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Abstract

An asymptotic study is made of nonlinear effects in steady radiating waves

due to moving sources in dispersive media. The focus is on problems where

the radiated waves have exponentially small amplitude with respect to a pa-

rameter μ � 1, as for instance free-surface waves due to a submerged body

in the limit of low Froude number. In such settings, weakly nonlinear effects

(controlled by the source strength ε) can be as important as linear propaga-

tion effects (controlled by μ), and computing the wave response for μ, ε � 1

may require exponential (beyond-all-orders) asymptotics. This issue is dis-

cussed here using a simple model, namely, the forced Korteweg–de Vries

(fKdV) equation where μ is the dispersion and ε is the nonlinearity param-

eter. The forcing term f(x) is assumed to be even and its Fourier transform

f̂(k) to decay for k � 1 like Akα exp(−βk), where A, α and β > 0 are free

parameters. For this class of forcing profiles, the wave response hinges on

beyond-all-orders asymptotics only if α > −1, and nonlinear effects differ

fundamentally depending on whether α > 0, α = 0 or −1 < α < 0. Fur-
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thermore, the sign of the forcing amplitude parameter A is an important

controlling factor of the nonlinear wave response. The asymptotic results

compare favorably against direct numerical solutions of the fKdV equation

for a wide range of μ and ε, in contrast to the linear wave response whose

validity is rather limited.

Keywords: Steady waves, Forced Korteweg–de Vries equation,

Exponential asymptotics method

1. Introduction

Radiation of steady wave patterns by moving sources is a prominent

feature of wave propagation in various physical settings. In fluid media in

particular, there is rich literature on steady patterns of free-surface and in-

ternal gravity waves induced by a moving localized pressure distribution and

by flow over topography or past a submerged body. These wave phenomena

are fundamental to geophysical flow modeling and ship hydrodynamics [1, 2].

The standard theoretical approach to steady-wave problems is based on the

linearized equations of motion assuming infinitesimal disturbances, subject

to radiation conditions that derive from group velocity considerations [3, 4].

However, even when the source strength ε is weak (ε � 1) so linearization

is expected to be valid, nonlinear effects may still play an important part

in the wave response. Such a situation arises when the response wavelength

Λ is short relative to a characteristic length scale L of the source (μ =

Λ/L � 1) so the radiated waves have exponentially small amplitude with

respect to μ. Computing the wave response for μ, ε � 1 then may require

exponential (‘beyond-all-orders’) asymptotics, and weakly nonlinear effects
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(controlled by ε) can be as important as linear propagation effects (controlled

by μ). This shortcoming of linearization was noted in free-surface flow past

a submerged body in the limit of low Froude number [5, 6] and later was

studied via exponential asymptotics in a simple model problem [7].

The analysis in [7] considered the forced Korteweg–deVries (fKdV) equa-

tion in steady dimensionless form

μ2uxx + u− εu2 = f(x) (−∞ < x < ∞) , (1.1)

subject to the radiation condition

u → 0 (x → −∞) , (1.2)

where the forcing term f(x) is real and locally confined. Here, ε � 1

measures the strength of the forcing, and u has been scaled (u → εu) to make

explicit that ε also controls the nonlinear term. In keeping with Eq. (1.2),

waves may be radiated only downstream (x → ∞) and they are expected to

take the form

u ∼ R cos

(
x

μ
+ θ

)
(x → ∞), (1.3)

where the amplitude R and the phase shift θ are to be determined. Thus,

when the dispersion parameter μ � 1 in Eq. (1.1), the response wavelength

2πμ is short relative to the width of the forcing.

Owing to this lengthscale disparity, the Fourier transform of f(x),

f̂(k) =
1

2π

∫ ∞

−∞
f(x)e−ikxdx, (1.4)

at the response wavenumber k = ±1/μ is exponentially small with respect

to μ (assuming f(x) is analytic). This suggests that the response amplitude

R is exponentially small as well, a claim also supported by the fact that
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expanding u in powers of μ and ε,

u = f − μ2fxx + εf2 + · · · , (1.5)

shows no sign of radiating waves at any order of approximation. As explained

in [7], this issue can be handled by working in the wavenumber domain where

Eq. (1.1) transforms to

(1− μ2k2)û(k)− ε

∫ ∞

−∞
û(l)û(k − l)dl = f̂(k). (1.6)

The radiating wave in Eq. (1.3) is associated with the presence of simple-pole

singularities of û(k) at k = ±1/μ. Thus, the amplitude R and phase shift

θ are found by computing the corresponding (exponentially small) residues

asymptotically for μ, ε � 1 and then inverting the Fourier transform along

an integration path consistent with the radiation condition (1.2).

This exponential asymptotics procedure was illustrated in [7] for f(x) =

sech2x, sechx and exp (−x2). In these examples, the radiating waves, al-

though they feature exponentially small amplitude in μ, ε � 1, are governed

by a nonlinear beyond-all-orders generation mechanism. Furthermore, com-

parisons between theoretical predictions and numerical results indicate that

this mechanism remains in control even for moderately small μ and ε, where

the wave amplitude is substantial, so linearization has rather limited va-

lidity. In addition, the wavenumber procedure proposed in [7] was applied

to internal gravity waves (‘lee’ waves) generated by stratified flow over to-

pography with sech2x and sechx profile [8], and linearization was found to

suffer similar limitations.

Later, the results obtained in [7] for f(x) = sech2x and sechx also were

recovered using a nonlinear WKB technique that focuses on the singularities

of expansion (1.5) in the complex plane [9]. A comprehensive discussion of
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various beyond-all-orders techniques as applied to radiating waves is pre-

sented in [10], and a review of more recent advances is made in [11].

It is worth noting that the specific forcing profiles considered in [7 –

9] look similar in the physical domain; yet, their asymptotic treatments

in the wavenumber domain are distinct. Furthermore, there are profound

differences in how nonlinearity affects the radiating waves for each of these

forcings [7 –11]. Thus, it is natural to ask: (i) what particular features

of the forcing profile f(x) are essential to the asymptotic analysis; and (ii)

whether it is possible, instead of a case-by-case treatment, to set up a theory

for radiating waves due to a broad class of sources.

The present article addresses these questions in the context of the fKdV

equation (1.1), using the wavenumber exponential asymptotics approach.

Specifically, the forcing term is taken to be real and even in x and its (real

and even) Fourier transform is assumed to decay exponentially for large k,

like

f̂(k) ∼ A |k|α exp (−β |k|) (|k| → ∞), (1.7)

where A, α and β are real and β > 0. This class of f(x) includes as special

cases the sech2x, sechx and algebraically decaying profiles considered earlier

[6 –11].

We find that for μ, ε � 1 the radiating wave amplitude R and phase

shift θ are controlled by a nonlinear beyond-all-orders mechanism only if

α > −1. Furthermore, the procedure for computing R and θ hinges on

whether (i) α > 0, (ii) α = 0 or (iii) −1 < α < 0. Specifically, for α > 0, the

residues of the simple poles of û(k) at k = ±1/μ (and hence R and θ) can

be computed directly from a nonlinear Volterra-type integral equation that

‘sums’ to all orders the perturbation expansion (1.5), similar to the case
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α = 1 for f(x) = sech2x considered in [7]. For α = 0, this ‘outer’ analysis

must be supplemented with an ‘inner’ analysis in the vicinity of the simple-

pole singularities, as also found in [7, 11] for f(x) = sechx. Finally, for

−1 < α < 0, the outer and inner analyses are more involved than for α = 0

because nonlinearity affects also the exponential factor in the expression for

R.

In addition, the present study reveals that the sign of the forcing ampli-

tude A (which scales out in the linear limit, ε = 0) is a major controlling

factor of the nonlinear wave response. This point was not appreciated in

prior work, which dealt with A > 0 only. The theoretical predictions are

supported by numerical results for values of α representative of the regimes

(i)–(iii) above and for a wide range of μ and ε. Overall, it is concluded that

the linear wave response has rather limited validity.

Based on prior experience [8], it is expected that the methodology de-

veloped here for the fKdV equation will be applicable to steady radiating

free-surface and internal gravity waves due to forcings (e.g., localized ap-

plied pressure or bottom topography) that satisfy the assumed asymptotic

behavior of f̂(k) in Eq. (1.7). In particular, for α = 0, this class of forcing

profiles f(x) is relevant to the classical problem of free-surface flow past a

submerged circular cylinder [6].

2. Scalings

An advantage of working in the wavenumber domain is that the per-

turbation expansion of û(k) in powers of μ and ε becomes disordered for

|k| � 1, which provides a hint of whether nonlinearity can affect the pole

residues at k = ±1/μ. Specifically, taking Fourier transform of expansion
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(1.5) of u(x) yields

û(k) =
{
1 + μ2k2 + · · ·} f̂(k) + ε

∫ ∞

−∞
f̂(l)f̂(k − l)dl + · · · . (2.1)

Furthermore, making use of Eq. (1.7), the asymptotic behavior as |k| → ∞
of the convolution integral above for f̂2 is found to be

f̂2 ∼

⎧⎪⎨⎪⎩
A2c |k|2α+1 exp(−β |k|) (α > −1)

O ( |k|α exp(−β |k|) ) (α < −1),

(2.2)

where

c ≡
∫ 1

0
dp pα(1− p)α =

Γ(α+ 1)2

Γ(2α+ 2)
(2.3)

and Γ denotes the gamma function. Thus, for ε � 1 nonlinearity can

contribute to the disordering for |k| � 1 of expansion (2.1), only if

α > −1. (2.4)

Assuming this condition is satisfied and making use of (1.7) and (2.2), ex-

pansion (2.1) takes the following form for |k| � 1

û ∼ A |k|α
{
1 + μ2k2 + εAc |k|α+1 + · · ·

}
exp(−β |k|). (2.5)

Based on Eq. (2.5), nonlinear effects are expected to come into play for

k near the poles of û(k) at k = ±1/μ, if εA = O(μα+1). Accordingly, we set

ε = μα+1. (2.6)

This fixes ε in terms of μ, and A will serve as the second independent param-

eter in the fKdV equation: |A| = O(1) controls the balance of nonlinearity

with dispersion, while the sign of A specifies the polarity of the forcing term.

Earlier work [7] also adopted (2.6) (with α = 1 and α = 0 for the sech2x

and the sechx forcing, respectively) but A was fixed to A = 1.
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3. Two-scale asymptotics in the wavenumber domain

3.1. Uniformly valid approximation of û(k)

The disordering of expansion (2.1) for |k| � 1 noted above suggests a

uniformly valid approximation of û(k) that combines: (i) the straightforward

perturbation expansion (2.1), valid for 0 ≤ |k| � 1/μ, with (ii) the two-scale

expansion

û ∼ A

μα
U(κ) e−β|k| + · · · , (3.1)

valid for κ = μk = O(1). Here, in analogy with ‘two-timing’ asymptotics,

U(κ) may be viewed as the ‘slowly varying’ amplitude of the ‘fast’ exponen-

tial e−β|k|. Furthermore, in view of Eq. (2.5), we require that

U ∼ |κ|α
{
1 + κ2 +Ac |κ|α+1 + · · ·

}
(κ → 0). (3.2)

Thus, taking δ to be a constant such that μ � δ � 1, expansions (i) and

(ii) match for k in the intermediate range

1 � |k| = O(1/δ) � 1/μ. (3.3)

3.2. Integral equation for U(κ)

We now derive an approximate governing equation for U(κ), 0 < κ =

O(1). To this end, returning to Eq. (1.6), we write the convolution integral

for û2 as

û2 = 2

∫ k/2

−∞
û(l)û(k − l)dl. (3.4)

In this expression, as k − l = O(1/μ) for κ = O(1), û(k − l) is replaced by

the two-scale approximation (3.1),

û2 ∼ 2
A

μα
e−βk

∫ k/2

−∞
û(l)U(κ− μl) eβldl. (3.5)
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For −∞ < l ≤ 0, the main contribution to the integral above comes from

|l| = O(1) because û(l)eβl is exponentially small for l � −1; thus, û(l)

is approximated by expansion (2.1): û(l) = f̂(l) + · · · . In the rest of the

integration range (0 < l ≤ k/2), since k/2 = O(1/μ), û(l) is approximated

by expansion (2.1) for 0 ≤ l ≤ 1/δ, where 1 � 1/δ � 1/μ in keeping with

(3.3), and by expansion (3.1) for 1/δ ≤ l ≤ k/2. Upon implementing these

approximations in Eq. (3.5), we find

û2 ∼ 2
A

μα
e−βk

{
A

μα+1

∫ κ/2

μ/δ
U(λ)U(κ− λ)dλ

+

∫ 1/δ

−∞
f̂(l)U(κ− μl)eβldl

}
.

(3.6)

Finally, making use of Eqs. (1.7), (3.1) and (3.6), it follows from Eq. (1.6)

that U(κ) is governed by

(1− κ2)U(κ)− 2A

∫ κ/2

μ/δ
U(λ)U(κ− λ)dλ

− 2μα+1

∫ 1/δ

−∞
f̂(l)U(κ− μl)eβldl = κα.

(3.7)

3.3. Overview of analytical procedure

Equation (3.7) forms the basis of the ensuing analysis. The goal is to

compute the residues of the expected simple poles of U(κ) at κ = ±1, which

translate into simple poles of û(k) at k = ±1/μ, and thereby determine

the radiated waves upon inverting û(k). Of particular interest is how these

residues are impacted by the two integrals in Eq. (3.7), which account for

nonlinear effects in the radiated wave amplitude and phase. Formally, the

first of these integrals dominates; however, for −1 < α ≤ 0, the second

integral also comes into play when κ = ±1 +O(μ) and thus affects the pole

residues. This necessitates an outer–inner matched asymptotics procedure,

detailed below.
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4. Outer equation

To leading order in μ and μ/δ, Eq. (3.7) reduces to

(1− κ2)U(κ)− 2A

∫ κ/2

0
U(λ)U(κ− λ)dλ = κα. (4.1)

This Volterra-type integral equation is to be solved subject to the condition

U(κ) ∼ κα (κ → 0), (4.2)

in keeping with (3.2).

We first examine the nature of the singularity of U(κ) as κ → 1 based on

the ‘outer’ equation (4.1). The results of this outer analysis depend critically

on whether α > 0, α = 0 or −1 < α < 0, as discussed below.

4.1. Outer analysis for α > 0

Under the condition α > 0, the integral term in Eq. (4.1) is subdominant

as κ → 1, and U(κ) features a simple pole at κ = 1 irrespective of A. This

is deduced most easily by differentiating (4.1),

(1− κ2)U ′(κ)− 2κU(κ)−AU(κ/2)2

− 2A

∫ κ/2

0
U(λ)U ′(κ− λ)dλ = ακα−1,

(4.3)

and applying dominant balance. Specifically, letting

U ′(κ) ∼ C

(1− κ)p
, U(κ) ∼ C

(p− 1)(1− κ)p−1
(κ → 1), (4.4)

with p > 1 and C constants, the first two terms in Eq. (4.3), which are

O(1 − κ)1−p, dominate the integral term; in view of (4.2), the latter is

O(1−κ)1−p+α for α < p−1 and O(1) for α ≥ p−1. This dominant balance

specifies p = 2, confirming that U(κ) has a simple pole according to (4.4).
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Returning to Eq. (3.7), the simple-pole singularity deduced above per-

sists, as the O(μα+1, μ/δ) correction terms remain relatively small as κ → 1.

Thus, for α > 0, the outer analysis is sufficient to determine the pole residues

of û(k) at k = ±1/μ and thereby compute the radiating waves downstream.

The effect of nonlinearity is encapsulated in the value of the constant C in

(4.4), which depends on A. Details are given in Section 5.

4.2. Outer analysis for α = 0

An ansatz similar to (4.4) also works for α = 0. However, now the

integral in Eq. (4.3) participates in the dominant balance and the strength of

the singularity, which no longer is a simple pole, depends on A. Specifically,

substituting (4.4) in Eq. (4.3) and balancing the first two terms with the

O(1− κ)1−p contribution of the integral, yields p = 2 +A. Therefore,

U ′(κ) ∼ C1

(1− κ)2+A
, U(κ) ∼ C1

(1 +A)(1− κ)1+A
(κ → 1), (4.5)

where C1 is a constant. It should be noted that the dominant balance above

and the asymptotic behavior (4.5) are valid only if p > 1, i.e. A > −1.

For A ≤ −1, the singularity of U(κ) at κ = 1 is determined by further

differentiating Eq. (4.3) and balancing the most singular terms. Specifically,

for −n < A ≤ −n+1, where n ≥ 2 is integer, we differentiate Eq. (4.3) n−1

times,

(1− κ2)U (n)(κ)− 2nκU (n−1)(κ) + · · ·

− 2A

∫ κ/2

0
U(λ)U (n)(κ− λ)dλ = 0.

(4.6)

Then, upon substituting the ansatz U (n)(κ) ∼ Cn/(1− κ)p (with p > 1 and

Cn constants) in Eq. (4.6) and balancing the first two terms with the integral
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term, we find p = 1 + n+A > 1. Thus, for −n < A ≤ −n+ 1, the singular

behavior is

U (n)(κ) ∼ Cn

(1− κ)1+n+A
, U (n−1)(κ) ∼ Cn

(n+A)(1− κ)n+A
(κ → 1).

(4.7)

The fact that the outer equation (4.1) predicts a singularity different

from a simple pole suggests that a separate analysis based on Eq. (3.7) is

needed in the vicinity of κ = 1. This ‘inner’ solution reveals the expected

simple pole and enables computing the radiated waves downstream, as dis-

cussed in Section 6.

4.3. Outer analysis for −1 < α < 0

In this instance, a power singularity similar to (4.4) does not work be-

cause the first two terms in Eq. (4.3) are subdominant relative to the integral

term. Instead, after experimenting with various singularities stronger than

a simple power, for A > 0, we try an exponential singularity combined with

a power in the form

U(κ) ∼ C−
(1− κ)p

exp

(
B

(1− κ)q

)
(κ → 1), (4.8)

where q > 0, B > 0, p and C− are constants. Substituting this ansatz in

Eq. (4.1), for 1− κ ≡ ξ → 0, the dominant contribution to the integral term

comes from the neighborhood of λ = 0. Specifically, using (3.2) and with

the change of variable λ = ξρ,

I ≡
∫ κ/2

0
U(λ)U(κ− λ)dλ

∼ C− ξα−p+1

∫ κ/2ξ

0
dρ

ρα

(1 + ρ)p
(
1 +Ac ξα+1ρα+1 + · · · ) exp(

B

ξq(1 + ρ)q

)
.

(4.9)
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Next, employing Laplace’s method [12], the integral above is evaluated

asymptotically as ξ → 0 (ξ−q → ∞) by expanding the integrand about

ρ = 0, where the exponent attains its maximum, and integrating term-by-

term from 0 to ∞. Finally, this yields

I ∼ C−
(qB)α+1

ξr exp

(
B

ξq

)
×

{
Γ(α+ 1) +

AcΓ(2α+ 2)

(qB)α+1
ξ(α+1)(1+q) +

Q

B
Γ(α+ 2) ξq + · · ·

}
,

(4.10)

where

r = α− p+ q(α+ 1) + 1, Q =
α(1 + q)/2 + q − p+ 1

q
. (4.11)

Making use of (4.8) and (4.10), dominant balance as ξ → 0 in Eq. (4.1)

requires

(2− ξ) ξ1−p ∼ 2A

(qB)α+1
ξr

{
Γ(α+ 1) +

AcΓ(2α+ 2)

(qB)α+1
ξ(α+1)(1+q)

+
Q

B
Γ(α+ 2) ξq + · · ·

}
.

(4.12)

To leading order, this is achieved if

r = 1− p, (qB)α+1 = AΓ(α+ 1). (4.13)

Using (4.11), the first of these conditions specifies

q = − α

α+ 1
, (4.14)

with q > 0 for −1 < α < 0, as assumed in (4.8). The second condition in

(4.13) then determines B > 0, as long as A > 0; if A < 0, the ansatz (4.8)

is not appropriate (see also Section 4.4 below).

Assuming A > 0, now we examine the balance of next-order terms in

(4.12) in hopes of determing the power p in (4.8). In view of (4.14), (α +
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1)(1 + q) = 1, so for 0 < q < 1 (i.e. −1/2 < α < 0) the O(ξr+q) term

dominates and it cannot be balanced unless Q = 0, which according to

(4.11), implies

p = 1 +
q

2

(
−1

2
< α < 0

)
. (4.15)

For α = −1/2 (q = 1), the three next-order terms in (4.12) are O(ξr+1).

From this balance, making use of (2.3), (4.11), (4.13) and (4.14), we find

p =
3

2
+ 3πA2

(
α = −1

2

)
. (4.16)

When α < −1/2 (q > 1), however, the O(ξr+q) term in (4.12) is subdom-

inant and no balance is possible at O(ξr+1). This difficulty is handled by

modifying the exponential in Eq. (4.8),

exp

(
B

ξq

)
→ exp

{
B

ξq
(1 + bξ)

}
, (4.17)

where b is a constant. It should be noted that, when α < −1/2 (q > 1),

exp
(
Bb ξ1−q

)
may not be expanded in powers of ξ. By choosing b suitably,

it is now possible to balance O(ξr+1) terms in (4.12). Furthermore, the

O(ξr+q) term is removed by setting Q = 0, so the expression (4.15) for p

still holds. Details will not be pursued here.

4.4. The limit |A| � 1

It is worth noting that the singularity in Eq. (4.8) does not reduce to a

simple pole in the linear limit (A = 0). This suggests that, for −1 < α < 0,

the nonlinear term of the outer equation (4.1) acts as a singular perturbation

when |A| � 1 and κ ≈ 1. Indeed, expanding U in powers of A

U(κ;A) = U0(κ) +AU1(κ) + · · · , (4.18)
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we find from Eq. (4.1), in the limit ξ ≡ 1− κ → 0,

U0 =
κα

1− κ2
∼ 1

2 ξ
, (4.19)

U1 =
2

1− κ2

∫ κ/2

0
U0(λ)U0(κ− λ)dλ ∼ π

2

ξα−1

sin(α+ 1)π
. (4.20)

As expected, expansion (4.18) becomes disordered as ξ → 0 and a separate

expansion in terms of re-scaled variables is needed in the vicinity of κ = 1.

This boundary-layer-type analysis provides independent confirmation of the

ansatz (4.8) along with an asymptotic expression for the constant C− for

0 < A � 1. Furthermore, from this analysis we deduce the behavior of U(κ)

as κ → 1 in the case A < 0, where (4.8) is not appropriate. Here, we briefly

outline the main results.

The disordering of expansion (4.18) suggests the following re-scaled vari-

ables when κ ≈ 1

U(κ) = |A|1/α Ũ(ξ̃), ξ̃ = |A|1/α(1− κ). (4.21)

Substituting (4.21) in Eq. (4.3) leads to the following integral equation for

Ũ(ξ̃)

ξ̃Ũ ′(ξ̃) + Ũ(ξ̃)− sgnA

∫ ∞

0
λαŨ ′(ξ̃ + λ)dλ = 0, (4.22)

where prime indicates derivative with respect to ξ̃ and sgnA = ±1 (A ≷ 0).

This equation is to be solved subject to the matching condition

Ũ(ξ̃) ∼ 1

2 ξ̃
(ξ̃ � 1), (4.23)

in keeping with (4.19). The solution is found by transforms and can be

expressed as

Ũ(ξ̃) =
1

2

∫ ∞

0
ds exp

{
−ξ̃s− sgnA

Γ(α)

sα

}
. (4.24)

15



To examine the behavior of U(κ) as κ → 1, we evaluate the integral in

Eq. (4.24) asympotically for ξ̃ → 0 using Laplace’s method [12]. As expected,

the result hinges on sgnA = ±1. Specifically, for A > 0, we find

Ũ(ξ̃) ∼
√

π

2(α+ 1)

(Γ(α+ 1))
1

2(α+1)

ξ̃ p
exp

{
BA− 1

α+1

ξ̃ q

}
(ξ̃ → 0), (4.25)

where q, B and p are given by Eqs. (4.13)–(4.15). In view of (4.21), this

result is in agreement with Eq. (4.8) and

C− ∼
√

π

2(α+ 1)
(AΓ(α+ 1))

1
2(α+1) (0 < A � 1). (4.26)

On the other hand, for A < 0, Ũ(ξ̃) approaches a constant as ξ̃ → 0,

Ũ(ξ̃) ∼ − 1

2α
Γ (−1/α) (−Γ(α))

1
α (ξ̃ → 0). (4.27)

The asymptotic results (4.25)–(4.27) are consistent with numerical solutions

of Eq. (4.1) (see Section 7.2).

5. Wave response for α > 0

As noted in Section 4.1, for α > 0, the residues of the poles of û(k)

at k = ±1/μ are determined from the outer equation alone. Specifically,

combining (4.4) with (3.1) and using û(−k) = û(k)∗, we find

û(k) ∼ ∓ AC

μα+1

e−β/μ

k ∓ 1/μ
(k → ±1/μ). (5.1)

Then, inverting the Fourier transform,

u(x) =

∫
L
û(k) eikxdk, (5.2)

where the integration path L extends along the real k-axis but passes below

k = ±1/μ so as to observe the radiation condition (1.2), the residues in
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Eq. (5.1) contribute a radiating wave downstream in the form of Eq. (1.3)

with

R = 4πAC
e−β/μ

μα+1
, θ = −π

2
. (5.3)

According to Eq. (5.3), nonlinearity affects the wave amplitude R but not

the phase shift θ, and the only difference of the nonlinear from the linear

wave response

Rlin = 2πA
e−β/μ

μα+1
, θlin = −π

2
, (5.4)

is the value of C, which depends on A and α. By contrast, in the linear

solution above C = 1/2 irrespective of α. We have computed C(A,α) nu-

merically by integrating Eq. (4.1) as an initial-value problem, using (4.2) as

initial condition and marching towards the simple pole of U(κ) at κ = 1

according to Eq. (4.4). Figure 1 plots |R/Rlin| = 2|C|, the ratio of the non-

linear to the linear response amplitude, as a function of −3 ≤ A ≤ 3 for

α = 0.5, 1 and 2. Nonlinearity becomes more important as α is decreased,

and the validity of the linear theory is rather limited when α � 1. Further-

more, in this range of α, the polarity of the forcing is a significant factor, as

the nonlinear response amplitude is greatly enhanced (reduced) for A > 0

(A < 0).

Theoretically, for α > 0, the nonlinear wave response is determined

solely by the behavior of f̂(k) for large k (viz., Eq. (1.7)), regardless of the

details of the forcing profile f(x). We have tested this theoretical prediction

by numerically computing directly from the fKdV equation (1.1) nonlinear

17



wave responses to three different f(x) whose Fourier transforms

(i) f̂(k) =
A

2

(
k

tanh(πk/2)

)α

sech
πk

2
,

(ii) f̂(k) = A

(
k

tanh(πk/2)

)α

exp

(
−π|k|

2

)
,

(iii) f̂(k) =
A

2

k4

k4 + 1

(
k

tanh(πk/2)

)α

sech
πk

2
,

(5.5)

obey the asymptotic behavior in Eq. (1.7). (The fKdV equation was inte-

grated numerically by a standard fourth-order Runge–Kutta finite-difference

method with Δx = 0.02, starting from far upstream where u → 0 and march-

ing toward downstream.) These computations were carried out for the same

α as above and two values of the small parameter μ = 0.1, 0.2 with ε = μα+1

according to Eq. (2.6). The numerical results for the ratio of the nonlinear to

the linear wave amplitude are compared with the theoretical plots in Fig. 1.

For (i) and (ii), the direct numerical computations with μ = 0.2 are in good

agreement with the theory while for (iii) it is necessary to reduce μ to 0.1

to achieve fair agreement. This difference is attributed to the fact that (iii)

approaches the assumed behavior in Eq. (1.7) at larger k than (i) and (ii).

The fair agreement between the asymptotic and numerical results in

Fig. 1 for the forcing profile (iii) can be greatly improved (see Fig. 2) by

taking into account, via an inner solution, the effect of the second integral

in Eq. (3.7), which formally is subdominant for α > 0. This higher-order

analysis is outlined in the Appendix.

6. Wave response for α = 0

As noted in Section 4.2, for α = 0, the outer equation (4.1) breaks down

in the vicinity of κ = 1. Thus, we now return to Eq. (3.7) and seek a local
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R R

R R

Figure 1: Ratio of nonlinear to linear wave amplitude as a function of the forcing amplitude

A for α = 0.5 (solid line), 1 (dash-dot line) and 2 (dashed line). The shapes (circles:

α = 0.5, triangles: α = 1, squares: α = 2) correspond to numerical results from direct

integration of Eq. (1.1), subject to the forcing terms (i), (ii) and (iii) specified in Eq. (5.5),

for μ = 0.1 (open shapes), μ = 0.2 (filled shapes) and ε = μα+1.
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R R

Figure 2: Ratio of nonlinear to linear wave amplitude, based on the higher-order analysis

outlined in the Appendix, as a function of the forcing amplitude A for the forcing term

(iii) specified in Eq. (5.5) with α = 0.5 (solid lines), 1 (dash-dot lines) and 2 (dashed lines).

The shapes (circles: α = 0.5, triangles: α = 1, squares: α = 2) correspond to numerical

results for μ = 0.1 (open shapes), μ = 0.2 (filled shapes) and ε = μα+1.

solution that reveals the simple pole of U(κ) at κ = 1. This ‘inner’ analysis

is sketched below, followed by a discussion of the nonlinear wave response.

6.1. Inner analysis

Consider first A > −1. Upon differentiating Eq. (3.7),

(1− κ2)U ′(κ)− 2κU(κ)−AU(κ/2)2

− 2A

∫ κ/2

μ/δ
U(λ)U ′(κ− λ)dλ− 2μ

∫ 1/δ

−∞
f̂(l)U ′(κ− μl) eβldl

= 0,

(6.1)

the singular behavior of the outer solution as κ → 1 (viz., Eq. (4.5)) sug-

gests that the second integral term in Eq. (6.1), which was neglected in the

outer analysis, partakes in the dominant balance when κ = 1 + O(μ). This
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motivates the re-scaling

U(κ) =
Ũ(κ̃)

μ1+A
, κ̃ =

1− κ

μ
. (6.2)

In terms of these variables, Eq. (6.1) is approximated correct to O(1/μ1+A)

by the inner equation

κ̃Ũ ′(κ̃) + Ũ(κ̃)−
∫ ∞

−∞
f̂(l)Ũ ′(κ̃− l) e−βldl = 0, (6.3)

where prime indicates derivative with respect to κ̃.

Following [7, 11], Eq. (6.3) is solved by the one-sided Fourier transform

Ũ(κ̃) =

∫ ∞

0
Φ(s)eisκ̃ds. (6.4)

The integral above converges when Im κ̃ > 0 so Imκ < 0 according to (6.2),

in keeping with the radiation condition (1.2) which requires the integration

path L in inverting û(k) (viz., Eq. (5.2)) to pass below the poles at k =

±1/μ. Substituting Eq. (6.4) in Eq. (6.3) and assuming sΦ(s) → 0 as s → 0

(verified below), Φ(s) satisfies

dΦ

ds
+ if(s− iβ) Φ = 0. (6.5)

Therefore,

Φ = C̃1 exp

{
i

∫ ∞

s
f(s′ − iβ)ds′

}
, (6.6)

where C̃1 is a constant that will be specified by matching with the outer

solution. It should be noted that in view of Eq. (1.7) if(s−iβ) ∼ −A/s (s →
0) so Φ = O(sA) and sΦ(s) → 0, as assumed above. Then, inserting Eq. (6.6)

in Eq. (6.4) yields the inner solution

Ũ(κ̃) = C̃1

∫ ∞

0
exp

{
i

(
sκ̃+

∫ ∞

s
f(s′ − iβ)ds′

)}
ds. (6.7)
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From Eq. (6.7) we find that

Ũ(κ̃) ∼ i
C̃1

κ̃
(κ̃ → 0). (6.8)

In view of Eq. (6.2), this confirms that U(κ) features a simple pole at κ = 1

U(κ) ∼ i
C̃1

μA

1

1− κ
(κ → 1). (6.9)

To determine C̃1, we examine the outer limit (κ̃ � 1) of the inner solution.

Returning to Eq. (6.7), the integral is evaluated asymptotically for κ̃ � 1

by first approximating the integrand in the neighborhood of s = 0 using

i

∫ ∞

s
f(s′ − iβ)ds′ ∼ A ln s+ J + · · · (s → 0), (6.10)

where J is the (generally complex) constant

J =

∫ 1

0

{
if(s′ − iβ) +

A

s′

}
ds′ +

∫ ∞

1
if(s′ − iβ)ds′, (6.11)

and then rotating the integration path to the positive imaginary s-axis.

Thus, we find

Ũ(κ̃) ∼ i1+A eJ Γ(1 +A)
C̃1

κ̃1+A
(κ̃ � 1). (6.12)

This expression matches with the inner limit (κ → 1) of the outer solution

(viz., Eq. (4.5)) if

C̃1 =
e−JC1

i1+AΓ(2 +A)
. (6.13)

The above inner analysis can be readily adapted to A ≤ −1. Briefly,

suppose −n < A ≤ −n+1, where n ≥ 2 is integer. Motivated by the singular

behavior as κ → 1 of the outer solution (viz., Eq. (4.7)), the appropriate re-

scaling is

U (n−1)(κ) =
Ũ(κ̃)

μn+A
, (6.14)
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with κ̃ still given by Eq. (6.2).Then, differentiating Eq. (6.1) n−1 times and

substituting Eq. (6.14), the inner equation (6.3) is replaced by

κ̃Ũ ′ + nŨ(κ̃)−
∫ ∞

−∞
f̂(l)Ũ ′(κ̃− l) e−βldl = 0. (6.15)

The inner solution again is posed in the form of Eq. (6.4), which upon

substitution in Eq. (6.15) implies

s
dΦ

ds
− (n− 1)Φ + isf(s− iβ) Φ = 0. (6.16)

Therefore,

Φ(s) = C̃ns
n−1 exp

{
i

∫ ∞

s
f(s′ − iβ)ds′

}
(6.17)

so the inner solution reads

Ũ(κ̃) = C̃n

∫ ∞

0
sn−1 exp

{
i

(
sκ̃+

∫ ∞

s
f(s′ − iβ)ds′

)}
ds, (6.18)

where C̃n is a constant.

Now, in the limit κ̃ → 0, Eq. (6.18) yields

Ũ(κ̃) ∼ in(n− 1)!
C̃n

κ̃n
, (6.19)

which, in view of (6.14), translates into

U (n−1)(κ) ∼ in
C̃n

μA

(n− 1)!

(1− κ)n
(κ → 1). (6.20)

Hence, U(κ) features a simple pole at κ = 1,

U(κ) ∼ in
C̃n

μA

1

1− κ
(κ → 1). (6.21)

The constant C̃n is determined by matching the outer limit (κ̃ � 1) of the

inner solution (6.18),

Ũ(κ̃) ∼ in+A eJ Γ(n+A)
C̃n

κ̃n+A
(κ̃ � 1), (6.22)
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with the inner limit (κ → 1) of the outer solution (viz., Eq. (4.7)). Thus, we

find

C̃n =
e−JCn

in+AΓ(n+ 1 +A)
. (6.23)

Finally, Eqs. (6.9) and (6.13) can be combined with Eqs. (6.21) and (6.23)

to a single expression, valid both whenA > −1 (n = 1) and−n < A ≤ −n+1

(n ≥ 2), for the simple pole of U(κ) at κ = 1,

U(κ) ∼ 1

(iμ)A
e−JCn

Γ(n+ 1 +A)

1

1− κ
(κ → 1). (6.24)

6.2. Radiating waves

By combining Eq. (6.24) with Eq. (3.1) and making use of û(−k) = û∗(k),

we obtain the following expression for the simple poles of û(k) at k = ±1/μ

û(k) ∼ ∓ACn exp(−Jr ∓ iJi)

(±i)A Γ(n+ 1 +A)

e−β/μ

μ1+A

1

k ∓ 1/μ
(k → ±1/μ), (6.25)

where J = Jr+iJi was defined in Eq. (6.11). Inverting the Fourier transform

û(k) as in Eq. (5.2), the residues of these poles give rise to a wavetrain

downstream in the form of Eq. (1.3), whose amplitude R and phase shift θ

are given by

R =
4πACn e

−Jr

Γ(n+ 1 +A)

e−β/μ

μ1+A
, θ = −(1 +A)

π

2
− Ji. (6.26)

Here, in keeping with Eq. (6.24), the positive integer n is specified by the

forcing amplitude A: n = 1 for A > −1 and n ≥ 2 for −n < A ≤ −n+ 1.

It should be noted that for the forcing profile f(x) = A sechx (corre-

sponding to (i) in Eq. (5.5) with α = 0), e−J = 2A according to Eq. (6.11).

Thus, the final results in Eq. (6.26) agree with those found earlier for this

forcing in the cases A = 1 [7] and A = σε−1/2 (σ > 0) [11].

Compared with the wave response for α > 0 (viz., Eq. (5.3)), here non-

linear effects are more pronounced. Specifically, the power of μ in Eq. (6.26)
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for the wave amplitude R is controlled by the forcing amplitude A, so for

A > 0 (< 0) the order of magnitude of R is larger (smaller) than the linear

response (viz., Eq. (5.4)). In addition, nonlinearity affects R through the

dependence on A of the constants Cn, e−Jr and Γ(n + 1 + A), which in

the linear limit (A = 0, n = 1) take the values 1/2, 1 and 1, respectively.

Furthermore, the phase shift θ in Eq. (6.26) depends on A explicitly and

through Ji (= 0 in the linear limit). It should be noted that J = Jr + iJi

(viz., Eq. (6.11)) depends on the specific forcing profile f(x), not just the

asymptotic behavior of f̂(k) for |k| � 1; hence, the nonlinear wave response

does so as well.

To illustrate the effects of nonlinearity for α = 0, Fig. 3 shows plots of

|R/Rlin|, the ratio of the nonlinear to the linear response amplitude, as a

function of −3 ≤ A ≤ 3 for the forcing profiles (i)–(iii) in Eq. (5.5) (with

α = 0) and for the values of μ = 0.2 and 0.5. As in Section 5, the constants

Cn in Eq. (6.26) were computed numerically from the outer equation (4.1)

by marching forward in κ and fitting the asymptotic behavior as κ → 1

predicted by dominant balance (viz., Eqs. (4.5), (4.7)). In addition, Fig. 3

shows results from direct numerical solution of the fKdV equation (1.1) for

the same three forcings f(x) and two values of μ (with ε = μ) as above.

Similar to the case α > 0 (Fig. 1), for the forcing profiles (i) and (ii) the

theoretical predictions agree well with the numerical results for both values

of μ, while for (iii) there is reasonable agreement for the smaller μ = 0.2

only.

It is worth noting the steep increase (decrease) of the wave amplitude

caused by nonlinearity when A > 0 (A < 0). This striking nonlinear feature

is further illustrated in Fig. 4, which shows theoretical plots and numerical

results of the absolute value |R| of the wave amplitude as a function of
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Figure 3: Ratio of nonlinear to linear wave amplitude as a function of the forcing amplitude

A for α = 0 with μ = 0.2 (solid line) and 0.5 (dashed line), corresponding to the forcing

terms (i), (ii) and (iii) specified in Eq. (5.5). The circles (filled: μ = 0.2, open: μ = 0.5)

are numerical results from direct integration of Eq. (1.1) subject to these forcing terms

and ε = μ.
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R

R

Figure 4: Wave amplitude |R| as a function of A for the forcing f(x) = Aπ/(x2 + π2/4)

with μ = 0.2 (top) and 0.5 (bottom). The solid and dotted lines are nonlinear and linear

responses, respectively. The circles denote numerical results from direct integration of

Eq. (1.1) subject to this forcing term and ε = μ.
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x

u

Figure 5: Computed profile u(x) of the fKdV equation (1.1) subject to the forcing f(x) =

Aπ/(x2 + π2/4) with ε = μ = 0.2 and A = 0.9 (εA = 0.18). The solid and dash-dot lines

are nonlinear and linear solutions, respectively.

the forcing amplitude A, for the algebraic forcing f(x) = Aπ/(x2 + π2/4)

(corresponding to (ii) in Eq. (5.5) with α = 0) and the values of μ = 0.2,

0.5. Compared with the linear solution (viz., Eq. (5.4)), which is limited to

|A| � 1, the exponential asymptotics theory has a much broader range of

validity in terms of A; moreover, it captures the nonlinear wave response

for even moderate values of μ, when the (formally exponentially small in

μ) |R| is comparable to A. In such a case, the radiating waves can form

the dominant part of the response, as illustrated in Fig. 5 for μ = 0.2 and

A = 0.9.

7. Wave response for −1 < α < 0

For −1 < α < 0, again the outer solution breaks down when κ = 1 +

O(μ) so an inner analyis is required to reveal the simple pole of U(κ) at

κ = 1. Similar to the outer analysis (Section 4.3), the sign of A is an

important factor in the inner analysis. Here, in the interest of brevity, we

shall focus on the case A > 0, for which nonlinear effects turn out to be
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most dramatic. Furthermore, only the leading-order inner solution, which

ignores the corrections to the exponential singularity of the outer solution

(viz., Eq. (4.17)) that arise when α < −1/2, will be considered.

7.1. Inner analysis

The behavior of the outer solution as κ → 1 (viz., Eq. (4.8)) suggests the

following inner variables

U(κ) =
Ũ(κ̃)

μp
, κ̃ =

1− κ

μ
, (7.1)

where p = 1 + q/2 = (α + 2)/2(α + 1) according to Eqs. (4.14)–(4.15).

Substituting Eq. (7.1) into Eq. (3.7) then leads to

κ̃Ũ(κ̃)− μα

∫ ∞

−∞
f̂(l)Ũ(κ̃− l)e−βldl = 0. (7.2)

Unlike the case α = 0, here the inner equation involves the small parameter μ

explicitly, which may be attributed to the exponential rather than algebraic

singularity of the outer solution at κ = 1.

The inner solution again is posed in the form (6.4), where Φ(s) satisfies

dΦ

ds
+ iμαf(s− iβ)Φ = 0, (7.3)

on the assumption that Φ(0) can be dropped (justified below). Thus,

Φ(s) = C̃− exp

{
iμα

∫ ∞

s
f(s′ − iβ)ds′

}
, (7.4)

where C̃− is a constant. It should be noted that, in view of Eq. (1.7),

f(s− iβ) ∼
(
i

s

)α+1

AΓ(α+ 1) (s → 0), (7.5)

so Φ(0) is finite. However, as argued below, |Φ(0)| � |κ̃Ũ(κ̃)|, which justifies

dropping Φ(0) in deducing Eq. (7.3) from Eq. (7.2).
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Inserting Eq. (7.4) in Eq. (6.4) yields the inner solution

Ũ(κ̃) = C̃−
∫ ∞

0
exp

{
i

(
sκ̃+ μα

∫ ∞

s
f(s′ − iβ)ds′

)}
ds, (7.6)

from which it follows that

Ũ(κ̃) ∼ i
C̃−
κ̃

(κ̃ → 0). (7.7)

In view of Eq. (7.1), this confirms that U(κ) features a simple pole at κ = 1

U(κ) ∼ i

μq/2

C̃−
1− κ

(κ → 1). (7.8)

The constant C̃− is determined by inner–outer solution matching. To

this end, making use of Eq. (7.5) we expand the exponent in the inner solu-

tion (7.6)

i

∫ ∞

s
f(s′ − iβ)ds′ ∼ J− −AΓ(α)

(
i

s

)α

+ · · · (s → 0), (7.9)

where J− is the (generally complex) constant

J− = i

∫ ∞

0
f(s′ − iβ)ds′. (7.10)

The integral in Eq. (7.6) then is evaluated asymptotically for μα � κ̃ � μ−1

by substituting Eq. (7.9) and rotating the integration path to the positive

imaginary s-axis via s = i (μα/κ̃)1/(α+1) y

Ũ(κ̃) ∼ iμC̃−
eμ

αJ−

(μκ̃)q+1

∫ ∞

0
exp

{
− 1

(μκ̃)q

(
y +

AΓ(α)

yα

)}
dy. (7.11)

Since 1/(μκ̃)q � 1, by Laplace’s method [12], the main contribution to

the integral above comes from the neighborhood of y = (AΓ(α+ 1))1/(α+1)

where the exponent attains its maximum. Thus, we find

Ũ(κ̃) ∼ iμC̃−
eμ

αJ−

(μκ̃)p

√
2π

α+ 1
(AΓ(α+ 1))

1
2(α+1) exp

{
B

(μκ̃)q

}
(κ̃ � 1),

(7.12)
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where q, B and p are given by Eqs. (4.13)–(4.15). Taking into account

Eq. (7.1), this outer limit of the inner solution matches with the inner limit

of the outer solution (viz., Eq. (4.8)) if

C̃− = −iμq/2 C− e−μαJ−

(AΓ(α+ 1))
1

2(α+1)

√
α+ 1

2π
. (7.13)

Accordingly, Eq. (7.8) for the simple pole of U(κ) at κ = 1 reads

U(κ) ∼ C− e−μαJ−

(AΓ(α+ 1))
1

2(α+1)

√
α+ 1

2π

1

1− κ
(κ → 1). (7.14)

Finally, we verify that |Φ(0)| � |κ̃Ũ(κ̃)|. From Eqs. (7.4) and (7.6), it

follows that

κ̃Ũ(κ̃)

Φ(0)
=

∫ ∞

0
exp

{
i

(
z − μα

∫ z/κ̃

0
f(s′ − iβ)ds′

)}
dz. (7.15)

Furthermore, the real part of the exponent in the integrand above can be

expressed in the form

Re

{
−iμα

∫ z/κ̃

0
f(s′ − iβ)ds′

}
= 4μα

∫ ∞

0
f̂(k)

sinh kβ

k
sin2

z

2κ̃
k dk. (7.16)

Thus, under the assumption f̂(k) ≥ 0 (satisfied by (i)–(iii) in Eq. (5.5) for

A > 0) the right-hand side in Eq. (7.16) is positive; hence, the integral in

Eq. (7.15) is exponentially large when μ � 1 (μα � 1) and so is κ̃Ũ(κ̃)/Φ(0).

7.2. Radiating waves

From Eqs. (7.14) and (3.1), combined with û(−k) = û(k)∗, it follows that

û(k) ∼ ∓AC− exp (−μα(J−r ± iJ−i))

(AΓ(α+ 1))
1

2(α+1)

√
α+ 1

2π

e−β/μ

μα+1

1

k ∓ 1/μ
(k → ±1/μ),

(7.17)
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where J− = J−r + iJ−i was defined in Eq. (7.10). Then, upon inverting the

Fourier transform û(k) as in Eq. (5.2), the poles in Eq. (7.17) contribute a

radiating wave downstream in the form of Eq. (1.3), with

R =
4πAC−

(AΓ(α+ 1))
1

2(α+1)

√
α+ 1

2π

exp(−β/μ− μαJ−r)

μα+1
, θ = −π

2
− μαJ−i.

(7.18)

It should be noted that in the small forcing-amplitude limit (A � 1), using

the asymptotic expression (4.26) for C− and J− → 0 in Eq. (7.18), we recover

the linear wave response (viz., Eq. (5.4)).

According to Eq. (7.18), the main difference of the wave amplitude R

from its linear counterpart Rlin (viz., Eq. (5.4)) is the O(μα) modification of

the exponent. This is a more significant nonlinear effect than those found

earlier for α > 0 (viz., Eq.(5.3)) and α = 0 (viz., Eq.(6.26)): in view of

the scaling ε = μα+1, decreasing the value of α (>−1) for fixed μ � 1

effectively increases the nonlinearity parameter ε, so nonlinear effects are

expected to be stronger. Furthermore, the extent to which nonlinearity

affects the exponential factor in R hinges on (the sign and magnitude of)

J−r that depends on the specific forcing profile according to Eq. (7.10).

We have explored theoretically, based on Eq. (7.18), as well as numeri-

cally the effects of nonlinearity on the wave amplitude R when −1 < α < 0

for the forcing profiles (i)–(iii) in Eq. (5.5). Figure 6 shows theoretical plots

of |R/Rlin| as a function of 0 < A < 1 for these forcings when α = −0.25 and

μ = 0.1, 0.2 and 0.5. As before, the constant C− was computed from the

outer equation (4.1) by marching forward in κ and fitting U(κ) as κ → 1 to

the exponential singularity predicted by dominant balance (viz., Eq. (4.8)).

As a check, it was verified that when A � 1 the computed C− agreed

with the asymptotic expression (4.26). Furthermore, Fig. 6 shows numeri-

32



cal results of |R/Rlin| computed by direct integration of the fKdV equation

(1.1) subject to the forcings (i)–(iii) for the same parameter values (with

ε = μα+1) as above. When μ = 0.2 and 0.5, the theoretical predictions are

in satisfactory agreement with the numerical results for forcings (i) and (ii)

but not for (iii); in the latter case, while agreement does improve when μ is

reduced to 0.1, for A � 0.25 the theory significantly overpredicts the wave

amplitude.

According to Fig. 6, nonlinearity causes the wave amplitude R to rise

sharply as the forcing amplitude A is increased, particularly for the forcings

(i) and (ii), where for A ≈ 0.5 R has already reached ten times its linear

counterpart Rlin. Remarkably, this steep increase of R due to nonlinearity

for α = −0.25 is noticeably stronger than that in Fig. 3 for α = 0, even

though the forcing profiles differ relatively little for these two values of α.

The same trend also is seen upon comparing Fig. 7, which plots R as a

function of A > 0 for forcing (ii) and α = −0.25 (with μ = 0.2, 0.5), with

Fig. 4 which displays the corresponding response diagrams for α = 0.

Finally, we remark that the agreement between theoretical predictions

(viz., Eq. (7.18)) and numerical results deteriorates when α � −0.3. We have

made an attempt to remedy this difficulty by developing a more accurate

inner solution that accounts for the correction to the exponent of the singu-

larity of the outer solution for α < −1/2 (viz., Eq. (4.17)). This modification

improves agreement with numerical results only to a limited extent: it turns

out that further corrections are needed when α drops below −2/3, −4/5,

· · · . This hints that as α gets closer to −1 so ε = μα+1 approaches O(1),

asymptotic treatment of the nonlinear wave response becomes a formidable

task.
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Figure 6: Ratio of nonlinear to linear wave amplitude as a function of the forcing amplitude

A for α = −0.25 with μ = 0.1 (dash-dot line), 0.2 (solid line) and 0.5 (dashed line),

corresponding to the forcing terms (i), (ii) and (iii) specified in Eq. (5.5). The circles

(filled: μ = 0.2, open: μ = 0.5) and the open triangles (μ = 0.1) are numerical results

from direct integration of Eq. (1.1) subject to these forcing terms and ε = μ3/4.
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Figure 7: Wave amplitude |R| as a function of the forcing amplitude A for the forcing

term (ii) with α = −0.25 specified in Eq. (5.5), with μ = 0.2 (top) and 0.5 (bottom).

The solid and dotted lines are nonlinear and linear responses, respectively. The circles

denote numerical results from direct integration of Eq. (1.1) subject to this forcing term

and ε = μ3/4.
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8. Concluding remarks

Using the fKdV equation (1.1) as a simple model, we made an asymp-

totic study of nonlinear effects in steady radiating waves due to moving

sources in dispersive media. In this model, the radiating wave amplitude is

exponentially small with respect to the dispersion parameter μ � 1. Yet,

nonlinear effects (controlled by ε � 1) can play an important part, and com-

puting the wave response for μ, ε � 1 may require the use of exponential

(beyond-all-orders) asymptotics. In earlier studies, this issue was discussed

for few examples of forcing profiles f(x). Here, by contrast, we presented

a systematic treatment of nonlinear wave responses due to even f(x) with

Fourier transform f̂(k) that decays for |k| � 1 like A|k|α exp(−β|k|), where
A, α and β > 0 are free parameters.

For this class of forcing profiles, computing the radiating wave amplitude

R and phase θ hinges upon beyond-all-orders asymptotics only if α > −1.

Under this condition, the appropriate scaling for nonlinear effects to come

into play is εA = O(μα+1). Furthermore, three distinct nonlinear responses

arise depending on α: (i) α > 0, (ii) α = 0 and (iii) −1 < α < 0. Specifically,

taking ε = μα+1, the ratio of the nonlinear to the linear response amplitude

for each of these cases is found to be: (i) R/Rlin = O(1) constant that de-

pends on A and α; (ii) R/Rlin = O(1/μA); and (iii) R/Rlin = O(exp(Aμα)).

The asymptotic expressions for R compare favorably against direct numer-

ical solutions of the fKdV equation. Moreover, these comparisons suggest

that the analytical predictions often remain reasonably accurate for moder-

ate μ and ε, when the (formally exponentially small) wave amplitude can

be quite substantial.

It should be noted that, in the limit α → 0, the radiated wave amplitude
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formulae for α > 0 (viz., Eq. (5.3)) and α < 0 (viz., Eq. (7.18)) do not reduce

to that for α = 0 (viz., Eq. (6.26)). This suggests the need for a separate

asymptotic theory that bridges the results for α > 0 and α < 0 in the

neighborhood of α = 0. The width of this neighborhood in terms of α and

further details regarding this distinguished limit are not pursued here.

Finally, we comment on the wave response for α < −1. In this instance,

as suggested by Eq. (2.2), nonlinearity does not contribute to the disordering

of expansion (2.1) so the scaling εA = O(μα+1) is no longer relevant and the

outer solution for U(κ) is linear. However, when εA = O(μ), nonlinearity

does come into play in the vicinity of the simple pole at κ = 1 of the outer

solution. Thus, to compute the residue of this pole, it is necessary to solve

an inner equation for κ = 1 + O(μ), subject to matching with the (linear)

outer solution.

Briefly, taking

ε = μ (8.1)

with |A| ≤ O(1), Eq. (3.7) for U(κ) is replaced by

(1− κ2)U(κ)− 2μ−αA

∫ κ/2

μ/δ
U(λ)U(κ− λ)dλ

− 2μ

∫ 1/δ

−∞
f̂(l)U(κ− μl) eβldl = κα.

(8.2)

In the outer region, the nonlinear terms are subdominant and

U(κ) =
κα

1− κ2
. (8.3)

In the inner region, the appropriate variables are

U(κ) =
Ũ(κ̃)

μ
, κ̃ =

1− κ

μ
, (8.4)

and Eq. (8.2) yields, correct to O(1),

κ̃Ũ(κ̃)−
∫ ∞

−∞
f̂(l)Ũ(κ̃− l) e−βldl =

1

2
. (8.5)
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The solution to the inner equation (8.5) is posed in the form of Eq. (6.4)

subject to Φ(0) = −i/2. This condition ensures matching of the inner so-

lution Ũ(κ̃) when κ̃ � 1 with the outer solution (8.3) when κ → 1. Then,

substituting Eq. (6.4) in Eq. (8.5), Φ(s) satisfies

dΦ

ds
+ if(s− iβ)Φ = 0 (8.6)

so

Φ(s) = − i

2
exp

{
−i

∫ s

0
f(s′ − iβ)ds′

}
, (8.7)

and the inner solution is

Ũ(κ̃) = − i

2

∫ ∞

0
exp

{
i

(
sκ̃−

∫ s

0
f(s′ − iβ)ds′

)}
ds. (8.8)

As κ̃ → 0, we find from Eq. (8.8)

Ũ(κ̃) ∼ e−J−

2κ̃
(κ̃ → 0), (8.9)

where J− = J−r + iJ−i was defined in Eq. (7.10). In view of Eq. (8.4), this

implies that the residue of the simple pole of U(κ) at κ = 1 is −e−J−/2.

Thus, returning to Eq. (3.1) and also using û(−k) = û∗(k), we may deduce

the residues of the simple poles of û(k) at k = ±1/μ:

û(k) ∼ ∓A

2
exp(−J−r ∓ iJ−i)

e−β/μ

μα+1

1

k ∓ 1/μ
(k → ±1/μ). (8.10)

Upon inverting the Fourier transform û(k) as in Eq. (5.2), these poles con-

tribute a radiating wave downstream in the form of Eq. (1.3) with

R = 2πAe−J−r
e−β/μ

μα+1
, θ = −π

2
− J−i. (8.11)

Compared with the linear response (viz., Eq. (5.4)), the effects of nonlin-

earity on R and θ above are encapsulated in the O(A) constant J−, which is
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Figure 8: Ratio of nonlinear to linear wave amplitude as a function of the forcing amplitude

A for the forcing (ii) with α = −2 specified in Eq. (5.5). The filled (μ = 0.2) and open

(μ = 0.5) circles are numerical results from direct integration of Eq. (1.1) subject to this

forcing term and ε = μ.

readily determined from the specific forcing profile (viz., Eq. (7.10)). Thus,

unlike the nonlinear responses for α > −1 treated earlier, here there is no

need to resort to beyond-all-orders asymptotics.

Figure 8 plots |R/Rlin| = exp(−J−r) according to Eqs. (8.11) and (5.4),

as a function of −1 ≤ A ≤ 1, for the forcing profile (ii) with α = −2 in

Eq. (5.5), along with numerical results from direct integration of the fKdV

equation (1.1) for μ = 0.2 and 0.5 (with ε = μ). For these values of μ, there

is overall good qualitative (as well as quantitative for A � 0.25) agreement

between analytical and numerical results. As also found earlier for α ≥ 0

(see Figs. 1–3), the main effect of nonlinearity is to dramatically increase

(decrease) the response amplitude when A > 0 (A < 0).
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Appendix A. Higher-order analysis for α > 0

In Section 4.1 it was argued that for α > 0 the outer analysis is sufficient

to compute asymptotically the radiating waves downstream. This leading-

order approximation was compared with numerical results for the forcing

terms (i)–(iii) in Eq. (5.5) that satisfy the assumed asymptotic behavior in

Eq. (1.7). However, for the (moderately small) values of μ = 0.1 and 0.2,

good quantitative agreement between analytical and numerical results was

found only for (i) and (ii) (see Fig. 1). To remedy this difficulty, here we

present a higher-order analysis that takes into account, via an inner solution,

the effect of the second integral in Eq. (3.7), which formally is subdominant

and was dropped earlier. This inner solution is similar to that obtained for

α = 0 in Section 6.1 and only the main steps are highlighted below.

Similar to Eq. (6.1), using the inner variables

U(κ) =
Ũ(κ̃)

μ
, κ̃ =

1− κ

μ
, (A.1)

the first derivative of Eq. (3.7) is approximated correct to O(μα−1) by the

inner equation

κ̃Ũ ′(κ̃) + Ũ(κ̃)− μα

∫ ∞

−∞
f̂(l)Ũ ′(κ̃− l) e−βldl = 0, (A.2)

where prime indicates derivative with respect to κ̃. (This assumes 0 < α < 1.

To derive the appropriate inner equation for α ≥ 1, it is necessary to work

with a higher derivative of Eq. (3.7), but the final results in Eq. (A.12) are

not changed.)
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The solution to Eq. (A.2) is posed in the same form as Eq. (6.4), and

Φ(s) satisfies
dΦ

ds
+ iμαf(s− iβ) Φ = 0, (A.3)

under the assumption that sΦ(s) → 0 as s → 0 (to be verified below).

Therefore,

Φ = C̃+ exp

{
iμα

∫ ∞

s
f(s′ − iβ)ds′

}
, (A.4)

where C̃+ is a constant that is specified by matching with the outer solution.

It should be noted that

f(s− iβ) ∼
(
i

s

)α+1

AΓ(α+ 1) (s → 0), (A.5)

so sΦ(s) ∼ C̃+s exp {− (iμ/s)αAΓ(α)} → 0 as s → 0 (with μ � s � 1).

Then, inserting (A.4) in Eq. (6.4) yields the inner solution

Ũ(κ̃) = C̃+

∫ ∞

0
exp

{
i

(
sκ̃+ μα

∫ ∞

s
f(s′ − iβ)ds′

)}
ds. (A.6)

From Eq. (A.6), we find that

Ũ(κ̃) ∼ i
C̃+

κ̃
(κ̃ → 0). (A.7)

Furthermore, the outer limit of Eq. (A.6) is

Ũ(κ̃) ∼ i C̃+
eμ

αJ+

κ̃
(1 � κ̃ � 1/μ), (A.8)

where

J+ = i

∫ ∞

0

{
f(s− iβ)−

(
i

s

)α+1

AΓ(α+ 1)

}
ds. (A.9)

Thus, matching of the outer limit of the inner solution in Eq. (A.8) with the

inner limit (κ → 1) of the outer solution in Eq. (4.4) is achieved if

C̃+ = −ie−μαJ+C. (A.10)
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Finally, combining Eqs. (A.10), (A.7) and (A.1) with Eq. (3.1), we con-

clude that

û(k) ∼ ∓AC exp(−μα(J+r ± iJ+i))
e−β/μ

μα+1

1

k ∓ 1/μ
(k → ±1/μ). (A.11)

Upon inverting û(k), these residues contribute a radiating wave downsream

in the form of Eq. (1.3) with

R = 4πAC
exp(−β/μ− μαJ+r)

μα+1
, θ = −π

2
− μαJ+i, (A.12)

where J+ = J+r + iJ+i was defined in (A.9).

Unlike the leading-order result in Eq. (5.3), based on the refined expres-

sion for R in Eq. (A.12) the ratio of the nonlinear to the linear response

amplitude |R/Rlin| now depends on μ. As shown in Fig. 2, this modification

greatly improves the agreement between analytical and numerical results for

the forcing term (iii) and μ = 0.1, 0.2.
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