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Abstract

An asymptotic study is made of nonlinear effects in steady radiating waves
due to moving sources in dispersive media. The focus is on problems where
the radiated waves have exponentially small amplitude with respect to a pa-
rameter pu < 1, as for instance free-surface waves due to a submerged body
in the limit of low Froude number. In such settings, weakly nonlinear effects
(controlled by the source strength ¢) can be as important as linear propaga-
tion effects (controlled by p), and computing the wave response for p, ¢ < 1
may require exponential (beyond-all-orders) asymptotics. This issue is dis-
cussed here using a simple model, namely, the forced Korteweg—de Vries
(fKdV) equation where p is the dispersion and ¢ is the nonlinearity param-
eter. The forcing term f(x) is assumed to be even and its Fourier transform
f(k:) to decay for k > 1 like Ak® exp(—pk), where A, a and § > 0 are free
parameters. For this class of forcing profiles, the wave response hinges on
beyond-all-orders asymptotics only if & > —1, and nonlinear effects differ

fundamentally depending on whether @ > 0, @« = 0 or —1 < a < 0. Fur-
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thermore, the sign of the forcing amplitude parameter A is an important
controlling factor of the nonlinear wave response. The asymptotic results
compare favorably against direct numerical solutions of the fKdV equation
for a wide range of u and €, in contrast to the linear wave response whose
validity is rather limited.

Keywords: Steady waves, Forced Korteweg—de Vries equation,

Exponential asymptotics method

1. Introduction

Radiation of steady wave patterns by moving sources is a prominent
feature of wave propagation in various physical settings. In fluid media in
particular, there is rich literature on steady patterns of free-surface and in-
ternal gravity waves induced by a moving localized pressure distribution and
by flow over topography or past a submerged body. These wave phenomena
are fundamental to geophysical flow modeling and ship hydrodynamics [1, 2].
The standard theoretical approach to steady-wave problems is based on the
linearized equations of motion assuming infinitesimal disturbances, subject
to radiation conditions that derive from group velocity considerations [3, 4].

However, even when the source strength ¢ is weak (¢ < 1) so linearization
is expected to be valid, nonlinear effects may still play an important part
in the wave response. Such a situation arises when the response wavelength
A is short relative to a characteristic length scale L of the source (u =
A/L < 1) so the radiated waves have exponentially small amplitude with
respect to u. Computing the wave response for p, € < 1 then may require

exponential (‘beyond-all-orders’) asymptotics, and weakly nonlinear effects



(controlled by €) can be as important as linear propagation effects (controlled
by u). This shortcoming of linearization was noted in free-surface flow past
a submerged body in the limit of low Froude number [5, 6] and later was
studied via exponential asymptotics in a simple model problem [7].

The analysis in [7] considered the forced Korteweg—deVries (fKdV) equa-

tion in steady dimensionless form
PPuge +u—eu? = f(z) (—oco <z < o0), (1.1)

subject to the radiation condition
u—0 (z— —o00), (1.2)

where the forcing term f(x) is real and locally confined. Here, ¢ < 1
measures the strength of the forcing, and u has been scaled (u — eu) to make
explicit that e also controls the nonlinear term. In keeping with Eq. (1.2),
waves may be radiated only downstream (z — oo) and they are expected to
take the form

u ~ Rcos (Z—i—@) (x — 00), (1.3)

where the amplitude R and the phase shift 6 are to be determined. Thus,
when the dispersion parameter p < 1 in Eq. (1.1), the response wavelength
27 is short relative to the width of the forcing.

Owing to this lengthscale disparity, the Fourier transform of f(z),

fh) = 5 / " f(a)e da, (1.4)

at the response wavenumber k = +1/u is exponentially small with respect
to pu (assuming f(x) is analytic). This suggests that the response amplitude

R is exponentially small as well, a claim also supported by the fact that



expanding u in powers of u and ¢,
u=f — P foe+efi+--, (1.5)

shows no sign of radiating waves at any order of approximation. As explained
in [7], this issue can be handled by working in the wavenumber domain where
Eq. (1.1) transforms to
o0
(1 — p2k2)a(k) — g/ a(D)a(k — 1)dl = f(k). (1.6)
—o0
The radiating wave in Eq. (1.3) is associated with the presence of simple-pole
singularities of @(k) at k = £1/p. Thus, the amplitude R and phase shift
0 are found by computing the corresponding (exponentially small) residues
asymptotically for u, € < 1 and then inverting the Fourier transform along
an integration path consistent with the radiation condition (1.2).

This exponential asymptotics procedure was illustrated in [7] for f(z) =
sech?z, sechz and exp (—2?%). In these examples, the radiating waves, al-
though they feature exponentially small amplitude in u, € < 1, are governed
by a nonlinear beyond-all-orders generation mechanism. Furthermore, com-
parisons between theoretical predictions and numerical results indicate that
this mechanism remains in control even for moderately small x4 and €, where
the wave amplitude is substantial, so linearization has rather limited va-
lidity. In addition, the wavenumber procedure proposed in [7] was applied
to internal gravity waves (‘lee’ waves) generated by stratified flow over to-
pography with sech?z and sech 2 profile [8], and linearization was found to
suffer similar limitations.

Later, the results obtained in [7] for f(2) = sech?z and sech z also were
recovered using a nonlinear WKB technique that focuses on the singularities

of expansion (1.5) in the complex plane [9]. A comprehensive discussion of
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various beyond-all-orders techniques as applied to radiating waves is pre-
sented in [10], and a review of more recent advances is made in [11].

It is worth noting that the specific forcing profiles considered in [7-
9] look similar in the physical domain; yet, their asymptotic treatments
in the wavenumber domain are distinct. Furthermore, there are profound
differences in how nonlinearity affects the radiating waves for each of these
forcings [7-11]. Thus, it is natural to ask: (i) what particular features
of the forcing profile f(x) are essential to the asymptotic analysis; and (ii)
whether it is possible, instead of a case-by-case treatment, to set up a theory
for radiating waves due to a broad class of sources.

The present article addresses these questions in the context of the fKdV
equation (1.1), using the wavenumber exponential asymptotics approach.
Specifically, the forcing term is taken to be real and even in x and its (real
and even) Fourier transform is assumed to decay exponentially for large k,
like

f(k) ~ Alk["exp (=B [k])  (|k] = o), (1.7)

where A, « and (3 are real and § > 0. This class of f(x) includes as special
cases the sech?z, sech z and algebraically decaying profiles considered earlier
[6-11].

We find that for u, ¢ < 1 the radiating wave amplitude R and phase
shift # are controlled by a nonlinear beyond-all-orders mechanism only if
a > —1. Furthermore, the procedure for computing R and 6 hinges on
whether (i) a > 0, (ii) & = 0 or (iii) —1 < a < 0. Specifically, for o > 0, the
residues of the simple poles of (k) at k = £1/u (and hence R and #) can
be computed directly from a nonlinear Volterra-type integral equation that

‘sums’ to all orders the perturbation expansion (1.5), similar to the case



a =1 for f(z) = sech’z considered in [7]. For a = 0, this ‘outer’ analysis
must be supplemented with an ‘inner’ analysis in the vicinity of the simple-
pole singularities, as also found in [7, 11] for f(x) = sechz. Finally, for
—1 < a < 0, the outer and inner analyses are more involved than for a =0
because nonlinearity affects also the exponential factor in the expression for
R.

In addition, the present study reveals that the sign of the forcing ampli-
tude A (which scales out in the linear limit, ¢ = 0) is a major controlling
factor of the nonlinear wave response. This point was not appreciated in
prior work, which dealt with A > 0 only. The theoretical predictions are
supported by numerical results for values of o representative of the regimes
(i)—(iii) above and for a wide range of 1 and €. Overall, it is concluded that
the linear wave response has rather limited validity.

Based on prior experience [8], it is expected that the methodology de-
veloped here for the fKdV equation will be applicable to steady radiating
free-surface and internal gravity waves due to forcings (e.g., localized ap-
plied pressure or bottom topography) that satisfy the assumed asymptotic
behavior of f(k) in Eq. (1.7). In particular, for a = 0, this class of forcing
profiles f(z) is relevant to the classical problem of free-surface flow past a

submerged circular cylinder [6].

2. Scalings

An advantage of working in the wavenumber domain is that the per-
turbation expansion of 4(k) in powers of pu and & becomes disordered for
|k| > 1, which provides a hint of whether nonlinearity can affect the pole

residues at k = £1/u. Specifically, taking Fourier transform of expansion



(1.5) of u(x) yields
) = {14522 4} 0 v [ FOf - Dt @

Furthermore, making use of Eq. (1.7), the asymptotic behavior as |k| — oo
of the convolution integral above for }5 is found to be
et exp(= 1K) (@ > 1)

f2~ (2.2)
O ([k|*exp(=Bk])) (o <—1),

where
1 I'(a+1)2
= YT =) = —~—
¢ /0 dp p"(1-p) T(2a +2)

and I' denotes the gamma function. Thus, for ¢ < 1 nonlinearity can

(2.3)

contribute to the disordering for |k| > 1 of expansion (2.1), only if
a>-1. (2.4)

Assuming this condition is satisfied and making use of (1.7) and (2.2), ex-

pansion (2.1) takes the following form for |k| > 1
i~ Akl {1 42K 4 eAc|k[*T 4 - }exp(—ﬁ Ik)). (2.5)

Based on Eq. (2.5), nonlinear effects are expected to come into play for

k near the poles of @(k) at k = +£1/p, if eA = O(u®*t1). Accordingly, we set
e=p~th, (2.6)

This fixes € in terms of u, and A will serve as the second independent param-
eter in the fKdV equation: |A| = O(1) controls the balance of nonlinearity
with dispersion, while the sign of A specifies the polarity of the forcing term.
Earlier work [7] also adopted (2.6) (with & = 1 and o = 0 for the sech®z

and the sech x forcing, respectively) but A was fixed to A = 1.



3. Two-scale asymptotics in the wavenumber domain

3.1. Uniformly valid approximation of u(k)

The disordering of expansion (2.1) for |k| > 1 noted above suggests a
uniformly valid approximation of @ (k) that combines: (i) the straightforward
perturbation expansion (2.1), valid for 0 < |k| < 1/, with (ii) the two-scale
expansion

A

i~ —U(k) e Bkl Lo (3.1)
Ma

valid for k = pk = O(1). Here, in analogy with ‘two-timing’ asymptotics,
U(k) may be viewed as the ‘slowly varying’ amplitude of the ‘fast’ exponen-

tial e=Pl¥l. Furthermore, in view of Eq. (2.5), we require that
UN|ri|a{1+/<a2+Ac|/<a|a+1+---} (k — 0). (3.2)

Thus, taking 6 to be a constant such that y < § < 1, expansions (i) and

(ii) match for k in the intermediate range
1< |kl =0(1/6) < 1/p. (3.3)

3.2. Integral equation for U(k)

We now derive an approximate governing equation for U(k), 0 < k =
O(1). To this end, returning to Eq. (1.6), we write the convolution integral
for u2 as

22 /k/2 a()a(k — 1)dl. (3.4)

—00

In this expression, as k — 1 = O(1/p) for k = O(1), u(k — 1) is replaced by

the two-scale approximation (3.1),

o A k/2
e L / AU (% — pl) e?Ldl. (3.5)



For —oco < I < 0, the main contribution to the integral above comes from
lI| = O(1) because @(l)e is exponentially small for I < —1; thus, ()
is approximated by expansion (2.1): a(l) = f(I) 4 ---. In the rest of the
integration range (0 < [ < k/2), since k/2 = O(1/p), 4(l) is approximated
by expansion (2.1) for 0 < < 1/§, where 1 < 1/§ < 1/p in keeping with
(3.3), and by expansion (3.1) for 1/6 < < k/2. Upon implementing these

approximations in Eq. (3.5), we find

— K/2
u? ~ 2%&5’“ ;4+1/ UNU(k — \)dA
o H n/é

(3.6)

1/5
+ f(OU(k — ul)emdl} .

Finally, making use of Egs. (1.7), (3.1) and (3.6), it follows from Eq. (1.6)

that U(k) is governed by

K/2
(1—rHU(K) — 2A/ UNU(k — N)dX

w/é
s (3.7)
—opuotl / F(OU(k — pl)e’dl = k2.

3.3. Qverview of analytical procedure

Equation (3.7) forms the basis of the ensuing analysis. The goal is to
compute the residues of the expected simple poles of U (k) at £ = £1, which
translate into simple poles of u(k) at & = +£1/u, and thereby determine
the radiated waves upon inverting 4 (k). Of particular interest is how these
residues are impacted by the two integrals in Eq. (3.7), which account for
nonlinear effects in the radiated wave amplitude and phase. Formally, the
first of these integrals dominates; however, for —1 < « < 0, the second
integral also comes into play when x = £1 + O(p) and thus affects the pole
residues. This necessitates an outer—inner matched asymptotics procedure,

detailed below.



4. Outer equation

To leading order in p and u/d, Eq. (3.7) reduces to
K/2
(1 - KU (k) — 2A/ UNU(k — N)d\ = k. (4.1)
0
This Volterra-type integral equation is to be solved subject to the condition
Uk)~£k* (k—0), (4.2)

in keeping with (3.2).
We first examine the nature of the singularity of U (k) as k — 1 based on
the ‘outer’ equation (4.1). The results of this outer analysis depend critically

on whether a« > 0, « =0 or —1 < a < 0, as discussed below.

4.1. Outer analysis for a > 0

Under the condition a > 0, the integral term in Eq. (4.1) is subdominant
as k — 1, and U(k) features a simple pole at x = 1 irrespective of A. This

is deduced most easily by differentiating (4.1),

(1 — k)U' (k) — 26U (k) — AU (k/2)?

r/2 (4.3)
— 94 / U (5 — \)dA = ar®?
0
and applying dominant balance. Specifically, letting
C C
"(k) ~ ~ 1 4.4
V)~ e U0~ o 0D (4

with p > 1 and C constants, the first two terms in Eq. (4.3), which are
O(1 — k)!7P, dominate the integral term; in view of (4.2), the latter is
O(1 — k)Pt for a < p—1 and O(1) for @ > p— 1. This dominant balance

specifies p = 2, confirming that U(x) has a simple pole according to (4.4).
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Returning to Eq. (3.7), the simple-pole singularity deduced above per-
sists, as the O(u®t1, 1/§) correction terms remain relatively small as x — 1.
Thus, for a > 0, the outer analysis is sufficient to determine the pole residues
of u(k) at k = £1/p and thereby compute the radiating waves downstream.
The effect of nonlinearity is encapsulated in the value of the constant C' in

(4.4), which depends on A. Details are given in Section 5.

4.2. Outer analysis for a =0

An ansatz similar to (4.4) also works for &« = 0. However, now the
integral in Eq. (4.3) participates in the dominant balance and the strength of
the singularity, which no longer is a simple pole, depends on A. Specifically,
substituting (4.4) in Eq. (4.3) and balancing the first two terms with the
O(1 — k)!7P contribution of the integral, yields p = 2 + A. Therefore,

C Ch
e V0~ T e

U' (k) ~ (k—1),  (4.5)

where (] is a constant. It should be noted that the dominant balance above
and the asymptotic behavior (4.5) are valid only if p > 1, i.e. A > —1.

For A < —1, the singularity of U(k) at £ = 1 is determined by further
differentiating Eq. (4.3) and balancing the most singular terms. Specifically,
for —n < A < —n+1, where n > 2 is integer, we differentiate Eq. (4.3) n—1
times,

(1= &)U (k) — 20U D (k) + - .-

. (4.6)
- 2A/ " UNU™ (k= X)dA = 0.
0

Then, upon substituting the ansatz U™ (k) ~ C,, /(1 — k)P (with p > 1 and

C', constants) in Eq. (4.6) and balancing the first two terms with the integral
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term, we find p=1+n+ A > 1. Thus, for —n < A < —n + 1, the singular

behavior is

Cn
(1 _ H)1+n+A ’

UMD (k) ~ Cn (k= 1).

U(n)(/ﬁ:) ~ (n+ A)(l — ,Q)H*FA
(4.7)

The fact that the outer equation (4.1) predicts a singularity different
from a simple pole suggests that a separate analysis based on Eq.(3.7) is
needed in the vicinity of x = 1. This ‘inner’ solution reveals the expected
simple pole and enables computing the radiated waves downstream, as dis-

cussed in Section 6.

4.8. Outer analysis for —1 < a <0

In this instance, a power singularity similar to (4.4) does not work be-
cause the first two terms in Eq. (4.3) are subdominant relative to the integral
term. Instead, after experimenting with various singularities stronger than
a simple power, for A > 0, we try an exponential singularity combined with

a power in the form

U(k) ~ (lf_/i)l’ exp <(1_Bli)q> (k — 1), (4.8)
where ¢ > 0, B > 0, p and C_ are constants. Substituting this ansatz in
Eq. (4.1), for 1 — k = £ — 0, the dominant contribution to the integral term
comes from the neighborhood of A = 0. Specifically, using (3.2) and with
the change of variable A = &p,

K/2
I= /0 UMNU (5 — A)dA

(67

K/2€
~C_ ga—p—i-l/ dp P
0 (

B
W (1 +Acga+lpa+1 + t )eXp <>

£1(L + p)
(4.9)
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Next, employing Laplace’s method [12], the integral above is evaluated
asymptotically as £ — 0 (77 — oo) by expanding the integrand about
p = 0, where the exponent attains its maximum, and integrating term-by-

term from 0 to oco. Finally, this yields

c. . (B
I~ & o (5)

(4.10)
AcT'(2a +2) Q
T 1) 25 \EE T2 (ot D)(4q) 4 = 2N ET 1 ...
x{ (a+1)+ (BT 13 +B (a+2)&7+ ,
where
1 24qg—p+1
r=a-p+qla+tl)+1, g=clta2+a-p+1 (4.11)

q
Making use of (4.8) and (4.10), dominant balance as £ — 0 in Eq. (4.1)

requires

2-6¢P~ 24 ¢ {F(a +1)+ Acl2a+2) glat)(1+9)

B a+1 B a+1
(¢B) (q Q) (4.12)
T N 4.\
+5 (o +2)¢" + }
To leading order, this is achieved if

r=1-—p, (¢B)*!=A'(a+1). (4.13)

Using (4.11), the first of these conditions specifies

«

= - 4.14
9= (4.14)

with ¢ > 0 for —1 < a < 0, as assumed in (4.8). The second condition in
(4.13) then determines B > 0, as long as A > 0; if A < 0, the ansatz (4.8)
is not appropriate (see also Section 4.4 below).

Assuming A > 0, now we examine the balance of next-order terms in

(4.12) in hopes of determing the power p in (4.8). In view of (4.14), (« +
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D(l+q) =1,s0for 0 < ¢ <1 (ie. —1/2 < a < 0) the O(£"19) term
dominates and it cannot be balanced unless ) = 0, which according to
(4.11), implies

p=1+

[NAES]

1
<—2 <a< 0) . (4.15)
For a = —1/2 (q = 1), the three next-order terms in (4.12) are O(£7T1).
From this balance, making use of (2.3), (4.11), (4.13) and (4.14), we find

p= g+3m2 <a:—;>. (4.16)

When o < —1/2 (¢ > 1), however, the O(£"19) term in (4.12) is subdom-
inant and no balance is possible at O(¢"+1). This difficulty is handled by
modifying the exponential in Eq. (4.8),
B B

exp <§q> Hexp{gq(1+b§)}, (4.17)
where b is a constant. It should be noted that, when o« < —1/2 (¢ > 1),
exp (Bbgl’q) may not be expanded in powers of £. By choosing b suitably,
it is now possible to balance O(¢™!) terms in (4.12). Furthermore, the
O(£719) term is removed by setting @Q = 0, so the expression (4.15) for p

still holds. Details will not be pursued here.

4.4. The limit |A| < 1

It is worth noting that the singularity in Eq. (4.8) does not reduce to a
simple pole in the linear limit (A = 0). This suggests that, for —1 < o < 0,
the nonlinear term of the outer equation (4.1) acts as a singular perturbation

when |A| < 1 and k ~ 1. Indeed, expanding U in powers of A

Ulk; A) = Up(k) + AUL(K) + - - , (4.18)

14



we find from Eq. (4.1), in the limit { =1 -k — 0,

K 1
Up = -2 2e (4.19)
92 K/2 T éafl

As expected, expansion (4.18) becomes disordered as & — 0 and a separate
expansion in terms of re-scaled variables is needed in the vicinity of x = 1.
This boundary-layer-type analysis provides independent confirmation of the
ansatz (4.8) along with an asymptotic expression for the constant C_ for
0 < A < 1. Furthermore, from this analysis we deduce the behavior of U (k)
as K — 1 in the case A < 0, where (4.8) is not appropriate. Here, we briefly
outline the main results.

The disordering of expansion (4.18) suggests the following re-scaled vari-

ables when kK ~ 1
Uk) = [A]V°TE),  E=|AY*(1 k). (4.21)

Substituting (4.21) in Eq. (4.3) leads to the following integral equation for
U(é)

EU'(€) + U(€) — sgnA /0 h MU' (€ + N)d\ =0, (4.22)

where prime indicates derivative with respect to £ and sgnA = +£1 (A = 0).

This equation is to be solved subject to the matching condition

0() ~ 215 E>1), (4.23)

in keeping with (4.19). The solution is found by transforms and can be

expressed as

UE) = % /000 dsexp {—gs —sgnd o) } (4.24)

SO(
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To examine the behavior of U(k) as k — 1, we evaluate the integral in
Eq. (4.24) asympotically for £ — 0 using Laplace’s method [12]. As expected,
the result hinges on sgnA = +1. Specifically, for A > 0, we find

UE) ~ |5 (F(oz+1))z><cf+1>exp{BA—ail} )

2(a+1) £p £a (§=0), (425)

where ¢, B and p are given by Egs. (4.13)—(4.15). In view of (4.21), this

result is in agreement with Eq. (4.8) and

C_~ /m (AT(a+1))T@0  (0< A< 1). (4.26)

On the other hand, for A <0, U(é) approaches a constant as £—> 0,

-~ 1 1 =

U(€) ~ =5 T (=1/e) (=T(a))> (£ 0). (4.27)
The asymptotic results (4.25)-(4.27) are consistent with numerical solutions
of Eq. (4.1) (see Section 7.2).
5. Wave response for a > 0

As noted in Section 4.1, for « > 0, the residues of the poles of u(k)
at k = +£1/p are determined from the outer equation alone. Specifically,

combining (4.4) with (3.1) and using 4(—k) = a(k)*, we find

AC e B/u
(k) ~F—— —+— (k— £1/p). 1
k) ~ F e (= 1) (5:1)
Then, inverting the Fourier transform,
u(z) = / a(k) e*=dg, (5.2)
<z

where the integration path .Z extends along the real k-axis but passes below

k = £1/u so as to observe the radiation condition (1.2), the residues in
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Eq. (5.1) contribute a radiating wave downstream in the form of Eq. (1.3)
with

e B/u

According to Eq. (5.3), nonlinearity affects the wave amplitude R but not
the phase shift 6, and the only difference of the nonlinear from the linear
wave response

e_B/.“' T

Ry, = 27A W, Otin = —5,

(5.4)
is the value of C', which depends on A and «. By contrast, in the linear
solution above C' = 1/2 irrespective of a. We have computed C(A, a) nu-
merically by integrating Eq. (4.1) as an initial-value problem, using (4.2) as
initial condition and marching towards the simple pole of U(k) at k = 1
according to Eq. (4.4). Figurel plots |R/Ryy,| = 2|C|, the ratio of the non-
linear to the linear response amplitude, as a function of —3 < A < 3 for
a = 0.5, 1 and 2. Nonlinearity becomes more important as « is decreased,
and the validity of the linear theory is rather limited when o < 1. Further-
more, in this range of «, the polarity of the forcing is a significant factor, as
the nonlinear response amplitude is greatly enhanced (reduced) for A > 0
(A<0).

Theoretically, for a« > 0, the nonlinear wave response is determined
solely by the behavior of f(k) for large k (viz., Eq. (1.7)), regardless of the
details of the forcing profile f(x). We have tested this theoretical prediction

by numerically computing directly from the fKdV equation (1.1) nonlinear
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wave responses to three different f(x) whose Fourier transforms

0509 =5 (i) ey
(i) f(k) = A (W)aexp (—”'j') : (5.5)

vy 7 Ak k @ mk
@) fk) = 5 5 <tanh(7rk/2)) sech=5™

obey the asymptotic behavior in Eq. (1.7). (The fKdV equation was inte-

grated numerically by a standard fourth-order Runge-Kutta finite-difference
method with Az = 0.02, starting from far upstream where v — 0 and march-
ing toward downstream.) These computations were carried out for the same
a as above and two values of the small parameter p = 0.1, 0.2 with ¢ = p**+!
according to Eq. (2.6). The numerical results for the ratio of the nonlinear to
the linear wave amplitude are compared with the theoretical plots in Fig. 1.
For (i) and (ii), the direct numerical computations with g = 0.2 are in good
agreement with the theory while for (iii) it is necessary to reduce p to 0.1
to achieve fair agreement. This difference is attributed to the fact that (iii)
approaches the assumed behavior in Eq. (1.7) at larger k& than (i) and (ii).
The fair agreement between the asymptotic and numerical results in
Fig.1 for the forcing profile (iii) can be greatly improved (see Fig.2) by
taking into account, via an inner solution, the effect of the second integral

in Eq. (3.7), which formally is subdominant for o > 0. This higher-order

analysis is outlined in the Appendix.

6. Wave response for a« = 0

As noted in Section 4.2, for o = 0, the outer equation (4.1) breaks down

in the vicinity of kK = 1. Thus, we now return to Eq. (3.7) and seek a local
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Figure 1: Ratio of nonlinear to linear wave amplitude as a function of the forcing amplitude
A for o = 0.5 (solid line), 1 (dash-dot line) and 2 (dashed line). The shapes (circles:
a = 0.5, triangles: a = 1, squares: a = 2) correspond to numerical results from direct
integration of Eq. (1.1), subject to the forcing terms (i), (ii) and (iii) specified in Eq. (5.5),

for = 0.1 (open shapes), 1 = 0.2 (filled shapes) and ¢ = p® ™.
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Figure 2: Ratio of nonlinear to linear wave amplitude, based on the higher-order analysis
outlined in the Appendix, as a function of the forcing amplitude A for the forcing term
(iii) specified in Eq. (5.5) with a = 0.5 (solid lines), 1 (dash-dot lines) and 2 (dashed lines).

The shapes (circles: « = 0.5, triangles: « = 1, squares: o = 2) correspond to numerical

results for u = 0.1 (open shapes), p = 0.2 (filled shapes) and ¢ = p***.

solution that reveals the simple pole of U(x) at x = 1. This ‘inner’ analysis

is sketched below, followed by a discussion of the nonlinear wave response.

6.1. Inner analysis

Consider first A > —1. Upon differentiating Eq. (3.7),

(1 — kU (k) — 26U (k) — AU (1/2)*
K/2 1/6
— 24 UNU' (k= N)dX — 2u FOU (k= pl)ePdl - (6.1)
n/6 —o0

:0’

the singular behavior of the outer solution as k — 1 (viz., Eq. (4.5)) sug-
gests that the second integral term in Eq. (6.1), which was neglected in the

outer analysis, partakes in the dominant balance when x = 14 O(u). This
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motivates the re-scaling

U(k) I
U(/@):MHA, k= o

(6.2)

In terms of these variables, Eq. (6.1) is approximated correct to O(1/p'+4)

by the inner equation
RO () + O (%) — / FOT (7 — 1) e=Pldil = 0, (6.3)
—00

where prime indicates derivative with respect to .

Following [7, 11], Eq. (6.3) is solved by the one-sided Fourier transform

() = /O B (s)eiRds. (6.4)

The integral above converges when Im & > 0 so Im k < 0 according to (6.2),
in keeping with the radiation condition (1.2) which requires the integration
path . in inverting a(k) (viz., Eq.(5.2)) to pass below the poles at k =
+1/p. Substituting Eq. (6.4) in Eq. (6.3) and assuming s®(s) — 0 as s — 0
(verified below), ®(s) satisfies

dd . .
E—l—lf(s—l,é’)(l):O. (6.5)

Therefore,

® = C)exp {i/:o f(s' — iﬁ)ds’} : (6.6)

where C) is a constant that will be specified by matching with the outer
solution. It should be noted that in view of Eq. (1.7) if(s—if) ~ —A/s (s —
0)so ® = O(s4) and s®(s) — 0, as assumed above. Then, inserting Eq. (6.6)

in Eq. (6.4) yields the inner solution

(k) = Gy /OOO exp {i <s.% + /:o (s — iﬁ)ds’) } ds.  (67)
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From Eq. (6.7) we find that

U(R) ~ 1g (& —0). (6.8)

R
In view of Eq. (6.2), this confirms that U(k) features a simple pole at k = 1
O

Ulk) ~i—

(k—1). (6.9)

To determine C}, we examine the outer limit (% >> 1) of the inner solution.
Returning to Eq. (6.7), the integral is evaluated asymptotically for & > 1
by first approximating the integrand in the neighborhood of s = 0 using

i/oof(s’—iﬂ)ds'~A1n3+J+--- (s = 0), (6.10)

where J is the (generally complex) constant

' /o1 {if(sl —iA) ﬁ} ds’ + /loo if(s' —iB)ds’, (6.11)

and then rotating the integration path to the positive imaginary s-axis.

Thus, we find

~ C
~ 1A T 1 ~
U(R) ~i'Te’ T(1 + A)W (F>1). (6.12)

This expression matches with the inner limit (kx — 1) of the outer solution
(viz., Eq. (4.5)) if
~ e_JC1
= —. d
= AT (2 + A) (6.13)

The above inner analysis can be readily adapted to A < —1. Briefly,
suppose —n < A < —n+1, where n > 2 is integer. Motivated by the singular
behavior as k — 1 of the outer solution (viz., Eq. (4.7)), the appropriate re-
scaling is )

_ U

(n—1)
v (H) NTH_A ’

(6.14)
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with & still given by Eq. (6.2).Then, differentiating Eq. (6.1) n—1 times and

substituting Eq. (6.14), the inner equation (6.3) is replaced by
~ ~ 0 ~ ~
wU' +nU (k) — / fOU (R —1)e Pl = 0. (6.15)

The inner solution again is posed in the form of Eq.(6.4), which upon

substitution in Eq. (6.15) implies

si—f —(n—1)® +isf(s—ip) ® (6.16)
Therefore,
B(s) = Cps" Lexp {1/ f(s — iﬁ)ds’} (6.17)

so the inner solution reads

i) = Cp, /000 5" Lexp {i (si% + /:0 (s — iﬂ)ds') } ds, (6.18)

where C,, is a constant.

Now, in the limit & — 0, Eq. (6.18) yields

U(R) ~i"(n —1)! % (6.19)

which, in view of (6.14), translates into

- . Cn (n—1)!
n—1
UMD (k) ~ 7 (e (k= 1). (6.20)
Hence, U(k) features a simple pole at k = 1,
. Cn 1
U(k) ~1 P (k—1). (6.21)

The constant C), is determined by matching the outer limit (% > 1) of the

inner solution (6.18),

U(7) ~ "¢/ T(n + A);% (R>1), (6.22)
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with the inner limit (k — 1) of the outer solution (viz., Eq. (4.7)). Thus, we

find
& e ’C,
TntAT(n 1+ A)

Finally, Egs. (6.9) and (6.13) can be combined with Eqs. (6.21) and (6.23)

(6.23)

to a single expression, valid bothwhen A > —1 (n =1) and —n < A < —n+1
(n > 2), for the simple pole of U(k) at k = 1,

1 e/,
(A T(n+14+A4)1—k

U(k) ~ (k —1). (6.24)

6.2. Radiating waves
By combining Eq. (6.24) with Eq. (3.1) and making use of 4(—k) = 4*(k),
we obtain the following expression for the simple poles of u(k) at k = +1/u

ACy exp(—J, FiJ;) e hln 1
(£F)AT(n+1+A) ptA EF1/p

u(k) ~ F (k — +£1/p), (6.25)

where J = J,+1J; was defined in Eq. (6.11). Inverting the Fourier transform
(k) as in Eq. (5.2), the residues of these poles give rise to a wavetrain
downstream in the form of Eq. (1.3), whose amplitude R and phase shift 6
are given by

B ArAC, e Ir e B/n
S T(n+1+A) pltad’

9:—u+mg—@. (6.26)

Here, in keeping with Eq. (6.24), the positive integer n is specified by the
forcing amplitude A: n=1for A>—-landn>2for —-n< A< -n+1.
It should be noted that for the forcing profile f(x) = Asechx (corre-
sponding to (i) in Eq. (5.5) with a = 0), e™/ = 24 according to Eq. (6.11).
Thus, the final results in Eq. (6.26) agree with those found earlier for this
forcing in the cases A =1 [7] and A = ge~1/? (¢ > 0) [11].
Compared with the wave response for a > 0 (viz., Eq. (5.3)), here non-

linear effects are more pronounced. Specifically, the power of p in Eq. (6.26)
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for the wave amplitude R is controlled by the forcing amplitude A, so for
A >0 (< 0) the order of magnitude of R is larger (smaller) than the linear
response (viz., Eq.(5.4)). In addition, nonlinearity affects R through the
dependence on A of the constants C,, e~ and I'(n + 1 + A), which in
the linear limit (A = 0, n = 1) take the values 1/2, 1 and 1, respectively.
Furthermore, the phase shift # in Eq. (6.26) depends on A explicitly and
through J; (= 0 in the linear limit). It should be noted that J = J, +iJ;
(viz., Eq. (6.11)) depends on the specific forcing profile f(z), not just the
asymptotic behavior of f (k) for |k| > 1; hence, the nonlinear wave response
does so as well.

To illustrate the effects of nonlinearity for o« = 0, Fig. 3 shows plots of
|R/ Ry, the ratio of the nonlinear to the linear response amplitude, as a
function of —3 < A < 3 for the forcing profiles (i)-(iii) in Eq. (5.5) (with
a = 0) and for the values of = 0.2 and 0.5. As in Section 5, the constants
C,, in Eq. (6.26) were computed numerically from the outer equation (4.1)
by marching forward in s and fitting the asymptotic behavior as x — 1
predicted by dominant balance (viz., Eqs. (4.5), (4.7)). In addition, Fig.3
shows results from direct numerical solution of the fKdV equation (1.1) for
the same three forcings f(z) and two values of p (with ¢ = p) as above.
Similar to the case a > 0 (Fig. 1), for the forcing profiles (i) and (ii) the
theoretical predictions agree well with the numerical results for both values
of p, while for (iii) there is reasonable agreement for the smaller y = 0.2
only.

It is worth noting the steep increase (decrease) of the wave amplitude
caused by nonlinearity when A > 0 (A < 0). This striking nonlinear feature
is further illustrated in Fig. 4, which shows theoretical plots and numerical

results of the absolute value |R| of the wave amplitude as a function of
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Figure 3: Ratio of nonlinear to linear wave amplitude as a function of the forcing amplitude
A for o = 0 with g = 0.2 (solid line) and 0.5 (dashed line), corresponding to the forcing
terms (i), (ii) and (iii) specified in Eq. (5.5). The circles (filled: @ = 0.2, open: p = 0.5)
are numerical results from direct integration of Eq.(1.1) subject to these forcing terms

and € = p.
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A

Figure 4: Wave amplitude |R| as a function of A for the forcing f(x) = An/(x* + 72 /4)
with ¢ = 0.2 (top) and 0.5 (bottom). The solid and dotted lines are nonlinear and linear
responses, respectively. The circles denote numerical results from direct integration of

Eq. (1.1) subject to this forcing term and & = p.
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Figure 5: Computed profile u(x) of the fKdV equation (1.1) subject to the forcing f(z) =
An/(2® + 7%/4) with e = p = 0.2 and A = 0.9 (A = 0.18). The solid and dash-dot lines

are nonlinear and linear solutions, respectively.

the forcing amplitude A, for the algebraic forcing f(z) = An/(2? + 72/4)
(corresponding to (ii) in Eq.(5.5) with @ = 0) and the values of y = 0.2,
0.5. Compared with the linear solution (viz., Eq. (5.4)), which is limited to
|A| < 1, the exponential asymptotics theory has a much broader range of
validity in terms of A; moreover, it captures the nonlinear wave response
for even moderate values of p, when the (formally exponentially small in
w) |R| is comparable to A. In such a case, the radiating waves can form
the dominant part of the response, as illustrated in Fig.5 for ;4 = 0.2 and
A=0.09.

7. Wave response for —1 < a < 0

For —1 < a < 0, again the outer solution breaks down when x = 1 +
O(p) so an inner analyis is required to reveal the simple pole of U(k) at
k = 1. Similar to the outer analysis (Section 4.3), the sign of A is an
important factor in the inner analysis. Here, in the interest of brevity, we

shall focus on the case A > 0, for which nonlinear effects turn out to be
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most dramatic. Furthermore, only the leading-order inner solution, which
ignores the corrections to the exponential singularity of the outer solution

(viz., Eq. (4.17)) that arise when oo < —1/2, will be considered.

7.1. Inner analysis

The behavior of the outer solution as k — 1 (viz., Eq. (4.8)) suggests the

following inner variables

- o
UR) - plor (7.1)
P [

U(k) =

where p = 1+ ¢/2 = (o + 2)/2(a + 1) according to Egs. (4.14)—(4.15).
Substituting Eq. (7.1) into Eq. (3.7) then leads to

RU(R) — p® /_ h FOU (R — e Pdl = 0. (7.2)

Unlike the case o = 0, here the inner equation involves the small parameter
explicitly, which may be attributed to the exponential rather than algebraic
singularity of the outer solution at x = 1.

The inner solution again is posed in the form (6.4), where ®(s) satisfies

de .
i f(s—i8)e =0, (73)

on the assumption that ®(0) can be dropped (justified below). Thus,
~ [ee]
d(s) = C_exp {i,ua/ (s — iﬂ)ds'} , (7.4)
where C_ is a constant. It should be noted that, in view of Eq. (1.7),
i a+1
f(s—1iB8) ~ <> AT'(a+1) (s —0), (7.5)
s

so ®(0) is finite. However, as argued below, |®(0)| < |&U(%)|, which justifies
dropping ®(0) in deducing Eq. (7.3) from Eq. (7.2).
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Inserting Eq. (7.4) in Eq. (6.4) yields the inner solution

0(R) = 6 /OOO exp {i (s,% e /:O (s — iﬂ)ds’) } ds, (7.6

from which it follows that

(F —0). (7.7)

In view of Eq. (7.1), this confirms that U(k) features a simple pole at k = 1
i C_

Ulw)~ 21—

(k= 1). (7.8)

The constant C_ is determined by inner-outer solution matching. To
this end, making use of Eq. (7.5) we expand the exponent in the inner solu-

tion (7.6)

i/:o F(s' —iB)ds’ ~ J_ — AT'(a) <;)a +oo (s—0), (7.9)

where J_ is the (generally complex) constant

J_ = i/o f(s' —ip)ds’. (7.10)

The integral in Eq. (7.6) then is evaluated asymptotically for u® < & < p~!

by substituting Eq. (7.9) and rotating the integration path to the positive

imaginary s-axis via s = i(/ﬂ/fi)l/(aﬂ) Yy

U(R) ~ mé% /OOO exp {— (u;)q (y + Al;fﬁ)) } dy.  (7.11)

Since 1/(uk)? > 1, by Laplace’s method [12], the main contribution to
1/(a+1)

the integral above comes from the neighborhood of y = (AT'(a + 1))

where the exponent attains its maximum. Thus, we find

o~ el - [og . B .
U(R) ~ipC— Gap Vart (AT(c + 1)) 2(e+1) exp { (,u/%)q} (R >>(1), |
7.12
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where ¢, B and p are given by Egs.(4.13)-(4.15). Taking into account
Eq. (7.1), this outer limit of the inner solution matches with the inner limit

of the outer solution (viz., Eq. (4.8)) if

6= G- Jat1 (7.13)
(AT (a + 1)) %@Fn V27

Accordingly, Eq. (7.8) for the simple pole of U(k) at k = 1 reads

—pJ
Uy v — =07 Jafl Ly (g
(AT(a+ 1))@ V27 1=k

Finally, we verify that |®(0)| < |&U(%)|. From Egs. (7.4) and (7.6), it

follows that

RU(R) [ R,
®(0) _/0 eXp{1<Z N/O f(s 16)d8>}dz. (7.15)

Furthermore, the real part of the exponent in the integrand above can be

expressed in the form

z/R oo inh &
Re{—iuo‘ /0 f(s’—iﬂ)ds’} = 4p° /O f(k)smk b sin2%kdk. (7.16)

Thus, under the assumption f(k) > 0 (satisfied by (i)—(iii) in Eq. (5.5) for
A > 0) the right-hand side in Eq. (7.16) is positive; hence, the integral in
Eq. (7.15) is exponentially large when p < 1 (u® > 1) and so is &U (&) /®(0).

7.2. Radiating waves

From Egs. (7.14) and (3.1), combined with a(—k) = a(k)*, it follows that

X AC_exp (—p®(J_p £iJ_;)) [a+1e P 1
ak) ~ ¥ Gt BVE) Jad e T L (ks /),
(AT'(a 4 1)) 2@ 2 Fl/u
(7.17)
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where J_ = J_, +1J_; was defined in Eq. (7.10). Then, upon inverting the
Fourier transform u(k) as in Eq. (5.2), the poles in Eq. (7.17) contribute a

radiating wave downstream in the form of Eq. (1.3), with

R = 4771407 \/m eXp(—ﬁ/‘u _ /-LO[J,T.) 9 _ _z - ILLaJ |
(AT(a +1))%erm V2w ot , > .

(7.18)
It should be noted that in the small forcing-amplitude limit (A < 1), using

the asymptotic expression (4.26) for C_ and J_ — 0 in Eq. (7.18), we recover
the linear wave response (viz., Eq. (5.4)).

According to Eq.(7.18), the main difference of the wave amplitude R
from its linear counterpart Ry, (viz., Eq. (5.4)) is the O(u®) modification of
the exponent. This is a more significant nonlinear effect than those found
earlier for a > 0 (viz., Eq.(5.3)) and o = 0 (viz., Eq.(6.26)): in view of
the scaling ¢ = p®*!, decreasing the value of o (>—1) for fixed p < 1
effectively increases the nonlinearity parameter e, so nonlinear effects are
expected to be stronger. Furthermore, the extent to which nonlinearity
affects the exponential factor in R hinges on (the sign and magnitude of)
J_, that depends on the specific forcing profile according to Eq. (7.10).

We have explored theoretically, based on Eq. (7.18), as well as numeri-
cally the effects of nonlinearity on the wave amplitude R when —1 < a <0
for the forcing profiles (i)—(iii) in Eq. (5.5). Figure 6 shows theoretical plots
of | R/ Ryin| as a function of 0 < A < 1 for these forcings when a = —0.25 and
w = 0.1, 0.2 and 0.5. As before, the constant C_ was computed from the
outer equation (4.1) by marching forward in x and fitting U(k) as k — 1 to
the exponential singularity predicted by dominant balance (viz., Eq. (4.8)).
As a check, it was verified that when A < 1 the computed C_ agreed

with the asymptotic expression (4.26). Furthermore, Fig.6 shows numeri-
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cal results of |R/Ryy,| computed by direct integration of the fKdV equation
(1.1) subject to the forcings (i)—(iii) for the same parameter values (with
e = p®T1) as above. When p = 0.2 and 0.5, the theoretical predictions are
in satisfactory agreement with the numerical results for forcings (i) and (ii)
but not for (iii); in the latter case, while agreement does improve when p is
reduced to 0.1, for A 2 0.25 the theory significantly overpredicts the wave
amplitude.

According to Fig.6, nonlinearity causes the wave amplitude R to rise
sharply as the forcing amplitude A is increased, particularly for the forcings
(i) and (ii), where for A ~ 0.5 R has already reached ten times its linear
counterpart Rj,. Remarkably, this steep increase of R due to nonlinearity
for « = —0.25 is noticeably stronger than that in Fig.3 for a = 0, even
though the forcing profiles differ relatively little for these two values of «.
The same trend also is seen upon comparing Fig.7, which plots R as a
function of A > 0 for forcing (i) and o = —0.25 (with p = 0.2, 0.5), with
Fig. 4 which displays the corresponding response diagrams for a = 0.

Finally, we remark that the agreement between theoretical predictions
(viz., Eq. (7.18)) and numerical results deteriorates when o < —0.3. We have
made an attempt to remedy this difficulty by developing a more accurate
inner solution that accounts for the correction to the exponent of the singu-
larity of the outer solution for o < —1/2 (viz., Eq. (4.17)). This modification
improves agreement with numerical results only to a limited extent: it turns
out that further corrections are needed when « drops below —2/3, —4/5,

--. This hints that as o gets closer to —1 so ¢ = u®*! approaches O(1),
asymptotic treatment of the nonlinear wave response becomes a formidable

task.
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Figure 6: Ratio of nonlinear to linear wave amplitude as a function of the forcing amplitude
A for @« = —0.25 with g = 0.1 (dash-dot line), 0.2 (solid line) and 0.5 (dashed line),
corresponding to the forcing terms (i), (ii) and (iii) specified in Eq.(5.5). The circles
(filled: w = 0.2, open: p = 0.5) and the open triangles (¢ = 0.1) are numerical results

from direct integration of Eq. (1.1) subject to these forcing terms and & = /4.
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Figure 7: Wave amplitude |R| as a function of the forcing amplitude A for the forcing
term (i) with @ = —0.25 specified in Eq. (5.5), with p = 0.2 (top) and 0.5 (bottom).
The solid and dotted lines are nonlinear and linear responses, respectively. The circles
denote numerical results from direct integration of Eq. (1.1) subject to this forcing term

and e = /4,
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8. Concluding remarks

Using the fKdV equation (1.1) as a simple model, we made an asymp-
totic study of nonlinear effects in steady radiating waves due to moving
sources in dispersive media. In this model, the radiating wave amplitude is
exponentially small with respect to the dispersion parameter u < 1. Yet,
nonlinear effects (controlled by ¢ < 1) can play an important part, and com-
puting the wave response for p, ¢ < 1 may require the use of exponential
(beyond-all-orders) asymptotics. In earlier studies, this issue was discussed
for few examples of forcing profiles f(z). Here, by contrast, we presented
a systematic treatment of nonlinear wave responses due to even f(x) with
Fourier transform f(k) that decays for |k| > 1 like A|k|®exp(—g|k|), where
A, o and 8 > 0 are free parameters.

For this class of forcing profiles, computing the radiating wave amplitude
R and phase 6 hinges upon beyond-all-orders asymptotics only if @ > —1.
Under this condition, the appropriate scaling for nonlinear effects to come
into play is A = O(u®T!). Furthermore, three distinct nonlinear responses
arise depending on «: (i) @ > 0, (ii) @ = 0 and (iii) —1 < o < 0. Specifically,

o+l the ratio of the nonlinear to the linear response amplitude

taking e = pu
for each of these cases is found to be: (i) R/Ry, = O(1) constant that de-
pends on A and «; (i) R/Ry, = O(1/p?); and (iii) R/ Ry = O(exp(Au®)).
The asymptotic expressions for R compare favorably against direct numer-
ical solutions of the fKdV equation. Moreover, these comparisons suggest
that the analytical predictions often remain reasonably accurate for moder-
ate p and e, when the (formally exponentially small) wave amplitude can

be quite substantial.

It should be noted that, in the limit @ — 0, the radiated wave amplitude
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formulae for a > 0 (viz., Eq. (5.3)) and o < 0 (viz., Eq. (7.18)) do not reduce
to that for & = 0 (viz., Eq. (6.26)). This suggests the need for a separate
asymptotic theory that bridges the results for @« > 0 and o < 0 in the
neighborhood of aw = 0. The width of this neighborhood in terms of o and
further details regarding this distinguished limit are not pursued here.

Finally, we comment on the wave response for a < —1. In this instance,
as suggested by Eq. (2.2), nonlinearity does not contribute to the disordering
of expansion (2.1) so the scaling ¢4 = O(u®T1) is no longer relevant and the
outer solution for U(k) is linear. However, when €A = O(u), nonlinearity
does come into play in the vicinity of the simple pole at k = 1 of the outer
solution. Thus, to compute the residue of this pole, it is necessary to solve
an inner equation for k = 1 + O(u), subject to matching with the (linear)
outer solution.

Briefly, taking

eE=pu (8.1)
with |A] < O(1), Eq. (3.7) for U(k) is replaced by
K/2
(1= KU (k) — 2 A / U (5 — A)dA
w/é
s (8.2)
-2 FOU(k — pl) ePldl = k°.

In the outer region, the nonlinear terms are subdominant and

K/Oé

In the inner region, the appropriate variables are
UR) . 1-k
Uk)=—~+, F=——0o, 8.4
(1) . . (8.4)
and Eq. (8.2) yields, correct to O(1),
- 1
/ FOU(R—1)e Pl = 5 (8.5)
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The solution to the inner equation (8.5) is posed in the form of Eq. (6.4)
subject to ®(0) = —i/2. This condition ensures matching of the inner so-
lution U(%) when % > 1 with the outer solution (8.3) when x — 1. Then,
substituting Eq. (6.4) in Eq. (8.5), ®(s) satisfies

% +if(s—if)® =0 (8.6)

SO )
B(s) = f% exp {i /0 F(s' — iﬁ)ds’} , (8.7)

and the inner solution is

U(k) = —% /OOO exp {i (s,% — /O f(s — iﬁ)ds’) } ds. (8.8)

As & — 0, we find from Eq. (8.8)

(k —0), (8.9)

where J_ = J_, +1iJ_; was defined in Eq. (7.10). In view of Eq. (8.4), this
implies that the residue of the simple pole of U(k) at k = 1 is —e™/-/2.
Thus, returning to Eq. (3.1) and also using u(—k) = 4*(k), we may deduce
the residues of the simple poles of u(k) at k = +1/u:

przmay RGO CRL)

. A .
(k) ~ Fo exp(=J—r F1J-)

Upon inverting the Fourier transform u(k) as in Eq. (5.2), these poles con-

tribute a radiating wave downstream in the form of Eq. (1.3) with

R =2nAe '

o 0= (8.11)

Compared with the linear response (viz., Eq. (5.4)), the effects of nonlin-

earity on R and 6 above are encapsulated in the O(A) constant J_, which is
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Figure 8: Ratio of nonlinear to linear wave amplitude as a function of the forcing amplitude
A for the forcing (ii) with a = —2 specified in Eq. (5.5). The filled (1 = 0.2) and open
(1 = 0.5) circles are numerical results from direct integration of Eq. (1.1) subject to this

forcing term and € = p.

readily determined from the specific forcing profile (viz., Eq. (7.10)). Thus,
unlike the nonlinear responses for o« > —1 treated earlier, here there is no
need to resort to beyond-all-orders asymptotics.

Figure 8 plots |R/Ryn| = exp(—J_,) according to Eqs. (8.11) and (5.4),
as a function of —1 < A < 1, for the forcing profile (ii) with & = —2 in
Eq. (5.5), along with numerical results from direct integration of the fKdV
equation (1.1) for p = 0.2 and 0.5 (with € = ). For these values of u, there
is overall good qualitative (as well as quantitative for A < 0.25) agreement
between analytical and numerical results. As also found earlier for o« > 0
(see Figs.1-3), the main effect of nonlinearity is to dramatically increase

(decrease) the response amplitude when A > 0 (A < 0).
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Appendix A. Higher-order analysis for a > 0

In Section 4.1 it was argued that for @ > 0 the outer analysis is sufficient
to compute asymptotically the radiating waves downstream. This leading-
order approximation was compared with numerical results for the forcing
terms (i)—(iii) in Eq. (5.5) that satisfy the assumed asymptotic behavior in
Eq. (1.7). However, for the (moderately small) values of y = 0.1 and 0.2,
good quantitative agreement between analytical and numerical results was
found only for (i) and (ii) (see Fig.1). To remedy this difficulty, here we
present a higher-order analysis that takes into account, via an inner solution,
the effect of the second integral in Eq. (3.7), which formally is subdominant
and was dropped earlier. This inner solution is similar to that obtained for
a = 0 in Section 6.1 and only the main steps are highlighted below.

Similar to Eq. (6.1), using the inner variables

Ulr) = UL’N“), gl - i (A1)

the first derivative of Eq. (3.7) is approximated correct to O(u®~!) by the

inner equation
RU'(R) + U(R) — p® / FOU' (7 —1)e Pldl = 0, (A.2)
—0oQ0

where prime indicates derivative with respect to £. (This assumes 0 < o < 1.
To derive the appropriate inner equation for o > 1, it is necessary to work
with a higher derivative of Eq. (3.7), but the final results in Eq. (A.12) are

not changed.)
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The solution to Eq.(A.2) is posed in the same form as Eq.(6.4), and
®(s) satisfies

g FipCf(s —if) @ = 0, (A.3)

under the assumption that s®(s) — 0 as s — 0 (to be verified below).

Therefore,
d = C, exp {iuo‘/ f(s — iﬁ)ds’} , (A.4)

where C.; is a constant that is specified by matching with the outer solution.

It should be noted that
i a+1
f(s—1iB) ~ <3) Al'(a+1) (s —0), (A.5)

s0 s®(s) ~ Cysexp{— (in/s)* AT'(a)} — 0 as s — 0 (with p < s < 1).

Then, inserting (A.4) in Eq. (6.4) yields the inner solution

() = /0 " exp {i (sk e / T - iﬂ)ds’) } ds.  (A6)

From Eq. (A.6), we find that

Furthermore, the outer limit of Eq. (A.6) is

e M+

I r</p), (A.8)

where
Iy = i/ooo {f(s _ig) — C)M AT (o + 1)} ds. (A.9)

Thus, matching of the outer limit of the inner solution in Eq. (A.8) with the

inner limit (k — 1) of the outer solution in Eq. (4.4) is achieved if

Cy = —ie "7+ (A.10)
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Finally, combining Egs. (A.10), (A.7) and (A.1) with Eq. (3.1), we con-
clude that

(k) ~ FAC exp(—p® (Jor £ 14))—ay g7

(k— +1/p). (A.11)

Upon inverting @(k), these residues contribute a radiating wave downsream

in the form of Eq. (1.3) with

R = 47 AC exp(_ﬂffa‘; W) g _g — 1T, (A.12)

where J, = J;, +iJy; was defined in (A.9).

Unlike the leading-order result in Eq. (5.3), based on the refined expres-
sion for R in Eq.(A.12) the ratio of the nonlinear to the linear response
amplitude |R/ Ry, | now depends on . As shown in Fig. 2, this modification
greatly improves the agreement between analytical and numerical results for

the forcing term (iii) and p = 0.1, 0.2.
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