Precise Error Estimation for Sketch-based Flow Measurement

Peiqing Chen**, Yuhan Wu™, Tong Yang®, Junchen Jiang*, Zaoxing Liu*
* Boston University, ' Peking University, * University of Chicago

Abstract

As a class of approximate measurement approaches, sketching al-
gorithms have significantly improved the estimation of network
flow information using limited resources. While these algorithms
enjoy sound error-bound analysis under worst-case scenarios, their
actual errors can vary significantly with the incoming flow distribu-
tion, making their traditional error bounds too “loose” to be useful
in practice. In this paper, we propose a simple yet rigorous error
estimation method to more precisely analyze the errors for posterior
sketch queries by leveraging the knowledge from the sketch coun-
ters. This approach will enable network operators to understand
how accurate the current measurements are and make appropriate
decisions accordingly (e.g., identify potential heavy users or answer
“what-if” questions to better provision resources). Theoretical anal-
ysis and trace-driven experiments show that our estimated bounds
on sketch errors are much tighter than previous ones and match
the actual error bounds in most cases.

CCS Concepts

« Networks — Network monitoring; Network measurement.

Keywords
Sketch, Error Estimation, Network Algorithm

ACM Reference Format:

Peiqing Chen, Yuhan Wu, Tong Yang, Junchen Jiang, Zaoxing Liu. 2021.
Precise Error Estimation for Sketch-based Flow Measurement. In ACM
Internet Measurement Conference (IMC '21), November 2—4, 2021, Virtual
Event, USA. ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/
3487552.3487856

1 Introduction

Recent advances in sketching algorithms (sketches) enable approxi-
mate flow measurement using small memory footprints. At a high
level, these algorithms are designed to collect approximate flow
information (e.g., flow sizes and byte counts) as a small “sketch” sum-
mary from resource-constrained network devices (e.g., switches and
NICs). These measurement results are crucial to various decision-
making processes and system performance predictions, such as
traffic engineering [2, 16] and load balancing [1, 14, 17, 22].

While tremendous efforts have been made towards optimizing
the sketch accuracy for supported tasks [12, 20, 28] or designing

*Equal contribution.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

IMC 21, November 2—4, 2021, Virtual Event, USA

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-9129-0/21/11...$15.00
hitps://doi.org/10.1145/3487552.3487856

113

8k : : 10K—i—0ﬁginal!||u 104
k=== Qriginal method _ o Ground|fruth
g |—+—Groundtruth | | 8 £ =
1o 4k 0 -
2K}-"u A O
S 2K
0 10 15 20 25 30 35

L ewiess © trace size (M packets)

(a) Synthetic trace () Real-world trace
Figure 1: Traditional error bounds are not precise.

novel sketches for new tasks [19, 24, 31], a fundamental issue in
sketching is how to estimate the errors of the sketch results. Once a
sketch is configured with certain memory, the actual errors of its
results can vary significantly depending on the workload distribu-
tions. For instance, when the workload is “skewed” with large flows
accounting for a large portion of the traffic, the actual errors of
these large flows can be significantly lower than the error bounds
derived from the traditional worst-case-based analysis. Figure 1
shows an example of Count-Min sketch, and error bounds are simi-
larly overestimated in other sketches too (more details in §2). The
question we then ask in this paper is can we precisely estimate
the errors of sketch results at the query time?

We tackle this problem by introducing a simple yet rigorous
mechanism to precisely estimate error bounds without prior knowl-
edge about the workload distribution. The key insight is that the
“after-the-fact” counter values in the sketches can be highly indica-
tive of the actual errors of the current workload. Specifically, when
querying a Count-Min Sketch of r counter arrays, our technique

traverses all counters in an array and uses the (S%J—ﬁ'actile largest
value among all counters as the estimated error bound with confi-
dence 1-§ (i.e., actual errors fall in the bound with 1-§ probability).
In contrast, traditional error bounds of sketches [6, 8] are derived
before the measurement starts, which makes them dependent on
the worst-case input and oblivious to the actual flow distribution,
causing the resulting error bound to be higher than the actual errors
in most cases. We formally prove that our method yields tighter
(near-optimal) error bounds than traditional ones (§3) and empiri-
cally show that the our error bounds match the real errors well in
practice (§4).

By further extending this technique to other sketches (e.g., Count-
Sketch [6]), we demonstrate that it is a general insight for a variety
of sketches. Our trace-driven evaluation with three representative
sketches (Count-Min, Count-Sketch, CU-Sketch) in four types of
network workloads (e.g., WAN [5], data center [4], DDoS attack [21],
Zipf-synthetic [25]) show that our approach is 20 to 700 times more
accurate than the traditional worst-case error bounds under various
workload distributions.

While our contribution is on the theoretical front, it bears sig-
nificant practical implications, as we envision a wide spectrum
of potential sketch-based applications (decision making and per-
formance prediction) enabled by tighter error bounds on sketch
results at the query time. Consider two examples. (1) In-network
caching and load balancing in CDN use sketches to identify hot

https://doi.org/10.1145/3487552.3487856
https://doi.org/10.1145/3487552.3487856
https://doi.org/10.1145/3487552.3487856

IMC "21, November 2-4, 2021, Virtual Event, USA

objects [14, 17]. A loose error bound gives network operators less
confidence in the sketch results, forcing them to reserve more mem-
ory for worst-case workloads, rather than the actual workload.
In contrast, by offering more precise error bounds, our method
can help operators save cache space and balance the loads more
efficiently. (2) When deploying telemetry capabilities, operators
often need to meet specific measurement accuracy. With loose error
bounds, operators will have to commit more hardware resources
to run the sketches to ensure worst-case sketch accuracy. In con-
trast, by enabling precise runtime error analysis based on sketch
counters, our method can help operators identify the best resource
configurations for the actual traffic workload. We demonstrate the
real-world benefits of a more precise error estimator in the first
scenario using the simulator of [17]: our precise error estimation
increases the confidence of sketch-based performance prediction
and reduces resource overprovisioning.

In summary, the main contributions of this paper are:

e We introduce a new precise online error estimator for sketches
using the insight from sketch counters.

e We rigorously prove that our approach yields tighter bounds
than the prior worst-case error bounds.

o We evaluate our approach in a number of real-world traces
representing different types of network traffic and conduct a
case study to demonstrate the potential practical benefits of
tighter error bounds.

2 Background
We begin with the background of sketches, followed by the limita-

tions of existing approaches to sketch error estimation.

Sketches for flow measurement: Sketches are known to be use-
ful in providing various flow measurement statistics, such as heavy
hitters [6, 8, 10, 18, 30], change detection [15, 18], and hierarchical
heavy hitters [3, 7]. In this paper, we consider popular sketches
for measuring flow sizes, including Count-Min Sketch (CM) [8],
Conservative-Update Sketch (CU) [10], and Count Sketch (CS) [6].

To make the discussion more concrete, we use CM as an exam-
ple. At a high level, CM maintains r arrays (rows) of w counters
(columns). When receiving a packet with flow identity k (e.g., 5-
tuple), CM computes r pairwise independent hash values based on
k. Each hash value provides an offset within one of the r arrays
in CM, and then we increment the corresponding counters. Since
w is usually much smaller than the number of flows (to reduce
memory footprints), different flows may update the same counters
(i.e., collisions), resulting in over-estimation errors. Thus, when
querying the size of flow k, we locate r counters using the same
r hash functions that are used to update the sketch counters and
return the minimum among the r counters. This minimum counter
represents an estimated flow size with minimum over-estimation.

Limitation of worst-case error estimation: Let us consider a
CM sketch configured with w = O(%), r = O(log(%}} It has been
shown [8] that an estimated size of each flow k falls in [f(k), f(k)+
€|F|1) with probability 1 — &, where f(k) and |F|; are the actual
size of flow k and the total size of all flows, respectively. This error
bound €|F|; was derived by constructing the “worst case”: § portion
of flows have €|F|; estimation errors and the other flows have zero
errors. This worst case maximizes the number of flows that have

114

Peiging Chen et al.

error of €|F|. Since the total size of all counters in one array is |F|1,
to reach the aforementioned worst case, % counters should have
the same flow counts, while the remaining counters are zero.
While the worst-case error bound of €|F|; offers an a priori error
estimation (i.e, before measurements start), it is more useful to
estimate the actual errors in practice, because they can be much
lower than the worst-case error bound. To confirm it, we evaluate
the worst-case error bound in CM using synthetic traces of 30M
packets with skewnesses ranging from 0.3 to 3.0 and real-world
traces [5] of 10M to 30M packets. CM is configured with 4 rows
each containing 10,000 counters. We use € = 0.0027 and 6 = 0.018
in calculating the error bounds. As depicted in Figure 1, there is a
large gap between the worst-case bound provided in the original
paper [8] and the actual (ground-truth) error bound.
Limitation of related work: The closest efforts to us are SCREAM
[23] and D. Ting’s error estimator [29]. SCREAM is a dynamic re-
source management system for sketches. To meet a given accuracy
requirement, SCREAM provides an accuracy estimator for the recall
and precision of heavy hitter detection by taking into account the
skewness in the sketch output. However, SCREAM only separates
the estimates of large flows and those of small flows, and the flow
size estimation for large (or small) flows still has the same worst-
case error bound as in [8]. Thus, they cannot precisely estimate
the flow size errors. Though D. Ting’s work [29] also derives an
improved error bound that is proven to be tighter than the orig-
inal one in [8], they do not achieve a near-optimal bound, since
they only utilize unused counters to estimate the error distribution,
whereas our method leverages all counter information in the sketch.
Moreover, D. Ting’s method is more compute-intensive than ours
due to its use of Likelihood Estimation.

3 Precise Error Estimator

In this section, we start by describing our error estimation algo-
rithms and then provide rigorous proofs that they always yield
tighter bounds. The symbols used are summarized in Table 1.

3.1 Error Estimation Algorithms

We give our error estimation algorithm for Count-Min (CM) in
Algorithm 1 and defer the algorithm and its analysis for CU-Sketch
and Count-Sketch (CS) to Appendix A.1. Given a CM-Sketch with
r rows of w counters (i.e., a counter matrix A[row][column]), our
goal is to provide a precise error bound by only accessing matrix A.

Algorithm 1: Error Estimator for CM.
Input: A[1...r][1... w] with confidence 1 — 4.

1 p e é'%;

2 SortToDescendingOrder(A[1][1]...A[1][w]);
Output: A[1][[wp]]

Let g(&8) be the ground-truth error bound that we want to es-
timate (i.e, the actual error is below g(8) with 1 — § probability).
In Algorithm 1, let p be the probability that the error of the corre-
sponding counter in each row is no less than g(38), i.e., not bounded
!Given an arbitrary set of flows F = {ey, ez, .. ., en }, we calculate the actual flow-size

estimation error x; on flow e; and return the 1 — & largest fractile of xy, x2, ..., X, as
the actual (ground-truth) estimation error.

Precise Error Estimation for Sketch-based Flow Measurement

IMC 21, November 2-4, 2021, Virtual Event, USA

Close approximation

¥ ¥
Close Close Equal Our error bound for
Ground-truth error bound Ground-truth error bound our error bound for qua - '
for arbitrary flows for zero-sized flows zero-sized flows el ST AT 1"',5 (L
(Theorem 3.1 & 3.2) (Theorem 3.4) (By definition)

Figure 2: The key steps in the proof that our error bound (Algorithm 1) is close to the ground-truth error bound.

Symbol | Description
F traffic stream F= {(e;, f;) }
e flow identifier of e;
fi size of flow e;
Xe; the additive error of flow e; in one sketch row 2

Y the additive error of a non-existent flow (size 0)

Iij a variable indicating flow e; and e; collides
Fy(.) the cumulative distribution function of ¥
ge; (6) | ground-truth error bound for flow e; with confidence §

r number of rows in Count-Min Sketch

w number of counters in each row
& largest p-fractile of Fy (.)

Ex x-th largest of counter values
|F|1 the total size of flows in F

Table 1: List of symbols and notations.

by g(5). Then the probability & that all r corresponding counters

are not bounded by g(8) is p”. Therefore, p = § 7. To estimate g(8),
we pick an arbitrary row (e.g., row 1: A[1][1] ... A[1][w]), sort all
its counters by non-ascending order, and report the | wp]-th largest
counter as our estimation for g(§5).

3.2 Analysis

Next, we will prove that this error estimation algorithm provides
an error bound that is close to the ground-truth error bound under
all circumstances.

Proof outline: For ease of understanding, we begin by sketching
the key steps (illustrated in Figure 2) in our formal proof:

e Step 1: We first show in Theorem 3.1 that the ground-truth
error bound for non-zero flows (those that exist in the traffic) is
smaller than that of zero-sized flows (those that do not appear in
the traffic). An intuitive explanation is that the error of flow e,
grows with the total size of other flows except e, so the error is
at the highest when e, itself is zero-sized. Further, we will show
in Theorem 3.2 that the ground-truth error bounds for any flows
are similar. Together, they imply that the ground-truth error
bound of an arbitrary flow (the first block in Figure 2) is tightly
upper bounded by the ground-truth error bound of a zero-sized
flow (the second block in Figure 2).

o Step 2: We then show in Theorem 3.4 that for zero-sized flows,
the difference between ground-truth error bound (the second
block in Figure 2) and our error bound produced by Algorithm 1
(the third block in Figure 2) can be tightly bounded. Finally,
since Algorithm 1 by definition returns the same error bound
for all flows, our error bound for arbitrary flows (the last block
in Figure 2) closely approximates the real ground-truth error
bound (the first block in Figure 2). In particular, Equation (5)
gives a formal bound of this approximation.

2For a flow e; and one row in the CM-Sketch, the additive error is the difference
between the hashed counter value and f;.

115

Step 1: Ground-truth error bounds for any flows are similar.
In this step, we first show that the ground-truth error bound for
any non-zero flow is smaller than the ground-truth error bound for
a zero-sized flow (Theorem 3.1). We then prove that the difference
between both ground-truth bounds is small (Theorem 3.2).

For arbitrary flow e, its additive error is X, . For the j”‘ row
of a sketch, let Xg) be the additive error of flow eg in the j‘h row.
For CM-Sketch, Xe(f) = YeieS\{ea} fi - lai, where S is the set of all
flows and I, ; indicates whether flow e, and flow e; are hashed to
the same counter by h;(.). The value of I; is either 0 or 1. The
additive estimation error of e, is the minimum error among all
rows of the sketch, ie, X, = min?zl {Xe(iI) 1

The ground-truth error bound of arbitrary flow e, is denoted as
ge,, (8), which satisfies:

Pr [Xe, > ge,(8)] = 6,V8 (1)

For zero-sized flow e (i.e, fo = 0), the additive error is X, and
its ground-truth error bound is g, (5). Next, we prove that the
ground-truth error bound for zero-sized flows is no less than the
ground-truth error bound for arbitrary flows.

THEOREM 3.1. Given the traffic stream ¥ and the sketch configu-
rations (i.e., w counters in each row and r rows). We have

Geo () < gey(8), Veq (2

PrOOF. Since X = ¥, cs\ (eu} forlai and X = ¥, cs forlos,
we have Vi, Pr [X,g) > t] <Pr [Xéc;f) > 1‘]. Therefore,
Pr [Xea > I] < Pr [Xen > t] LVt
From the definition of ge,, we have
9ea (9) < ey (8), Vea

u]

As Theorem 3.1 only shows non-zero flows having a larger
ground-truth error bound than that of zero-sized flows, we now
argue that any non-zero flow’s ground-truth error bound can be
closely approximated by zero-sized flow’s ground-truth error bound.

THEOREM 3.2. Vt as a bound, an arbitrary flow eq (can be a zero-
sized flow) and eg , 0 < Fy, (1) — Fx,, (t) < I, where X, is the
error of flow eq and F(.) is the Cumulative Distribution Function
(CDF) of errors.

ProoF. Recall that Xe(;f) = Yeies\{ea} feila,i-

IMC "21, November 2-4, 2021, Virtual Event, USA

We have
Fyon () = Pr [xe(;') < t]

_ ©) 1 () 1
Fyp (0 =Pr [Xea < t] (1— ;) +Pr [xea <t—fo| =

And then,
1
0<Feor (1) = Fyo(t) < 2

Since ¥, = min}zl{Xe(:) }, we have 0 < Py, (t) — Fx, (t) < =
o

Theorem 3.2 enables us to use the ground-truth error bound
for zero-sized flows as the ground-truth error bound for any spe-
cific flows. For simplicity, we denote g, (8) as g(8). Our goal is to
estimate g(&).

Step 2: Our error bound for arbitrary flows is close to zero-
sized flow’s ground truth error bound. For one row of a sketch,
the value of each counter can be viewed as a sample of the same
random variable, denoted as Y. Y = }, s fe; Xi, where Pr[X;

1] = % and X; = 0 otherwise. From the definition of Y and Xéﬂj)
(the error of zero-sized flow in one row), we find that they are
exactly the same. Therefore, we can estimate the g(8) from the
distribution of the counter values. In one row of CM-Sketch, the
w counter values can be viewed as w sample results. We then sort

the w counter values, and pick the k-th largest counter gk, where
k=[wpland p= 57 Next, we try to prove that our estimation of
g(8) (4(8) = pr) is accurate.

In Lemma 3.3, we prove that, for any p-fractile counter value
picked (i.e., pr), it is a close approximation to the ground-truth
error bound of a zero-sized flow with confidence p.

LemMA 3.3. For any probability p, the sampled sketch counter
value §(5) = pr falls in a close range of the CDF Fy at value p.

Prlp—y<Fy (§() <p+yl 21-22%7 (3
PROOF. Let & be the (p)-th largest fractile or quantile of Fy,
& = F;'(p) = inf{x|F(x) 2 p}.

Pr [Fy (pr) >p+ y]

=Pr (ZI (xj > gpﬂ,}) > w(1-p)

]

=Pr (ZI(XJ- >§p+y})—w(1—(p+y)) > wy
J

Due to Hoeffding’s inequality, variables X is strictly bounded by
[0,1]. Also E [I (X; > §P+Y)] =1-(p+y). Therefore we have

. wiy?
Pr{L(X) > Epy) — (1= (p+y) <y] < w =2
Similarly, we have
_zwty? _
PrlI(X;> & y)-(A=(p-p)>y]<e v =2
By Hoeffding bound, we prove the above theorem.
O

116

Peiging Chen et al.

From Lemma 3.3, we can estimate the bias of our bound:

THEOREM 3.4. Given the traffic stream F and the sketch config-
urations (i.e., w, and r). The bias of our estimated bound §(5) from
g(8) is small.

Pr[15(8) - 9(8)| > g(81) — 9(8,)] < 2672, vy >0

where §; = (5% — y)r,ér = (5% +y)

4

r

Let y = t(2w)™%3. We have 1 - 2! confidence that the bias
of our estimation is no greater than g(&;) — ¢(5;). §; and &, are
both close to 8, and therefore g(&;) — g(&;) is often a small value
compared with the truth g(5). Thus we derive our bound:

3=t eolo-(-0(Z)| oo-(o(F)] ©
with high probability.
Summary: In Step 1, we prove in Theorem 3.1 that the ground-
truth error bound of zero-sized flows is the larger than that of any
arbitrary flow, making the error bound for zero-sized flows a feasible
error bound for all flows. Then, Theorem 3.2 shows that the ground-
truth error bound of zero-sized flows is a close approximation to any
non-zero flow’s error bound. Both theorems imply that, if we can
derive an error bound that is close to the ground-truth error bound
for zero-sized flows, that bound will be a close approximation error
bound for arbitrary flows. Thus, in Step 2, we prove in Theorem
3.4 that the error bound we drive is a close approximation to the
ground-truth error bound for zero-sized flows. With both steps, our
error bound from Algorithm 1 shows its near-optimality.

3.3 Additional Analysis for the Original Bound

Our error bound is tighter than the original bound: Given a
confidence of success 1 — §, the original CM bound (which requires
r= [fn(%)] and w = [%] as in [8]) guarantees Pr [Xei > e|F|1]
< 8,where e = ,8 = ¢". Our approach gives an error bound
- 1 -

§(8) = Ewp (recall that p = 57) which satisfies Pr [x,,,. > §wp} <.
Now we prove that pr < €|F|1. Due to the properties of quantile,
we have E}‘;lgj = |F|y. Also, g“} < §} <...< gw. Thus, we have

g _p _$ g [Fls
Sp =8 (1o5#) TS (o) T S U5

l:
e

e|Fly (6)

Therefore, the bound given by our method is always tighter than
the original bound.
Analyzing the worst-case scenarios in the original bound:

The original error bound of CM-Sketch is met if and only if the
Markov inequality is reached. If we see the Markov inequality:

E(X)=ZxP(X = x)
=ZgxP(X = x) + Z7xP(X = x)
> IVxP(X =x) 2 Z)aP(X =x)
=aXlP(X=x)=aP(X = a)
where a stands for eE(Xj j) and X stands for Xj j, which is the

error of flow e; in the ith row. Reaching the equality requires the
following two equations:

IxP(X=x)=0

Precise Error Estimation for Sketch-based Flow Measurement

IMC 21, November 2-4, 2021, Virtual Event, USA

—=— Original method —e— Ground truth —— Our method

1E+4 1E+4 o 1E+8
.____,n-l" L
. — ose — 1E+7 e
o _.-t"'.‘ o g #® | g
= 1E+3 'r—“r 1E+u *‘,."-"- —
w — " 1E+6
1E+2 +
10 15 20253035 1B+2 10 15 20253035 1E+5 10 15 20253035
trace size (M packets) trace size (M packets) trace size (M packets)
(a) CAIDA Trace (b) DC Trace (¢) MACCDC Trace
Figure 3: CM-Sketch evaluation on different real-world trace sizes.
1E+5 1E+5 1E+7 &
[1E+6
L
1E+4 .\0\ 1E+4}+ \\\
\\ NN 1E45
1E43 \.\ 1E+3 < 1E+4} -\ A\
1E+2 e 1E+2 . 1E+3
1k 10k 100k 1k 10k 100k 10 100 1k 10k100k
Memory (# counters) Memory (# counters) Memory (# counters)
(a) CAIDA Trace (b) DC Trace (c) MACCDC Trace
Figure 4: CM-Sketch evaluation with different memory constraints.
2.8E+3
E¥xP(X = x) = Z¥aP(X = x) 8E+3 "
 6E+3 2.4E+3 4
This requires on the distribution of variable X: X shall be either S 4E+3 5 oEs3 o
. =
0 or a. For zero-sized flows, their error distribution X is the same as w -~ W
the counter value distribution, where each counter value is either 0 2E+3 “'—-.,_. 1.6E+3
or a. Given that the sum of all counters is |F|; in any array of CM, 00 1 > 3 1 _2E+a 106
there shall be (1 -4 i) w counters with value 0 and 87 w counters skewness Large counter percentile

with value a in each array. The CM reaches the worst case when
every its array reaches the worst case. This is the worst-case counter
distribution constructed in the original error bound and is nearly
impossible to achieve in practice due to hashing.

4 Evaluation

We evaluate our error estimator for Count-Min Sketch (with ad-
ditional results for Count-Sketch and CU-Sketch deferred to Ap-
pendix B) on real-world traces (CAIDA [5], a data-center trace
set [4], and MACCDC [21]) and synthetic traces [25]. Our exper-
iments demonstrate that our estimator (1) provides significantly
more accurate error bounds than the prior approach [8] on all three
sketches, (2) matches the ground-truth error bound under all traffic

patterns, and (3) shows potential benefits to real-world use cases.

4.1 Methodology

Traces: We use the five-tuple as the flow identity in all experi-
ments. Evaluated traces include: (a) an anonymized packet trace
from CAIDA [5] containing 33.6M packets and 7.7M flows; (b) a
campus data center trace (DC) [4] containing 30.3M packets and
4.2M flows; (c) a DDoS attack trace from MACCDC [21] containing
32.28M packets and 195 flows; (d) 10 synthetic traces generated
from Web-Polygraph [26], following the Zipf [25] distribution with
skewnesses ranging from 0.3 to 3.0 and with a gap of 0.3. Each trace
has 30M packets. The default sketch size is 4 x 1000 counters for
CAIDA, DC, and the synthetic traces. The default sketch size for
the DDoS attack trace is 4 X 10 counters, due to a smaller number

117

Figure 5: Error bounds un- Figure 6: Finding “worst-
der different skewnesses. case” workloads.

of flows. We use § = e~ as defined in [8], which is 0.018. We use
€ = % as defined in [8], which is 0.0027.

Estimators under evaluation: Original bound refers to the er-
ror bound given by the original papers of CM-Sketch [8], Count-
Sketch [6], and CU-Sketch [10]. Ground truth refers to the ground-
true error bound. Our method refers to our error bound.

4.2 Evaluation of Error Estimator

We evaluate the aforementioned error bounds under 1) different
trace sizes, 2) different memory constraints, and 3) datasets with
different skewnesses.

Impact of trace sizes: Our method outperforms the original error
bounds under varying trace sizes. Figure 3a, 3b, 3¢ show that the
original error bounds have a 2000% to 4400% deviation from the
ground truth for CM-Sketch, whereas our method has only a 0.8%
to 14% deviation.

Impact of memory constraints: Figure 4a, 4b, 4c show that,
under different memory constraints, the original method has a
9500% to 13000% deviation from the ground truth. In contrast, our
method reduces the deviation to less than 40.4%.

Impact of trace skewness: Figure 5 demonstrates that our method
outperforms the original error bound under different values of flow-
size skewness. Our method has an error bound very close to the
ground truth, with only 0.16% to 2.6% deviation for Count-Min

IMC "21, November 2-4, 2021, Virtual Event, USA

Peiging Chen et al.

~+= Sampling—— Sketch ——Original bound—— Ours ©200 l T ongnal
0.02 0.08f -+ - 2150 our method
5 o0 ‘}'\\ A 004 - = Emo l
= ' T
002 Z = e 2 §
— 2 4 6 8 1012 2 4 6 8 10 12 s 0 1 2 3
Trace Size (M packets) Trace Size (M packets) E Skewness

(a) Spine Cache Hit

(b) Leaf Cache Hit

(c) Resource Usage

Figure 7: Benefits of more precise error estimation.

Sketch. As the flow-size skewness raises from 0.3 to 3.0, the error
reduction of our method, compared to the original bound, increases
from 80x to 700x.

Figure 6 explores the worst-case scenarios in which the original
error bound might work. We create these worst-case scenarios as
follows: we use 1000 sketch counters, and we set the same value
to 57w = 368 counters (i.e, “large” counters) and another value
to all remaining 632 counters (i.e., “small” counters). We set the
counters such that the sum of the large counters over the total sum
of counters varies from 100% to 50%. Figure 6 shows that the original
bound equals the ground truth only when the sum of large counters
equals the total counters (i.e., small counters are zero-sized), which
is arguably rare in real-world traffic.

4.3 Case Study: Distributed Caching

Count-Sketch can be used in caching to detect hot objects. Here we
show the benefits of our estimator to improve cache performance
in a particular distributed cache setting [17], where two layers
of programmable switches (e.g., spine and leaf switches in a Clos
topology) serve as the cache nodes to store hot objects and balance
the server loads.

Accurate cache hit-rate prediction: We feed the CAIDA traces
(with different sizes) to Count-Sketch and NetFlow (with 1% sam-
pling), and then reconstruct each trace using three methods (Count-
Sketch with the original error bound or with our error bound, and
100x replication of the NetFlow-sampled packets). We then use the
reconstructed traces to predict the range of hit rate if the CAIDA
traces are fed to the aforementioned two-layer caches. The recon-
struction and prediction methods are detailed in §B.1. Figure 7a and
7b show that our method (Count-Sketch-reconstructed traces with
our proposed error bound) produces a much narrower estimation of
the hit rate than Count-Sketch with the original (worst-case) error
bound (i.e., tighter gap between the green lines than between the
blue lines). It is also more accurate than NetFlow-based sampling.
Qur gains over the baselines persist under varying trace sizes.

Better cache space provisioning: Given that the predicted cache
hit rate will not be 100% accurate, operators must overprovision the
cache space in order to ensure that a given number (by default, 100)
of hottest objects are cached [11]. Here, we show that our method
(Count-Sketch with the proposed error bound) can help operators
overprovision less cache space. To this end, we assume that our
goal is to cache the top-100 hottest objects, and that the flow size
of the 100™® hottest object is figo. We use Count-Sketch to estimate
the flow sizes with an error bound E;, and put all objects with
estimated size greater than fig9 — Er in the cache memory. Figure
7c shows that since our estimator of E; is much smaller than the

original error bound, it can use less overprovisioned cache space,
while still caching the top-100 hottest objects.

5 A Future Roadmap

We have shown that sketch errors can be estimated much more
accurately a posteriori (after the sketch output is known) than a
priori (before the flows arrive). This result, together with the rigor-
ousness of sketches, suggests an exciting direction to systematize a
new approach to sketch-based analytics, which can benefit many
network management tasks. Here, we outline a possible research
agenda towards a vision of highly accurate sketch-based analytics.

Distributed sketch analytics with precise error estimation:
Sketches show a viable path towards a resource-efficient, scalable
analytics platform. The increasing demands on performance and
reliability raise the bars for identifying and preventing failures in
the network. The ability to precisely measure the errors of sketch
results would facilitate adoption of sketches as a reliable data source;
e.g., L4 load balancers [13, 22] require precise estimation of large
flows to rebalance the load, and traffic engineering [16, 27] requires
precise estimation of dynamic link utilization. The opportunities
and challenges lie in how to bound the errors of network-wide

analytics results.
Enabling accurate “what-if” analysis: Sketch-based analytics

could enable scalable, accurate “what-if” analysis: if we leverage
sketches to process real-world workloads and reconstruct the origi-
nal workloads with precise error estimates. This is because fully
capturing the traffic (e.g., at backbone WAN and an ISP ingress) is
not infeasible but may be very expensive, and traditional packet
sampling approaches (e.g., NetFlow) are known to be inaccurate [9].
When designing sketch-based “what-if” analyzers, care must be
taken to augment the sketch features as needed (e.g., additional
information about flow time-span and loss rate of the flows) and
analyze the impact of errors.

Enabling reliable self-driving network control: Sketch-based
analytics can facilitate autonomous control in diverse networked
applications. When a decision-making process needs to query the
analytics platform, it is critical to assess the confidence of the result
and whether an refinement of the result is needed. Our precise error
estimator is a promising first step towards this goal, with several
open questions to be addressed in future work, such as dynamic
sketch adjustment and on-demand error correction.

6 Acknowledgements
We would like to thank our shepherd Walter Willinger and the

anonymous reviewers for their constructive feedback. This work
was supported in part by NSF grants CNS-2107086 and CNS-2106946.

118

Precise Error Estimation for Sketch-based Flow Measurement

References

[1] Mohammad Alizadeh, Tom Edsall, Sarang Dharmapurikar, Ramanan
Vaidyanathan, Kevin Chu, Andy Fingerhut, Vinh The Lam, Francis Matus, Rong
Pan, Navindra Yadav, et al. 2014. CONGA: Distributed congestion-aware load
balancing for datacenters. In Proc. of ACM SIGCOMM.

[2] Moh d Alizadeh, Shuang Yang, Milad Sharif, Sachin Katti, Nick McKeown,
Balaji Prabhakar, and Scott Shenker. 2013. PFabric: Minimal near-Optimal Data-
center Transport. In Proc. of ACM SIGCOMM.

[3] Ran Ben Basat, Gil Einziger, Roy Friedman, Marcelo Caggiani Luizelli, and Erez
Waisbard. 2017. Constant Time Updates in Hierarchical Heavy Hitters. In Proc.
of ACM SIGCOMM and CoRR/1707.06778.

[4] Theophilus Benson, Aditya Akella, and David A Maltz. 2010. Network traffic
characteristics of data centers in the wild. In Proc. of SIGCOMM IMC.

[5] CAIDA. 2018. The CAIDA UCSD Anonymized Internet Traces equinix-chicago.
http://www.caida.org/data/passive/passive_dataset.xml

[6] Moses Charikar, Kevin Chen, and Martin Farach-Colton. 2002. Finding Frequent
Items in Data Streams. In Proc. of ICALP.

[7] Graham Cormode, Flip Korn, S. Muthukrishnan, and Divesh Srivastava. 2008.
Finding Hierarchical Heavy Hitters in Streaming Data. ACM Trans. Knowl. Discov.
Data (2008).

[8] Graham Cormode and 5. Muthukrishnan. 2005. An Improved Data Stream
Summary: The Count-Min Sketch and Its Applications. j. Algorithms (2005).

[9] Cristian Estan and George Varghese. 2002. New directions in traffic measurement
and accounting. In Proc. of ACM SIGCOMM.

[10] Cristian Estan and George Varghese. 2003. New directions in traffic measurement
and accounting: Focusing on the elephants, ignoring the mice. ACM Transactions
on Computer Systems (2003).

[11] Bin Fan, Hyeontaek Lim, David G Andersen, and Michael Kaminsky. 2011. Small
cache, big effect: Provable load balancing for randomly partitioned cluster ser-
vices. In Proc. of SoCC.

[12] Qun Huang, Patrick PC Lee, and Yungang Bao. 2018. SketchLearn: Relieving
User Burdens in ApproximateMeasurement with Automated Statistical Inference.
In Proc. of ACM SIGCOMM.

[13] Intel [n.d.]. High Performance Layer-4 Load Balancer based on DPDE. https:
//github.com/iqiyi/dpvs.

[14] Xin Jin, Xiaozhou Li, Haoyu Zhang, Robert Soulé, Jeongkeun Lee, Nate Foster,
Changhoon Kim, and Ion Stoica. 2017. NetCache: Balancing Key-Value Stores
with Fast In-Network Caching. In Proc. of ACM SOSP.

[15] Balachander Krishnamurthy, Subhabrata Sen, Yin Zhang, and Yan Chen. 2003.
Sketch-based Change Detection: Methods, Evaluation, and Applications. In Proc.
of ACM IMC.

[16] Hongqiang Harry Liu, Srikanth Kandula, Ratul Mahajan, Ming Zhang, and David
Gelernter. 2014. Traffic engineering with forward fault correction. In Proc. of
ACM SIGCOMM.

[17] Zaoxing Liu, Zhihao Bai, Zhenming Lin, Xiaozhou Li, Changhoon Kim, Vladimir
Braverman, Xin Jin, and Ion Stoica. 2019. DistCache: Provable Load Balancing
for Large-Scale Storage Systems with Distributed Caching. In Proc. of USENIX
FAST.

[18] Zaoxing Liu, Antonis Manousis, Gregory Vorsanger, Vyas Sekar, and Vladimir
Braverman. 2016. One Sketch to Rule Them All: Rethinking Network Flow
Monitoring with UnivMon. In Proc. of ACM SIGCOMM.

[19] Zaoxing Liu, Samson Zhou, Ori Rottenstreich, Vladimir Braverman, and Jennifer
Rexford. 2019. Memory-Efficient Performance Monitoring on Programmable
Switches with Lean Algorithms. Proc. of SIAM/ACM APoCS (2019).

[20] Yi Lu, Andrea Montanari, Balaji Prabhakar, Sarang Dharmapurikar, and Ab-
dul Kabbani. 2008. Counter Braids: A Novel Counter Architecture for Per-
FlowMeasurement. In Proc. of ACM SIGMETRICS.

[21] MACCDC. 2012. Capture Traces from Mid-Atlantic CCDC. http://www.netresec.
com/?page=MACCDC

[22] Rui Miao, Hongyi Zeng, Changhoon Kim, Jeongkeun Lee, and Minlan Yu. 2017.
SilkRoad: Making Stateful Layer-4 Load Balancing Fast and Cheap Using Switch-
ing ASICs. In Proc. of ACM SIGCOMM.

[23] M d Moshref, Minlan Yu, R h Govindan, and Amin Vahdat. 2015. Scream:
Sketch resource allocation for software-defined ement. In Proc. of ACM
CoNEXT.

[24] Chen Peiging, Chen Dong, Zheng Lingxiao, Li Jizhou, and Yang Tong. 2021. Out
of Many We are One: Measuring Item Batch with Clock-Sketch. In Proceedings of
the 2021 International Conference on Management of Data (Virtual Event, China)
(SIGMOD ’21). Association for Computing Machinery, New York, NY, USA. https:
//doi.org/10.1145/3448016.3452784

[25] David MW Powers. 1998. Applications and explanations of Zipf's law. In New
methods in language processing and computational natural language learning.

[26] Alex Rousskov and Duane Wessels. 2004. High-performance benchmarking with
Web Polygraph. Software: Practice and Experience (2004).

[27] Rachee Singh, Manya Ghobadi, Klaus-Tycho Foerster, Mark Filer, and Phillipa Gill.
2018. RADWAN: rate adaptive wide area network. In Proc. of ACM SIGCOMM.

IMC 21, November 2-4, 2021, Virtual Event, USA

[28] Cha Hwan Song, Pravein Govindan Kannan, Bryan Kian Hsiang Low, and
Mun Choon Chan. 2020. FCM-sketch: generic network measurements with
data plane support. In Proc. of CoNEXT.

[29] Daniel Ting. 2018. Count-min: Optimal estimation and tight error bounds using
empirical error distributions. In Proceedings of the 24th ACM SIGK DD International
Conference on Knowledge Discovery & Data Mining. 2319-2328.

[30] Tong Yang, Jie Jiang, Peng Liu, Qun Huang, Junzhi Gong, Yang Zhou, Rui Miao,
Xiaoming Li, and Steve Uhlig. 2018. Elastic Sketch: Adaptive and Fast Network-
wide Measurements. In Proc. of ACM SIGCOMM.

[31] Yinda Zhang, Zaoxing Liu, Ruixin Wang, Tong Yang, Jizhou Li, Ruijie Miao, Peng
Liu, Ruwen Zhang, and Junchen Jiang. 2021. CocoSketch: High-Performance
Sketch-based Measurement over Arbitrary Partial Key Query. In Proc. of ACM
SIGCOMM.

A Detailed Proofs for Section 3.2

Background on CU-Sketch and Count-Sketch: In addition to

CM-Sketch, CU and CS are two other widely-used sketches. Our
error estimator can also perform well on them after minor updates.
Specifically, CU and CS share the same r X w counter structures
with CM but have different insertion and query strategies. To insert
flow e, CU only increments the smallest counter(s) among the r
rows while CM increments all r corresponding counters. CS needs
to update all r counters, the same as CM. But instead of always
increment the counters, CS updates the counters by S(e), where
5(-) is a hash function that outputs {+1,—1} with equal probability.
When queried with the r hash keys of a flow identity, CS reports
the median value of the r corresponding counters (whereas CM and
CU reports the minimum value).

A.1 Algorithm details for CU-Sketch and
Count-Sketch

We first show the pseudo code of error estimator for CU-Sketch in
Algorithm 2 and for Count-Sketch in Algorithm 3. Notice that the
algorithm for CU-Sketch is exactly the same as that for CM-Sketch
due to their similar properties in generating sketch: they share a
common query paradigm that returns the minimum counter value
among the r rows as the estimated flow size.

For Count Sketch: In CS, the flow size is estimated by the median
value of among the corresponding counters. Let g(5) be the ground
truth error bound. In Algorithm 2, let p; be the probability that,
for one row, the absolute error of the corresponding counter is no
less than g(&). For CS, the relationship between pg and § is more
complex than that of CM/CU. The probability that the median value

is not bounded by g(8) is 2 X"_,., ()8 (1 - 827~ = 5 when
=7

r is an odd number? (Proof in Section 3.2). We find the value of py

by enumeration for easy understanding, which can also be solved

by faster bisection approach. Then, we sort A[1][1] ... A[1][w] by

non-ascending order based on their absolute values and report the
| wpo-th largest counter as our estimation result.

Algorithm 2: Error Estimator for CU-Sketch.
Input: A[1...r][1... w] with confidence 1 — §.

1 pp — 5%;

2 SortToDescendingOrder(A[1][1]...A[1][w]);
Output: A[1][[wpo1]

3Similar equation for an even r.

http://www.caida.org/data/passive/passive_dataset.xml
https://github.com/iqiyi/dpvs
https://github.com/iqiyi/dpvs
http://www.netresec.com/?page=MACCDC
http://www.netresec.com/?page=MACCDC
https://doi.org/10.1145/3448016.3452784
https://doi.org/10.1145/3448016.3452784

IMC "21, November 2-4, 2021, Virtual Event, USA Peiging Chen et al.

= 1E+6[F P
-\“‘-.__ T 1E+7 -
S 1E+4 ..
LItJ1E 3 T :?: = \\ -
+ +
"\. 1E+4
1E+2 ; 1E+2
1k 10k 100k 1k 10k 100k 10 100 1k 10k100k
Memory (# counters) Memory (# counters) Memory (# counters)
(a) CAIDA Trace (b) DC Trace (c) MACCDC Trace
Figure 8: Count-Sketch evaluation on different real-world trace sizes.
1E+6 1E+6
1.2E+7
ue it o
1E+5 1E+5, =" BE+6 s
r—-—"'_""_r..r"_.‘ /
1E+4 1E+4 4E+6 o
et
1E+3- e + be 1E+3 parrs 'Wﬁ-’.’
B 25155625305 | .10 15 20253085 10 15 20253085
trace size (M packets) Trace Size (M packets) Trace Size (M packets)
(a) CAIDA Trace (b} DC Trace (C} MACCDC Trace
Figure 9: Count-Sketch evaluation with different memory constraints.
1E+45 1E+5 1E+7
1E+6} ™%
- 1E+4 1E+4 r
o
5 1E+3 1E+3 \x\\ < 1E+5 \:\
1E+2 \ 1E+2 \x 1E+4 N\
3 1E+1 » 1E+3
Tk 10k 100k 1k 10k 100k 10 100 1k 10k100k
Memory (# counters) Memory (# counters) Memory (# counters)
(a) CAIDA Trace (b) DC Trace (c) MACCDC Trace

Figure 10: CU-Sketch evaluation on different real-world trace sizes.

1E+4 - 1E+4 = 1E+7

-t et e
N W ol
1E+3 ﬁ:ﬁ"ﬁ“ 1E+3 1E+6 ; o
= :;;ﬁF"“

1E+2 1E+25 : 1E+5

10 15 20253085 10 15 202535 10 15 202535

trace size (M packets) trace size (M packets) trace size (M packets)
(a) CAIDA Trace (b) DC Trace (c) MACCDC Trace
Figure 11: CU-Sketch evaluation with different memory constraints.
A.2 Our bound for Count-Sketch is tighter the error of the r-th row is X; == A[r][h,(e;)] — f;. When f; = 0,

CS has the similar property when giving a better error bound as we calculate error bound g(9):

CM.

8) = Pr[|median,(X;)| > g(8)] = 8,V6
THEOREM A.1. For Count-Sketch with r = 2%k + 1,k € Z, the opti- 9(9) := Pr[|median; (Xr)| > 9(9)]

mal error bound g(&) is £p, where p satisfies equation z; 1 (:} pl(1-
pI=4.

ProOOF. Because our algorithm sorts all the absolute counter
values, it is slightly different from the formula used here. Suppose

As X, are distributed symmetrically about 0, we have

8
Pr[median,(X;) < g(8)] = 2

120

Precise Error Estimation for Sketch-based Flow Measurement

Algorithm 3: Error Estimation for Count Sketch.

Input: A[1...r][1...w] with confidence 1 — &.
1 fori=1— wdo
2 po L.

w)

s | if2-3 ., ()2 (1-2)"J > 5 then
j=rt

4 |_ Break;

s SortToDescendingOrder(|A[1][1]]|... |A[1][w]]);
Output: |A[1][[wpo]]|

I 8E+3
6E+5 /./- BE+3
4E+5 / AE+3
DE+5] - ix 2E+3
0 =’5/: e 0 -
0 1 2 3 0 1 2 3

skewness
(b) CU-Sketch

Figure 12: Error bounds under different skewnesses for
Count-Sketch and CU-Sketch.

skewness
(a) Count-Sketch

2 5E+5 / 2 8E+3
2E+5 24E+3 =
ol
A 1.6E+3
S5E+4 S /
0 1.2E+3

8 10121416182022
Size per flow

U4 06 08 1
Large counter percentile

(a) Count-Sketch (b) CU-Sketch

Figure 13: Finding “worst-case” workloads on Count-Sketch
and CU-Sketch.

Then
Pr[ZI(X,- <g(8) = k+1]= g
r=1

let p = I(X; < 9(5))

> (Jpa-pri=3

Jj=k+1
O

B Evaluation on Count-Sketch and CU-Sketch

Impact of trace sizes: Our method outperforms the original error
bounds under varying trace sizes on all three sketches. Figure 8a,
8b, 8c (Count-Sketch), and Figure 10a, 10b, and 10c (CU-Sketch)
show that our method achieves an error bound with less than 0.7%
deviation for Count-Sketch, and less than 41% deviation for CU-
Sketch.

Impact of memory constraints: Count-Sketch and CU-Sketch
using our approach have tighter bounds than the original error
bounds under different memory constraints too. Figure 9a, 9b, 9¢
(Count-Sketch), and Figure 11a, 11b, 11c (CU-Sketch) show that our

121

IMC 21, November 2-4, 2021, Virtual Event, USA

method improves the error bounds with a less than 40.4% deviation
for Count-Sketch, and a less than 20.7% deviation for CU-Sketch.

Impact of trace skewness: Figure 12 demonstrates that our
method outperforms the original error bound for Count-Sketch
and CU-Sketch when skewness varies. Our method gets an error
bound extremely close to the ground truth (0.7% to 5.6% deviation
for Count-Sketch and < 9.3% deviation for CU-Sketch). Besides, as
skewness grows, our method outperforms the original method more.
Count-Min Sketch and CU-Sketch has a constant error bound be-
cause it only depends on the sum of all flow sizes. Count-Sketch has
an error bound that grows with trace skewness. When using trace
skewness from 0.3 to 3.0, our method’s error bounds are 80 to 700
times tighter on tested sketches.

Finding worst-case scenarios: In Figure 13, we explore the sce-
narios in which the original error bounds may work. In CU-Sketch
(Figure 13b), the setting is exactly the same as CM-Sketch because
these two sketches have the same error bound. The major differ-
ence is that, it is even more difficult for CU-Sketch to reach such
a counter value distribution. Because it only adds to the smallest
counter when inserting a packet, the sum of counter values in one
row may be smaller than |F|;. Therefore, the largest possible value
of the 57 -fractile shall be even smaller. For Count-Sketch, we ap-
proach the worst case by setting the total size of flows as 1M and
the size of each flow equally (from 10 to 20). Results in Figure 13a
show that a “better” scenario for the original bound is when all
flow sizes are 10, which is difficult to achieve in real-world traffic.

B.1 Trace Recovery Methods in Case Study

Here we demonstrate how we use uniform sampling and sketching
to perform statistics on the original trace and later restore the trace.
Uniform Sampling of sample rate ﬁ records each packet in
the data stream with probability ﬁ. When restoring the trace, it
enlarges the sampled trace 100 times (i.e., duplicating each packet
by 100 times). There are two major limitations of uniform sampling
method: (1) it has large estimation error on the size of large flows;
(2) it cannot provide an error bound for flow sizes.

Sketching is a better method which can provide error bounds. We
use Count-Sketch(5 rows of 12000 counters each) to measure the
flow sizes and store the top-1600 flow ID. For flow size restora-
tion, we first restore the size of Top-K flows and give two error
bounds based on the original error bound and our method. After
the restoration of Top-Kflow sizes, we calculate the remaining trace
size and uniformly allocate them to all small flows.

Prediction method: In the “Accurate cache hit-rate prediction”
evaluation, we feed DistCache with the reconstructed traces. In
this setting, we suppose that all switches can have the accurate hot
objects stored on the switch cache, which is the ideal case. After
that, we estimate the number of cache hits generated on two layers
of cache nodes and compare them with the ground truth (i.e., cache

hits generated by the original trace).

	Abstract
	1 Introduction
	2 Background
	3 Precise Error Estimator
	3.1 Error Estimation Algorithms
	3.2 Analysis
	3.3 Additional Analysis for the Original Bound

	4 Evaluation
	4.1 Methodology
	4.2 Evaluation of Error Estimator
	4.3 Case Study: Distributed Caching

	5 A Future Roadmap
	6 Acknowledgements
	References
	A Detailed Proofs for Section 3.2
	A.1 Algorithm details for CU-Sketch and Count-Sketch
	A.2 Our bound for Count-Sketch is tighter

	B Evaluation on Count-Sketch and CU-Sketch
	B.1 Trace Recovery Methods in Case Study

