
Algebraic Geometry 9 (4) (2022) 476–501

doi:10.14231/AG-2022-014

Deformation of rational singularities

and Hodge structure

Matt Kerr, Radu Laza and Morihiko Saito

Abstract

For a one-parameter degeneration of reduced compact complex analytic spaces of di-
mension n, we prove the invariance of the frontier Hodge numbers hp,q (that is, those
with pq(n−p)(n−q) = 0) for the intersection cohomology of the fibers and also for the
cohomology of their desingularizations, assuming that the central fiber is reduced, pro-
jective, and has only rational singularities. This can be shown to be equivalent to the
invariance of the dimension of the cohomology of the structure sheaf since we can prove
the Hodge symmetry for all the Hodge numbers hp,q together with E1-degeneration of
the Hodge-to-de Rham spectral sequence for nearby fibers, assuming only the projec-
tivity of the central fiber.

For the proof of the main theorem, we calculate the graded pieces of the induced
V -filtration for the first non-zero member of the Hodge filtration on the intersection
complex Hodge module of the total space, which coincides with the direct image of the
dualizing sheaf of a desingularization. This calculation also implies that the order of
nilpotence of the local monodromy is smaller than in the general singularity case by 2
in the situation of the main theorem assuming further smoothness of general fibers.

Introduction

The notion of rational singularity was introduced by Artin [Art66] and has been studied, for
instance, in relation to simultaneous resolutions of versal deformations of rational surface sin-
gularities; see [Ati58, Bri66, Bri68, Bri71, Art74, Pin74, Wah79] among others. The existence of
a simultaneous resolution after a finite base change implies that the local monodromy is semisim-
ple in the surface rational singularity case. This kind of property also appears in degenerations of
hyper-Kähler manifolds related to smooth fillings (similar to simultaneous resolutions of surface
rational singularities) generalizing Kulikov’s theorem for K3 surfaces; see [KLSV18]. The above
semisimplicity may be viewed as a typical case of Corollary 1 below asserting that the order
of nilpotence of local monodromies is smaller than in the general case by 2 (that is, at most
dimXt − 2) if the singular fiber X0 has only rational singularities. This assertion, however, does
not hold for Du Bois singularities; see Section 2.7. This is the reason for which the hypothesis on
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Rational singularities and Hodge structure

the existence of a non-uniruled component is required in [KLSV18, Theorem 1.6], whose proof
uses [Ste80], designed for Du Bois singularities; see also [KLS21].

In examples of one-parameter degenerations of complex manifolds, we often get smooth total
spaces (see for instance Section 2.7 and Remark 2.4)) so that the central fibers have only hy-
persurface singularities. In the case of a weighted homogenous isolated hypersurface singularity
with weights (w0, . . . , wn), rational singularity is characterized by the condition that the mini-
mal exponent defined by the sum of weights

∑n
i=0wi in this case is greater than 1; see [Wat80,

Theorem 1.11]. This is extended to the general isolated hypersurface singularity case with mini-
mal exponent defined as the minimal spectral number in [Ste77b] (see [Sai83]), and then to the
general hypersurface singularity case with minimal exponent up to sign the maximal root of the
reduced Bernstein–Sato polynomial bf (s)/(s+1); see [Sai93, Theorem 0.4]. (The last definition of
minimal exponent is compatible with the previous ones; see Remark 1.4(iv).) Combining these
with the Thom–Sebastiani-type theorem for Bernstein–Sato polynomials [Sai94, Theorem 0.8],
we can obtain rational hypersurface singularities rather easily in the higher-dimensional case.

On the other hand, Du Bois singularities are characterized in the hypersurface case by the
condition that the minimal exponent is at least 1; see [Sai09, Theorem 0.5]. It is well known
that this condition is equivalent to that the log canonical threshold, that is, the minimal jumping
coefficient of the associated multiplier ideals, is 1. Note, however, that rational singularity cannot
be characterized by using multiplier ideals, and Hodge ideals [MP19, MP20], or the minimal
exponent as above, must be employed. It also seems possible to use the Steenbrink spectrum,
although we would have to calculate it at every point of the hypersurface near a given point,
even locally ; see Remark 1.4(v).

Rational singularities are also related to birational geometry and to compactifications of mod-
uli spaces. It is known that canonical or, more generally, log terminal singularities are rational;
see for instance [Elk81, KM98]. In this paper, we prove the following.

Theorem 1. Let f : X → ∆ be a proper surjective morphism of a connected reduced complex
analytic space onto a disk with relative dimension n. Assume that the central fiber X0 is reduced,
projective, and has only rational singularities. Let X̃t be a desingularization of the fiber Xt (t ∈
∆). Then the Hodge filtration F on the cohomology Hj

(
X̃t

)
and on the intersection cohomology

IHj(Xt) is strict for t ∈ ∆, replacing the desingularization X̃t and shrinking ∆ if necessary. We
have moreover the equalities

hp,qIH (X0) = hp,q
(
X̃0

)
= hp,qIH (Xt) = hp,q

(
X̃t

)
, (1)

hq(OX0) = hq
(
O
X̃0

)
= hq(OXt) = hq

(
O
X̃t

)
, (2)

for t ∈ ∆∗ and (p, q) ∈ N2 ∩ [0, n]2 with pq(n−p)(n−q) = 0 (where p = 0 in (2)). Here we set
hp,qIH (Xt) := dim GrpF IHp+q(Xt), h

p,q
(
X̃t

)
:= dim GrpFH

p+q
(
X̃t

)
, and hq(OXt) := dimHq(Xt,OXt).

In the proof we have to assume that the union of the X̃t for t ∈ ∆∗ can be extended to a
desingularization of the total space X (forgetting about X̃0). This does not seem automatically
true, although it is not easy to construct a counterexample.

One of our motivations for Theorem 1 comes from the study of compactifications of moduli
spaces for smooth projective varieties with non-zero frontier Hodge numbers, and especially the
comparison between geometric approaches (such as in [KS88, Ale96]) and analytic approaches
(based on period maps) to the construction of moduli spaces; see [KLS21, KL20] for more details.
The assertion (2) is a refinement of the invariance of the arithmetic genus under a flat deforma-
tion [Igu55]; see also Remark 3 for a related topic. We can prove a partial converse of Theorem 1
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under a rather strong hypothesis; see Section 2.8. It is not yet clear whether the projectivity
assumption on the central fiber can be weakened to the Moishezon assumption; see Remark 2.5.

Remark 1. It is easy to see that the frontier Hodge numbers hp,q
(
X̃t

)
(that is, those satisfying

pq(n−p)(n−q) = 0) are independent of a choice of the desingularization X̃t for any t ∈ ∆ (using
the Hartogs theorem (via the Cauchy formula), Serre duality and (1.1.1)), and coincide with
those of the intersection cohomology IHj(Xt) when t = 0; see Corollary 2.1. However, the last
coincidence for t 6= 0 does not seem trivial unless Xt is algebraic or p = 0, n (since the Hodge
symmetry may fail). The first and last equalities in (1) can be lifted to canonical isomorphisms of
the corresponding vector spaces by choosing a relative ample line bundle of the desingularization
morphism (using [Del68, Del94]; see also [Sai90a, Proposition 2.4]). The strictness of the Hodge
filtration on Hj

(
X̃t

)
means that it is induced from the Hodge filtration on the de Rham complex,

which is strict after taking the derived global section functor. This strictness is equivalent to the
E1-degeneration of the Hodge-to-de Rham spectral sequence; see [Del71, Proposition 1.3.2]. For
the intersection cohomology IHj(Xt), we use the de Rham complex of the filtered D-module
corresponding to the intersection complex.

Remark 2. No assumption is made for general fibers Xt in Theorem 1 except for the properness
of f and the reducedness of X. (This was changed from the first version of this paper following
a referee’s suggestion.) However, the projectivity of the central fiber X0 can imply that of Xt

if one assumes further that X0 is a variety of general type and has only canonical singularities
(hence only rational singularities [Elk81]); see [Kol21]. Here the “general type” assumption is
essential since one may have a non-projective Kähler deformation of a smooth projective variety
in the Abelian variety or K3 surface case.

Remark 3. In the algebraizable case (that is, when f is extendable to a morphism of complex
algebraic varieties), the equalities in (2) can be shown by combining [DJ74, Lemma 1], [DuB81,
Theorem 4.6] (see also [KK10, Theorem 7.8]) with [Elk78, Theorem 2] and using the assertion
that rational singularities are Du Bois (see [Kov99, Corollary 2.6], [Sai00, Theorem 5.4]), as was
remarked by one of the referees. These equalities imply (1) in the algebraizable case, using Hodge
symmetry.

Remark 4. It seems quite desirable not to assume the algebraizability of a one-parameter degener-
ation as in Theorem 1. Indeed, certain analytic coordinates defined naturally near the boundary
of a moduli space are not necessarily globally algebraic (for instance, in the toroidal compacti-
fication case). Hence it is not necessarily easy to see whether a particular analytic curve given
locally near the boundary can be extended globally to an algebraic curve on the moduli space
(even in the projective one-parameter family case).

For the proof of Theorem 1, we prove the following “Hodge symmetry,” assuming only the
projectivity of the central fiber (no assumption on singularities).

Proposition 1. Let f : X → ∆ be a proper surjective morphism of a connected reduced complex
analytic space onto a disk such that the central fiber X0 is projective. Then, shrinking ∆ if
necessary, the Hodge filtration F on the intersection cohomology IHj(Xt) is strict, and there are
equalities (that is, the Hodge symmetry)

hp,qIH (Xt) = hq,pIH (Xt) = hn−p,n−qIH (Xt) , p, q ∈ Z (3)

for any t ∈ ∆. Moreover, for t ∈ ∆∗ and q ∈ Z, we have

hn,qIH (Xt) = dimHq
(
X0, F−n(pψf ICXQh)

)
. (4)
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Here pψf := ψf [−1] and pϕf := ϕf [−1] are shifted nearby or vanishing cycle functors (these
preserve mixed Hodge modules), and ICXQh denotes the pure Hodge module of weight n+1
whose underling Q-complex is the intersection complex ICXQ; see [BBD82]. For a mixed Hodge
moduleM in general, the first non-zero member of the Hodge filtration is denoted by Fp(M)(M);
see Section 2.1. Note that Fp(M) is well defined also for p 6 p(M), and we have −n 6 p(M) if
M = pψf ICXQh or pϕf ICXQh, where the strict inequality occurs in the last case; see (6).

Proposition 1 implies that the central fiber of a one-parameter family cannot be projective
if the Hodge symmetry of nearby fibers fails. Here no assertion is made about the relation
between hp,qIH (X0) and hp,qIH (Xt) for t∈∆∗. Indeed, the nearby cycle complex of the intersection
complex pψf ICXQh in (4) is used also for the proof of (3), and the relation between this nearby
cycle complex and the intersection complex ICX0Qh is quite unclear (except for F−n under the
assumption of Theorem 1 or 2). Proposition 1 does not necessarily hold with the projectivity of
X0 replaced by the Moishezon assumption; see Remark 2.4 below. (Here rational singularity is
not assumed).

Applying Proposition 1 to the original f and also to f̃ : X π→ X
f→ ∆ (where π is a desingu-

larization), the proof of Theorem 1 is reduced to the following (which is used to prove (1) only
for p = n).

Theorem 2. Let f be a holomorphic function on a reduced irreducible complex analytic space X.
Let Y ⊂ X be the closed analytic subspace defined by the ideal (f) ⊂ OX . Assume that Y is
reduced and has only rational singularities. Set n := dimY . Then on an open neighborhood of
Y , the analytic space X has only rational singularities, and there are isomorphisms

F−n
(
pψf ICXQh

)
= ωY , (5)

F−n
(
pϕf ICXQh

)
= 0 . (6)

We can show that the isomorphism (5) follows from the vanishing (6) using Propositions 1.2
and 2.1; see Remark 2.2. Theorem 2 then follows from [Sai93, Theorem 0.6] in the X smooth
case.

As a corollary of Theorem 2, we can deduce the following.

Theorem 3. With the notation and assumptions of Theorem 1, assume that X \ Y is smooth.
Set hj,p,qlim (Xt) := dim GrpFGrWp+qH

j
lim(Xt) and hj,p,qlim (Xt) 6=1 := dim GrpFGrWp+qH

j
lim(Xt) 6=1. Then

hj,p,qlim (Xt) = 0 unless (p, q) belongs to

{
[1, j−1]2 t {(j, 0), (0, j)} (j 6 n) ,

[j−n+1, n−1]2 t {(j−n, n), (n, j−n)} (j > n) ,
(7)

hj,p,qlim (Xt) 6=1 = 0 if (p, q) belongs to {(j, 0), (0, j)} or {(j−n, n), (n, j−n)} . (8)

Here Hj
lim(Xt) 6=1 is the non-unipotent monodromy part of Hj

lim(Xt) for the monodromy T .
Theorem 3 is a refinement of [KLS21, Corollary 9.9(ii)]. Since N := log Tu is a morphism of type
(−1,−1) with T = TuTs the Jordan decomposition, Theorem 3 implies the following.

Corollary 1. With the notation and assumptions of Theorem 3, we have a bound for the order
of nilpotence of N as follows:

Nk = 0 on Hj
lim(Xt) for k := max

(
1,min(j−1, 2n−j−1)

)
. (9)

This bound is better than the general case by 2. (Recall that the monodromy theorem says
that (9) holds in general with min(j−1, 2n−j−1) replaced by min(j+1, 2n−j+1). This follows
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from the theory of limit mixed Hodge structures; see for instance [Ste76].) The assertion (9) does
not hold for Du Bois singularities; see Section 2.7. Corollary 1 implies that if there is a one-
parameter degeneration of smooth projective varieties such that the order of nilpotence of the
local monodromy is not smaller than the upper bound in the general case by 2, then the central
fiber X0 cannot have only rational singularities even if we replace X0 in any way.

In the case where X is smooth and X0 has only rational or more generally Du Bois singular-
ities, we can show a relation with the cohomology of the singular fiber Hj(X0) which is closely
related to [KLS21, Theorems 9.3 and 9.11]; see Theorem 2.6.

In Section 1, we review certain basics of rational singularities and their deformations (includ-
ing simultaneous resolution). In Section 2, we prove the main theorems and Theorem 2.6.

1. Rational singularity and smoothing

In this section, we review certain basics of rational singularities and their deformations (including
simultaneous resolution).

1.1. Rational singularity. Let X be an equidimensional reduced complex analytic space. We
say that X has only rational singularities if for a desingularization ρ : X̃ → X, we have the
canonical isomorphism

OX ∼−→ Rρ∗OX̃ (1.1.1)

or, equivalently, X is Cohen–Macaulay and has the canonical isomorphism

ρ∗ωX̃
∼−→ ωX , (1.1.2)

as can be shown using duality together with the Grauert–Riemenschneider vanishing theo-
rem [GR70]. This is independent of a choice of a desingularization since (1.1.1), (1.1.2) holds
for any proper morphism of complex manifolds ρ : X̃ → X inducing an isomorphism over a dense
open subset (using the Hartogs theorem for (1.1.2)).

Remarks 1.1. (i) If a reduced complex analytic space X has only rational singularities, it is well
known that X is normal and Cohen–Macaulay. Indeed, the assertion is local, and we may assume
that X is a closed analytic subspace of a smooth space V . For a desingularization ρ : X̃ → X,
we have ring isomorphisms OX,x ∼−→

(
ρ∗OX̃

)
x

(x ∈ X) by (1.1.1) with
(
ρ∗OX̃

)
x

normal. So X is
normal. We may then assume X globally irreducible.

Set dX = dimX. By Grothendieck duality for projective morphisms of complex analytic
spaces together with the Grauert–Riemenschneider vanishing theorem (see assertion (ii) below),
we get the canonical isomorphisms

ρ∗ωX̃ = Rρ∗ωX̃ = Rρ∗
(
DO

X̃

)
[−dX ] = (DOX)[−dX ] . (1.1.3)

Here D denotes the dual functor in Db
coh(OX), which can be defined by

DM • := τ6kHomOV
(M •, I•)

(
M • ∈ Db

coh(OX)
)

(k � 0) , (1.1.4)

with ωV [dimV ] ∼−→ I• an injective resolution, if we assume that X is a closed analytic subspace
of a smooth space V (where the dualizing sheaf ωV is canonically isomorphic to ΩdimV

V using the
trace morphism HdimV

c

(
V,ΩdimV

V

)
→ C given by the pushdown of currents together with the

Dolbeault resolution; see also [Sai88b, Formula (2.5.1.1)]).
The equalities in (1.1.3) imply that X is Cohen–Macaulay and has the canonical isomor-

phism (1.1.2).
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(ii) Let ρ : X̃ → X be a surjective projective morphism of complex analytic spaces with X̃
smooth connected and dim X̃ = dimX. Then

Riρ∗ωX̃ = 0 , i > 0 . (1.1.5)

This is known as the Grauert–Riemenschneider vanishing theorem if ρ is a desingularization;
see [GR70, Satz 2.3] (where X seems to be assumed projective, hence algebraic). The assertion
in the analytic case is shown in [Tak85, Theorem 1]. We can also deduce it from the stability
theorem of polarizable Hodge modules under the direct image by a projective morphism (see
[Sai88b, Theorem 1]) using the strictness of the Hodge filtration on the direct image (since the
assertion is local on X).

1.2. Deformations of rational singularities. We recall more or less well-known assertions
related to deformations of rational singularities. We first see that flatness is satisfied in the case
of one-parameter degenerations of reduced analytic spaces if and only if the total space is reduced.

Lemma 1.2. Let f : X → C be a morphism of complex analytic spaces with dimC = 1. Assume
that C is smooth, f is everywhere non-constant, and X ′ := f−1(C ′) is reduced with C ′ ⊂ C
the complement of a zero-dimensional closed subspace of C. Then f is flat if and only if X is
reduced.

Proof. Since X ′ is reduced, the kernel of the canonical surjection

OX � OXred

is a coherent subsheaf supported in X \ X ′ and is locally annihilated by the pull-back of tk

(k � 0) with t a local coordinate at a point of C \ C ′. So this coherent subsheaf vanishes if and
only if f is flat (since dimC = 1). This finishes the proof of Lemma 1.2.

Proposition 1.2 ([Elk78]). Let f be a non-constant holomorphic function on an irreducible
reduced complex analytic space X. Let Y ⊂ X be the closed analytic subspace defined by the
ideal (f) ⊂ OX . Assume that Y is reduced and has only rational singularities. Then, replacing X
with a sufficiently small open neighborhood of Y , the space X has only rational singularities and
we have the isomorphism

ωY = ωX/fωX . (1.2.1)

Proof. By definition, there is a short exact sequence

0→ OX
f→ OX → OY → 0 ,

which implies the distinguished triangle in Db
coh(OX)

(DOX)[−dX ]
f→ (DOX)[−dX ]→ (DOY )[−dY ]

+1→ .

Since Y is Cohen–Macaulay (see Remark 1.1(i)), we have Hi(DOY ) = 0 for i 6= −dY . Using the
associated long exact sequence together with Nakayama’s lemma applied at each point of Y , we
deduce that

Hi(DOX) = 0 , i 6= −dX ; (1.2.2)

that is, X is also Cohen–Macaulay once we replace it with a sufficiently small open neighborhood
of Y . We also get the short exact sequence

0→ ωX
f→ ωX → ωY → 0 , (1.2.3)
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so that ωY = ωX/fωX .

Let ρ : X̃ → X be a desingularization, where we may assume that X̃0 := ρ−1(X0) is a divisor
with simple normal crossings; see [Hir64, Chapter 0, Section 7] and also [W lo09] for a global
theorem. (Note that the remaining assertion is local on X since it is enough to show that X
has only rational singularities on a neighborhood of Y .) More precisely, X̃0 ⊂ X̃ is the closed
analytic subspace defined by

(
f̃
)
⊂ O

X̃
with f̃ := ρ∗f . Let Ỹ ⊂ X̃ be the proper transform

of Y = X0. This is a reduced closed analytic subspace of X̃0 (of the same dimension), hence
smooth.

We have the closed immersion of complex analytic spaces over Y

Ỹ ↪→ X̃0 ,

which induces the following morphisms using duality:

ρ∗ωỸ → ρ∗ωX̃0
→ ωY . (1.2.4)

Note that the last morphism is surjective since the composition is. Here we may assume that X
and X̃ are closed analytic subspaces of a polydisk ∆m and Pr × ∆m, respectively, so that ρ is
induced by the projection p : Pr × ∆m → ∆m. We can use the duality isomorphism D ◦Rp∗ =
Rp∗ ◦D for this projection p. (Indeed, we have a locally free resolution whose jth component is
a direct sum of copies of OPr(−mj)�O∆m with mj � 0 as in the algebraic case, shrinking ∆ if
necessary; see also [RRV71].)

Since X̃ ⊂ Pr ×∆m, we can apply the same argument as above and get the isomorphism

ω
X̃0

= ω
X̃
/f̃ω

X̃

together with the commutative diagram

ρ∗ωX̃
f→ ρ∗ωX̃ → ρ∗ωX̃0

→ 0

↓ ↓ ↓
ωX

f→ ωX → ωY → 0

(1.2.5)

using the duality isomorphism for ρ (or rather p) and also the Grauert–Riemenschneider vanishing
theorem. The right vertical morphism is surjective by the above argument, using (1.2.4). Hence
so is the middle vertical morphism by Nakayama’s lemma, if we replace X with a sufficiently
small open neighborhood of Y . Proposition 1.2 then follows.

Remarks 1.2. (i) Proposition 1.2 was inspired by [Sch07, Theorem 5.1] and was originally proved
by assuming X \ Y smooth. It turns out that the last hypothesis is unnecessary, and moreover
the assertion in the algebraic case is already known; see [Elk78, Theorem 2], where the proof is
almost the same as above. The above proof is noted simply for the convenience of the reader. A
similar argument can also be found in [Ste88].

(ii) If we assume X \ Y smooth, then Proposition 1.2 in the algebraic case is a special case of
[Sch07, Theorem 5.1], where the assumption that Y has only rational singularities is replaced
by that Y has only Du Bois singularities. (Recall that rational singularities are Du Bois; see
Remark 3 in the introduction.) It seems, however, very difficult to prove Schwede’s Theorem 5.1
in an analytic setting because of the difference between rational and Du Bois singularities.

(iii) The isomorphism of (1.2.1) depends on the choice of f (with Y fixed), although the subsheaf
fωX ⊂ ωX is independent of it. (Here the division by df is used. Note that df trivializes the

482



Rational singularities and Hodge structure

conormal sheaf of Y ⊂ X.) We also have the canonical short exact sequence

0→ ωX → ωX(Y )→ ωY → 0 , (1.2.6)

where the last surjection is given by residue (at least at smooth points of Y ). This is the dual of
the short exact sequence 0→ OX(−Y )→ OX → OY → 0 (compare with (1.2.3)).

1.3. Simultaneous resolution. Let (Y, 0) be a germ of an isolated surface singularity. Let

f : X → ∆

be a smoothing of Y ; that is, f is flat, Xt is smooth (t ∈ ∆∗), and X0 = Y . Assume that f
admits a simultaneous resolution ; that is, there is a surjective projective morphism

π : X → X

whose composition with f is a smooth morphism X → ∆ (in particular, X is smooth) and such
that π induces an isomorphism over X \X0.

By the commutativity of the vanishing cycle functor with the direct image under a proper
morphism, we have the vanishing

ϕfRπ∗QX = Rπ∗ϕπ∗fQX = 0 (1.3.1)

since π∗f : X → ∆ ⊂ C is smooth. By the decomposition theorem for Rπ∗QX [3], this implies
that

Rπ∗QX [3] = ICXQ (1.3.2)

since the composition ϕf ◦ i∗ is the identity up to a shift of complex (using (1.3.6) below), where
i : X0 ↪→ X is the inclusion. (Note that the other direct factors are contained in X0). From (1.3.1)
and (1.3.2), we thus get that

ϕf ICXQ = 0 . (1.3.3)

This is compatible with the assertion (6) in Theorem 2. Actually, we can deduce (1.3.3) from the
assertion (6) under the hypotheses of Theorem 2 assuming further that n = 2 and the monodromy
is unipotent (after taking a base change) since the center of symmetry of the weight filtration W
is shifted by 1 for the unipotent monodromy part; see (2.3.6) below. Note that (ICXQ)|X0 may
change after a base change.

We can verify (1.3.3) for a concrete example as below.

Example 1.3. Let

X =
{
x2 + y2 + z2 = t2

}
⊂
(
C3 ×∆, 0

)
,

where f is defined by t and ∆ ⊂ C is a unit disk. This is the base change of

g := x2 + y2 + z2 :
(
C3, 0

)
→ (∆, 0)

by the cyclic double covering (∆, 0) 3 t 7→ t2 ∈ (∆, 0) (defined by using the fiber product). If we
blow X up at the origin, then the exceptional divisor is P1×P1. We can blow this down partially
so that the exceptional divisor is replaced by P1. The simultaneous resolution X can be obtained
in this way; see for instance [Ati58, Bri66].

The vanishing cycle is a topological cycle in general and is a sphere S2 in this case. Inside the
smooth family X =

⊔
t∈∆Xt, this becomes an analytic cycle over 0 ∈ ∆ and is represented by P1.

If one takes a compactification X → ∆ of X → ∆ as in [SS85, Lemma 5.3], then the images of the
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topological cycles in the compactified fiber Xt for t ∈ ∆∗ cannot be algebraic. (Indeed, we have
the surjection F 2H2

(
Xt

)
→ H2(Xt) by construction; hence the image of H2

c (Xt) in H2
(
Xt

)
cannot be contained in F 1H2

(
Xt

)
for t ∈ ∆∗.) So this gives an example of a Hodge locus;

see [CDK95]. In our case, however, the Hodge locus is the whole space ∆ if we take a natural
compactification since the compactification of

{
x2 +y2 +z2 = c

}
⊂ C3 (c ∈ ∆∗) in P3 is a smooth

surface with geometric genus pg = 0. In this case, we have a family of algebraic cycles over ∆.

The normal bundle of the above P1 in the fiber X0 at 0 ∈ ∆ is negative. Note that the
self-intersection number of the vanishing cycle is −2. This is related to the finiteness of the
local monodromy via the Picard–Lefschetz formula [Lam81] and is compatible with a criterion
of analytic contraction [Gra62] inside X0. The contraction inside X seems more non-trivial since
the normal bundle of X0 ⊂ X is trivialized by π∗f : X → ∆ ⊂ C.

As for the stalk of the intersection complex ICXQ at 0 ∈ X, we have

Hj(ICXQ)0 =


Q if j = −3 ,

Q(−1) if j = −1 ,

0 if j 6= −1,−3 .

(1.3.4)

It turns out that we have the same for the nearby cycles; that is,

Hjψf (ICXQ)0 = Hjψf (QX [3])0 =


Q if j = −3 ,

Q(−1) if , j = −1 ,

0 if j 6= −1,−3 ,

(1.3.5)

calculating the nearby cycles ψgQ for g since f is the base change of g. (Note that g has an
isolated singularity of type A1 and has Milnor number 1; see [JKSY22, Formula (1.5.1)] for the
spectrum.)

These are compatible with the vanishing of the vanishing cycles ϕf ICXQ in (1.3.3) via the
long exact sequence associated with vanishing cycle triangle (see [Del73]):

i∗ → ψf → ϕf
+1→ , (1.3.6)

where i : X0 ↪→ X is the inclusion.

Also note that (1.3.4) is compatible with the short exact sequence of mixed Hodge modules

0→ Qh,Y [2]→ i∗(ICXQh)[−1]→ Qh,{0}(−1)→ 0 (1.3.7)

which follows from [DS12, Theorem 1].

Remarks 1.3. (i) In the case of general rational surface singularities, we have a simultaneous
resolution over an irreducible component (called the Artin component) of the base space of a
miniversal deformation of a rational surface singularity after taking the base change by a ramified
finite Galois covering of this component; see for instance [Art66, Wah79]. Note that the covering
transformation group is closely related to (−2)-curves (see for instance [Wah79]), and this seems
to be related to the Picard–Lefschetz formula, as is explained below in the A, D, E case.

(ii) In the rational double point case (that is, of type A,D, E), the base space S is smooth (hence
irreducible), and the covering transformation group is given by the corresponding Weyl group;
see for instance [Bri71]. We have a local system on the complement of the discriminant D ⊂ S
which is generated by vanishing cycles at the smooth points of the discriminant. Its monodromy
group is finite and is isomorphic to the Weyl group which is a reflection group generated by
reflections, where a vanishing cycle at a smooth point of the discriminant determines a reflection
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via the Picard–Lefschetz formula, as is well known. The local system is trivialized by taking the
pull-back under the unramified finite covering associated with the finite monodromy group. This
triviality is needed for the simultaneous resolution since the local system is extended over the
whole base space (which is contractible) after the base change. We can compactify the miniversal
deformation X → S into a projective family over S using the natural C∗-action as in [Ste77a].
Here it is expected that the Hodge locus is the whole space; that is, we have a family of algebraic
cycles over the whose base space as in Example 1.3. If we take a compactification as in [SS85,
Lemma 5.3], then the Hodge locus is contained in the discriminant, as can be seen by the same
argument as in Example 1.3.

(iii) It seems interesting to examine whether the observation in part (ii) can be extended to the
higher-multiplicity case, where the simultaneous resolution is restricted to the Artin component.
It is not very clear what happens at the other components, for instance, whether the monodromy
group of the local system of vanishing cycles defined on a Zariski-open subset of an irreducible
component is finite or not. It may be interesting to investigate this, for instance, in the case
of [Pin74].

1.4. Minimal exponent of hypersurfaces. Let X0 be a reduced hypersurface of a complex
manifold X defined by a holomorphic function f . We will also denote X0 by Y . For y ∈ Y , the
local minimal exponent α̃Y,y ∈ Q>0 is defined as the maximal root of the reduced (or microlocal,
see [Sai94]) local Bernstein–Sato polynomial bf,y(s)/(s + 1) up to a sign. Globally, the minimal
exponent α̃Y is defined by

α̃Y := min
{
α̃Y,y

}
y∈Y .

Here we assume that α̃Y exists by shrinking X if necessary.

Let π :
(
X̃, X̃0

)
→ (X,X0) be an embedded resolution with Ei the exceptional divisors (i ∈ I)

and Ỹ the proper transform of Y = X0. We assume that X̃0 has simple normal crossings, I is
finite (shrinking X if necessary), and π is the composition of smooth center blow-ups (after
Hironaka). Let mi and νi be the multiplicities of the pull-backs of f and η, respectively, along
the exceptional divisors Ei for i ∈ I, where η ∈ ωX is a local generator. Set

α̃π,i := (νi + 1)/mi , α̃π := min{α̃π,i}i∈I , α̃′π := min{α̃π,i}i∈I′ ,

with I ′ :=
{
i ∈ I |Ei ∩ Ỹ 6= ∅

}
⊂ I .

The following shows some difference between rational and Du Bois singularities in the hyper-
surface case (that is, the total transform is needed for Du Bois singularities, although the strict
transform is enough for rational ones).

Proposition 1.4. We have the following equivalences:

(i) Y has at most rational singularities ⇐⇒ α̃Y > 1 ⇐⇒ α̃′π > 1

(ii) Y has at most Du Bois singularities ⇐⇒ α̃Y > 1 ⇐⇒ α̃π > 1.

Proof. The first equivalences in the assertions (i) and (ii) are shown, respectively, in [Sai93,
Theorem 0.4] and [Sai09, Theorem 0.5]. The second equivalences are more or less well known to
specialists. We note here a short proof for the convenience of the reader.

(i) The rationality of the singularities of Y is equivalent to that we have

νi −mi > −1 ; that is , α̃π,i > 1 (∀ i ∈ I ′) , or α̃′π > 1 . (1.4.1)
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Indeed, the dualizing sheaf ωY is locally generated by the “residue” of η/f along Y , which is given
by using the last morphism of (1.2.6). The singularity is rational if and only if the restriction
of this residue to the smooth part of Y can be extended to a holomorphic form on the proper
transform of Y (that is, it has no pole). Taking the residue of the pull-back of η/df along the
proper transform Ỹ of Y at ỹ ∈ Ỹ , we get locally

η′ := Res
Ỹ
π∗(η/f) = u

n∏
k=1

zµkk dz1 ∧ · · · ∧ dzn

for u ∈ O
Ỹ ,ỹ

invertible, where (z0, . . . , zn) is a local coordinate system of
(
X̃, ỹ

)
compatible

with X̃0 so that Ỹ = {z0 = 0} locally, and µk := νk −mk with

π∗f = v
n∏
k=0

zmk
k and π∗η = v′

n∏
k=0

zνkk dz0 ∧ · · · ∧ dzn ,

for v, v′ ∈ O
Ỹ ,ỹ

invertible. Note that m0 = 1 and ν0 = 0 since Y is reduced. The last equivalence

of the assertion (i) then follows.

(ii) Let lct(Y ) be the log canonical threshold of a reduced hypersurface Y of a complex manifold
X. This can be defined as the minimal jumping coefficient of the multiplier ideals of Y and
coincides with the smallest α ∈ Q such that |f |−2α is not locally integrable on X; see [Laz04]
(for the algebraic case). Here we shrink X so that lct(Y ) exists, if necessary. The following is
well known:

lct(Y ) = min{α̃Y , 1} = min{α̃π, 1} ∈ (0, 1] . (1.4.2)

The first equality follows for instance from [BS05, Theorem 0.1]. (It is also possible to use
analytic continuation in the variable s of a functional equation associated with the Bernstein–Sato
polynomial of f to avoid the problem of derivation as distributions; see for instance [JKSY22].)
The second equality can be verified by examining the local integrability condition for the pull-
back of f−αη ∧ f−αη in terms of νi and mi, where η ∈ ωX is a local generator. (Recall that, for
a ∈ R and ε ∈ R>0, we have

∫ ε
0 r

a dr < +∞ if and only if a > −1. Here polar coordinates are
used.)

We then get that

lct(Y ) = α̃Y = α̃π if one of lct(Y ) , α̃Y , α̃π is smaller than 1 . (1.4.3)

Note that the second equality does not necessarily hold without the last assumption. This finishes
the proof of the last equivalence of the assertion (ii).

Remarks 1.4. (i) In the case of a hypersurface Y of a complex manifold X, the following three
conditions on the singularities of Y are equivalent to one another:

(a) rational, (b) canonical, (c) log terminal.

The following two conditions are also equivalent:

(d) Y : Du Bois, (e) (X,Y ): log canonical.

The conditions that Y is, respectively, canonical and log terminal (which are used in birational
geometry) are given by the following conditions for all j ∈ J ′:

(b)′ µj > 0, (c)′ µj > −1.
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Here we take a desingularization ρ : Ỹ → Y and write

ω
Ỹ
∼= ρ∗ωY ⊗OỸ

(∑
j∈J ′

µjDj

)
with Dj ⊂ Ỹ (j ∈ J ′) the exceptional divisors and µj ∈ Z; see [KS11]. In the case of a pair

(X,Y ), we take an embedded resolution π :
(
X̃, X̃0

)
→ (X,X0) with Y = X0 as above so that

ω
X̃
∼= π∗

(
ωX ⊗OX(Y )

)
⊗O

X̃

(∑
j∈J

µjEj

)
.

Then the condition that a pair (X,Y ) is log canonical is given by the condition

(e)′ µj > −1 for all j ∈ J .

The above conditions are independent of the choice of a desingularization, since (logarithmic)
differential forms are stable by pull-backs.

The equivalence of conditions (a), (b), (c) follows from the definition and Proposition 1.4(i)
(since µj ∈ Z). For conditions (d) and (e), we can apply Proposition 1.4(ii) or [KS11, Corol-
lary 6.6] in the algebraic case.

(ii) There is a big difference between rational and Du Bois singularities. For instance, Du Bois
singularities are not necessarily normal and can be reducible, although they are semi-normal ;
see for instance [Sai00, Remark (i) after Proposition 5.2] (where it is called weakly normal).

(iii) By [MP20], we have

α̃Y > α̃π . (1.4.4)

It may be possible to prove this by a microlocal version of an argument in [Kas76] using an
algebraic partial microlocalization as in [Sai94].

(iv) In the isolated hypersurface singularity case, the minimal exponent α̃Y coincides with the
minimal spectral number, which is defined by using the mixed Hodge structure on the vanishing
cohomology; see [Ste77b]. This follows by comparing [Mal75] and [SS85, Var82]. In the non-
degenerate Newton boundary case, the spectral numbers can be determined from the Newton
polyhedron, and the minimal exponent coincides with the inverse of the minimal c ∈ Q such
that (c, . . . , c) is contained in the Newton polyhedron; see for instance [Sai88a]. In the case of
a weighted homogeneous polynomial with weights (w0, . . . , wn), the minimal spectral number
coincides with the sum of weights

∑n
i=0 wi; see for instance [JKSY22, Section 1.5].

(v) In the non-isolated hypersurface singularity case, however, α̃Y,y cannot be determined by the
Steenbrink spectrum at y; see [Sai93] for the Steenbrink spectrum. For instance, in the case of a
decomposable reduced central hyperplane arrangement Y ⊂ C4 defined by

(
xa+ya

)(
zb+wb

)
= 0

with (a, b) = 1, the non-unipotent monodromy part of the vanishing cohomology at 0 vanishes.
In order to determined the local minimal exponent α̃Y,y, we may have to calculate the Steenbrink
spectrum at every y′ 6= y sufficiently near y.

2. Proofs of the main theorems

In this section, we prove the main theorems and Theorem 2.6.

2.1. The first non-zero member of the Hodge filtration. LetM be a Hodge module on a
complex analytic space X. Let (MU↪→V , F ) be the underlying filtered right DV -module associated
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with a local embedding U ↪→ V with U ⊂ X open and V smooth; see [Sai88b, Remark 2.1.20].
Note that (MU↪→V , F ) is canonical as a consequence of [Sai88b, Lemma 3.2.6]. (The latter implies
the independence of the choice of a morphism to V from a minimal local embedding of U into a
smooth space). We define the first non-zero member of the Hodge filtration Fp(M)(M) by

p(M) := min{p ∈ Z | FpMU↪→V 6= 0 for some U ↪→ V } ,
Fp(M)(M)|U := Fp(M)MU↪→V . (2.1.1)

These are locally independent of local embeddings U ↪→ V (since we use right D-modules) and are
globally well defined. Note that Fp(M)(M) is a coherent OX -module by [Sai88b, Lemma 3.2.6].

In the case of intersection complexes, we have the following.

Proposition 2.1. Let X be an irreducible reduced complex analytic space of dimension dX
and ρ : X̃ → X be a desingularization which is assumed to be a projective morphism. Then
p(ICXQh) = −dX , and we have the canonical isomorphism

F−dX (ICXQh) = ρ∗ωX̃ . (2.1.2)

Proof. The first assertion follows from [Sai88b, Proposition 3.2.2] (see also [Sai91b]) since it holds
on the smooth locus Xsm ⊂ X. The second one follows from the stability theorem of polarizable
Hodge modules under the direct images by projective morphisms (see [Sai88b, Theorem 5.3.1
and Remark 5.3.12]). Indeed, the theorem in [Sai88b] implies that the left-hand side of (2.1.2)
is a direct factor of the right-hand side, using the strict support decomposition together with the
strictness of the Hodge filtration on the direct image of the underlying filtered D-module. So
the assertion follows since the right-hand side has no non-trivial subsheaf supported on a strictly
smaller closed analytic subspace. (Here we can also use Remark 2.1(ii).) This finishes the proof
of Proposition 2.1.

Corollary 2.1. In the notation and with the assumptions of Proposition 2.1, assume that X
is compact and algebraic. Then there are non-canonical isomorphisms of C-vector spaces

GrpF IHp+q(X) ∼= GrpFH
p+q
(
X̃
)

(2.1.3)

if pq(dX−p)(dX−q) = 0.

Proof. Proposition 2.1 implies the canonical isomorphisms for p = dX . Corollary 2.1 then follows
using the self-duality together with the Hodge symmetry.

Remarks 2.1. (i) In the notation and with the assumptions of Proposition 2.1, we have the strict
support decomposition for pure Hodge modules

Hjρ∗
(
Q
h,X̃

[dX ]
)

=
⊕

Z⊂XM
j
Z , (2.1.4)

where Z runs over irreducible closed analytic subsets of X and Mj
Z is called the direct factor

of Hjρ∗
(
Q
h,X̃

[dX ]
)

with strict support Z (that is, its underlying Q-complex is an intersection

complex supported on Z with local system coefficients); see [Sai88b, Formula (5.1.3.5)]. Note that
Q
h,X̃

[dX ] denotes the pure Hodge module of weight dX whose underlying Q-complex is Q
X̃

[dX ]

and Hjρ∗ is defined as the direct image of a filtered D-module with Q-structure; see for instance
[Sai17, Section 1.1].

(ii) With the notation and assumptions as above, by [Sai91b, Proposition 2.6], we have

p
(
Mj

Z

)
> −dX if Z 6= X . (2.1.5)

Note that Mj
Z = 0 if Z = X and j 6= 0.
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2.2. Proof of Theorem 2. Set

M := ICXQh .

By Propositions 1.2 and 2.1 (applied to X) together with [Sai88b, Formulas (3.2.1.2) and
(3.2.3.1)], we get that

F−n−1(M) = ωX , ωY = ωX/fωX with

V >0ωX = ωX , V >1ωX = fωX (2.2.1)

(see also [Sai91b] for the third isomorphism). Here we use the filtration V on ωX induced from
the V -filtration of Kashiwara [Kas83] and Malgrange [Mal83] indexed by Q for the direct image
of M by the graph embedding by f . This filtration is used to define the nearby and vanishing
cycle functors for the underlying filtered D-modules; see [Sai88b, Formula (5.1.3.3)]. We also
denote the induced filtration on ωY = ωX/fωX by V . Then

GrαV ωY = 0 unless α ∈ (0, 1] . (2.2.2)

Let pψf,1 and pψf, 6=1 be, respectively, the unipotent and non-unipotent monodromy parts of
pψf , and similarly for pϕf,1 and pϕf, 6=1. We have the isomorphisms of mixed Hodge modules

pϕf,1M = Coim
(
N : pψf,1M→ pψf,1M(−1)

)
,

pϕf, 6=1M = pψf, 6=1M . (2.2.3)

The first isomorphism is a special case of [Sai88b, Formula (5.1.4.2)]. Here the morphism can is
surjective and Var is injective sinceM has no non-trivial subobject or quotient object supported
on Y ; see for instance [Sai88b, Proposition 3.1.8]. The second isomorphism is by the definition
of the non-unipotent monodromy part of the vanishing cycle functor pϕf, 6=1.

The weight filtrations W on pψfM and pϕf,1M are given by the monodromy filtration shifted
by n and n+ 1, respectively. We have the N -primitive decomposition :

GrWj
pψfM =

⊕
i>0N

iPNGrWj+2i
pψfM(i) ,

GrWj
pϕf,1M =

⊕
i>0N

iPNGrWj+2i
pϕf,1M(i) , (2.2.4)

where PNGrWj
pψfM and PNGrWj

pϕf,1M are the N -primitive parts defined by

PNGrWn+j
pψfM := KerN j+1 ⊂ GrWn+j

pψfM (j > 0) ,

PNGrWn+1+j
pϕf,1M := KerN j+1 ⊂ GrWn+1+j

pϕf,1M (j > 0) ,

and they are 0 otherwise. Combining the first isomorphism of (2.2.3) with the primitive decom-
positions (2.2.4), we get that

PNGrWj
pψf,1M = PNGrWj

pϕf,1M , j > n+ 1 . (2.2.5)

(Note that the weight filtration W is strictly compatible with any morphism of mixed Hodge
modules, and the functor assigning GrWk is an exact functor of mixed Hodge modules.) Moreover,
by the semisimplicity of pure Hodge modules, we have that

ICYQh is a direct factor of PNGrWn
pψf,1M (⊂ KerN) . (2.2.6)

We then get that ⊕
α∈(0,1)GrαV ωY = F−n

(
pψf, 6=1M

)
= F−n

(
pϕf, 6=1M

)
,

Gr1
V ωY = F−n

(
pψf,1M

) ι′←↩ ωY , (2.2.7)
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where the last inclusion ι′ follows from (2.2.6) together with Proposition 2.1. Indeed,

F−n
(
Wn−1

pψf,1M
)

= 0 ,

as can be seen using the N -primitive decomposition (2.2.4). (Note that N preserves the filtra-
tion F up to shift by 1 since it is defined up to a sign by ∂tt− α on GrαV .)

The inclusion ι′ in (2.2.7) implies the short exact sequence of coherent sheaves

0→ ωY
ι
↪→ ωY → E → 0 (2.2.8)

using (2.2.2) (since the filtration V is decreasing). Here ι is the composition of ι′ in (2.2.7) with
the canonical inclusion ι′′ : Gr1

V ωY ↪→ ωY . By construction, E = Coker ι is a successive extension
of

F−n
(
PNGrWn

pψf,1M
)
/ι′(ωY ) and F−n

(
PNGrWk

pψf,1M
)

(k > n) ,

(using the primitive decomposition) and the direct summands of F−n
(
pψf, 6=1M

)
; that is, there is

a finite filtration of E whose graded quotients are isomorphic to the above coherent sheaves. (It
is enough to consider the N -primitive part since N preserves the filtration F up to shift by 1.) In
particular, we have Supp E ⊂ Sing Y . (Note that Ysm ⊂ Xsm, as can be seen using for instance a
regular parameter system of (Y, y) which can be extended to one for (X, y) by adding f .) These
subspaces have codimension at least 2 by the normality of Y , so that

HjDE 6= 0 for some j > 2− n if E 6= 0 .

On the other hand, ωY is also a Cohen–Macaulay module, so that

HjDωY = 0 (j 6= −n) .

Using the long exact sequence

· · · → Hj−1DωY → HjDE → HjDωY → HjDωY → · · ·

associated with the dual triangle of the short exact sequence (2.2.8), we then conclude that E = 0;
that is, ι is an isomorphism. This implies that ι′ and ι′′ are both isomorphisms (since they are
injective), hence by the definitions of ι′ and ι′′, we get that

F−n
(
pψf,1M

)
/ι′(ωY ) = F−n

(
pψf, 6=1M

)
= 0 . (2.2.9)

So the isomorphism (5) follows. We get the vanishing of (6) from (2.2.9) using the first isomor-
phism of (2.2.3) (since the image of ι′ is contained in the kernel of N ; see (2.2.6)). This finishes
the proof of Theorem 2.

Remark 2.2. The assertion (5) follows from (2.2.1) if GrαV ωX = 0 for α ∈ (0, 1). The last condition
is satisfied if (6) holds. However, it is not easy to determine F−n(pϕf ICXQh) without calculating
F−n(pψf ICXQh) in general. Note that the third isomorphism of (2.2.1) does not immediately
imply the vanishing of F−n(pϕf ICXQh) since the filtration F is not shifted by 1 when we define
the induced filtration on Gr0

V ; see [Sai88b, Formula (5.1.3.3)].

2.3. Proof of Theorem 3. For j ∈ Z, set

Hj
lim := Hj(X0, ψf ICXC) , Hj

van := Hj(X0, ϕf,1ICXC) .

Note that Hj
lim = Hj

lim(Xt)
(

:= Hj(X0, ψfCX)
)

since X \ X0 is smooth. The assertion (6) in
Theorem 2 implies that

FnHj
van = 0 , j ∈ Z . (2.3.1)

490



Rational singularities and Hodge structure

By definition, the weight filtrations W on the nearby cycle Hodge module pψf ICXQh and
on the unipotent monodromy part of the vanishing cycle Hodge module pϕf,1ICXQh are given
by the monodromy filtration shifted by n and n+ 1, respectively; see [Sai88b, Formula (5.1.6.2)].
Let Hj

van,1 and Hj
van,6=1 be, respectively, the unipotent and non-unipotent monodromy parts of

the vanishing cohomology Hj
van, and similarly for Hj

lim,1 and Hj
lim,6=1. The arguments in [Sai88b,

Proposition 4.2.2 and Corollary 4.2.4] then imply that the weight filtration W on Hj
lim and Hj

van,1

is given by the monodromy filtration shifted by j and j + 1, respectively. (Note that there is a
serious gap at this point in certain literature.) So there are isomorphisms

Nk : GrWj+kH
j
lim

∼−→ GrWj−kH
j
lim(−k) (k > 0) ,

Nk : GrWj+1+kH
j
van,1

∼−→ GrWj+1−kH
j
van,1(−k) (k > 0) . (2.3.2)

The assertion for Hj
lim is compatible with the Schmid theorem (showing the coincidence of the

two mixed Hodge structures). As for Hj
van,6=1, we have the canonical isomorphisms

Hj
lim,6=1 = Hj

van,6=1 , j ∈ Z , (2.3.3)

which follow from the canonical isomorphism ψf, 6=1 = ϕf, 6=1.

We have the N -primitive decomposition :

GrWj H
j
lim =

⊕
k>0N

kPNGrWj+2kH
j
lim(k) ,

GrWj H
j
van,1 =

⊕
k>0N

kPNGrWj+2kH
j
van,1(k) ,

where PNGrWj H
j
lim and PNGrWj H

j
van,1 are the N -primitive parts defined by

PNGrWj+kH
j
lim := KerNk+1 ⊂ GrWj+kH

j
lim (k > 0) ,

PNGrWj+1+kH
j
van,1 := KerNk+1 ⊂ GrWj+1+kH

j
van,1 (k > 0) ,

and they are 0 otherwise. From the decomposition of the vanishing cycles Hj
lim,1 as in [Sai88b, For-

mula (5.1.4.2) or Corollary 4.2.4] (together with the purity of the direct factor of
pHj−nRf∗ICXQ supported at the origin), we can deduce the following isomorphisms and in-
clusions:

PNGrWk H
j
lim,1 = PNGrWk H

j
van,1 (k > j + 1) ,

PNGrWj+1H
j
lim,1 ↪→ PNGrWj+1H

j
van,1 . (2.3.4)

Note that the cokernel of the last inclusion corresponds to the direct factor of pHj−nRf∗ICXQ
supported at the origin; see also [Sai88b, Proposition 3.1.8].

We have furthermore the self-duality isomorphisms

DHj
van,1 = H2n−j

van,1 (n+ 1) and DHj
van,6=1 = H2n−j

van,6=1(n) , (2.3.5)

where DH denotes the dual of a mixed Hodge structure H. This follows for instance from [Sai90b,
Formula (2.6.2)] using the self-duality isomorphism

D(ICXQh) = ICXQh(n+1) .
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Combining (2.3.1), (2.3.5), and the Hodge symmetry, we then get

hj,p,qvan,1 = 0 unless

{
p, q ∈ [2, j−1] if j 6 n ,

p, q ∈ [j−n+2, n−1] if j > n ,

hj,p,qvan,6=1 = 0 unless

{
p, q ∈ [1, j−1] if j 6 n ,

p, q ∈ [j−n+1, n−1] if j > n ,
(2.3.6)

with

hj,p,qvan,1 := dimC GrpFGrWp+qH
j
van,1

(
similarly for hj,p,qvan,6=1

)
.

Theorem 3 now follows from (2.3.6) using (2.3.2)–(2.3.4). This finishes the proof of Theorem 3.

2.4. Proof of Proposition 1. Consider the nearby cycle Hodge module

pψf ICXQh .

Its weight filtration is the monodromy filtration shifted by n. Hence its cohomology

Hj
(
X0,

pψf ICXQh

)
(2.4.1)

is a mixed Hodge structure such that the weight filtration is the monodromy filtration shifted
by n+j; see [Sai88b, Proposition 5.3.5]. The cohomology (2.4.1) is defined by using Hj(aX0)∗
with aX0 : X0 → pt a canonical morphism, and this direct image is defined as that of a filtered
D-module with Q-structure; see for instance [Sai17, Section 1.1]. (Note that X0 is a projective
variety and is globally embeddable into a smooth variety PN .) We have the strictness of the
Hodge filtration F of

(aX0)∗
pψf ICXQh .

We have a similar assertion for the vanishing cycle Hodge module with unipotent monodromy
pϕf,1ICXQh. Moreover, we can prove the direct sum decomposition in [Sai88b, Formula (5.1.4.2)]
using [Sai88b, Corollary 4.2.4].

We can extend [Sai88b, Proposition 3.3.17] (and [Sai88b, Proposition 5.3.4]) by [Sai88b,
Remark 2.3.9] (with U ′i = V ′i = ∆ for any i), extending [Sai91a, Section 3] to the filtered case.
Here we have to use the canonicity of (MU↪→V×C, F ) explained in Section 2.1. We then get the
strictness of the Hodge filtration F on the underlying complexes of filtered D-modules of

f∗ ICXQh ,

shrinking ∆ if necessary. (Here the direct image is defined as that of a filtered D-module with Q-
structure using [Sai88b, Remark 2.3.9], as explained above.) Moreover, the mixed Hodge structure
(2.4.1) is identified with

pψtHjf∗ICXQh . (2.4.2)

This means that we have the “limit mixed Hodge structure” (2.4.1) and (2.4.2) of the filtered
D-modules with Q-structure

(Hjf∗ICXQh)|∆∗ , (2.4.3)

such that the weight filtration is the monodromy filtration shifted by n+j. Here it is totally
unclear whether these are really variations of Hodge structure on ∆∗ (although polarized mixed
Hodge structures in the strong sense correspond to nilpotent orbits ; see for instance [CKS86,
Corollary 3.13]). Nevertheless, they give filtered free sheaves on ∆ such that the graded quotients
are free, by taking their intersections with the V -filtration V >0 instead of the restriction to ∆∗;
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see [Sai88b, Formula (3.2.3.1)] and also the proof of [Sai88b, Lemma 3.1.3]. Here, freeness is
equivalent to torsion-freeness since dim ∆ = 1. (We may assume that the local monodromy is
unipotent by taking an appropriate base change.) This freeness implies that the dimensions of
the graded quotients of the Hodge filtration

dim GrpF IHp+q(Xt) (t ∈ ∆∗) (2.4.4)

do not change by passing to the “limit mixed Hodge structure” (2.4.1) and (2.4.2). This im-
plies (4).

By the above argument, the stalks at t ∈ ∆∗ of the filtered D-module with Q-structure
in (2.4.3) are identified with

IHn+j(Xt) , (2.4.5)

shrinking ∆ if necessary. So we get the assertion on the strictness of the Hodge filtration for
t ∈ ∆∗. (The assertion for t = 0 follows from [Sai88b, Theorem 5.3.1].)

Using the monodromical property of the weight filtration, the hard Lefschetz theorem, and
the self-duality of the nearby cycles, we now get the symmetries of the Hodge numbers in (2.4.4)
with respect to the two involutions ι1 and ι2 of Z×Z defined by

ι1(p, q) = (q, p) , ι2(p, q) = (n−p, n−q) . (2.4.6)

(For ι1, we can also employ [CKS86, Corollary 3.13] together with [Sai88b, Proposition 4.2.2].
We need the self-duality for ι2.) These symmetries for the intersection cohomology with t = 0
follow from [Sai88b, Theorem 5.3.1] using the projectivity of X0. So Proposition 1 follows.

Remark 2.4. Proposition 1 does not hold if the assumption of the projectivity of X0 is replaced by
the Moishezon assumption. Indeed, there are examples constructed by Kodaira [Kod68] (which
is explained in [Cle77]) and Oda [Oda78, Theorem 14.3]. Here the total space X is smooth, the
general fibers Xt are Hopf or Inoue surfaces, and the central fiber X0 is obtained by identifying
two disjoint smooth rational curves on a smooth rational surface S. The latter surface is obtained
by successive one-point blow-ups of P1×P1 and one blow-down in the Inoue surface case, while
the blow-up is once in the Hopf surface case (since S is a blow-up of P2). The surface contains
four or five non-singular rational curves Ci (i ∈ [1, 4] or [1, 5]) intersecting transversally, and the
complement of their union is a torus. Their intersection matrix is given by

0 1 0 1
1 −1 1 0
0 1 0 1
1 0 1 1

 or


−2 1 0 0 1
1 −1 1 0 0
0 1 −1 1 0
0 0 1 1 1
1 0 0 1 0

 .

Here C2 and C4 are identified in order to get X0. We can verify that there is no linear combination
D =

∑
i aiCi (ai ∈ Z) such that (D,Ci) > 0 for any i, and (D,C2) = (D,C4). So X0 cannot

be projective, as can be seen by considering the pull-back to S of a possible ample line bundle
on X0. Note that this non-projectivity also follows from Proposition 1 since the Hodge symmetry
fails for Hopf or Inoue surfaces.

For the calculation of Hj(X0) and the limit mixed Hodge structure Hj
lim, let ρ : S → X0 be

the canonical morphism. Put C := SingX0 (∼= P1). We have a short exact sequence

0→ QX0 → ρ∗QS → QC → 0 , (2.4.7)
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and

GrWk
pψf (QX [3]) =


QC [1] , k = 1 ,

ρ∗QS [2] , k = 2 ,

QC(−1)[1] , k = 3 ,

(2.4.8)

where these vanish otherwise. In the Hopf surface case, we then get that

Hj(X0) =


Q (j = 0, 1) ,

Q(−1) (j = 2) ,

Q(−2) (j = 4) ,

Hj
lim =


Q (j = 0, 1) ,

0 (j = 2) ,

Q(−2) (j = 3, 4) ,

(2.4.9)

with H1+2i
van = Q(−i) (i = 0, 1), and these vanish otherwise. In the Inoue surface case, the

dimensions of the terms in (2.4.9) are increased by 1 for j = 2. This calculation is compatible
with the assertion that the general fibers Xt (t 6= 0) are Hopf or Inoue surfaces, for which Hodge
symmetry does not hold (indeed, h1,0(Xt) = 0 and h0,1(Xt) = 1). Note that the monodromy
is unipotent since X is smooth and X0 is a reduced divisor with normal crossings. So the local
invariant cycle theorem does not hold for H3

lim.

2.5. Proof of Theorem 1. Let π : X → X be a desingularization such that X0 := π−1X0 is
a divisor with normal crossings. Here we may assume that π is projective. This implies that
X0 is projective since X0 is. Let πt : Xt → Xt be the restriction of π over t ∈ ∆. This is a
desingularization for t ∈ ∆∗ (shrinking ∆ if necessary). We then put X̃t := Xt (t ∈ ∆∗).

By Proposition 1.2, we may assume that X has only rational singularities, shrinking ∆ if
necessary. Then the fibers Xt (t ∈ ∆) also have only rational singularities. This can be seen by
taking the direct image of the short exact sequence

0→ OX
f̃−c−→ OX → OXt → 0 .

Here f̃ := f ◦π, and c denotes the value of the coordinate of ∆ ⊂ C at t.

We apply Proposition 1 to f and also to f̃ (where ICXQh = Qh,X [n+1]). This implies the

Hodge symmetry of the terms in (1) for any t ∈ ∆
(
since it is trivial for hp,q

(
X̃0

))
. The proof

of (1) is then reduced to the case p = n and follows from (4), Theorem 2, and Proposition 2.1.
The equalities in (2) then follow from (1) together with (1.1.1) since rational singularities are
Du Bois, so that

Gr0
FH

j(Xt) = Hj(Xt,OXt) (t ∈ ∆) ;

see [Kov99, Corollary 2.6], [Sai00, Theorem 5.4]. This finishes the proof of Theorem 1.

Remarks 2.5. (i) It is not quite clear whether the assumption of the projectivity of X0 in Theo-
rem 1 can be replaced by the Moishezon assumption. One problem is that it is quite non-trivial
whether we have a desingularization of the total space π : X → X such that the central fiber
X0 := π−1(X0) is projective. This is false without the hypothesis on rational singularities; see
part (ii) just below. The situation is, however, rather unclear if we assume that X0 is normal ;
in particular, it has no “self-intersection” as in Remark 2.4 (here the proper transform of X0

by the blow-up of the total space X along the singular locus of X0 is projective, and the non-
connectedness of its intersection with the exceptional divisor is the cause of problem).

(ii) If we do not assume that X0 has only rational singularities, there are examples such
that the total transform X0 := π−1(X0) is not projective for any embedded desingularization
π : (X ,X0) → (X,X0). Indeed, it is enough to take an example such that the total space X is
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smooth and the local invariant cycle theorem does not hold, as in [Cle77] (see also Remark 2.4).
Here QX is a direct factor of Rπ∗QX through the self-duality of QX [n] and QX [n]. It is known
that the local invariant cycle theorem is equivalent to the decomposition theorem if the total
space is smooth and the base space is a non-compact connected smooth curve; see for instance
[KLS21, Theorem A.4]. Also note that the projectivity of X0 and the smoothness of X imply
the local invariant cycle theorem.

(iii) The constancy of dimHj(Xt,OXt) and dim Gr0
FH

j(Xt) (t ∈ ∆) holds in the case of two
examples in Remark 2.4 (although it fails for dim Gr2

FH
3(Xt)). It may be possible that this con-

stancy is true under the hypothesis that the special fiber X0 is Moishezon and Du Bois (forget-
ting about the other frontier Hodge numbers, that is, dim GrpFH

p+q(Xt) with q(n−p)(n−q) = 0,
p 6= 0), as was asked by a referee.

2.6. The case X smooth. Under the strong assumption that X is smooth, we can deduce
certain relations with the cohomology of the singular fiber. This is closely related to [KLS21,
Theorems 9.3 and 9.11]; see Remark 2.6.

Theorem 2.6. Let f : X → ∆ be a surjective projective morphism of a complex manifold onto
a disk such that general fibers Xt (t ∈ ∆∗) are smooth and connected and the singular fiber
Y := X0 is reduced. Let ρ : Ỹ → Y be a desingularization. In the notation of Section 2.3, we
have the following:

(i) If Y has only rational singularities, then

GrpFH
j(Y ) = GrpFH

j
lim = GrpFH

j
lim,1 = GrpFGrWj H

j
lim,1

= GrpFH
j
(
Ỹ
)

(j ∈ Z , p = 0, n) , (2.6.1)

Gr1
FH

j(Y ) = Gr1
FH

j
lim,1 (j ∈ Z) . (2.6.2)

(ii) If Y has only Du Bois singularities, then

Gr0
FH

j(Y ) = Gr0
FH

j
lim,1 = Gr0

FH
j
lim (j ∈ Z) . (2.6.3)

Proof. Since X is smooth, we have a short exact sequence of mixed Hodge modules

0→ Qh,Y [n]→ pψf,1(Qh,X [n+1])→ pϕf,1(Qh,X [n+1])→ 0 , (2.6.4)

inducing the vanishing cycle sequence (see [Del73])

→ Hj−1
van,1 → Hj(Y )→ Hj

lim,1 → Hj
van,1 → . (2.6.5)

We first show the assertion (i) assuming that Y has only rational singularities. The first
isomorphisms of (2.6.1) and (2.6.2), respectively, follow from (2.3.6) and (2.6.5). The other
isomorphisms of (2.6.1) follow from Theorems 1 and 3. This finishes the proof of the assertion (i).

For the assertion (ii), assume that Y has only Du Bois singularities. Then

F−n
(
pϕf, 6=1(Qh,X [n+1])

)
= 0 ,

by [Sai09, Theorem 0.5] or [MSS20, Section 4.3]. This implies (2.3.6) 6=1, that is, (2.3.6) holds for
the non-unipotent monodromy part in the Du Bois case. As to the unipotent monodromy part,
it follows from [Sai88b, Formulas (3.2.3.1) and (5.1.3.3)] that

F−n−1

(
pϕf,1(Qh,X [n+1])

)
= 0 .
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Using the isomorphisms in (2.3.2) and the self-duality (2.3.5), this implies that the following
holds unconditionally :

hj,p,qvan,1 = 0 unless

{
p, q ∈ [1, j] if j 6 n ,

p, q ∈ [j−n+1, n] if j > n .
(2.6.6)

From (2.3.3), (2.3.6) 6=1, (2.6.6), we can now deduce the isomorphisms in (2.6.3). This finishes
the proof of Theorem 2.6.

Remark 2.6. Theorem 2.6(i) improves [KLS21, Theorem 9.11], and Theorem 2.6(i) proves
[KLS21, Theorem 9.3] without assuming X extendable to an algebraic variety but assuming X
smooth.

2.7. An example of Du Bois singularity. Let X ⊂ Pn+1 × ∆ (n > 2) be a flat family of
projective hypersurfaces of degree n+ 2 over ∆ defined by the equation

n+1∑
i=1

xn+2
i + x1 · · ·xn+2 = xn+2

n+2t .

Here the total space is smooth, shrinking ∆ if necessary. (In general, a subvariety of Pn+1 ×∆
defined by f + gt = 0 for two homogeneous polynomials f and g of the same degree is smooth
(shrinking ∆ if necessary) provided that {f = 0} ⊂ Pn+1 has only isolated singularities which
do not intersect {g = 0}.)

Restricting to the affine space {xn+2 6= 0} = Cn+1, the singular fiber X0|{xn+2 6=0} is defined
by

h :=
n+1∑
i=1

yn+2
i + y1 · · · yn+1 = 0 ,

where yi := xi/xn+2. This has an isolated Du Bois singularity at 0 since the minimal spectral
number is 1; see [Sai88a], [Sai09, Theorem 0.5] (that is, the first equivalence in Proposition 1.4(ii)).
Note that X0 is a rational variety. In the case n = 2, this is closely related to [Kul77, Theorem II]
(which is partially generalized to [KLSV18, Theorem 1.6]).

We have the following for n > 2:

Nn 6= 0 on Hn
lim,1 , (2.7.1)

that is, the order of nilpotence is n+1, where Hn
lim,1 is the unipotent monodromy part of the limit

mixed Hodge structure. This gives examples such that Corollary 1 does not hold if we replace
rational with Du Bois.

The assertion (2.7.1) is equivalent to that

Nn−1 6= 0 on Hn
van,1 (2.7.2)

since Nn = Var ◦Nn−1 ◦ can on Hn
lim,1, where Hn

van,1 is the unipotent monodromy part of the
vanishing cohomology. This is analogous to [Mal73] for the non-unipotent monodromy part; see
[Ste77b, Example 3.16] for the case n = 2, and [Sta17], [Sai20, Corollary 3] for n > 2. (This
seems to be a special case of a theory on Milnor monodromies of Newton non-degenerate func-
tions, although certain arguments do not seem necessarily easy to follow in some papers quoted
in [Sta17]. Also note that one cannot determine the order of nilpotence from the combinatorial
data of an embedded resolution in general without assuming Newton non-degeneracy; see for
instance [DS14].)
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2.8. Partial converse of Theorem 1. If X \ Y is smooth, Y has at most Du Bois singular-
ities, and the non-rational locus of Y is discrete (for instance, if Y has only isolated Du Bois
singularities), then we have a partial converse of Theorem 1 in the algebraic case as follows.

Proposition 2.8. In the notation of Theorem 1, assume that X can be extended to a complex
projective variety, X\Y is smooth, Y has at most Du Bois singularities which are rational outside
a finite number of points, and (1) in Theorem 1 holds. Then Y has at most rational singularities
everywhere.

Proof. The hypotheses imply that X has only rational singularities [Sch07, Theorem 5.1]. In the
notation of Section 2.2, we then get

F−n−1(ICXQh) = ωX , F−n(ICYQh) = ρ∗ωỸ ⊂ ωY = ωX/fωX , (2.8.1)

with ρ : Ỹ → Y a desingularization. (Note that a locally principal divisor on a Cohen–Macaulay
variety is Cohen–Macaulay; see for instance [Har77, Chapter II, Theorem 8.21A].) By the argu-
ments in Section 2.2, we have the isomorphisms

GrnFH
j+n
(
Ỹ
)

= Hj
(
Ỹ , ω

Ỹ

)
,

GrnFH
j+n
lim (Xt) =

⊕
α∈(0,1]H

j
(
Y,GrαV ωY

)
(j ∈ Z) , (2.8.2)

where the filtration V on ωY = ωX/fωX (= V >0ωX/V
>1ωX) is as is explained in Section 2.2.

So the equalities in (1) for p = n imply that

E ′ := ωY /ρ∗ωỸ = 0 , (2.8.3)

using the Grauert–Riemenschneider theorem (which implies that Rρ∗ωỸ = ρ∗ωỸ ) together with
the Euler characteristic, where we can deduce E ′ = 0 from χ(Y, E ′) = 0 since the support of the
OY -module E ′ is discrete. This finishes the proof of Proposition 2.8.

Remarks 2.8. (i) If we do not assume that the non-rational locus is discrete, we cannot conclude
that E ′ = 0. For instance, if E ′ ∼= i∗OP1(−1) with i : P1 ↪→ Y a closed immersion, we have

Hj(Y, E ′) = 0 (j ∈ Z) .

(ii) There may be a counterexample to the converse of Theorem 1 if we do not assume Y
Du Bois. In the case that Y is Du Bois, this seems to be a quite non-trivial question.
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