Two-dimensional microtwist modeling of topological
polarization in hinged Kagome lattices and its experimental
validation

Hui Chen®P, Shaoyun Wang®, Xiaopeng Li", Guoliang Huang"*

@ Piezoelectric Device Laboratory, School of Mechanical Engineering and Mechanics, Ningbo
University, Ningbo 315211, China
b Department of Mechanical and Aerospace Engineering, University of Missouri, Columbia, MO
65211, USA

Abstract

Kagome lattices have recently attracted a great attention because of the unique me-
chanical properties including their topological polarization and localized zero modes
at certain edges, which challenge the standard effective continuum theories. The pre-
vious study of these systems has been predominantly focused on the ideal Kagome
lattice with the spring-mass models. In this study, we stretch this paradigm by
exploring the hinged Kagome lattices towards practical application to understand
the topological polarization under the framework of the microtwist continuum. The
hinges are modelled by ligaments capable of supporting stretching, shear and bend-
ing deformations. The microtwist elasticity is then formulated thanks to leading
order two-scale asymptotics and its constitutive and balance equations are derived.
Performance of the proposed theory is validated by the exact solution for predicting
dispersion relations and periodic zero modes. We further demonstrate the effective-

ness of this theory through numerical simulations as well as experimental testing.
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Finally, nonuniform deformation under complex loadings and parity asymmetric sur-
face waves in microtwist media are explored. Our study provides a great potential
of using the microtwist medium to design, control and program hinge-based meta-

materials.

Keywords: Microtwist continuum, Zero modes, Parity asymmetry, Polarized

behavior, Hinge-based metamaterials

1. Introduction

Because of the highest structure efficiency per unit weight, mechanical lattices are
broadly used in weight-critical applications like aerospace engineering and automobile
industry. When the element has poor connectivity, the lattice-based material exhibits
a number of zero deformation modes that cost little to no elastic energy (Grima and
Evans, 2000; Coulais, 2016; Coulais et al., 2018; Czajkowski et al., 2022). Although
disastrous in some scenarios, the presence of zero modes could be beneficial. The
use of pentamode materials with five zero modes is the most spectacular application
in acoustic cloaking (Milton and Cherkaev, 1995; Kadic et al., 2012; Norris and
Shuvalov, 2011; Milton, 2013). In addition, polar materials with one intrinsic zero
mode have been successfully suggested in elastic cloaking (Nassar et al., 2018, 2019,
2020b; Zhang et al., 2020; Xu et al., 2020). In those applications, zero modes in
the lattice appear with Parity (P)-symmetry, i.e., the solution invariance under the
spatial inversion.

As a matter of fact, there are also mechanical lattices with a broken P-symmetry,
which means that the solution is variant under the space inversion. Lattice materials
with such property are polarized whose zero modes grow in amplitude in a prefer-
ential direction and decay in the opposite direction. Kagome lattices are one of the

outstanding examples on topological polarization in isostatic lattices. For example,



a regular Kagome lattice exhibits P-symmetry bulk zero modes which maintain uni-
form amplitude across the whole lattice. However, general geometric distortions of
the lattice will make zero modes polarized where the zero modes adopt exponen-
tial profiles that decay towards the bulk and re-localize at free boundaries. Kane
and Lubensky (2014) characterized the conditions under which the re-localization
of zero modes towards the free boundaries of a distorted lattice happens unevenly
and favors certain boundaries over their opposites. The resulting P-asymmetric dis-
tribution of zero modes in Kagome lattices are topological in nature which can be
quantified by a topological polarization vector, so that they are immune to contin-
uous perturbations, small and large, as long as the signs of distortion parameters
remain unchanged. The topological polarization leads to the appearance of elastic
polarization effects whereby a finite sample appears hard when indented on one side
and soft when indented on the opposite side (Rocklin et al., 2017; Bilal et al., 2017).
The polarization behavior due to P-asymmetric zero modes cannot be properly cap-
tured from the perspective of conventional continuum mechanics and even micropolar
theory (Cosserat and Cosserat, 1909). Recently, based on spring-mass models, we
formulated a new microtwist theory capable of rendering polarization effects of the
ideal 2D Kagome lattice and 3D pyrochlore lattice on a macroscopic scale and quanti-
tatively predicting the polarized indentation response of finite samples (Nassar et al.,
2020a; Xia et al., 2021). However, the developed continuum theory cannot directly
be applied to study polarization behavior of physical Kagome lattices featuring solid
triangles connected with elastic hinges, which can be manufactured via laser cutting
technique (see Fig. 1a). The ligaments connecting the triangular plates of each cell
are slender beamlike structural elements endowed with finite thickness, which can
deform under stretching, shear and bending mechanisms in the plane of the lattice,

with the bending stiffness being significantly smaller than the stretching and shear



stiffnesses. The local deformation occurring at ligaments, which can be described
via three corresponding stiffnesses, has a significant impact on the global charac-
teristics of hinged Kagome lattices. To the best of our knowledge, there exists no
known elasticity theory in modeling the hinged Kagome lattices to consider the hy-
brid mechanism where the hinges carry bending, stretching and shear deformations
and quantitatively predict polarization effects.

It is the purpose of the present paper to propose a generalized 2D effective medium
theory of the physical hinged Kagome lattice, which is capable of faithfully repro-
ducing microstructural zero modes and related polarization effects on the continuum
scale. Theoretical formulations are conducted for the hinged Kagome lattice by
considering the stretching, bending and shear deformations in the ligaments as flex-
ible beams. Specifically, since the bending stiffness of ligaments does not allow free
relative rotation of the plates, the zero-energy topological modes are lifted to finite
frequencies, which is strikingly different from the one from the ideal Kagome lattices.
By progressively perturbing the geometry of regular hinged Kagome lattices so as to
transform them into distorted ones, the total displacement field is composed of the
macroscopic displacement field and of an additional degree of freedom (DOF), namely
the twisting motion, directly related to a microstructural zero mode. The resulting
microtwist theory is therefore an enriched continuum allowing for the presence of
periodic zero mode in the form of an additional DOF and the additional odd-order
tensor elasticity constants are responsible for non-standard elasticity behavior, in
particular P-asymmetry.

The paper is organized as follows. In Section 2, we establish a discrete model by
replacing hinges with flexible beams and determine the governing equations. Peri-
odic zero modes in hinged Kagome lattices are then investigated. In Section 3, we

take the perturbation assumptions and derive microtwist elasticity for the weakly-
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distorted hinged Kagome lattices. The performance of microtwist elasticity is then
validated by comparing with the exact solution of disperion relations and zero modes
for hinged Kagome lattices. In Section 4, we validate the microtwist theory through
indentation and three-point bending experiments. In Section 5, we provide numerical
demonstrations of nonuniform deformations and parity asymmetric wave behaviors

in microtwist media. The last section contains a brief conclusion.

2. Kinematics and dynamics of the hinged Kagome lattices and zero

modes

General hinged Kagome lattices are introduced and classified into two phases,
regular and distorted, based on the number and type of zero modes they support.
To capture the zero modes of the hinged Kagome lattices, we first establish a discrete
model in which we consider rigid triangles connected by ligaments acting as hinges
which are represented by flexible beams with finite length to support stretching, shear
and bending deformations. Their geometry, kinematics and dynamics of the lattices
are then formulated in anticipation of the needs of formulation of the microtwist

theory in Section 3.

2.1. Discrete modeling of the hinged Kagome lattices

Consider the regular hinged Kagome lattice shown in Fig. 1b in a periodic refer-
ence configuration. The lattice are composed of a network of solid triangles connected
by thin ligaments. Vectors r;,j € {1,2,3} are lattice vectors: the reference config-
uration is invariant by translation along any integer linear combination of the r;
(see Appendix A). The unit cell of the hinged Kagome lattice is modeled as shown in
Fig. 1c, which is composed of two solid triangles connecting with the ligament with a

finite length ¢ and six nodes on their vertices with the basis x;, k € {1,2,3,4,5,6}.



The ligaments are deformed as elastic beams to admit stretching, shear and bending
deformations, with stiffnesses being k;, ks, and k;, respectively. In order to capture
the ligament deformation, the three elastic stiffnesses are independently determined
by applying three small patterned deformations for a specific hinge geometry (de-
tails in Appendix B). It is also noted that the stored elastic energy due to bending
deformation in the ligament is much smaller than those due to stretching and shear

deformations. The initial position of node k in unit cell (m,n) reads

X" =xp+x™", X™" =mr; +nry, (m,n) € 72 (1)

Each unit cell (m,n) has six degrees of freedom: the translation displacements,
u;"", and the rotational motions ¢;"" with ¢ € {1,2}. We let the origin of coordinates
“0O1” and “Oy” be the geometric center of the two triangles, respectively. Accordingly,
the reference positions of nodes 1, 2 and 3 in the top triangle, with respect to the

origin “O,”, are

X; = amj, Xy =amy, X3 = amgs, (2)

and the reference positions of nodes 4, 5 and 6 in the bottom triangle, with respect

to the origin “O,”, are
Xy = anp, Xz =dang, Xg = allsg, (3)

with a denoting the length between nodes and the corresponding origins. The cor-

responding unit vectors of flexible beams can be obtained as

mj—nj
— ) 7 4
A — @

There exist three independent deformations in the ligament. The stretching de-



formation can be obtained as
AP = or, (0™ + amy ") — (" 4 amyg")
AP = (o0, (W 4 a1 — (" 4 amag ™)), )
A" = <e3, (u) " 4 adigeh ") — (U + arhgcpT’")> ,
and the shear deformation is
AL™ = (@1, (uy™" + aliyy™) — (U™ + amy ")) — L™ + ©5™) /2,
AT = (@, (W™ + aly ) — (W + amag™)) — U+ G 2, (6)
AT = (e, (u ™+ g ) — (P 4 amgel™)) — (T + )2,
and the bending deformation is

mmn . mmn m,n
Ael =P — ¥

mmn __ mn+l m,n

Aag = P9 — %1 (7)
mmn _ _m—1n m,n

A93 - SOZ - SDl )

where () is the inner product and a superimposed bar symbolizes a plane rotation of
/2.
Then, the forces acting at the center of two triangles can be written as
FT’n = kl(AZL’nel + A?;neg + AZL’"eg) -+ ks(Ag’nél -+ Ag’nég —+ Ag;’né:;)
+ kb(AgI’"rYll/a + Ag;’nrflg/a + Ag;’nfflg/a),
and
F;n’n = —k}l(AZLmel + A;Z’n_leg + A;’:—H’neg) — ks(AZ’nél + Ag’n_lég (9)
+ ATTIEs) — ky(Ag Ry Ja+ AT Ry Ja + Ay g a).
The moments acting at the center of two triangles can be obtained as
M{n’n = ]{Il(Alnll’n <e1, aﬁ11> + AZ’H <62, CLI’YI2> + A?;’n <63, arﬁ;;))
+ k(A" (81, amy) + ATV (€, aims) + A" (€5, amy))  (10)

+ kb(Agf” + Ag;’" + A;’;’”),
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and
My"™ = —ky(A]" (er, afy) + A" (eg, afp) + A" (e, af))
— ]{PS(A:;L’TZ <él, aﬁ1> -+ A;r;,n—l <ég, aﬁ2> + AZ;+1’“ <ég, aﬁ3>) (11)
. kb(AglL,n + Agz,nfl + Angrl,n).

Finally, the equations of the motion of the unit cell (m,n) can be stated as

. n m,n
k) JR— I’
m;u;  =F;"",

(12)

M,Mn m,n
Lipy" = M,

where m; and I; are the mass and moment of inertia of the i-th triangle, respectively,

with
m
Iy = G ([lamg — amg[* + flam; — am* + flam, — amg ),
m
I = ¢ (llang — ang|* + [|ang — amy || + an; — any %),

2.2. Periodic zero modes

Analyzing configurations where the various fields of interest vary slowly with re-
spect to time and the unit cell index (m, n) is key to building an effective substitution
medium of hinged Kagome lattices. By the same logic, the configurations of the unit
cell do not depend on time and (m,n) either. These are referred to static periodic
configurations and are adopted in the remained of this section for the purpose of the
theory of microtwist homogenization presented in Section 3.

Dismissing the dependence over (m,n) greatly simplifies the equations in Sub-

section 2.1. As a result, stretching and shear deformations are given by the matrix



product

Ay,
Alg u;
JAVA Uz
= (Ci+Cy) : (13)
A51 ¥1
ASQ _SOQ_
Ag,
where
—e| €] —(ej,am;) (e1,an;) 00 O 0
—e, €, —(ey,amy) (eq,any) 00 O 0
—e, e, —{es, am es, an 00 O 0
co= |7 S Tlmam) el e
—e, € —(é,am;) (€;,an;) 0 0 —¢/2 —¢)2
—éIQ 6,2 —(ég,arﬁ2> <é2,aﬁ2> 00 —6/2 —5/2
—éé éé —<é3,aﬁl3> <é3,aﬁ3> 00 —6/2 —£/2

with a prime being a conjugate transpose. Meanwhile, the bending deformation is

given by the following matrix product:

0 00 0 0
0 u 00 0 0
0 U, 00 0 O
=C, . G, = (15)
A91 ©1 00 -1 1
Ay, Do 00 —11
Ay, 00 —1 1




Then, forces and moments in the unit cell can be expressed as

Ay 0
F1 AlQ 0 0 0O —rﬁl/a —ﬁlz/a, —l’flg/a
F A 0 0 00 n/a ns/a ns/a
= —CK | " |-EK, E, = / 2/ e
M; Ag, Ay, 0 0 0 —1 —1 -1
M; A, Ay, 0 00 1 1 1

_A33_ _A93_

(16)

where K = diag(ky, ki, ki, ks, ks, ks) and K, = diag(0, 0,0, ks, ky, kp) are diagonal ma-
trices gathering the elastic constants of the beam. Accordingly, the equation of

motion for periodic configurations of the hinged Kagome lattice can be expressed as

u

Us

~[CIK(Ci+ C) + EK,C))® +F = G®, &= : (17)
©1

©2

with G = diag(m;I, msI, 1, I5) being the mass matrix, I being the 2 x 2 identity
matrix and F being a column (fi, f5, 71, 7) of external forces periodically applied to
the center of two triangles. At last, dismissing dependence upon time yields the

equilibrium equation for static periodic configurations:
- [CK(C +Cy) + E,K,C,| @ + F = 0. (18)

We then refer to @ as a periodic zero mode when it is a free solution of the above
equation (18), i.e., under F = 0. A periodic zero mode necessarily stores zero elastic

energy as

> A+ EAL + AL =0, je{1,2,3}. (19)

J
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In the hinged lattice, /chgj < min{k;lAle, k’SAg]} (see Appendix B). As such, a zero
mode is a configuration of the lattice where no deformations are due to stretching
and shear so that

A, =

J

AS]' - 0 (20)

Specifically, deformations due to the stretching and shear are given by

Ay,
AZQ u;
A u
A=|""l=c| |, (21)
Asl ¥1
ASQ _SOQ_
Ag,
where C is the compatibility matrix and takes the matrix form
—e’l e/l — (el, Cll’fl1> <e1, CLI_I1>
—6/2 8/2 — <eg, aﬁl2> <62, (Iﬁg)
—e, e — (e3,am es, an
—éll éll — <él, (IITl1> — 6/2 <é1, aﬁ1> — 6/2
—éIQ (_3/2 — <(_32, CLIYI2> — E/Q <ég, aﬁ2> — 6/2
|—€; & — (&, amg) — (/2 (es,any) — (/2]

Then, periodic zero modes are null vectors of matrix C. By the rank-nullity theorem,
their number is equal to Z = 6 — rank C where 6 is the dimension of C and rank C
its rank. On the other hand, the first three lines of matrix C are necessarily linearly
independent, so that rank C > 3 leaves us with two possibilities: (Z,rank C) = (2,4)
or (3,3). Lattices satisfying Z = 2 are the ones we call distorted. These have no

zero modes other than translations and have initially at least one pair (m;,n;) of
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misaligned edges. Hinged Kagome lattices that do not belong to this first class will
be called regular. These satisfy Z = 3 and have initially aligned edges: m; = —n;.

Therefore, the compatibility matrix C of a regular lattice can be further simplified

as
_—e’l e 0 0 ]
—e), € 0 0
—el e} 0 0
Co = Cip+ Cp = . (23)

—e, & —a—10/2 —a—1)2
—e, e —a—/0/2 —a—1/2
—e, & —a—1Vl/2 —a—1/2

Global translations are characterized by u; = uy = U and take the matrix form as

I
I

$,=DU, D=

0

0

which clearly satisfy Cy®y = 0. In addition to two periodic translation zero modes,

the lattice also admits a third one given by the twist motion between two triangles

&) =Ty, T= . (25)

Consequently, the periodic zero modes of a regular hinged Kagome lattice are

given by the linear combination
¢, =DU + To. (26)
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3. Microtwist modeling of weakly-distorted hinged Kagome lattices

3.1. Perturbation assumptions

Having fully characterized the static periodic configurations of hinged Kagome
lattices in their default regular state, it is time to capture the polarized mechani-
cal behavior of distorted hinged Kagome lattices by introducing four perturbations.
Starting with a regular hinged Kagome lattice, a phase transition can be induced by
finitely perturbing the initial positions of the nodes so as to break the alignment of
any one of the three pairs (m;, n;); see Fig. 2. Letting (z;,2;) be an orthonormal
basis where z; is parallel to a(m; — n;), a weakly-distorted lattice is characterized

by
mj = Zj + ;ij —+ O (;j) s Ilj = —Zj + ;]Zj —+ O (i) y ’U)]’ < a. (27)

Second, we assume that the translational and rotational displacements u;"" and
;"™ derive from slowly varying smooth functions u;(x) and ¢;(x) upon replacing x
with x™" where the position variable x is identified as a slow variable attached to
the structure, while u; and ¢, are fast scale variables attached to the unit cell in the
long wavelength limit, such as wavenumber q — 0. Then, the relevant field variables

are approximated by the leading-order Taylor expansions

m+1,n m,n __
u; —u,"" =0,
1
™" = Oau,,
(28)
m—+1,n m,n
i — ;" = O,
m,n mmn+1
Pi 2 - aQSDia

where 0; = (r;, A) is the differential with respect to x in direction r;. Then, the

functions u; and ¢; are slowly varying in space if and only if ||0;|| < 1.
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Third, we assume that the translational and rotational displacements u;"" and

m,n

Pi
angular frequency w satisfying w < \/min(ks, k;)/ max(m;, I).

are no longer necessarily static but can change with respect to time at small

At last, bending stiffness &, is much smaller than ka? and k.a? so that it can be

understood as a second-order quantity (see Appendix B).

3.2. Asymptotic expansions

The compatibility relations are given by
C=C+C,=Cy+6C, (29)

where C is the compatibility operator, Cy is its restriction to periodic configurations

over a regular lattice, and §C is its first-order correction. Cy is given by

-z 2z} 0 0
—zh 7} 0 0
—zy 2 0 0
Co=Cyp+Cp = : (30)

-z, 7z} —a—10/2 —a—1{)2
—Zy 7o, —a—Vl/2 —a—1]2
—Zy Zh —a—Vl/2 —a—1/2

The correction dC is composed of three terms 6C = §,C + 9,C + §,C, the first of

which is due to the perturbation that induces the regular-distorted phase transition:

w; —wy

Wo —Wa2

0,C =

© © © ©o o ©o
© © ©o © o o
S
w
|
S
w




and the last two of which are due to the fields being slowly varying in space:

0 0 0 0
0 z,d, O 0
0 —zé@l 0 0
5,C = , (32)
0 0 0 0
0 2/262 0 —a@z
_O —Zé@l 0 a@l i
and ~ )
0 0 0 0
0 00 0
0 00 0
5,C = (33)
0 00 0
0 0 0 —(0y/2
0 00 /(02
The motion equation then reads
—~ CKC® - EK,C,® + F = —w’G®, (34)

where K = diag(ky, ki, ki, ks, ks, ks) and G = diag(miI, mol, I, I5). It is worth men-
tioning that F in Eq. (34) correspond to body force and momentum and are taken
to be slowly varying in space and of second-order quantities. Displacements ® can

also be Taylor-expanded as
b =)+ 5P +5P+---, (35)

where ®, gathers the leading-order displacements, d® their first-order corrections
and so on. In the following, we derive an equation that governs the leading-order

displacements @, thus interpreted as the macroscopic motion equation of the hinged
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Kagome lattice. In order to accomplish that, Eq. (34) will be solved to leading and

first orders.

3.3. Leading and first order displacements

Keeping only leading-order terms in the motion equation (34) yields
10 KCo® = 0. (36)

The solutions to this equation are periodic zero modes so that there exists a vector
U and an angle ¢ such that
¢, =DU + To. (37)

Keeping the first-order terms in the motion equation (34) yields

Therein, the term (9,C + 0,C)KCy®, vanishes as Cq®y = 0. The above equa-

tion (38) then can be simplified as
~ ClKCpd® + ¥ =0, W= —ClK(6,C+0,C +5,C)®. (39)

Here matrix Cjy being singular, the above equation (39) admits solutions if and only

if ¥ is balanced in the sense of being orthogonal to all periodic zero modes
D'V =0, T'¥=0. (40)

Accordingly, a solution d® exists and can be balanced once the term ¥ has been put

into the form

U = G, + Gotpy, (41)
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where

—Z1 —Zy —Z3 —Z —Z —Z3
Z Z Z: z z Z:
a, 1 2 3 G, — 1 2 3
0 0 0 —a—0)2 —a—10/2 —a—{/2
0 0 0 —a—V0/2 —a—"0/2 —a—1{]2

given that Cj = [G

Gsl. A straightforward calculation then shows that

0 w1
11)1 = kl — <Z2, 62U> + 2kl wa | P,
<Z3781U> i w3
and _
0 0 0
k.l
ll)2 = ks — <22, 82U> + ksa (%go + 9 c%go
(z3,0,U) _—8190 —01p
Therefore, the solution is
5% = Ty, + Doy,
where ~ _
2 = 2 = 2 =
3322 3% 3.B%4
2 = 2 = 2 =
r,— ' |3 AT 5AP
ki + ks 1 1 1 ’
-1 -1 -1
and _ .
) 2 2
3322 37323 3v3 21
) ) —2
r,— ENCR 3V 1 VR
k’l + k?s __ kitks __ kitks __ kitks
6ks (at+0/2) 6ks (atl/2) 6ks(at+l/2)
_ ki+ks _ ki+ks _ ki+ks
| 6ks(at£/2) 6k (at+0/2) 6ks(a+0/2) |

17
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It is worth mentioning that the first-order displacement d® is not unique and can be
modified by addition of an arbitrary periodic zero mode DdU + Tdp. However, these

two terms will play no further role and can be set to zero with no loss of generality.

3.4. Macroscopic motion equation

Keeping the second-order terms in the equation of motion yields

—Cj,KCy*® — C;K(5,,C + 6,C + 6,C)6® — (6,,C + 6,C)KCy5P 48)
48
— (6,C + 0,C)K(6,C + 6,C + §,C)®( — E,K,C,®( + F = —w*GP,.
Therein, we have omitted second-order corrections to the compatibility operator as
these will have no influence in the following.

A solution §%2@® exists if and only if the orthogonality conditions are enforced.

The first one reads

~D'(6,C + 6,C)KCoé® — D'(5,,C + 6,C)'K(6,,C + 6,C + 6,C)®, o)
49
— D'E,K,C,®; + D'F = —w?D'G®,.

The second is

-T'(6,C + ,C)KCyo® — T'(6,,C + 0,C)'K(6,C + ,C + 6,C)®Pq (50)
50
— T'EK,C, @) + T'F = —w*T'G®,.
Both equations involve the leading-order displacements spanned by translations U
and the twisting motion ¢ and can be interpreted as a pair of macroscopic motion

equations. Next, these equations will be rewritten in a form of strain and stress, and

reveal the constitutive law that relates them.
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3.5. Microtwist continuum and its parity asymmetry
By injecting the related expressions in Subsection 3.2 into Egs. (49) and (50), the
motion equations of the microtwist continuum can be recast into the form
—w'pU=F+V-(L:VU+B-Vy+Myp),
e =7+V (B : V'U+H Vp+ Ap) (51)
—M,:VU—-A;-Vp—-Qyp,
where V*U is the symmetric part of the macroscopic displacement gradient, V is
the twisting gradient, the dots - and : symbolize simple and double contraction of
tensors and V- is the divergence operator, and the effective tensors L, B, B;, A, Ay,
M, M; and H are obtained in functions of the geometry parameters of the lattice
and effective stiffnesses of the hinge given in Appendix C. p and 7 are mass density

and moment of inertia density
i i (52
- my;, = X
P=7 @' =7 i

where A = 6v/3a? is the area of a unit cell. The vector-scalar pair (F,7) is the

resultant force-torque acting on a unit cell per unit cell area, which read
1 1
F = Z;Fi, 7= (M — My). (53)
The macroscopic motion equation then can be written as the balance equations
—wpU=F+V .o, —wne=17+V-€+s, (54)

where o, £ and s are second, first and zero-order tensorial stress measures related to

the strain measures VU, V¢ and ¢ through the macroscopic constitutive law

o L B M A\v4d U}
El =B H A|=|Vp|. (55)
—S M, A @ ¥
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Thus, a 2D microtwist continuum with extra DOFs and additional measures of strain,
stress, and inertia have already been derived, which can describe the global behavior
of a hinged Kagome lattice in the homogenization limit. It can be concluded that
the effective tensors M, M;, A and A, are responsible for P-asymmetry because
they are odd functions of the w;. Following the approach as one in the spring-
mass model (Nassar et al., 2020a; Xia et al., 2021), the polarizaiton direction which

depends on the distortion parameters w; is given by
1
P= 3 Z sgn(w;)r;. (56)
J

It is worth noting here, the polarized mechanical behavior is immune to spatially
differences in the radius of curvature at the hinge and the distortion of lattices, small

and large, as long as the signs of distortion parameters remain unchanged.

3.6. Dispersion relations

Having derived the equations of a microtwist continuum modeling weakly-distorted
Kagome lattices with elastic hinges, it is now to inquire whether the continuum is
faithful in its prediction of low-frequency wave propagation and dispersion. We will
focus on investigation of the first three fundamental wave branches based on the
assumption of the microtwist theory.

First, we conduct a numerical characterization of hinged lattices in Figs. 3a and 3b
using finite element analysis and Bloch periodic boundary conditions (Details of the
geometrical and material properties in the calculation can be found in Appendix D).
Dispersion relations of the hinged regular lattice and polarized lattice II are presented
in Figs. 3¢ and 3d, respectively. Recall that dispersion relations of regular Kagome
lattices with idealized hinges feature zero-frequency modes (Nassar et al., 2020a).

Here, in constrat, as the elastic hinges prevent the rigid triangles from rotating
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freely with respect to one another, we do not find any zero-frequency modes except
at zero wave number I'. We then consider that plane waves are propagating through
the discrete Kagome lattices. There exists at specific frequencies w and wavenumbers

q solution to the dispersion relation
det { [Ci(@)K(Ci(q) + Ci(a)] + Ey(@)KiCh(a) — w*G} = 0. (57)

The discrete Kagome lattice has six DOFs per unit cell so that there are six solu-
tion frequnecies for any given wavenumber q. At last, we consider that an infinite
microtwist continuum under a plane wave in x-direction, the dispersion relations are

obtained by injecting translational displacements U and the twisting angle ¢

U(x,t) = Ugexp(i (q,x) —iwt), @(x,t) = @oexp(i(q,x) — iwt), (58)

into Eq. (51) under zero resultant force-torque. Figures 3¢ and 3d respectively show
the dispersion curves of regular lattice and polarized lattice II (see Appendix A),
predicted by employing the discrete (green dotted lines) and microtwist (red dashed
lines) models. Both plots show the microtwist continuum produces three branches
corresponding the coupled translational and rotational waves, and agrees well with
those given by the exact hinged and discrete models up to frequencies comparable

to the cutoff frequencies and that for small to medium wavenumbers.

3.7. Zero modes

For the finite hinged Kagome lattice, we perform modal analyses at lowest fre-
quency (approximate zero) to investigate location or distribution of zero modes in
terms of the total displacement in two types of hinged Kagome lattices: regular lat-
tice and polarized lattice II (see Appendix A). We then quantitatively compare the
prediction from the hinged lattice model with 47 x 11 unit cells in Figs. 4a and 4b

and the microtwist continuum model in Figs. 4c and 4d.
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In the simulation, all the DOFs are fixed on the top and bottom boundaries
for the finite models shown in Fig. 4. From the comparison, we can conclude that
the developed microtwist continuum theorem is capable of quantitatively capturing
distribution of bulk and edge zero modes for different hinged Kagome lattices: the
regular Kagome lattice only has bulk zero modes (Figs. 4a and 4c); the polarized
Kagome lattice II has asymmetric zero modes which is localized near the left bound-
ary and decays exponentially towards the bulk (Figs. 4b and 4d). The emergence of
polarization phenomenon is a symptom of the loss of parity symmetry, which will be

further validated and discussed in the following section.

4. Experimental validation

The present section deals with an experimental validation of the microtwist con-
tinuum model in Section 3, against the results of static indentation and three-point
bending tests on physical samples (Details of the sample manufacturing, numerical

simulation, and experiment test can be found in Appendix D and Appendix E).

4.1. Parity asymmetric indentation responses

We first examine the indentation response of a regular plate along the vertical
direction shown in Fig. 5a by using a MTS Landmark 370 servo-hydraulic system.
Samples comprising 28 x 31 triangles are fixed on the left and right boundaries. Using
a compression test machine MTS, we indent the plate at the center of top/bottom
boundary by moving for a fixed distance and measure the reaction force. Figure 5b
compares the experimental, numerical and microtwist force-displacement responses
of such sample, highlighting an overall satisfactory agreement among the three meth-

ods. In order to further qualitatively investigate the mechanical behavior in the

22



regular lattice, the static vertical displacement fields are extracted from the numer-
ical simulation of hinged model (Fig. 5¢), the DIC measurement (Fig. 5d) and the
microtwist model (Fig. 5e). The three plots match satisfyingly and validate the
microtwist elasticity theory.

We then perform static indentation tests on two opposing boundaries of finite
polarized lattices I and II to demonstrate difference in their mechanical responses
and the emergence of P-asymmetric effects. Figures 6a and 6b show the asymmet-
ric indentation responses, which have the excellent agreement among the numerical
simulations, the experimental tests and the microtwist theory. Also by comparing
these two plots, it should be interesting to mention that the stiffness bias of the hard
and soft boundaries is significantly increased with the increase of the distortion pa-
rameters. It illustrates the potential benefit of incorporating distortion parameters

into designs of configurable P-asymmetric materials.

4.2. Parity asymmetric bending behaviors

Thus far, we have demonstrated P-asymmetry in the polarized microtwist medium
under indentation. However, it should be noted that this property is not limited to
this loading condition. To this end, we now examine the elastic response of the po-
larized beam II under three-point bending test, as shown in Fig. 7 (Elastic responses
of the regular beam and the polarized beam I can be found in Appendix F). Using
test machine MTS, the polarized beam is mounted in a three-point bending con-
figuration and a 50 N loading is applied at the top center of the lattice. We then
use DIC system to measure the vertical displacements of triangles on the top row.
The resulting data is shown in Fig. 7b, where the vertical displacements are plotted
against the horizontal coordinate z. Our experimental measurement, numerical sim-

ulation and microtwist model demonstrate that there exists an asymmetric bending
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curve in the polarized lattice-based beam. We further plot the vertical displacement
field by extracting from the numerical simulation (Fig. 7c), the DIC measurement
(Fig. 7d) and the microtwist model (Fig. 7e). These three plots have good agreement

and demonstrate polarized responses in the microtwist medium as well.

5. Exotic behavior under static and dynamic loadings

Microtwist media with zero modes can also posses exotic behavior due to the
microtwisting under static and dynamic loadings that can not be observed in conven-
tional elasticity. In this section, we will investigate nonuniform static deformations
and parity asymmetric surface wave propagation in weakly-distorted hinged Kagome
lattices. Results are derived from the numerical simulation of hinged models and the

microtwist model.

5.1. Nonuniform deformations under complex static loadings

We consider a distorted Kagome plate with lattice parameters (xy,z9,x3,2) =
(0.05,0.05,0.05,0), as shown in Fig. 8a. Four constant displacements (red arrows,
|uz| = |uy] = 20 mm) are prescribed at four corners as global "pure shear” via
compression along one direction and expansion along the other. Figures 8b and 8c
respectively present the horizontal and vertical displacement profiles calculated by
the hinged lattice model (left), the microtwist continuum (middle) and the Cauchy
continuum (right; Details of Cauchy continuum can be found in Appendix G). The
displacement components U, and U, from the Cauchy continuum are symmetrically
distributed. However, the displacement patterns predicted from the hinged model
and the microtwist continuum are no longer symmetrically distributed. Therefore,

the microtwist continuum theory is able to accurately capture the displacement com-
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ponents by considering the contribution from the microtwisting while the conven-

tional Cauchy theory fails.

5.2. Parity asymmetric surface wave distribution

As one application of zero modes in elastic hinged Kagome lattices, we also study
polarized surface propagation on the free boundary of the microtwist medium. These
parity asymmetric surface modes in the finite microtwist medium present a new class
of surface waves have not been explored in the theories of conventional elasticity. To
this end, we conduct a complete numerical characterization of a polarized Kagome
lattice with parameters (x1,x2,23,2) = (—0.03,—0.03,0.03,0). In the simulation,
the supercell is composed of a 2 x 17 array of unit cells and is terminated by a free
boundary at the top and bottom and Floquet-Bloch boundary conditions along the
x direction. Figure 9a shows the dispersion diagram resulting from the numerical
simulation of hinged model (blue solid lines) and microtwist model (red circles).
We recognize the emergence of two new branches lower than the dispersive region
of the lowest bulk band (gray area). It agrees well with the two lowest dispersion
curves given by the exact hinged model and the microtwist model and a discrep-
ancy between these two models is found in a relative higher frequency regime. This
is understandable because the assumptions of the perturbation approach used; see
Subsection 3.1. The mode shapes shown in Figs. 9b and 9c, calculated along the
lowest two branches, feature parity asymmetric distribution at one soft boundary as
expected by the polarization direction, because a significant amount of displacement
is observed at the soft side. This result qualifies these branches as edge modes and
characterizes the upper edge as the soft boundary, consistent with the polarization
vector predictions. It is worth stressing that the edge modes evolving from zero-

frequency modes of the topological polarized Kagome lattice is different from those
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in the dynamic regime (Ma et al., 2019). The fact that the microtwist media fea-
ture parity-asymmetric surface wave distribution constitutes an interesting departure
from the conventional case of Rayleigh waves in the Cauchy medium. Finally, it is of
interest to explore the tunable parity asymmetric surface waves in microtwist media
under the external stimulus, such as mechanical (Chen et al., 2021) and electrical (Li

et al., 2021; Zhou et al., 2020) loads.

6. Conclusion

In this paper, we develop a microtwist elasticity theory of hinged Kagome lattices
to capture the polarized mechanical behavior by modeling the hinge as a flexible
beam. Performance of the proposed theory is validated against the exact hinged
lattice model in a number of problems including predicting the dispersion relations
and the parity asymmetric distribution of zero modes. Furthermore, experimental
and numerical validations on the polarized indentation and bending responses are
provided for the first time. At last, we demonstrate exotic behavior of the microtwist
medium under nonuniform boundary deformations and parity asymmetric surface
wave propagation. We believe the theory opens new pathways for the designs of
hinged metamaterials in the linear regime to capture the polarized behavior. We
also hope to see in near future that the microtwist theory could be generalized by
taking the geometrical and material nonlinearity into account, and will be applied

to strongly distorted lattices with soft or soft and hard mixed materials.
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Appendix A. Characterization of Kagome lattices

For the lattice characterization, we use the description in (Kane and Lubensky,
2014). The Kagome lattice in Fig. A1 are defined by its Bravais lattices with primitive

lattice vectors

U3 deniza, (A1)

where L is the half of lattice constant. The unit cells are described by four parameters

2] —3
r; = 2L (cos J T, sin
3

(21, %2, %3, 2), where z; and z denote the buckling of the line of bonds along r; and
the asymmetry in the sizes of the two triangles, respectively. The lattice sites are

then obtained as follows:

p1 =1r1/2 + s,
P2 = r2/2 — S1, (A2)
P3 :r3/27

where s; denotes the displacement of p;_; relative to the midpoint of the line along
r; and can be described by

s1 = x1(r3 — T2) + Y1y,

Sg = Tp(r1 — T3) + YaT2, (A3)

S3 = x3(ry — 1) + yYsrs,
with
y1 = 2/3 4+ x3 — 9,

Yo = 2/3 + a1 — T3, (A4)

ys = 2/3 4+ 19 — 1.
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In this paper, three Kagome lattices are chosen: regular lattice (0,0,0,0) in
Fig. Alb, polarized lattice I (—0.01,—0.01,0.01,0) in Fig. Alc, and polarized lattice
IT (—0.03,—0.03,0.03,0) in Fig. Ald. Note that the red arrows in Figs. Alc and Al d
are polarization vectors (Kane and Lubensky, 2014). Note also, that for the weakly-
distorted Kagome lattices w; = sgn(x;) [|s;]| /v/3.

Appendix B. Characterization of hinge deformation

In the limit that wy < L, the hinge will become very flexible compared to the
stiff triangle pieces. Therefore, the large triangle elements are approximated as rigid
bodies and all strain deformation is assumed to take place at the hinges. We then
refer to the elastic hinge between two triangles as a beam with varying cross-section
areas, as shown in Fig. A2 (Day et al., 1992; Coulais, 2016; Liang and Crosby, 2020).
Here, the stretching of beam is governed by a stretching stiffness k;; the pure shear of
beam is governed by a shear stiffness k,; and the pure bending of beam is governed
by a bending stiffness k. Note that these elastic stiffnesses are independent and
can be obtained by applying three sorts of boundary conditions depicted in Fig. A2,
which can be expressed as (Liang and Crosby, 2020)

kl:@ W _Eh (@)37 kaQEhT2(@>S7 (A5)

= —
s r 3T \r 97 r

where h is the thickness of lattice, wg = 27"( L 1) = 0.62 mm, k; = 5.55 X

s
COs 6

10" N/m, k, = 5.72 x 10 N/m, k, = 4.72 N-m. As such, bending stiffness k, is
much smaller than k;a? and k.a®? so that it can be understood as a second-order
quantity.

To quantify the energy of hinge deformation, we recall compatibility equations (5),
(6) and (7), where the stretching and shear deformation gives A;; ~ A, ~ ayp;, and

the bending deformation yields Ay, ~ ;. Here, we ignore the unit cell index (m,n).
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Consequently, the stored elastic energy due to bending deformation in the ligament

is much smaller than those due to stretching and shear deformation, that is

kpAf < min{k A7, kALY (A6)

Appendix C. Effective tensors

The involved effective tensors in Eq. (51) are given by

CL2
L= 2{12/@(22332 + 2Z3993) + 12k, (23335 + 23333)
+ ki (-8 4z 4z 823335
—Z 3997 — 30089 — 5992 — 3995
kl + ks 3223 3232 2323 2332
kik,
+t ; k (4v/32z5333 — 4V/323353 — 4V/323535 + 4V/323533) (A7)
! s
ks
+ s [—4(k; + 3ks)z3533 + 4kiz3335 + 4kiZ3333

— 4(k + 3ks)Z§33§]},

43k ka
k; + ks

SR

B = { - 12ak5(Zg§3 + Zggg) — Gfks(zz‘gg + Zggi) +

N 23k ksl
ki + ks

k.a
(2393 — Za33) + o [4(Ky + 3ks)z333 — 4kiz353

kgt
ky + ks

— 4k;z535 + 4(/€l + 3/{ZS)ZQ§,§] +

[2(k; + 3ks)z333 — 2ki2335

— 2kyz333 + 2(k; + 3ks)ziéi]}a

w

a 4v/3k;k,
Z{ — 12k,(z333 + z333) + le;fs(ZBSQ — Z393)

ks
k; + kg

+ 4(k; + Bks)z232]}7

B, =

+ [4(k; + 3ks)z333 — 4kiz335 — 4kiZa33 (A9)
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3
H= %{12ak (222 + z33) + 60ky(233 + 233)
4k.a
TR (ki + 3ks)z33 — kizaz — kizas + (ky + 3ks)za3) (A10)
2k 0

Wk (ki + 3ks)z33 — kizzs — kizaz + (ki + 3ks)za3] },

M = %{4\/§kl<w2Z§2 — ’LU3Z§3>

2k wy | 2wy ws
9 —— 4+ —= — )73
PN { \/5( -+ )Z30

) (A11)
w w w
+2V3(—5 - 73>Zz3}
4k kg
kl —Il— ks [(wl - ’l,U3)Z32 + (wl - U}Q)Zzg] }7
a
M, = 2{4\/_/7{?1( WyZy3 — W3Z33)
2k7 wy 2wy 2 2wsy
UL S SR CTREYCE B e
Ak kg
+ 3 _'l_ s [(wy — w3)Za3 + (w1 — w2)2z3) }’
(A12)
dkikya?
b m [(ws = wi)zg + (w5 — wi)z3], (A13)
a [ 4kiksa
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Ak + kg (A14)
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1
Q= 1 12k, + 4k:l(wf + w% + wg)

Qp? (A15)
— —l(wf + w% + wg, — WWe — WaW3 — Wawi) |,

3(ky + ks)
where z,4,s = 2, ® 2, ® 2, ® z, are tensors. Note that again a superimposed bar

symbolizes a plane rotation of 7/2, such as z3 = z; ® Z».

Appendix D. Sample preparation and experimental setup

The experimental samples in Figs. A3 and A4 are fabricated by a fiber laser-
cutting machine. The Kagome lattices consisting of rigid triangles connected by
elastic hinges are made of steel (Young’s modulus £ = 209 GPa, Poisson’s ratio
v = 0.269, density p = 7890 kg/m?). The sample dimensions and main geometrical
parameters are the following: length of lattice vector d = 20 mm, side length of
triangles L = 10 mm, thickness h = 1.5 mm, fillet radius of hexagonal holes r =
2 mm. A reflective mirror spray paint is applied to the samples, enhancing its ability
to reflect the bright lights required for short camera exposures.

Figure A5 shows the experimental setup. Samples are tested using an MTS
Landmark 370 servo-hydraulic system (MTS, Eden Prairie, Minnesota, USA). To
produce results comparable to the numerical simulations under static loading, the
testing speed is controlled by a constant cross head speed of 0.001 mm/s. In ad-
dition, the 3D Digital Image Correlation (DIC) System Q-400 (Dantec Dynamics,

Tonsbakken, Skovlunde, Denmark) is used for displacement field measurements.

Appendix E. Numerical simulations

The finite-element method simulations in this work are all performed using the

commercial software COMSOL Multiphysics and linear elasticity is used as a mate-

31



rial model, with Young’s modulus £ = 209 GPa, Poisson’s ratio v = 0.269, density
p = 7890 kg/m? in plane stress conditions. Eigenfrequency calculations within the
“Solid Mechanics module” are carried out to find the dispersion relations in Figs. 3
and 9, and distribution of zero modes in Fig. 4. Large-scale simulations are then
implemented by the ”Solid Mechanics module” and stationary calculations are per-

formed to obtain the displacement fields in Figs. 5-8 and A6.

Appendix F. Additional numerical and experimental results

In this section, we examine elastic responses of the regular beam and the polar-
ized beam I under three-point bending test, as shown in Fig. A6. Using test machine
MTS, these two beams are mounted in a three-point bending configuration and a 50
N loading is applied at the top center of the lattice. Our experimental measurement,
numerical simulation and microtwist model demonstrate that there exists a symmet-
ric bending curve in the regular beam (Fig. A6a) while an asymmetric bending curve
in the polarized beam (Fig. A6b). By comparing Fig. 7b, Fig. A6a and Fig. A6b,
it should be interesting to mention that the degree of symmetry is significantly in-
creased with the increase of the distortion parameters. We further plot the vertical
displacement field of the regular beam (resp. polarized beam I) by extracting from
the numerical simulation in Fig. A6b (resp. Fig. A6f), the DIC measurement in
Fig. A6c (resp. Fig. A6g) and the microtwist model in Fig. A6d (resp. Fig. AGh).
These three plots have good agreement and further validate the microtwist elasticity

theory.

Appendix G. Cauchy continuum

Consider a periodic lattice undergoing a uniform macroscopic strain E, with

respect to the Cauchy-Born hypothesis (Born et al., 1955; Hutchinson and Fleck,
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2006; Phani and Hussein, 2017), the displacement field is the summation of two
parts: the linear deformation obtained by a macroscopic strain and the periodic
displacement field of each unit cell. Accordingly, the displacement filed is expressed

as:

u"" =E-x;"" + Au;"". (A16)

Here, the rotation gradients are ignored, Vi = 0, and the extra stress s = 0. Then,
our microtwist continuum reduces to the Cauchy continuum, where the twisting

motion ¢ is given by

M1 : VSU

p=———7—, Q#0, (A17)
Q
and the constitutive relationship is recast into the form
1
o=C":VU, C*:C—§M®M1. (A18)

By comparing Eq. (55) and Eq. (A18), it is seen that the Cauchy-Born hypothe-
sis greatly simplifies the constitutive law. However, it dismisses the possibility of
there being any coupling between the macroscopic strain and the rotation gradient.
Taking this coupling into account will significantly improve the quality of the pre-
dictions of the effective medium theory; quantitative demonstrations are presented

in Subsection 5.1.
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X XXX X

Figure 1: Discrete modeling of the regular hinged Kagome lattice. (a) Photograph of the regular
hinged Kagome lattice. Scale bar, 10 mm. (b) Schematic of the regular hinged Kagome lattice and
its corresponding unit cell. (c¢) The discrete unit cell of the hinged Kagome lattice comprises of
rigid equilateral triangles with length L connected by ligaments to support stretching, shear and
bending deformations. m; and n; are the unit vectors from the center “O;” and “O>” to nodes (I,

2,3) and nodes (4,5,6), respectively.
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Figure 2: Illustration of distortion parameters w; (red arrows) inducing a regular-distorted phase
transition from the hinged regular Kagome lattice to the hinged distorted Kagome lattice. The

elevations w; are the only components of the distortion that are relevant here.
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Figure 3: Examples of regular (a) and polarized (b) Kagome lattices, and of their respective dis-
persion diagrams (c) and (d). Blue solid, green dotted and red dashed lines correspond to the
dispersion relations of the hinged, discrete and microtwist modes, respectively. The inset show
the first Brillouin zone with symmetry points I', M and K of (a) and (b)

parameters are (0,0,0,0) in (a) and (—0.03,—0.03,0.03,0) in (b).

. Note that the lattice
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Normalized displacement

Figure 4: Modal analyses of regular (a, c¢) and polarized (b, d) Kagome lattices and of their
respective zero modes by employing the hinged lattice model (a, b) and the microtwist continuum
model (¢, d). The top and bottom boundaries are fixed, while the left and right boundaries are
free. The displacement magnitudes are normalized by the largest value calculated in the mode field.
Note that the lattice parameters are (0,0,0,0) in (a) and (c), and (—0.03, —0.03,0.03,0) in (b) and
(d). The red arrow show the polarization direction of (b) and (d).
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Figure 5: Calculated and measured results of regular Kagome lattice under indentation test. (a)

— 20 mm

[~
(=] w (=] w
Displacement (um)

w

Photograph of the regular plate sample under indentation test. (b) Measured and calculated vertical
displacements of triangles on the top row. Scale bar, 20 mm. The blue circles, blue crosses, solid
blue lines result from the experimental measurement, numerical simulation, and microtwist model,
respectively. (c) Vertical displacement field from the numerical simulation of the hinged model. (d)
Vertical displacement field from the DIC measurement. (e) Vertical displacement field from the

microtwist model.
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Figure 6: Calculated and measured results of Polarzied Kagome lattice I (a) and II (b) under
indentation test. Orange (blue) symbols denote the data obtained from the indentation test on the
top (bottom) boundary. The circles, crosses, solid lines result from the experimental measurement,

numerical simulation, and microtwist model, respectively.
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Figure 7: Calculated and measured results of the Polarzied beam II under three-point bending
test with 50 N loading. (a) Photograph of the beam sample under three-point bending test. Scale
bar, 20 mm. (b) Measured and calculated vertical displacements of triangles on the top row. The
blue circles, blue crosses, solid blue lines result from the experimental measurement, numerical
simulation, and microtwist model, respectively. (c¢) Vertical displacement field from the numerical
simulation of the hinged model. (d) Vertical displacement field from the DIC measurement. (e)

Vertical displacement field from the microtwist model.
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Figure 8: Nonuniform deformations under complex loading conditions. (a) Applying fixed defor-
mations (red arrows, |U;| = |U,| = 20 mm) at four corners of the pre-twisted Kagome lattice. (b)
Horizontal displacement fields, U,. (c) Vertical displacement fields, U,. Left, middle and right

correspond to the hinged, microtwist and Cauchy models.
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Figure 9: (a) Dispersion diagram for a supercell under free boundary conditions at the top
and bottom and periodic boundary conditions in the x direction. The lattice parameters are
(—0.03,—0.03,0.03,0) and the polarization direction is towards the top boundary. The solid blue
lines and red circles result from the hinged and microtwist model, respectively. The gray areas are
bulk bands, while the lowest two branches are surface wave bands. (b, ¢) Surface mode shapes
of the supercell for the lowest two branches result from the microtwist (left) and hinged (right)
models. The displacement magnitudes are normalized by the largest value calculated in the wave

field.
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Figure Al: Kagome lattice model. (a) An annotated lattice; (b) Regular lattice (0,0,0,0); (c)
Polarized lattice I (—0.01, —0.01,0.01, 0); (d) Polarized lattice IT (—0.03, —0.03,0.03,0). Red arrows

show the polarization direction, P = r3.
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Figure A2: Three deformation modes of the hinge. (a) Stretching; (b) Pure Shear; (c) Pure Bending.
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Figure A3: Photograph of three samples for indentation tests. (a) Regular plate with lattice param-
eters (0,0,0,0); (b) Polarized plate I with lattice parameters (—0.01, —0.01,0.01,0); (c) Polarized
plate II with lattice parameters (—0.03,—0.03,0.03,0). Red arrows show the polarization vectors

towards the top boundary. Scale bars, 20 mm
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Figure A4: Photograph of three samples for three-point bending tests. (a) Regular beam with lattice
parameters (0,0,0,0); (b) Polarized beam I with lattice parameters (—0.01,—0.01,0.01,0); (c)
Polarized beam II with lattice parameters (—0.03, —0.03,0.03,0). Red arrows show the polarization

vectors towards the left boundary. Scale bars, 20 mm.
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Figure A5: Experimental setup for the static test. The indentation and three-point bending loadings

are supplied by the MTS system, and the displacement fields are measured by the DIC system.
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Figure A6: Static responses of regular (a-d) and polarized I (e-h) beams under three-point bending
tests with 50 N loading. (a, e) Measured and calculated vertical displacements of triangles on the
top row. (b, f) Vertical displacement field from the numerical simulation of the hinged model. (c,
g) Vertical displacement field from the DIC measurement. (d, h) Vertical displacement field from
the microtwist model. The blue circles, blue crosses, solid blue lines result from the experimental

measurement, numerical simulation, and microtwist model, respectively.
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