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Abstract—Operations and Maintenance (O&M) constitute a
major contributor to offshore wind’s cost of energy. Due to
the harsh and remote environment in which offshore turbines
operate, there has been a growing interest in opportunistic main-
tenance scheduling for offshore wind farms, wherein grouping
maintenance tasks is incentivized at times of opportunity. Our
survey of the literature, however, reveals that there is no unified
consensus on what constitutes an “opportunity” for offshore
maintenance. We therefore propose an opportunistic maintenance
scheduling approach which defines an opportunity as either
crew-dispatch-based (initiated by a maintenance crew already
dispatched to a neighboring turbine), production-based (initiated
by projected low production levels), or access-based (initiated by
a provisionally open window of turbine access). We formulate
the problem as a multi-staged rolling-horizon mixed integer
linear program, and propose an iterative solution algorithm to
identify the optimal hourly maintenance schedule, which is found
to be drastically different, yet substantially better, than those
obtained using offshore-agnostic strategies. Extensive numerical
experiments on actual wind, wave, and power data demonstrate
substantial margins of improvement achieved by our proposed
approach, across a wide variety of key O&M metrics.

Index Terms—Maintenance Optimization, Mixed Integer Pro-
gramming, Offshore Wind Energy, Operations & Maintenance.

I. INTRODUCTION

THE global capacity of offshore wind energy is projected
to increase by at least 15 times by 2040, ranging between

350 GW and 560 GW [1]. Despite the promising outlook,
the offshore wind industry still faces substantial challenges
pertaining to the high expenditures of operating and maintain-
ing offshore wind farms. Unlike their onshore counterparts,
offshore turbines operate at relatively unexplored territories,
higher altitudes, less accessible locations, and under harsher
weather and marine conditions, ultimately inflating the cost
of offshore maintenance operations [2]. With O&M currently
contributing about 30% of offshore wind’s cost of energy [3],
a challenge of central interest to the offshore wind industry is
how to establish a maintenance scheduling approach which is
tailored to offshore wind farm operations and their offshore-
specific operational and environmental conditions?

While there exists a large body of literature on wind farm
maintenance scheduling optimization [4, 5], offshore mainte-
nance in particular entails a set of unique offshore-specific
challenges, including: (i) High crew dispatch costs: Offshore
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turbines are often installed at remote locations where wind
conditions are most favorable, making the cost of assembling
and transporting a maintenance crew considerably high; (ii)
High production losses: With the increasing scale and capacity
of offshore turbines, the cost of downtime is becoming too
substantial to tolerate due to the associated production losses
of a failing ultra-scale offshore turbine; and (iii) Limited acces-
sibility: Harsh weather and marine conditions can frequently
prohibit turbine access for long periods of time, which can
range from a few hours up to several days.

Due to the aforementioned offshore-specific challenges,
there has been a growing interest in opportunistic maintenance
scheduling, wherein grouping of maintenance tasks is incen-
tivized at times of opportunity. We note, however, that the
exact definition of what constitutes a maintenance opportunity
is subjective among researchers [2]. Perhaps the most prevalent
definition of a maintenance opportunity is the idea of grouping
maintenance tasks for turbines that are of spatial proximity to
each other, thereby avoiding additional costs incurred by as-
sembling and dispatching a crew at two separate maintenance
occasions. With state-of-the-art estimates suggesting that crew
dispatch/transport costs contribute about 50-73% of offshore
maintenance expenses [6, 7], efforts devoted towards offsetting
these costs are expected to substantially drive down the total
O&M expenditures. We denote the set of approaches which
adopt this view of opportunistic maintenance as dispatch-
based opportunistic strategies [8, 9, 10, 11, 12, 13].

A less formally adopted, albeit rational approach for oppor-
tunistic maintenance is to leverage the opportunities initiated
by anticipated low production profiles in an attempt to mini-
mize the production losses due to maintenance shutdowns. In
other words, if scheduling a maintenance is imminent, then
an operator may prefer to schedule the maintenance at times
when power production is projected to be low, thus avoiding
a “lost opportunity cost” represented in the forfeited market
economic value. This is extremely relevant in light of the
emerging ultra-scale turbines (≥ 12 MW) which will soon be
deployed at different regions across the world [14]. Different
from dispatch-based strategies, we denote this set of efforts as
production-based opportunistic strategies [15, 16, 17, 18].

Lastly, few studies consider opportunities created by provi-
sionally open windows of turbine access initiated by tolerable
weather/marine circumstances. Our analysis of actual offshore
data suggests that an offshore turbine can be inaccessible
for 53% of its operational time, with up to 6 days of
consecutive constrained access. Understandably, inaccurate
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or overlooked access information in maintenance scheduling
can lead to aborted/delayed maintenance activities, cascading
failures, and prolonged downtimes. In contrast to the first two
groups which define opportunistic maintenance as dispatch- or
production-based, this set of methods is referred to hereinafter
as accessibility-based opportunistic strategies [19, 20, 21].

In light of the above-referenced works, we summarize
our contributions as follows: we propose a holistic approach
for opportunistic maintenance scheduling in offshore wind
farms—one which embodies all the aforementioned offshore-
specific considerations. In pursuit of that goal, we propose
a mathematical formulation based on a mixed integer linear
program (MILP) with a two-staged rolling time horizon, which
is inspired by the general maintenance procedure followed in
the offshore wind industry. We further propose an iterative
solution algorithm which yields the optimal day-ahead hourly
maintenance schedule, by harnessing the joint opportunities
created by crew dispatch, production, and accessibility.

A major takeaway of this article is to shed light on
the need to develop offshore-tailored O&M solutions which
fundamentally depart from their onshore counterparts. Our
numerical experiments, using actual wind, wave, and power
data, provide valuable insights into the economic impacts of
each of the three opportunistic considerations. Those exper-
iments further assert that holistically accounting for those
offshore-specific considerations in tandem, yields drastically
different (yet better) schedules relative to those obtained by
strategies that may be well-suited for onshore wind farm
maintenance. As such, we hereinafter denote our approach as
the holistic opportunity-based strategy (HOST). The HOST
method is tractable (ensuring easy adoption by practitioners),
effective (as shown by large O&M cost reductions), scalable
(solved within seconds), and versatile (easily extensible to
accommodate different O&M conditions/parameters).

Before we conclude this section, we would like to draw a
complete picture of where our proposed approach fits within
the current industrial practice. It is important to note, however,
that the industrial practice in offshore maintenance scheduling
can largely vary across different operators and O&M service
providers, and is often based on in-house experience. Nev-
ertheless, a broadly followed procedure is to adopt a multi-
staged structure with a longer-term planning stage wherein
work orders are identified and prioritized, which in turn in-
forms a shorter-term operational stage, wherein the day-ahead
maintenance schedule is decided at the end of the working
day, following a debrief meeting between the technicians
and operations control team, and in light of updated weather
forecasts and O&M information. The day-ahead maintenance
schedule includes a detailed timetable of the high-priority
maintenance tasks [22, 23]. The HOST method proposed
herein faithfully follows the above-mentioned structure, by
providing an hourly schedule for the day-ahead operational
stage, together with a daily schedule for longer-term tasks.
A recent report by New York State Energy Research and
Development Authority (NYSERDA) surveying the state-of-
the-art in the offshore wind industry explicitly states that O&M
costs are significantly more expensive in offshore environ-
ments mainly due to accessibility and logistics [24]. This,

in fact, is the driving motivation of HOST, with its ultimate
objective of reducing offshore O&M expenditures.

The remainder of the paper is structured as follows. In
Section II, we begin by outlining the main assumptions of
our problem setting, then proceed to present the mathematical
formulation and solution procedure. Section III describes the
datasets used in our study, the experimental setups, and main-
tenance benchmarks. Qualitative and quantitative analysis on
two case studies is then conducted in Section IV to highlight
the effectiveness of our proposed approach. Finally, Section V
concludes the paper and highlights future research directions.

II. MATHEMATICAL MODEL

We begin this section by listing the key assumptions of
HOST, followed by its mathematical formulation. All vari-
ables, parameters and sets have been declared in Table IV.
We then propose an iterative solution algorithm to efficiently
find a cost-minimal, offshore-tailored maintenance schedule.

A. Model assumptions

(A1) An offshore wind farm consists of a set of I wind
turbines (WTs), each requiring a maintenance of τi hours,
which has to be performed within a period of J days,
where i ∈ I = {1, ..., I} is the turbine index. The type
of maintenance tasks considered in this work are primarily
minor to medium repairs which typically require less than a
day to complete [25]. Examples of those tasks include manual
resets, minor repairs to the pitch and hydraulic systems (e.g.,
oil leaks, pump issues), electric, and electronic components.
Those tasks constitute the majority of maintenance actions in a
wind farm (∼75% as reported in [7]). While not considered in
this paper, our model is potentially extensible to accommodate
multi-type maintenance tasks (e.g., minor to major repairs)
with careful adaptations. (e.g., extending the planning horizon
J , redefining access windows and maintenance crew/vessel
parameters, adjusting repair times, and failure rates).

(A2) Each turbine has a residual life estimate (RLE) of
λi days, known to the operator a priori. In practice, λi can
be informed by condition monitoring systems, often combined
with expert judgement. A maintenance action is assumed to be
preventive (PM) if performed before the RLE, and corrective
(CM) otherwise. Furthermore, in addition to “scheduled” tasks,
unexpected failures may occur to a subset of WTs, triggering
additional CM actions. Understandably, we associate a higher
maintenance cost with CM actions, since a failed component
often requires a full repair/replacement, notwithstanding po-
tential cascading failures for other components in its proximity.

(A3) The optimization horizon is divided into two sets: the
short-term horizon (STH) and the long-term horizon (LTH).
The STH has an hourly resolution and spans a duration of one
day (i.e., day-ahead planning). The LTH has a daily resolution,
starting from the day after the STH, up to J days ahead. The
indices t and d denote the t-th hour and d-th day, while the
sets T and D denote the sets of STH hours and LTH days,
respectively. A superscript L denotes a variable/parameter
associated with the LTH, while the same variable/parameter,
without the superscript, pertains to the STH.
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(A4) For both the STH and LTH, point forecasts of wind
speed (Vt,i,VLd,i) and wave height (Ht,i,HLd,i) are available
to the operator a priori. In practice, those forecasts can
be obtained via meso-scale numerical weather prediction
(NWP) models [26] (especially for longer horizons), sta-
tistical/machine learning models [27, 28] for shorter time
horizons, or a combination of both. Those forecasts will be
primarily used to predict the power profiles and assess turbine
access—more details in Section III.

(A5) Turbines are accessed by crew transport vessels
(CTVs) which are subject to accessibility constraints defined
by wind speed and wave height safety thresholds, denoted
by ν (m/s) and η (m), respectively. A turbine is accessible
in the STH when the weather/marine conditions are within
the safety limits for τi consecutive hourly intervals to ensure
an uninterrupted completion of the maintenance task. For the
LTH, the turbine is deemed accessible if there is at least one
opportunity to schedule a maintenance action during the d-th
day. Furthermore, turbines are only accessible during daylight,
via daily vessel rentals from a private O&M contractor.

B. Mathematical formulation

Objective function: The objective, expressed in (1), is to
maximize the total profit over the optimization horizon, which
is the sum of the short-term profit s and the long-term profits
{ld}d∈D. The set of decision variables constitute a collection
of PM and CM binary variables indicating whether a particular
maintenance type is scheduled for a turbine site at a particular
time. For the STH, these are denoted by {mt,i, nt,i} ∀i, t and
for the LTH, they are denoted by {mL

d,i, n
L
d,i} ∀i, d.

max

{
s+

∑
d∈D

ld

}
(1)

The short-term profit, s, defined in (2), is the difference
between the revenue from the power produced at the t-th
hour and i-th turbine, pt,i (MWh)—sold at the hourly market
price Πt ($/MWh)—and the maintenance costs, which are
dictated by the PM and CM cost coefficients, K ($/task)
and Φ ($/task), respectively. Crew-related costs are calculated
based on the crew hourly cost rate Ψ ($/h), the daily vessel
rental cost Ω ($/day), and the crew overtime cost rate Q ($/h).
The integer variable q ∈ Z+ denotes the overtime hours
worked in the STH, while the binary variables xt,i and v
denote whether a turbine is under maintenance, and whether
a vessel is rented during the STH, respectively. Deriving pt,i,
xt,i, v, q using the decision variables will follow in the sequel.

s =
∑

i∈I,t∈T
[Πt · pt,i − K ·mt,i − Φ · nt,i −Ψ · xt,i]−Ω · v − Q · q

(2)

The long-term daily profit, in (3), is similarly calculated,
with the exception that there is no overtime since hourly
tracking is not possible in the LTH. The daily electricity
selling price Πd is calculated by averaging hourly prices at
day d. The crew work hours are calculated as the product of
the maintenance time τi by the number of maintenance tasks

scheduled at that day, mL
d,i + nLd,i. The variable vLd ∈ {0, 1}

denotes whether a vessel is rented at the d-th day of the LTH.

(3)
ld =

∑
i∈I

[
Πd · pLd,i − K ·mL

d,i − Φ · nLd,i

−Ψ · τi(mL
d,i + nLd,i)

]
− Ω · vLd ∀d ∈ D

Maintenance constraints: The inequality in (4) forces a
maintenance task, either PM or CM, to be scheduled either in
the STH or the LTH as long as the maintenance requirement
parameter, denoted by θi ∈ {0, 1}, is set to 1. This parameter
is an input to the optimization, denoting whether maintenance
is required for the i-th turbine.∑

t∈T
(mt,i + nt,i) +

∑
d∈D

(mL
d,i + nLd,i) ≥ θi ∀i ∈ I (4)

The maintenance crew, once dispatched, will be occupied
for τi consecutive hourly intervals. This is ensured by the
constraint in (5). An upper bound on the number of available
maintenance crews is set to B (crews), as shown in (6).

t+τi−1∑
t̃=t

xt̃,i ≥ τi · (mt,i + nt,i) ∀t ∈ T , i ∈ I (5)

∑
i∈I

xt,i ≤ B ∀t ∈ T (6)

If not preventively maintained on or before their RLEs,
turbines fail and will require a corrective maintenance. This is
expressed in (7) and (9) for STH, and (8) and (10) for LTH.

mt,i ≤
24 · λi
t

∀t ∈ T , i ∈ I (7)

mL
d,i ≤

λi
d
∀d ∈ D, i ∈ I (8)

nt,i ≤
t

24 · λi + β
∀t ∈ T , i ∈ I (9)

nLd,i ≤
dJ − λi

dJ − d+ β
∀d ∈ D, i ∈ I, (10)

where dJ ∈ D is the last element of the set D, while β is a
small value to ensure numerical stability when d = dJ and to
enforce a value of 1 for nt,i and nLd,i only when t > 24 · λi
and d > λi, respectively.

Turbine availability: A failed turbine (i.e., one which has
not been maintained at or before its RLE) remains unavailable
until a CM action is performed. In case of the STH, this can
be expressed by the following inequality:

(11)yt,i ≤
(

24 · λi
t

)M
+

24 ·
∑
t∈T nt,i −

∑
t∈T (t · nt,i)

tF − t+ β

+ 1− θi, ∀t ∈ T , i ∈ I,

where tF is the last element of the set T . The first term of
the right-hand side (RHS) is raised to an arbitrary big value,
M, so that it rapidly drops to 0 if t > 24 · λi, i.e. when the
time index of the STH exceeds the RLE, λi, which is given in
days. If the turbine does not require maintenance, then we have
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θi = 0, and the last term of the RHS, namely 1−θi will be 1,
signifying an operational turbine. In case the RLE is reached,
and the turbine still requires maintenance (θi = 1), then the
turbine fails, and can only return to its former operational
status once a CM action is performed. This is enforced by
the middle term in the RHS; if no CM is scheduled, then
nt,i = 0 and the term drops to 0. In contrast, if nt,i = 1, the
term is greater than 1 after the time of maintenance. A similar
constraint for the LTH is shown in (12).

(12)yLd,i ≤
(
λi
d

)M
+
dJ −

∑
d∈D(d · nLd,i)

dJ − d+ β
∀d ∈ D, i ∈ I

As expressed in (13), a turbine under maintenance remains
unavailable until the task is completed.

yt,i ≤ 1− xt,i ∀t ∈ T , i ∈ I (13)

Vessel rental: Vessels are rented per day if a maintenance
task is scheduled during that day. This is enforced via (14)-
(15), for the STH and LTH, respectively.

v ≥ mt,i + nt,i ∀t ∈ T , i ∈ I (14)

vLd ≥ mL
d,i + nLd,i ∀d ∈ D, i ∈ I (15)

Overtime: The total work hours, as shown in (16), cannot
exceed W (h/crew). Otherwise, overtime hours, tracked by q,
are incurred and compensated at a higher rate determined by
Q ($/h). For the LTH, the total number of hours worked in a
day by each crew is limited to W hours, as shown in (17). As
mentioned earlier, no overtime is allowed in the LTH.∑

t∈T ,i∈I
xt,i ≤ B ·W + q (16)

∑
i∈I

(mL
d,i + nLd,i) · τi ≤ B ·W ∀d ∈ D (17)

Power level: The hourly power output, pt,i, is computed as
a fraction ft,i ∈ [0, 1] of the turbine’s rated capacity R (MW),
multiplied by the turbine’s availability yt,i, as shown in (18).
When the turbine is in a failed state, or under maintenance,
the power output of the wind turbine is zero as the availability
variable, yt,i, is also zero, therefore, the operator forfeits the
associated revenue. The fraction ft,i is called the normalized
power level and is a function of the hub-height hourly wind
speed at the turbine’s location, Vt,i (m/s). The exact procedure
to calculate ft,i given wind forecasts is deferred to Section III.

pt,i = R · ft,i · yt,i ∀t ∈ T , i ∈ I (18)

Likewise, the daily power output, pLd,i, is defined in (19),
wherein fLd,i ∈ [0, 1] is a function of the daily average
wind speed at the turbine’s location, VLd,i (m/s). The term
mL
d,i · τi/24, accounts for the production loss, in case a PM is

scheduled at the d-th day for the i-th turbine in the LTH.

pLd,i = 24 ·R · fLd,i ·
(
yLd,i −mL

d,i ·
τi
24

)
∀d ∈ D, i ∈ I (19)

Curtailment: Curtailing production is accounted for by
introducing the parameter Ct ∈ [0, 1] in (20) which defines
the fraction of the farm-level power output that can be sold to
the grid at each hourly interval t.∑

i∈I
pt,i ≤

∑
i∈I
·ft,i · R · Ct ∀t ∈ T (20)

Accessibility: The parameters αt,i ∈ {0, 1} and αLd,i ∈
{0, 1} define the accessibility at a specific location and time.
Access calculations, given wind speed and wave height fore-
casts, are made offline prior to the optimization (More details
in Section III). In (21) and (22), a PM or a CM action is only
scheduled in the STH if αt,i = 1 and in the LTH if αLd,i = 1.

mt,i + nt,i ≤ αt,i ∀t ∈ T , i ∈ I (21)

mL
d,i + nLd,i ≤ αLd,i ∀d ∈ D, i ∈ I (22)

Next, given the model formulation, we describe a rolling
horizon solution procedure to efficiently find and update the
optimal hourly maintenance schedule.

C. The rolling horizon adaptation and solution algorithm

Solving the model in Section II-B yields an hourly schedule
for the 1-day ahead STH and a daily schedule for the J-
days ahead LTH. In practice, we are interested in continuously
updating the schedule as time progresses and more information
is revealed. Towards that, we propose a rolling-horizon adap-
tation of our model, along with an iterative solution procedure,
which is presented in Algorithm 1. Each iteration of this
procedure entails solving one instance of the MILP model,
wherein a subset of the model indices and parameters are
updated at the start of each iteration based on the solution
of the previous iteration and the newly revealed information.

Specifically, before each iteration, we shift the starting
times of the STH and LTH by 24 hours and 1 day, re-
spectively. Weather-dependent parameters (e.g. accessibility,
power production) are updated at the start of each run in light
of the newly revealed forecast information. Two consecutive
iterations are coupled by updating the values of {θi}i∈I :
if the i-th turbine has been maintained in the STH of the
previous iteration, we set θi = 0, indicating that the turbine no
longer requires maintenance. At the end, the individual STH
solutions from all iterations are “concatenated” to produce the
final hourly schedule for the whole optimization horizon. This
constitutes our final hourly schedule.

III. NUMERICAL EXPERIMENTS

This section discusses the data used in our case studies and
the setup of our numerical experiments.

A. Data description and processing

Wind speed and wave height data are obtained from the
E06 Hudson South floating LiDAR buoy recently deployed
by NYSERDA in the New York/New Jersey Bight [24]. The
buoy has been deployed in proximity to at least three ongoing
offshore projects which, cumulatively, will add about 2.8 GW
to the U.S. offshore wind capacity by 2024. The data used in
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Algorithm 1 Iterative solution procedure for HOST
1: Input turbine maintenance parameters {λi, θi, τi}i∈I
2: Input cost and price parameters K,Φ,Ψ,Ω,Q,Πt,Πd,Ct
3: Input operational parameters R, ν, η,B,W
4: Input the optimization horizon J , where J > max

i
λi

5: Set the iteration counter ` = 1
6: while ` ≤ J and

∑
i∈I θi > 0 do

7: Set T = {24(`− 1) + 1, ..., 24`}
8: Set D = {`+ 1, ..., J}
9: Input {Vt,i,Ht,i}t∈T ,i∈I and {VLd,i,HLd,i}t∈D,i∈I

10: Evaluate {ft,i}t∈T ,i∈I and {αt,i}t∈T ,i∈I
11: Evaluate {fLd,i}d∈D,i∈I and {αLd,i}d∈D,i∈I
12: Solve the MILP model
13: Return the optimal solution of the `-th run, S∗` =

{S∗`STH,S∗
`

LTH}
14: for i = 1 ∈ I do
15: if

∑
t(m

`
t,i + n`t,i) > 0 then

16: θi = 0 (turbine no longer requires maintenance)
17: end if
18: end for
19: ` = `+ 1
20: end while
21: return the final solution S∗ = {S∗1STH, ...,S∗

`−1

STH }

this study spans a total of 2, 400 hours from September 2019
to January 2020 and include the time series of the hub-height
wind speeds. We utilize this data to simulate turbine-specific
wind speed time series at multiple spatial locations by drawing
random samples at each time point from a normal distribution
with the buoy’s recorded wind speed as its mean and a standard
deviation of 1 m/s, chosen to mimic the within-farm spatial
variability as reported in prior studies [29].

For speed-to-power conversion, a publicly available dataset
from a U.S. wind farm is used, wherein the normalized power
level of several turbines is provided as a fraction of each
turbine’s rated capacity [30]. We use this data to estimate each
turbine’s power curve using the method of bins, which is the
recommended approach by the International Electrotechnical
Committee (IEC) standard [31]. The estimated turbine-specific
power curves are then used to determine the hourly and daily
normalized power values, ft,i and fLd,i, respectively, given
turbine-specific wind speed time series Vt,i and V Ld,i. Those,
combined with R, will be used to estimate the power level of
a turbine (in MW) using (18) and (19).

Hourly electricity price data are obtained from the open data
repository of PJM [32], a regional transmission organization
(RTO) that covers 13 states in the eastern U.S. The selected
pricing node, Jersey Central Power & Light (JCP&L), services
parts of the east coast of New Jersey, where future offshore
wind farms are set to be installed.

B. Experimental setup

We consider an offshore wind farm with I = 10 turbines,
each with rated capacity of R = 12 MW (following General
Electric (GE)’s 12-MW Haliade-X offshore wind turbine [14]).
Two case studies are conducted. In the first case study, we

simplify the model by assuming no curtailment (i.e., Ct =
1, ∀t ∈ T ), the same repair time for all wind turbines (i.e.,
τi = τ̃ , ∀i ∈ I) and a constant electricity selling price (i.e.,
Πd = Πt = Π̃, ∀t ∈ T , d ∈ D). The motivation behind
those simplifications is to ensure that the difference in the final
schedules and performance of various scheduling strategies
is solely attributed to the impact of accessibility, production
loss, and crew dispatch. In the second case study, we relax
those assumptions; we use variable electricity prices and repair
times, and a constant curtailment of 2%, i.e., Ct = 0.98,
following the annual PJM trend for wind curtailment [33].
In what follows, we discuss key parameter selections.

Electricity price: For the electricity price of the first case
study, we use the non-incentivized levelized cost of energy
(LCOE) for offshore wind projects built after 2018 in the U.S.,
which is about $80 MWh−1 [34]. For the second, we use actual
electricity price data from PJM described in Section III-A with
a federal production tax credit (PTC) of $24 MWh−1 [34].

Maintenance costs and parameters: Following [13], we
set the cost of PM and CM tasks as K = $4, 000 and
Φ = $16, 000, respectively. Maintenance crews are paid by
the hour; we assume a flat cost rate of Ψ = $250 h−1 per
crew, with an overtime cost rate of Q = $125 h−1 [35]. We
assume that there are B = 2 maintenance crews available,
each consisting of 2 technicians. We set W = 8 hours to be
the maximal number of hours with standard payment, after
which overtime costs will be incurred. For the first case study,
repair times are assumed to be the same across all turbines, i.e.,
τi = τ̃ = 8 hours. In the second case study, we generate repair
times assuming a normal distribution with mean 7.5 hours (as
inspired by [25] for minor repairs), and standard deviation of
3 hours. This resulted in a minimal sampled repair time of ∼
2 hours, which typically corresponds to a simple manual reset
repair. Vessels are rented at a daily rate of Ω = $2, 500/day,
corresponding to medium-sized CTVs [6, 36].

Accessibility: CTVs have maximum wave height safety
limits, η (m), above which, it is unsafe for the vessels to dock
on the platform in the base of the offshore turbine. In the U.S.,
these limits are borrowed from those in the offshore oil & gas
industry, ranging from 0.50 m to 1.30 m [35], depending on
the vessel’s size. In the EU, the corresponding wave height
safety limits range from 1.20 m to 1.75 m [36]. Access to the
turbine’s nacelle is also constrained by an upper safety limit
of wind speed, ν (m/s), which approximately is around 15 m/s
[37]. For this study, we set η = 1.5 m and ν = 15 m/s.

Residual life estimations: RLEs are provided in days,
and in both case studies, we assume RLEs to be uniformly
placed over the optimization horizon in 5-day increments (i.e.,
5, 10, . . . , 50). For the first case study, two unexpected failures
for WTs 1 and 3, are assumed to take place at the 17th and
36th day, respectively. No unexpected failures are considered
in the second case study.

Evaluation: The optimization horizon is set at J = 60 days,
wherein the rolling-horizon procedure described in Section II-
C will be used to obtain a final hourly schedule S∗, which
will represent one data point (or scenario) for comparison. We
then shift the whole optimization horizon by 1 day to obtain
a new scenario, and repeat the whole procedure described
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in Algorithm 1. Given our 2400-hour data coverage, this
corresponds to a total of 30 weather scenarios (and hence,
30 solutions). The performance of a maintenance strategy is
evaluated, across all 30 scenarios, in terms of several O&M
metrics (to be defined in Section IV). In addition to HOST,
the following prevalent scheduling strategies are considered:

(1) Corrective Maintenance Strategy (CMS): Maintenance
actions are only scheduled reactively (i.e. post-failure).

(2) Time-Based Strategy (TBS): Maintenance actions are
scheduled, whenever feasible, right before the turbines fail.

(3) Production-Based Opportunistic Strategy (PBOS): A
special case of HOST wherein production-based opportunities
are prioritized, but not dispatch- or access-based opportunities.

(4) Besnard et al. (2009), Opportunistic Strategy (BESN):
This is akin to the opportunistic framework proposed in [15]
which accounts for dispatch- and production-based opportuni-
ties, but not access-based opportunities. We adapted our own
version of this strategy using our formulation in Section II-B.

IV. RESULTS

We start this section with an in-depth analysis for one
weather scenario from case study I to best illustrate the key
differences in the schedules obtained from different strategies.
The insights derived using this scenario will serve as the basis
to justify the results of Section IV-B where the performance
across all scenarios are presented for both case studies.

As shown in Section II-B, the proposed model formulation
is a mixed integer linear program (MILP), and there are mul-
tiple off-the-shelf solvers that use mathematical programming
algorithms to find global optimal solutions for MILPs (or
solutions that fall within a predefined optimality gap from
the global optimum). In this study, the solutions are obtained
using the Gurobi version 9.1 solver in Python (which adopts a
branch-and-bound algorithm), run on a standard laptop, with a
default optimality gap of 0.01% [38]. In Table I, we report the
average solution time for a full hourly schedule (i.e., until all
WTs have been visited), and that of a single iteration, which
aligns with the practical case where the farm operator’s focus
is on the hourly day-ahead operations. To demonstrate the
scalability of the model, we also report the solution times for
cases when the number of WTs is gradually increased.

TABLE I
AVERAGE SOLUTION TIMES VS. NUMBER OF WIND TURBINES

Number of WTs 10 20 30

Full Schedule 35.2 sec 130.9 sec 205.2 sec
Single Iteration 1.2 sec 2.5 sec 4.6 sec

A. Results from one representative scenario

Figure 1A shows the average power level across the 10 WTs
for one weather scenario in case study I (Later, we show the
full case study results). Figure 1B-F illustrate the schedules
obtained from all strategies, wherein the y-axis represents the
WT index, i = 1, ..., 10, and the x-axis denotes time in days.
Black and red squares represent the start times of scheduled
PM and CM actions, respectively, while vertical lines show

Preventive maintenance Corrective maintenance
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Fig. 1. Optimization results for one representative scenario. (A): power pro-
duction levels, averaged across the 10 WTs. (B)-(F): maintenance schedules
obtained using HOST, BESN, PBOS, TBS and CMS. Black and red squares
denote the start times of scheduled PM and CM actions, respectively. The
background color denotes accessible (green) or inaccessible (red) time periods.
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the turbine-specific RLEs. A visual examination of the results
presented in Figure 1 can help us draw the following insights:

Crew-Dispatch-based opportunities: First, it is clear that
HOST (Figure 1B) and BESN (Figure 1C), compared to other
strategies, group maintenance tasks more aggressively to avoid
unnecessary crew dispatch costs. Specifically, both HOST and
BESN schedule all maintenance tasks in 7 days, while the
other strategies have more spread-out schedules (9+ days). For
example, once a PM action has been scheduled for WT1 at
day 4, both strategies leverage the opportunity to group that
task with other PM tasks. This is further confirmed in Figure
2A which depicts the number of vessels dispatched for each
strategy (light blue bars) showing that HOST and BESN yield
the least number of vessel dispatches, compared to strategies
that do not incentivize crew-dispatch-based grouping.

Accessibility-based opportunities: Figure 1 shows that ac-
cess windows can be intermittent, and frequently disrupted
by potentially unsafe wind/marine conditions. By ignoring
accessibility in the scheduling phase, operators are not in-
centivized to seize access opportunities when they arise, and
hence, additional costs are incurred due to frequent mission
aborts/delays wherein an operator schedules a maintenance,
but end up delaying it due to access limitations. This drives
both an increase in the number of failures and CM tasks (at
a higher cost, and only when the weather allows it), as well
as in the number of unnecessary vessel rentals which are not
dispatched due to access limitations. This is the case for WT2
in the schedules of BESN (Figure 1C) and PBOS (Figure 1D);
a PM action was initially planned in day 8, but was delayed
due to unfavorable sea conditions all the way to day 13 where
a CM task was performed, instead, thus incurring additional
CM costs, a total of 3 days of downtime, notwithstanding the
actual time needed for maintenance. This is evident Figure 2A,
showing (with the exception of HOST) sizable unnecessary
vessel rentals (dark blue bars) relative to those dispatched.

Production-based opportunities: It also clear from Figure
1B that HOST schedules all maintenance tasks during periods
of low power production to offset downtime-imposed revenue
losses. Other strategies result in higher production losses,
either because they do not prioritize the minimization of
production loss (TBS and CMS) or due to larger turbine
downtimes (BESN and PBOS). This is further confirmed
in Figure 2B wherein HOST is clearly shown to yield the
minimum turbine downtime and production loss.

For this representative scenario, HOST results in a total cost
of $272.6K, substantially lower than that of BESN ($358.6K),
PBOS ($366.1K), TBS ($312.8K), and CMS ($653.4K). Next,
we present the exhaustive results for both case studies I and
II, across all 30 scenarios.

B. Exhaustive results

1) Results from case study I: Figure 3 shows the total costs
of each strategy across the 30 scenarios for case study I as
arranged by starting day, wherein HOST is shown to consis-
tently outperform all other strategies under varying weather
scenarios. The corresponding boxplots are shown in Figure 4.
On average, the total costs of HOST for case study I are 6.8%

A

B

Fig. 2. (A) Number of vessels rented versus those that were eventually
dispatched for each strategy. (B) Total downtime and production losses. Both
Figures correspond to the representative scenario of Section IV-A.

lower than BESN, 8.9% lower than PBOS, 24.9% lower than
TBS and 67.4% lower than CMS.

The overall performance of HOST is then compared with
that of its competitors in terms of key O&M criteria: the total
number of vessel rentals, vessel utilization as defined by the
fraction of rented vessels which were eventually dispatched (as
a proxy for resource utilization), total downtime, downtime
due to inaccessibility, total farm-level production loss, the
number of PM and CM tasks, and lastly, the total costs. The
results, presented in Table II (shaded rows), show substantial
improvements for HOST across all relevant O&M metrics.

2) Results from case study II: Similarly, Table II (non-
shaded rows) summarizes the results of case study II, where
it is shown that HOST outperforms the four benchmarks

CMS

TBS

PBOS

BESN

HOST

Fig. 3. The total costs of the competing strategies, across the 30 scenarios.
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Fig. 4. Boxplots of the total costs across the 30 scenarios for case study I.

across all metrics, except for the total production losses and
vessel utilization, where its performance is comparable to
that of PBOS and CMS, respectively. We attribute this slight
deterioration in performance to a compromise that HOST
makes to reduce vessel rentals and, hence, total costs, as
shown in the percentage improvements reported in the last
column of Table II. This reveals HOST’s ability to prioritize
which “opportunistic” aspect is more economically valuable,
depending on the available weather and O&M information.

Note that the removal of the two unexpected failures (which
also reduces the total downtime and production losses), power
curtailment, and variable electricity prices in case study II,
resulted in a considerable difference in the values of some
metrics, including total costs, compared to those reported in
case study I, yet, the relative performance of the methods and
conclusions still hold. On average, the total costs of HOST
for case study II are 4.1% lower than BESN, 5.2% lower than
PBOS, 49.5% lower than TBS and 77.0% lower than CMS.

3) Final discussions: We postulate that the substantial im-
provements in case studies I and II are attributed to:

(i) Crew-dispatch-based opportunities: HOST aggressively
groups maintenance tasks whenever economically justifiable
and feasible, resulting in significant improvements in “offshore
trips,” as measured by vessel rentals and utilization. This
aspect is extremely relevant in offshore maintenance where
dispatch/transport operations have been shown to account for
more than 70% of total O&M costs [6, 7].

(iii) Access-based opportunities: A failing offshore turbine
may not be accessible for sustained periods of time due to in-
clement weather and marine conditions (53% of its operational
time, and up to 6 consecutive days, as shown by our analysis).
Missed maintenance opportunities, combined with frequent
mission aborts, can inflict substantial O&M expenditures. Our
analysis shows that HOST can offer substantial reductions in
downtime by carefully leveraging the available access informa-
tion at the time of maintenance scheduling. This is particularly
evident by the cost reductions achieved by HOST relative to
its closest competitor, BESN, which overlooks access-based
opportunities. As offshore farms continue to be placed in more
remote locations and greater altitudes, formally accounting for
this aspect is projected to play an increasingly critical role in
offshore maintenance [39].

(ii) Production-based opportunities: HOST groups mainte-

Fig. 5. Daily revenue losses due to deviations in maintenance start time
relative to the optimal schedule (access constraints relaxed). The large
variations demonstrate the relevance of hourly production-based opportunities.

nance tasks during periods of projected low production and
maximal hourly market prices, resulting in the least pro-
duction revenue losses. To further demonstrate the relevance
of considering those hourly-scale production opportunities,
we perform a sensitivity analysis for a 3 WT-case, each
requiring 7-hour maintenance, wherein all other maintenance
and market parameters are assumed the same as in case study
II. We then compare the optimal schedule against all sub-
optimal schedules obtained by shifting the start time of the
maintenance tasks to different hourly slots within a day. Two
sets of comparisons are performed: (i) when access constraints
are relaxed (# of feasible solutions per day u 5000), and (ii)
when access constraints hold (# of feasible solutions vary per
day depending on access states).

Figure 5 shows the variation in daily revenue losses due
to deviation off the optimal schedule for the first comparison
set (access constraints relaxed), while Table III shows the key
revenue loss statistics incurred for both comparison sets. The
results in Figure 5 and Table III confirm the significance of
considering hourly production-based opportunities—with just
3 WTs, the revenue losses can increase by as much as ∼$21K
due to hourly deviations off the optimal maintenance schedule.
This production-based dimension of opportunity is especially
relevant with the emergence of ultra-scale turbines (≥ 12 MW)
[14, 40], where production loss mitigation is expected to be
pivotal to ensuring profitable offshore wind operations.

All of the above results attest our conjecture—Without a tai-
lored strategy that can adapt itself to the offshore-specific op-
erational and environmental considerations, substantial O&M
cost reductions in offshore wind farms may be forfeited.

V. CONCLUSIONS & FUTURE DIRECTIONS

With O&M costs largely defining offshore wind’s economic
outlook, this paper proposes a holistic opportunistic strategy
(HOST) for scheduling offshore maintenance, based on a
multi-staged rolling-horizon mixed integer linear formulation,
which faithfully aligns with the industrial practice in the off-
shore wind industry. Exhaustively tested on real-world wind,
wave, and power data, HOST is found to consistently yield the
cost-minimal solution relative to a set of prevalent maintenance
strategies, mainly owing to its ability to fully seize access-,
production-, and crew-dispatch-based opportunities.

We envision this work to serve as an anchor point for
future research by relaxing some of its potential limitations,
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TABLE II
RESULTS FOR CASE STUDIES I AND II. BOLD-FACED VALUES INDICATE BEST PERFORMANCE.

# Vessel
rentals

Vessel
utilization

Total
downtime (h)

Accessibility
downtime (h)

Production
losses (MWh)

# PM
actions

# CM
actions

Total cost
($K)

% IMP in
total cost (%)

H
O

ST Case Study I 8.2 83.4% 153.9 57.9 555.7 9.8 2.2 163.0 -

Case Study II 5.4 83.9% 109.7 49.7 69.5 9.9 0.1 74.7 -

B
E

SN Case Study I 10.3 69.7% 159.6 63.6 611.5 9.7 2.3 174.8 6.8%

Case Study II 5.6 78.7% 113.7 53.7 86.3 9.8 0.2 77.9 4.1%

PB
O

S Case Study I 11.8 70.8% 159.6 63.6 601.9 9.6 2.4 178.9 8.9%

Case Study II 7.0 88.9% 115.0 55.0 60.2 9.8 0.2 78.8 5.2%

T
B

S Case Study I 14.2 80.0% 164.6 68.6 850.7 8.6 3.4 216.9 24.9%

Case Study II 12.4 47.3% 147.9 87.9 157.3 5.7 4.3 147.9 49.5%

C
M

S Case Study I 14.6 72.5% 484.0 388.0 3, 228.9 0.0 12.0 500.7 67.4%

Case Study II 11.1 89.5% 553.5 493.5 2, 019.7 0.0 10.0 324.2 77.0%

TABLE III
KEY STATISTICS OF REVENUE LOSSES DUE TO DEVIATIONS OFF THE

OPTIMAL SCHEDULE. MAD := MAX. ABSOLUTE DEVIATION, Q1 , Q2 ,
Q3 := QUANTILES OF ABSOLUTE DEVIATION, NMAD := NORMALIZED

MEAN ABSOLUTE DEVIATION (NORMALIZED BY THE RANGE).

Access constraints relaxed Access constraints imposed
MAD $20.8K $18.5K

Q1 $4.8K $1.4K

Q2 $6.9K $4.4K

Q3 $10.4K $7.1K

NMAD 51.0% 42.9%

including the currently deterministic nature of HOST. In
reality, several parameters used herein are inherently stochastic
(e.g., wind, wave, access forecasts, RLE predictions, etc.).
Future research can therefore investigate formulations and
solution methods that formally account for environmental
and operational uncertainty, which can further open doors
to additional “dimensions” of opportunities. For instance,
opportunity can be defined based on predicted degradation
levels, instead of considering deterministic RLEs. Expanding
the current formulation to account for diverse types of turbine
components and maintenance actions can further enhance the
usability of the proposed framework, since different modes
of failure and component interdependencies can be formally
accounted for. Finally, consideration of within-farm vessel
routing and logistics could provide valuable insights to the
problem of offshore maintenance scheduling, especially as
offshore wind farms continue to expand in size and capacity.

APPENDIX

The nomenclature for the variables, parameters, and sets
used in this paper is presented in Table IV. The data, codes,
and computational environment to reproduce the results of this
research are available at https://github.com/petros-pap/HOST.
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opportunistic condition-based maintenance policy for
offshore wind turbine blades subjected to degradation
and environmental shocks”. In: Reliability Engineering
& System Safety 142 (2015), pp. 463–471.

[9] J. Wang, X. Zhao, and X. Guo. “Optimizing wind
turbine’s maintenance policies under performance-based
contract”. In: Renewable Energy 135 (2019), pp. 626–
634.

[10] F. Ding and Z. Tian. “Opportunistic maintenance for
wind farms considering multi-level imperfect mainte-
nance thresholds”. In: Renewable Energy 45 (2012),
pp. 175–182.

[11] Y. Lu, L. Sun, J. Kang, H. Sun, and X. Zhang.
“Opportunistic maintenance optimization for offshore



THIS WORK HAS BEEN ACCEPTED FOR PUBLICATION AT THE IEEE TRANSACTIONS ON SUSTAINABLE ENERGY 10

TABLE IV
NOMENCLATURE

Notation Domain Definition
Sets

i ∈ I {1, ..., I} Wind turbines
t ∈ T {tn−23, ..., tn} Hours in short-term horizon
d ∈ D {dm, ..., dk} Days in long-term horizon

Decision Variables
mt,i {0,1} PM is scheduled for WT i at hour t
mL

d,i {0,1} PM is scheduled for WT i at day d
nt,i {0,1} CM is scheduled for WT i at hour t
nL
d,i {0,1} CM is scheduled for WT i at day d

Auxiliary Variables
s R Profit for the STH ($)
ld R Profit for day d of the LTH ($)
pt,i R+ Hourly power output in the STH (MWh)
pLd,i R+ Daily power output in the LTH (MWh)
q Z+ Overtime hours worked in the STH (h)
xt,i {0,1} WT i is under maintenance during t
yt,i {0,1} Availability of WT i during t
yLd,i {0,1} Availability of WT i at day d
v {0,1} Vessel is rented for the STH
vLd {0,1} Vessel is rented for day d of the LTH

Parameters
Πt R+ Hourly electricity price ($·MWh−1)
Πd R+ Daily electricity price ($·MWh−1)
K R+ Cost of a PM action ($)
Φ R+ Cost of a CM action ($)
Ψ R+ Maintenance crew cost rate ($·h−1)
Ω R+ Vessel rental cost ($·day−1)
Q R+ Cost of extra work hour ($·h−1)
Ct [0, 1] Fraction of curtailed power
θi {0,1} WT i requires maintenance
λi Z+ Residual life estimate of WT i (days)
αt,i {0,1} WT i is accessible during t
αL
d,i {0,1} WT i is accessible at day d
ft,i [0,1] Normalized power level during t for i
fLd,i [0,1] Normalized power level at day d for i

B Z+ Number of maintenance crews
W Z+ Work hours with standard payment (h)
R R+ WT nominal capacity (MW)
τi Z+ Repair time for WT i (h)
M R+ Arbitrary large number
β R+ Arbitrary small number

Vt,i R+ Wind speed in WT i during t (m·s−1)
Ht R+ Significant wave height during t (m)

VL
d,i R+ Wind speed in WT i at day d (m·s−1)

HL
d R+ Significant wave height at day d (m)
ν R+ Wind speed safety limit (m·s−1)
η R+ Wave height safety limit (m)

wind turbine electrical and electronic system based on
rolling horizon approach”. In: Journal of Renewable
and Sustainable Energy 9.3 (2017), p. 033307.

[12] B. Sarker and T. Faiz. “Minimizing maintenance cost
for offshore wind turbines following multi-level oppor-
tunistic preventive strategy”. In: Renewable Energy 85
(2016), pp. 104–113.

[13] M. Yildirim, N. Gebraeel, and A. Sun. “Integrated
predictive analytics and optimization for opportunistic
maintenance and operations in wind farms”. In: IEEE

Transactions on Power Systems 32.6 (2017), pp. 4319–
4328.

[14] Haliade-X 12 MW Offshore Wind Turbine Platform.
2020. URL: https://www.ge.com/renewableenergy/wind-
energy/offshore-wind/haliade-x-offshore-turbine.

[15] F. Besnard, M. Patrikssont, A. Strombergt, A. Woj-
ciechowskit, and L. Bertling. “An optimization frame-
work for opportunistic maintenance of offshore wind
power system”. In: 2009 IEEE Bucharest PowerTech.
IEEE. 2009, pp. 1–7.

[16] F. Besnard, M. Patriksson, A. Strömberg, A. Woj-
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