

!(OǦ,XI ),ωXI
disj

) (7.18.1)

is an injection, where j denotes the open embedding XI
disj ↪→ XI .

Note that j!(OǦ,XI ) ' j!(LocXI (OǦ)) is obviously ind-lisse, so j! is defined on it. Let 
i denote the closed embedding of the union of all diagonal divisors into XI , so j is the 
complementary open embedding. We then have the long exact sequence:

0 → Hom(i∗,dRi∗,dR(OǦ,XI ),ωXI ) → Hom(OǦ,XI ,ωXI ) → Hom(j!j!(OǦ,XI ),ωXI ) =
Hom(j!(OǦ,XI ),ωXI

disj
) → . . . .

We can compute the first term as:

Hom(i∗,dRi∗,dR(OǦ,XI ),ωXI ) = Hom(i∗,dR(OǦ,XI ), i!(ωXI ))

which we then see vanishes, since i∗,dR(OǦ,XI ) is obviously concentrated in cohomological 
degrees " −|I| (since OǦ,XI is in degree −|I|), while i!(ωXI ) is the dualizing sheaf of 
a variety of dimension |I| − 1, and therefore is concentrated in cohomological degrees 
# −|I| + 1. !

Remark 7.18.3. Note that by factorization and by the |I| = 1 case, we have an iso-
morphism between Kgeom

XI and Kspec
XI over the disjoint locus. We deduce from Proposi-

tion 7.18.2 that there is at most one isomorphism extending this given isomorphism, 

46 Here by group, we mean a group object of Gpd.
47 We emphasize here that Hom means the groupoid of maps, not the whole chain complex of maps. In 
particular, these Homs are actually sets, not more general groupoids.
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or equivalently, there is at most one isomorphism between ′Chevgeom
ň,XI and the functor 

of restriction of representations that extends the known isomorphism over the disjoint 
locus.

7.19. Commutative structure

The following discussion will play an important role in the sequel.
By factorization:

I #→ Kgeom
XI := ′Chevgeom

ň,XI (OǦ,XI ) ∈ Rep(Ǧ× B̌)XI

is a factorization algebra in a commutative factorization category.

Lemma 7.19.1. I #→ Kgeom
XI is a commutative factorization algebra.

Remark 7.19.2. Since each term Kgeom
XI is concentrated in cohomological degree −|I|, 

this factorization algebra is classical, i.e., of the kind considered in [6]. In particular, its 
commutativity is a property, not a structure.

Proof of Lemma 7.19.1. Let Ξ denote the functor:

Ξ : Rep(Ǧ× B̌)X ⊗ Rep(Ǧ× B̌)X → Rep(Ǧ× B̌)X2 .

By [6] §3.4, we only need to show that there is a map:

Ξ(Kgeom
X ! Kgeom

X ) → Kgeom
X2 ∈ Rep(Ǧ× Rep(B̌)X2 (7.19.1)

extending the factorization isomorphism on X2 \X.
Let i denote diagonal embedding X ↪→ X2 and let j denote the complementary open 

embedding X2
disj ↪→ X2.

Since i!(Kgeom
X2 ) = Kgeom

X is in cohomological degree −1, we have a short exact se-
quence:

0 → Kgeom
X2 → j∗,dRj

!(Kgeom
X2 ) → i∗,dR(Kgeom

X )[1] → 0

in the shifted heart of the t-structure.
Therefore, the obstruction to a map (7.19.1) is the existence of a non-zero map:

Kgeom
X ! Kgeom

X → i∗,dR(Kgeom
X )[1].

We know (from the I = ∗ case of §7.10) that Kgeom
X = LocX(OǦ), so Kgeom

X ! KX is 
similarly localized. It follows that i∗,dR(Kgeom

X ! Kgeom
X ) is concentrated in cohomolog-

ical degree −3, while Kgeom
X [1] is concentrated in cohomological degree −2, giving the 

claim. !
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7.20. Lemma 7.19.1 endows Kgeom
X with the structure of commutative algebra object 

of Rep(Ǧ× B̌)X . Moreover, the Beilinson-Drinfeld theory [6] §3.4 implies that Kgeom
XI can 

be recovered from Kgeom
X equipped with its commutative algebra structure.

Using Lemma 6.32.1, it follows that the factorization functor ′Chevgeom
ň is induced 

from a symmetric monoidal functor F1 : Rep(Ǧ) $−→ Rep(B̌).
Moreover, since Kgeom

X is isomorphic to OǦ,X in Rep(Ǧ× B̌)X , the underlying functor 
of this symmetric monoidal functor F1 is isomorphic to the forgetful functor. It follows 
that F1 factors through the full subcategory Rep(Ǧ) ⊆ Rep(B̌). In what follows, we 
denote the resulting symmetric monoidal functor Rep(Ǧ) → Rep(Ǧ) by F .

Therefore, we obtain a symmetric monoidal functor F : Rep(Ǧ) → Rep(Ǧ) induc-
ing the factorization functor ′Chevgeom

ň by composing F with the restriction functor to 
Rep(B̌) and applying the functoriality of the construction C #→ (I #→ CXI ) from §6. More-
over, F is isomorphic to idRep(Ǧ) as a functor, so in particular, is a symmetric monoidal 
equivalence.

7.21. We claim that F is equivalent as a symmetric monoidal functor to the identity 
functor. Indeed, this follows from the next lemma.

Lemma 7.21.1. Let F̃ : Rep(Ǧ) → Rep(Ǧ) be a symmetric monoidal equivalence such that 
for every λ̌ ∈ Λ̌+, F̃ (V λ̌) is equivalent to V λ̌ in Rep(Ǧ). Then F̃ is (non-canonically) 
equivalent as a symmetric monoidal functor to the identity functor.

Proof. By48 the Tannakian formalism, F̃ is given by restriction along an isomorphism 
ϕ : Ǧ $−→ Ǧ. We need to show that ϕ is an inner automorphism. We now obtain the 
result, since the outer automorphism group of a reductive group is the automorphism 
group of its based root datum and since our assumption implies that the corresponding 
isomorphism is the identity on Λ̌+, and therefore the identity for all of Λ̌. !

7.22. Trivializing the central gerbe

The above shows that there exists an isomorphism of the factorization functors 
Chevgeom

ň and Chevspec
ň .

However, the above technique is not strong enough yet to produce a particular iso-
morphism. Indeed, the isomorphism of Lemma 7.21.1 is non-canonical: the center Z(Ǧ)
acts by automorphisms on the symmetric monoidal functor idRep(Ǧ).

Unwinding the above constructions, we see that factorizable isomorphisms between 
Chevgeom

ň and Chevspec
ň form a trivial Z(Ǧ)-gerbe.

48 In fact, if k is not algebraically closed, there may be a non-trivial Ǧ-torsor on Spec(k) obstructing this 
argument. But one can a priori see that this torsor is trivial using the observations of §7.25. (Alternatively, 
one may assume k is algebraically closed in what follows, and then observe that the ultimate isomorphism 
we produce is manifestly Galois equivariant.)
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In order to trivialize this gerbe, it suffices (by Proposition 7.18.2, cf. Remark 7.18.3) 
to show the following.

Proposition 7.22.1. There exists a (necessarily unique) isomorphism of factorization 
functors Chevgeom

ň ' Chevspec
ň whose restriction to X is the one given by Lemma 7.10.1.

Remark 7.22.2. Even when Z(Ǧ) = ∗, this assertion is not obvious: cf. Warning 7.15.3. 
Essentially, the difficulty is that the identity functor of Rep(Ǧ) admits many automor-
phisms that are not tensor automorphisms.

7.23. We will deduce the above proposition using the following setup.

Lemma 7.23.1. Suppose that we are given a symmetric monoidal functor F : Rep(Ǧ) →
Rep(Ǧ) such that F is (abstractly) isomorphic to the identity as a tensor functor, and 
such that we are given a fixed isomorphism:

α : ResǦ
Ť
◦F ' ResǦ

Ť

of symmetric monoidal functors Rep(Ǧ) → Rep(Ť ) (Res indicates the restriction functor 
here).

Then there exists an isomorphism of symmetric monoidal functors between F and the 
identity functor on Rep(Ǧ) inducing α if and only if, for every V ∈ Rep(Ǧ)♥ irreducible, 
there exists an isomorphism βV : F (V ) $−→ V ∈ Rep(Ǧ) inducing the map:

α(V ) : ResǦ
Ť
F (V ) ' ResǦ

Ť
(V ) ∈ Rep(Ť )

upon application of ResǦ
Ť
.

Moreover, a symmetric monoidal isomorphism between F and the identity compatible 
with α is unique if it exists. At the level of objects, it is given by the maps βV .

Remark 7.23.2. In words: an isomorphism α as above may not be compatible with any 
tensor isomorphism between F and the identity. Indeed, consider the case where Ǧ is 
adjoint, so that a tensor isomorphism between F and the identity is unique if it exists, 
while there are many choices for α as above. However, if this isomorphism exists, it is 
unique. Moreover, the lemma provides an objectwise criterion to test whether or not 
such an isomorphism exists.

Proof. Choose some isomorphism γ between F and the identity functor (of symmetric 
monoidal functors). From α, we obtain a symmetric monoidal automorphism of ResǦ

Ť
. 

By Tannakian theory, this is given by the action of some t ∈ Ť (k).
Since the symmetric monoidal automorphism group of the identity functor of Rep(Ǧ)

is the center of this group, it suffices to show that t lies in the center of Ǧ. (Moreover, 
we immediately deduce the uniqueness from this observation).
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To this end, it suffices to show that t acts by a scalar on every irreducible represen-
tation on Ǧ. But by Schur’s lemma, this follows from our hypothesis. !

7.24. We now indicate how to apply Lemma 7.23.1 in our setup.

7.25. First, we give factorizable identifications of the composite functors:

Rep(Ǧ)XI

′Chevgeom
ň,XI

−−−−−−−→ Rep(B̌)XI → Rep(Ť )XI

with the functors induced from ResǦ
Ť

.
Indeed, we have done this implicitly already in the proof of Proposition 7.14.1: one 

rewrites the functors Chevgeom
ň,XI using (the appropriate generalization of) Lemma 5.15.1, 

and then uses the (factorizable49 form of the) Mirkovic-Vilonen identification of restric-
tion as cohomology along semi-infinite orbits.

7.26. Now suppose that V ∈ Rep(Ǧ)♥ is irreducible.
Then for x ∈X, Theorem 5.14.1 produces a certain isomorphism between Chevgeom

ň,x (V )
and Chevspec

ň,x (V ) in Rep(B̌)♥ ⊆ Υň–modfact,♥
un,x .

To check that the conditions of Lemma 7.23.1 are satisfied, it suffices to show that 
this isomorphism induces the isomorphism of §7.25 when we map to Rep(Ť ).

Fort this, recall that the isomorphism of Theorem 5.14.1 was constructed using a 
related isomorphism from [12] Theorem 8.8. The isomorphism of [12] has the property 
above, as is noted in [12]. Since the construction in Theorem 5.14.1 for reducing to the 
setting of [12] is compatible with further restriction to Rep(Ť ), we obtain the claim.

Appendix A. Proof of Lemma 6.18.1

A.1. Suppose that we have a diagram i #→ Ci ∈ DGCatcont of categories with each 
Ci dualizable with dual C∨

i in the sense of [24].
In this case, we can form the dual diagram i #→ C∨

i .
We can ask: when is C := limi∈Iop Ci dualizable with dual colimi∈I C∨

i ? More precisely, 
there is a canonical Vect valued pairing between the limit and colimit here, and we can 
ask when it realizes the two categories as mutually dual.

As in [24], we recall that this occurs if and only if colimi∈I C∨
i is dualizable, which 

occurs if and only if, for every D ∈ DGCatcont, the canonical map:
(

lim
i∈Iop

Ci

)
⊗ D → lim

i∈Iop

(
Ci ⊗ D

)

is an equivalence.

49 This generalization is straightforward given the Mirkovic-Vilonen theory and the methods of this section 
and §6.
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This section gives a criterion, Lemma A.2.1, in which this occurs, and which we will 
use to deduce Lemma 6.18.1 in §A.3

A.2. A dualizability condition

Suppose we have a diagram:

C2

ψ

C1
F

C3

of dualizable categories. Let C denote the fiber product of this diagram.
The main result of this section is the following.

Lemma A.2.1. Suppose that ψ and F have right adjoints ϕ and G respectively. Suppose 
in addition that G is fully-faithful.

Then if each Ci is dualizable, C is dualizable as well. Moreover, for each D ∈
DGCatcont, the canonical map:

C ⊗ D → C1 ⊗ D ×
C3⊗D

C2 ⊗ D (A.2.1)

is an equivalence.

The proof of this lemma is given in §A.7.

A.3. Proof of Lemma 6.18.1

We now explain how to deduce Lemma 6.18.1.

Proof that Lemma A.2.1 implies Lemma 6.18.1. Fix I a finite set. We proceed by induc-
tion on |I|, the case |I| = 1 being obvious.

Recall that we have C ∈ DGCatcont rigid and symmetric monoidal, and X a smooth 
curve.

By 1-affineness of XI
dR and XI (cf. [25]), we easily reduce to checking the cor-

responding fact in the quasi-coherent setting. Note that by rigidity of QCoh(XI), 
dualizability questions in QCoh(XI)–mod are equivalent to dualizability questions in 
DGCatcont.

Let U ⊆ XI be the complement of the diagonally embedded X ↪→ XI . We can then 
express CXI as a fiber product:
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QCoh(XI ,CXI ) QCoh(XI ,CXI ) ⊗
QCoh(XI)

QCoh(U)

QCoh(XI) ⊗ C QCoh(U) ⊗ C.

The two structure functors involved in defining this pullback admit continuous right 
adjoints, and the right adjoint to the bottom functor is fully-faithful. Moreover, the 
bottom two terms are obviously dualizable. Therefore, by Lemma A.2.1, it suffices to 
see that formation of the limit involved in defining the top right term commutes with 
tensor products over QCoh(U).

Note that U is covered by the open subsets U(p) for p : I $ J with |J | > 1. By 
Zariski descent for sheaves of categories, it suffices to check the commutation of tensor 
products and limits after restriction to each U(p). But this follows from factorization 
and induction, using the same cofinality result as in §6.10. !

A.4. The remainder of this section is devoted to the proof of Lemma A.2.1.

A.5. Gluing

Define the glued category Glue to consist of the triples (F, G, η) where F ∈ C1, G ∈ C2, 
and η is a morphism η : ψ(G) → F (F) ∈ C3.

Note that the limit C := C1 ×C3 C2 is a full subcategory of Glue.

Lemma A.5.1. The functor C ↪→ Glue admits a continuous right adjoint.

Proof. We construct this right adjoint explicitly:
For (F, G, η) as above, define F̃ ∈ C1 as the fiber product:

F̃ Gψ(G)

G(η)

F GF (F).

Since G is fully-faithful, the map ε : F (F̃) → FGψ(G) ' ψ(G) is an isomorphism, and 
therefore (F̃, G, ε) defines an object of C. It is easy to see that the resulting functor is 
the desired right adjoint. !

A.6. Let D ∈ DGCatcont be given.
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Define GlueD as with Glue, but instead use the diagram:

C2 ⊗ D

ψ⊗idD

C1 ⊗ D
F⊗idD

C3 ⊗ D

Lemma A.6.1. The canonical functor:

Glue ⊗ D → GlueD

is an equivalence.

Proof. First, we give a description of functors Glue → E ∈ DGCatcont for a test object E:
We claim that such a functor is equivalent to the datum of a pair ξ0 : C1 → E and 

ξ1 : C2 → E of continuous functors, plus a natural transformation:

ξ1ϕF → ξ0

of functors C1 → E.
Indeed, given a functor Ξ : Glue → E as above, we obtain such a datum as follows: 

for F ∈ C1, we let ξ0(F) := Ξ(F[−1], 0, 0), for G ∈ C2 we let ξ1(G) := Ξ(0, G, 0) (here we 
write objects of Glue as triples as above). The natural transformation comes from the 
boundary morphism for the exact triangle Glue:

(F, 0, 0) → (F,ϕF (F), ηF) → (0,ϕF (F), 0) +1−−→

where ηF is the adjunction map ψϕF (F) → F (F). It is straightforward to see that this 
construction is an equivalence.

This universal property then makes the above property clear. !

A.7. We now deduce the lemma.

Proof of Lemma A.2.1. We need to see that for every D ∈ DGCatcont, the map (A.2.1)
is an equivalence.

First, observe that each of these categories is a full subcategory of GlueD. Indeed, for 
the left hand side of (A.2.1), this follows from Lemma A.5.1, and for the right hand side, 
this follows from Lemma A.6.1. Moreover, this is compatible with the above functor by 
construction.

Let L denote the right adjoint to i : C ↪→ Glue, and let LD denote the right adjoint 
to the embedding:

iD : C1 ⊗ D ×
C3⊗D

C2 ⊗ D ↪→ GlueD.
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We need to show that:

(i ◦ L) ⊗ idD = iD ◦ LD

as endofunctors of GlueD, since the image of the left hand side is the left hand side of 
(A.2.1), and the image of the right hand side is the right hand side of (A.2.1).

But writing GlueD as Glue ⊗ D, this becomes clear. !

Appendix B. Universal local acyclicity

B.1. Notation

Let S be a scheme of finite type and let C be a D(S)-module category in DGCatcont. 
Let QCoh(S, C) denote the category C ⊗D(S) QCoh(S).

Remark B.1.1. Everything in this section works with S a general DG scheme almost 
of finite type. The reader comfortable with derived algebraic geometry may therefore 
happily understand scheme in the derived sense everywhere here.

B.2. The adjoint functors50:

QCoh(S)
ind

D(S)
Oblv

induce adjoint functors:

QCoh(S,C)
ind

C.
Oblv

Lemma B.2.1. The functor Oblv : C → QCoh(S, C) is conservative.

Proof. This is shown in [27] in the case C = D(S).
In the general case, it suffices to show that ind : QCoh(S, C) → C generates the target 

under colimits. It suffices to show that the functor:

QCoh(S) ⊗ C → D(S) ⊗ C → D(S) ⊗
D(S)

C

generates, as it factors through ind. But the first term generates by the [27] result, and 
the second term obviously generates. !

50 Throughout this section, we use only the “left” forgetful and induction functors from [27].
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B.3. Universal local acyclicity

We have the following notion.

Definition B.3.1. F ∈ C is universally locally acyclic (ULA) over S if Oblv(F) ∈
QCoh(S, C) is compact.

Notation B.3.2. We let CULA ⊆ C denote the full (non-cocomplete) subcategory of ULA 
objects.

B.4. We have the following basic consequences of the definition.

Proposition B.4.1. For every F ∈ CULA and for every compact G ∈ D(S), G 
!
⊗ F is 

compact in C.

Proof. Since ind : QCoh(S) → D(S) generates the target, objects of the form ind(P) ∈
D(S) for P ∈ QCoh(S) perfect generate the compact objects in the target under finite 
colimits and direct summands.

Therefore, it suffices to see that ind(P) 
!
⊗F is compact for every perfect P ∈ QCoh(S).

To this end, it suffices to show:

ind(P ⊗ Oblv(F)) $−→ ind(P)
!
⊗ F (B.4.1)

since the left hand side is obviously compact by the ULA condition on F. We have an 
obvious map from the left hand side to the right hand side. To show it is an isomorphism, 
we localize to assume S is affine, and then by continuity this allows us to check the claim 
when P = OS . Then the claim follows because ind and Oblv are D(S)-linear functors. !

Corollary B.4.2. Any F ∈ CULA is compact in C.

Example B.4.3. Suppose that S is smooth and C = D(S). Then F is ULA if and only if F
is compact with lisse cohomologies. Indeed, if F is ULA, the cohomologies of Oblv(F) ∈
QCoh(S) are coherent sheaves and therefore the cohomologies of F are lisse.

Proposition B.4.4. Suppose that F : C → D is a morphism in D(S)–mod with a D(S)-
linear right adjoint G. Then F maps ULA objects to ULA objects.

Proof. We have the commutative diagram:

C
F

Oblv

D

Oblv

QCoh(S,C) QCoh(S,D)
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and the functor QCoh(S, C) → QCoh(S, D) preserves compact objects by assumption on 
F . !

B.5. Reformulations

For F ∈ C, let HomC(F, −) : C → D(S) denote the (possibly non-continuous) functor 
right adjoint to D(S) → C given by tensoring with F.

Proposition B.5.1. For F ∈ C, the following conditions are equivalent.

(1) F is ULA.
(2) HomC(F, −) : C → D(S) is continuous and D(S)-linear.
(3) For every M ∈ D(S)–mod and every M ∈ M compact, the induced object:

F !
D(S)

M ∈ C ⊗
D(S)

M

is compact.

Proof. First, we show (1) implies (2).
By Proposition B.4.1, the functor D(S) → C of tensoring with F preserves compact 

objects, so its right adjoint is continuous. We need to show that HomC(F, −) is D(S)-
linear.

Observe first that Oblv HomC(F, −) computes51 HomQCoh(S,C)(Oblv(F), Oblv(−)) :

C → QCoh(S). Indeed, both are right adjoints to (− 
!
⊗ F) ◦ ind = ind ◦(− ⊗ Oblv(F)), 

where we have identified these functors by (B.4.1).
Then observe that:

HomQCoh(S,C)(Oblv(F),−) : QCoh(S,C) → QCoh(S)

is a morphism of QCoh(S)-module categories: this follows from rigidity of QCoh(S). This 
now easily gives the claim since Oblv is conservative.

Next, we show that (2) implies (3).
Let M and M ∈ M be as given. The composite functor:

Vect −⊗M−−−−→ M = D(S) ⊗
D(S)

M
(−

!
⊗F)⊗idM−−−−−−−−→ C ⊗

D(S)
M

obviously sends k ∈ Vect to F !
D(S)

M. But this composite functor also obviously admits 
a continuous right adjoint: the first functor does because M is compact, and the second 
functor does because D(S) → C admits a D(S)-linear right adjoint by assumption.

51 The notation indicates internal Hom for QCoh(S, C) considered as a QCoh(S)-module category.
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It remains to show that (3) implies (1), but this is tautological: take M = QCoh(S). !

Remark B.5.2. Note that conditions (2) and (3) make sense for any algebra A ∈
DGCatcont replacing D(S) and any F ∈ C a right A-module category in DGCatcont. 
That (2) implies (3) holds in this generality follows by the same argument.

Here is a sample application of this perspective.

Corollary B.5.3. For G ∈ D(U) holonomic and F ∈ CULA, j!(G 
!
⊗ j!(F)) ∈ C is defined, 

and the natural map:

j!(G
!
⊗ j!(F)) → j!(G)

!
⊗ F

is an isomorphism. In particular, j!(F) is defined.

Proof. We begin by showing that there is an isomorphism:

j!(HomC(F,−)) ' HomCU
(j!(F), j!(−))

as functors C → D(U). Indeed, we have:

j∗,dRj
!(HomC(F,−)) = j∗,dR(ωU )

!
⊗ HomC(F,−) = HomC(F, j∗,dR(ωU )

!
⊗ (−))

and the right hand side obviously identifies with j∗,dRHomCU
(j!(F), j!(−)).

Now for any F̃ ∈ C, we see:

HomC(j!(G)
!
⊗ F, F̃) = HomD(S)(j!(G),HomC(F, F̃)) = HomD(U)(G, j!HomC(F, F̃)) =

HomD(U)(G,HomC(j!(F), j!(F̃))) = HomCU (G
!
⊗ j!(F), j!(F̃))

as desired. !

B.6. We now discuss a ULA condition for D(S)-module categories themselves.

Definition B.6.1. C as above is ULA over S if QCoh(S, C) is compactly generated by 
objects of the form P ⊗ Oblv(F) with F ∈ CULA and P ∈ QCoh(S) perfect.

Example B.6.2. D(S) is ULA. Indeed, ωS is ULA with Oblv(ωS) = OS .

Lemma B.6.3. If C is ULA, then C is compactly generated.

Proof. Immediate from conservativity of Oblv. !
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B.7. In this setting, we have the following converse to Proposition B.4.4.

Proposition B.7.1. For C ULA, a D(S)-linear functor F : C → D admits a D(S)-linear 
right adjoint if and only if F preserves ULA objects.

Proof. We have already seen one direction in Proposition B.4.4. For the converse, suppose 
F preserves ULA objects.

Since C is compactly generated and F preserves compact objects, F admits a contin-
uous right adjoint G.

We will check linearity using Proposition B.5.1:
Suppose that F ∈ D(S). We want to show that the natural transformation:

F
!
⊗G(−) → G(F

!
⊗−)

of functors D → C is an equivalence.
It is easy to see that it is enough to show that for any G ∈ CULA, the natural trans-

formation of functors D → D(S) induced by applying HomC(G, −) is an equivalence.
But this follows from the simple identity HomD(F (G), −) = HomC(G, G(−)). Indeed, 

we see:

HomC(G,F
!
⊗G(−)) = F

!
⊗ HomC(G, G(−)) = F

!
⊗ HomD(F (G), (−)) =

HomD(F (G),F
!
⊗ (−)) = HomD

(
G, G(F

!
⊗ (−))

)

as desired. !

B.8. Suppose that i : T ↪→ S is closed with complement j : U ↪→ S.
Given a D(S)-module category C, define:

CU := C ⊗
D(S)

D(U), CT := C ⊗
D(S)

D(T ).

Similarly, given a morphism F : C → D in D(S)–mod, let FU : CU → DU and FT : CT →
DT be the induced functors.

Proposition B.8.1. Suppose F : C → D is a morphism in D(S)–mod with C ULA as a 
D(S)-module category. Then F is an equivalence if and only if it preserves ULA objects 
and the functors FU and FT are equivalences.

Remark B.8.2. Note that a result of this form is not true without ULA hypotheses: the 
restriction functor D(S) → D(U) ⊕D(T ) is D(S)-linear and an equivalence over T and 
over U , but not an equivalence.
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Proof of Proposition B.8.1. By Proposition B.7.1, the functor F admits a D(S)-linear 
right adjoint G. We need to check that the unit and counit of this adjunction are equiv-
alences.

By the usual Cousin dévissage, we reduce to checking that the unit and counit are 
equivalences for objects pushed forward from U and T . But by D(S)-linearity of our 
functors, this follows from our assumption. !
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