
1.  Introduction
The neutral mass density variation associated with the induced satellite drag force plays an important role in the 
Low Earth Orbit (LEO) spacecraft operations in the thermosphere, such as orbit maintenance, lifetime, and colli-
sion avoidance (Doornbos, 2012; Krauss et al., 2018; Zesta & Huang, 2016). Due to the impact of the solar-ter-
restrial energy input from the magnetosphere to the ionosphere-thermosphere system, the thermospheric density 
has intricate spatial and temporal variations. Consequently, predicting and simulating the neutral mass density 
changes and the related drag feedbacks to the spacecrafts are still a grand challenge for space weather research.

Since the 1950s, several empirical thermospheric density models have been applied for orbit determination and 
prediction of LEO spacecraft, such as Jacchia model and Mass Spectrometer Incoherent Scatter (MSIS) model 
(Jacchia,  1971; Hedin,  1987,  1991). However, the density discrepancies between the observations and these 
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models are about 15% in the quiet time (Bruinsma et al., 2004; Pardini et al., 2012; Vallado & Finkleman, 2014), 
and the errors can be much greater during geomagnetic storms (Bruinsma et al., 2006; Lei, Thayer, et al., 2011; 
Liu et al., 2005; Wang, Miao, Liu, & Ren, 2020, 2021). In addition, the US Naval Research Laboratory Mass 
Spectrometer and Incoherent Scatter Radar Extended (NRLMSISE-00) model is widely studied and utilized in 
space weather applications for predicting the satellite orbit (Picone et al., 2002). Satellites still lack in high-fidelity 
density observations due to current modeling uncertainties. Accelerometer-derived densities are indeed affected 
by systematic errors driven by the outer surface satellite geometry models (March et al., 2018), and simplified 
descriptions of the interactions between atmospheric particles and satellite surfaces (gas-surface interactions) 
(March et al., 2019, 2021; Moe & Moe, 2005). Other techniques can be used to derive thermospheric density 
(e.g., GPS-derived accelerations (Van den IJssel et al., 2020)), however, most of the time such alternatives cannot 
guarantee high-resolution output similarly to accelerometer-based measurements. Further enhancements in 
current thermosphere-ionosphere observation capabilities and dedicated missions would be necessary to improve 
current knowledge of dynamics and couplings in the thermosphere-ionosphere region (Palmroth et al., 2021).

During geomagnetic storms, the mass compositions and densities are determined by the solar-terrestrial energy 
dissipation through the coupled magnetosphere-ionosphere-thermosphere system (Aikio & Selkälä, 2009; Cai 
et al., 2013; Lei et al., 2008; Lu et al., 2016). Joule heating dominates two-thirds of the energy injection, and it can 
cause storm-time density increases at the high latitudes (Aikio et al., 2012; Cai et al., 2014; Knipp et al., 2004). 
The high-latitude heated neutral mass density expands upwards, contributing to the low-latitude thermospheric 
density disturbance due to the gravity waves and wind surges (Emmert, 2015; Lu et al., 2009; Oliveira et al., 2017; 
Wu et al., 2020). Further studies on the relationship between neutral mass density variation and Joule heating 
during the geomagnetic storms, therefore, are inevitable and important for the calibration of the thermospheric 
density model (Deng et al., 2009, 2013; Fedrizzi et al., 2012; Wang et al., 2021).

Furthermore, the different magnitudes of the geomagnetic storm can also lead to the storm-time variation of 
thermospheric density. Zesta and Oliveira (2019) found that the thermosphere response to geomagnetic storms 
varies because of the levels of storm intensity. Wang, Miao, Aa, et al. (2020) also concluded that thermospheric 
density increases strongly as geomagnetic storms intensify. The geomagnetic storm variations can be probed with 
geomagnetic activity indices, such as the auroral electrojet (AE) index representing the high latitudes, and the 
disturbed storm time (Dst) index identifying the low latitudes (Adebesin, 2016). The AE index is derived from 
several stations in the high latitude regions, especially in the auroral zone (Davis & Sugiura, 1966), and the Dst 
index obtained from several ground-based magnetometers at equatorial regions can measure the variations in the 
ring current (Sugiura, 1964). Thus, it is imperative to investigate the relationship of Joule heating (primary energy 
input), Dst (low-latitude geomagnetic activity indices), and AE (high-latitude geomagnetic activity indices) with 
storm-time thermospheric density.

The times for high-latitude and low-latitude geomagnetic activities reaching peaks are different during geomag-
netic storms. During the period of 7–9 September 2017 geomagnetic storm, Zhang et al. (2019) reported that AE 
index peaks at about 23 UT on 7 September 2017, while Dst index peaks at about 02 UT on 8 September 2017. 
On 28 May 2011 storm, the high-latitude geomagnetic activity peaks at about 09 UT, while it peaks at about 11 
UT in low latitudes (Wu et al., 2020). Using statistics data from 2000 to 2011, Maggiolo et al. (2017) concluded 
that the response time of geomagnetic activity indices to solar wind involves multiple timescales. In addition, the 
response times of thermospheric density to Joule heating vary with geomagnetic storm intensity changes. Due to 
the variance of altitudinal energy deposition, Wang, Miao, Aa, et al. (2020) discovered that thermospheric density 
delays Joule heating for a longer time as geomagnetic storms intensify. Therefore, the response times of neutral 
mass densities to Dst indices, AE indices, and Joule heating is of paramount significance to study thermospheric 
density enhancements during geomagnetic storms.

Recent studies have made great efforts to improve the thermospheric models (Ruan et al., 2018; Storz et al., 2005; 
Sutton et al., 2012; Weng et al., 2017). For the most widely applied model NRLMSISE-00, Zhou et al. (2009) 
concluded that the empirical relation regarding storm-time thermospheric density with the geomagnetic activities 
and Joule heating can correct the NRLMSISE-00 model and better predict neutral mass density. However, the 
temporal relationships of density to geomagnetic activity and Joule heating can also play a vital role in calibrat-
ing the NRLMSISE-00 model. In this study, 265 geomagnetic storms are statistically analyzed to investigate the 
time relationships of thermospheric density with Joule heating, Dst, and AE indices during geomagnetic storms. 
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These relationships can be utilized to calibrate the NRLMSISE-00 model to better simulate the storm-time ther-
mospheric density.

This paper is organized as follows: the data processing is described in Section 2. The impacts of geomagnetic 
activity indices and Joule heating on thermospheric density observation and density discrepancy for a single 
storm are presented in Section 3.1. The statistical analysis following the case study in Section 3.1 is performed in 
Section 3.2 and Section 3.3. 90% of the geomagnetic storms are used to fit the function to calibrate the NRLM-
SISE-00 model as shown in Section 4. The verifications for the calibration model including assimilation results 
with these 90% of storms and the validation with the remaining 10% of storms are illustrated in Section 5. Finally, 
the summary and discussion are given in Section 6.

2.  Data Processing
2.1.  Thermospheric Density Enhancement

The Challenging Minisatellite Payload (CHAMP) satellite was launched on July 2000 with a near-circular orbit 
of 87.25° inclination at the height of 450  km (Reigber et  al.,  2002), and the Gravity Recovery and Climate 
Experiment (GRACE) satellite was launched on March 2002 with the inclination of 89.5° (Tapley et al., 2004). 
The accelerometer measurements onboard CHAMP and GRACE can measure thermospheric density with a time 
resolution of 10 and 5 s, leading to a spatial resolution of 80 and 40 km, respectively. The CHAMP and GRACE 
observed neutral mass densities can be obtained from TU Delft (Doornbos, 2012; March et al., 2021). In addition, 
Xu et al. (2011) found that the height differences between satellite apogee and perigee vary about 20–40 km in 
the orbits, and the satellite orbit also decays with time. This satellite height changes can lead to the variation of 
thermospheric density measurements, therefore, the method of Lei, Forbes, et al. (2011) and Xu et al. (2015) can 
be used to normalize CHAMP data to a reference height of 400 km,

�(ℎ0) =
�(�) × ��(ℎ0)

�� (�)
,� (1)

where �(ℎ0) is the neutral mass density at a normalized height 𝐴𝐴 𝐴0 , 𝐴𝐴 𝐴𝐴(𝑧𝑧) is the CHAMP observation at the satellite 
orbit height 𝐴𝐴 𝐴𝐴 , and 𝐴𝐴 𝐴𝐴𝑀𝑀 is the corresponding NRLMSISE-00 model thermospheric density.

To remove the effect of fluctuating solar radiation on thermospheric density from 2002 to 2008, the densities 
have been normalized to a constant solar radio flux, F10.7. Based on the quasi-linear relationship between solar 
radiation and thermospheric density (Wang et al., 2021), the F10.7 can be normalized to a reference level of 150 
sfu, which is the median value of the solar radio flux for 265 geomagnetic storms, as used by Ma et al. (2010) 
and Miao et al. (2012):

�(�0) =
�(� ) × �� (�0)

�� (� )� (2)

where �(�0) is the thermospheric density with normalized solar radiation 𝐴𝐴 𝐴𝐴0 , 𝐴𝐴 𝐴𝐴(𝐹𝐹 ) is the measured density with 
the observed solar radiation 𝐴𝐴 𝐴𝐴  , and 𝐴𝐴 𝐴𝐴𝑀𝑀 is the corresponding density obtained from the NRLMSISE-00 model.

In this study, the storm-time density enhancement is calculated with the difference between thermospheric 
density during geomagnetic storms and quiet time. Picone et al. (2002) showed that the NRLMSISE-00 model 
results underestimate the storm-time density, but they can simulate well with the observation in the quiet time. 
Since the CHAMP observations are relatively sparse from the previous quiet day, the quiet-time density from 
the NRLMSISE-00 model can be used as a reference to obtain density enhancement during geomagnetic storms.

2.2.  Storm Classification

The thermospheric response can be variable with different magnitudes of geomagnetic storms (Wang, Miao, Aa, 
et al., 2020; Zesta & Oliveira, 2019). In this study, 265 geomagnetic storms are statistically analyzed from 2002 
to 2008, and storm levels are classified by the minimum Dst values during storms (Gonzalez et al., 1999; Srivas-
tava & Venkatakrishnan, 2004). The weak, moderate, and intense geomagnetic storms are based on the ranges of 
minimum Dst indices, −49 nT < Dst ≤ −30 nT, −99 nT < Dst ≤ −50 nT, and Dst ≤ −100 nT, respectively. The 
quiet time is defined as Dst > −30 nT for this statistical study.
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Table 1 lists statistical geomagnetic storm cases from 2002 to 2008, identified for weak, moderate, and intense 
storms, respectively. The number (Num), date, and Day of Year (DOY) are also summarized for each storm. In 
this study, the 90% geomagnetic storms are used to assimilate the original NRLMSISE-00 model, so that the 
remaining 10% storms (not used to assimilate) can be kept to estimate and verify the calibrated NRLMSISE-00 
model results. The 10% storms used to validate the calibration of the model are randomly chosen. Table 1 shows 
the 10% of the storms used for validation of the calibration results with asterisks (*), and the 90% of the storms 
for assimilation without asterisks. As a result, 123 weak, 103 moderate and 39 intense geomagnetic storms are 
explored for the statistics, while 111 weak, 103 moderate and 35 intense geomagnetic storms are used to assimi-
late the NRLMSISE-00 model, and 12 weak, 10 moderate and 4 intense storms can be used to test the calibration 
results.

2.3.  Joule Heating

In this study, the distribution of height-integrated Joule heating is examined as the proxy for the major energy 
input (Deng et al., 2011; Thayer et al., 1995; Weimer, 2005). As mentioned in previous studies (Cai et al., 2016; 
Wang, Miao, Aa, et al., 2020; Wilson et al., 2006), the Joule heating (𝐴𝐴 Σ𝑝𝑝𝑬𝑬

2 ) is calculated by height-integrated 
Pedersen conductance (𝐴𝐴 Σ𝑝𝑝 ) and the electric field (E).

The Pedersen conductance is mainly contributed by solar radiation and particle precipitation (Aksnes et al., 2002; 
Billett et  al.,  2018; Zhang et  al.,  2004). The height-integrated conductance has been derived from statistical 
patterns of particle precipitation based on the different magnitudes of geomagnetic storms (Hardy et al., 1987; 
Robinson et al., 1987):

Σ𝑝𝑝(𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒) =
40𝐸𝐸0

16 + 𝐸𝐸
2

0

√

𝐼𝐼𝐼� (3)

where 𝐴𝐴 𝐴𝐴0 and I are the average energy of particle precipitation and electron integral energy flux, obtained 
from the three satellites F16-F18 in Defense Meteorological Satellite Program (DMSP) spacecraft (Redmon 
et al., 2017). In this study, Pedersen conductance (𝐴𝐴 Σ𝑝𝑝(𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒) ) can be calculated by particle precipitation with different 
AE index levels, 0 nT < AE ≤ 100 nT, 100 nT < AE ≤ 300 nT, 300 nT < AE ≤ 500 nT, 500 nT < AE ≤ 700 nT, 
700 nT < AE ≤ 1000 nT, and AE ≥ 1000 nT. The conductance produced by solar radiation has been shown to be 
well represented as a function of the solar zenith angle, 𝐴𝐴 𝐴𝐴 , the geomagnetic latitude, 𝐴𝐴 𝐴𝐴 , and the 10.7 cm radio flux 
intensity, F10.7 (Rich et al., 1987), expressed as

Σ𝑝𝑝(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) =
12.5

√

𝐹𝐹10.7∕180 {0.06 + exp[1.803 tanℎ(3.833 cos𝜒𝜒) + 0.5 cos𝜒𝜒 − 2.332]}

[

1 + 0.3sin
2
𝜆𝜆
]

√

1 − 0.99524 cos2 𝜆𝜆

,� (4)

In addition, the electric field E is determined from the Weimer-2001 electric potential model (Weimer, 2001). The 
Weimer-2001 model includes the ionospheric electric potential from inputting Earth's dipole tilt, IMF, and solar 
wind conditions, and considers effects associated with nightside variations affected by geomagnetic substorms in 
the magnetotail. In this study, the Weimer, 2001 model is adopted with the input data from the Advanced Compo-
sition Explorer (ACE) satellite to calculate the ionospheric electric potential and the electric field.

Thus, the total Pedersen conductance can be calculated by adding 𝐴𝐴 Σ𝑝𝑝(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) and 𝐴𝐴 Σ𝑝𝑝(𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒) and times it with the electric 
field E, the obtained distribution of height-integrated Joule heating (𝐴𝐴 Σ𝑄𝑄 ) can be expressed as

Σ𝑄𝑄 =

√

∑

𝑝𝑝(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)

2

+

∑

𝑝𝑝(𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒)

2

𝑬𝑬
2
,� (5)

3.  Results
In this section, the variations of Dst, AE, Joule heating, thermospheric density enhancement, and density discrep-
ancy between the NRLMSISE-00 model and the observation are illustrated during the intense geomagnetic storm 
of November 20-21, 2003. In addition, 265 geomagnetic storms are statistically analyzed to show the overall 
presentation of storm-time thermospheric density response for this study.
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Num Date DOY Num Date DOY Num Date DOY Num Date DOY

Weak Storms

  1 2002/01/25 25 2 2002/02/09 40 3 2002/03/03 62 4 2002/03/05 64

  5 2002/03/19 78 6 2002/04/02 92 7 2002/04/13 103 8 2002/04/28 118

  9 2002/05/21 141 10 2002/06/10 161 11 2002/07/06 187 12 2002/07/12 193

  13* 2002/07/22 203 14 2002/07/27 208 15 2002/08/14 226 16 2002/08/26 238

  17 2002/09/17 260 18 2002/09/22 265 19 2002/11/11 315 20 2002/11/13 317

  21 2002/11/15 319 22 2002/12/01 335 23 2002/12/05 339 24 2002/12/07 341

  25* 2002/12/14 348 26 2002/12/31 365 27 2003/01/19 19 28 2003/01/24 24

  29 2003/02/06 37 30 2003/02/15 46 31 2003/03/06 65 32 2003/03/10 69

  33 2003/03/14 73 34 2003/04/09 99 35 2003/04/14 104 36 2003/04/17 107

  37* 2003/04/28 118 38 2003/05/07 127 39 2003/05/15 135 40 2003/06/14 165

  41 2003/06/28 179 42 2003/08/01 213 43* 2003/08/28 240 44* 2003/09/04 247

  45 2003/10/01 274 46 2003/10/24 217 47* 2003/11/09 313 48 2003/11/30 334

  49 2003/12/14 348 50* 2004/01/01 01 51 2004/01/10 10 52* 2004/01/20 20

  53 2004/02/03 34 54 2004/03/28 88 55 2004/04/16 107 56 2004/04/23 114

  57 2004/04/30 121 58 2004/08/07 220 59 2004/08/22 235 60 2004/09/14 258

  61 2004/09/17 261 62 2004/10/13 287 63 2004/10/20 394 64 2004/10/30 304

  65 2004/11/17 322 66 2004/11/30 335 67 2004/12/11 346 68 2005/02/16 47

  69 2005/03/18 77 70 2005/05/01 121 71 2005/05/13 133 72 2005/05/28 148

  73 2005/06/05 156 74 2005/06/07 158 75 2005/06/17 168 76 2005/08/10 222

  77 2005/08/29 241 78 2005/10/17 290 79 2005/10/25 298 80 2005/11/19 323

  81 2005/12/27 361 82* 2006/02/20 51 83 2006/03/19 78 84 2006/03/21 80

  85 2006/04/22 112 86 2006/05/04 124 87 2006/05/18 138 88 2006/06/06 157

  89 2006/06/16 167 90 2006/07/05 186 91 2006/07/28 209 92 2006/08/07 219

  93 2006/08/31 243 94 2006/09/04 247 95 2006/11/23 327 96 2007/01/17 17

  97 2007/01/29 29 98 2007/02/14 45 99 2007/03/07 66 100* 2007/03/13 72

  101 2007/03/25 84 102 2007/04/17 107 103 2007/04/28 118 104 2007/05/07 127

  105 2007/07/15 196 106 2007/08/07 219 107 2007/09/06 249 108 2007/09/29 272

  109* 2007/10/04 277 110 2007/11/22 326 111 2007/12/17 351 112 2008/01/13 13

  113 2008/02/06 37 114* 2008/02/10 41 115 2008/02/15 46 116 2008/03/01 61

  117 2008/03/26 86 118 2008/04/04 95 119 2008/04/16 107 120 2008/04/23 114

  121 2008/06/15 167 122 2008/07/12 194 123 2008/09/15 259

Moderate Storms

  1 2002/01/11 11 2 2002/02/02 33 3 2002/02/05 36 4 2002/03/01 60

  5 2002/04/23 113 6 2002/05/15 135 7 2002/05/19 139 8 2002/05/27 147

  9 2002/08/04 216 10 2002/09/11 254 11 2002/10/24 297 12 2002/10/27 300

  13 2002/10/31 304 14 2002/11/18 322 15* 2002/11/20 324 16 2002/11/25 329

  17 2002/12/19 353 18 2002/12/21 355 19 2002/12/23 357 20* 2002/12/27 361

  21 2003/01/30 30 22 2003/02/02 33 23 2003/02/04 35 24 2003/02/27 58

  25 2003/03/04 63 26 2003/03/16 75 27 2003/03/20 79 28 2003/03/27 86

  29 2003/03/29 88 30 2003/03/31 90 31 2003/04/02 92 32 2003/04/04 94

  33 2003/04/24 114 34 2003/05/01 121 35 2003/05/10 130 36* 2003/05/22 142

  37 2003/06/02 153 38 2003/06/08 159 39 2003/06/21 172 40 2003/06/24 175

Table 1 
Geomagnetic Storm List
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3.1.  The November 20-21, 2003 Intense Geomagnetic Storm

The geomagnetic storm of November 20-21, 2003 is particularly intriguing, with AE and Dst up to 1698 nT and 
−422 nT. Figure 1 illustrates the temporal responses of thermospheric mass density from the CHAMP satellite 
and NRLMSISE-00 model during this intense storm. Figure 1a–1d show Dst index, AE index, the time series of 
total integrated Joule heating for the northern hemisphere (blue) and southern hemisphere (red), thermospheric 
density from CHAMP (blue), NRLMSISE-00 (red), and in the quiet time as the reference (black). The density 
in the quiet time is obtained from the NRLMSISE-00 with the Ap index on 19 November 2003 (the day before 
this storm).

From geomagnetic activity indices in Figure 1a and 1b, it can be found that Dst sharply decreases at 13 hr and 
reaches the peak at 21 hr, while AE index increases to its maximum/peak at 17 hr, ahead of Dst for 4 hr. Both 
northern and southern hemispheres Joule heating increase at 7 h and reach their peaks at 16 hr. Joule heating in 
the southern hemisphere is stronger than that in the northern hemisphere, which indicates more electromagnetic 
energy entering the southern hemisphere thermosphere during the geomagnetic storm. As for thermospheric 
density, both observation and simulation increase to the maximum at about 20 hr, lagging AE, Joule heating for 3 

Table 1 
Continued

Num Date DOY Num Date DOY Num Date DOY Num Date DOY

  41 2003/07/16 197 42* 2003/07/19 200 43 2003/07/27 208 44 2003/07/29 210

  45 2003/08/06 218 46 2003/08/07 219 47 2003/08/21 233 48* 2003/09/17 260

  49 2003/09/24 267 50 2003/10/14 287 51 2003/11/04 308 52 2003/11/11 315

  53 2003/11/13 317 54 2003/12/06 340 55* 2003/12/10 344 56 2004/01/07 07

  57 2004/01/15 15 58 2004/02/11 42 59 2004/03/11 71 60 2004/04/05 96

  61 2004/07/17 199 62 2004/08/09 222 63 2004/11/25 330 64 2004/12/13 348

  65 2005/01/01 01 66 2005/01/08 08 67 2005/01/12 12 68 2005/01/17 17

  69 2005/02/07 38 70 2005/02/18 49 71 2005/03/07 66 72 2005/04/05 95

  73 2005/05/20 140 74 2005/06/23 174 75 2005/07/10 191 76* 2005/07/18 199

  77 2005/09/03 246 78 2005/09/04 247 79 2005/09/15 258 80 2005/10/08 281

  81 2005/10/31 304 82 2005/12/11 345 83 2006/01/26 26 84* 2006/03/07 66

  85 2006/04/05 95 86* 2006/04/09 99 87 2006/04/14 104 88 2006/05/06 126

  89 2006/09/24 267 90 2006/10/01 274 91 2006/10/13 286 92 2006/11/10 314

  93 2006/11/30 334 94 2006/12/06 340 95 2006/12/12 346 96 2007/04/01 91

  97 2007/05/23 143 98 2007/10/25 298 99 2007/11/20 324 100 2008/02/28 59

  101 2008/03/09 69 102 2008/09/04 248 103* 2008/10/11 285

Intense Storms

  1 2002/03/24 83 2 2002/04/17 107 3 2002/04/18 108 4 2002/04/19 109

  5 2002/04/20 110 6 2002/05/11 131 7* 2002/05/23 143 8 2002/08/02 214

  9 2002/08/21 233 10 2002/09/04 247 11 2002/09/08 251 12 2002/10/01 274

  13 2002/10/04 277 14 2002/10/07 280 15 2002/10/14 287 16* 2002/11/21 325

  17 2003/05/29 149 18 2003/06/18 169 19 2003/07/12 193 20 2003/08/18 230

  21 2003/10/30 303 22 2003/11/20 324 23 2004/01/22 22 24 2004/04/04 95

  25 2004/07/23 205 26 2004/07/25 207 27 2004/07/27 209 28 2004/08/30 243

  29 2004/11/08 313 30 2004/11/10 315 31 2005/01/18 18 32* 2005/05/08 128

  33 2005/05/15 135 34* 2005/05/30 150 35 2005/06/13 164 36 2005/08/24 236

  37 2005/08/31 243 38 2005/09/11 254 39 2006/12/15 349

Note. * Shows the 10% of the storms used for validation of the calibration results with asterisks.
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Figure 1.
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and 4 hr, and peaking 1 hr earlier than Dst. In general, the NRLMSISE-00 simulates well for density observation, 
but vastly underestimates the density peaks during the geomagnetic storm.

Figures 1e–1h depict the density enhancement and density discrepancy versus epoch time and geographic latitude 
(GLAT) on the dayside and nightside, respectively. The density enhancement represents the difference between 
the storm-time and the quiet-time density, and density discrepancy refers to the difference between the obser-
vation and model simulation. On the dayside, the density enhancement increases at about 9h at 70°S, which 
indicates that the storm-time density is more strongly affected by strengthened Joule heating input at about 7h 
in the southern hemisphere. The time lag of thermospheric density to Joule heating can result from the different 
heights of density and Joule heating. In this study, the thermospheric density is explored at 400 km, and Joule 
heating deposits at lower altitudes as geomagnetic activity intensifies (Cheng et al., 2017; Wu et al., 2020). Thus, 
Joule heating needs time to conduct upward to affect the density at 400 km (Huang et al., 2012; Wang, Miao, Aa, 
et al., 2020).

The dayside thermospheric density enhancement reaches the peak, 2.0 × 10 −11 kg/m 3, at about 20hr in the cusp 
region 60°N–80°N and 60°S, where the density discrepancy reaches the maximum of about 1.4 × 10 −11 kg/m 3 at 
the same time. The density enhancement and discrepancy at high latitudes reach the peaks in both hemispheres 
around the main phase of the storm. At the middle and low latitudes, the density in the southern hemisphere is 
larger than in the northern one. In addition, the nightside density enhancement increases up to 1.0 × 10 −11 kg/m 3 
at 20°S–30°S and 60°S–70°S much smaller than that on the dayside. It can also be found that the density discrep-
ancy peaks larger on the dayside (1.4 × 10 −11 kg/m 3) as compared to the nightside (0.8 × 10 −11 kg/m 3). As a 
result, during the geomagnetic storm, the model underestimates thermospheric density, especially the storm-time 
density peaks (model density peaks up to 1.3 × 10 −11 kg/m 3 and observed density peaks up to 2.7 × 10 −11 kg/m 3).

Due to the limitation of measurement availability by satellites, both CHAMP and GRACE satellites can be used 
to increase the spatial coverage to estimate the global response of storm-time thermospheric density as much as 
possible. By assuming that the density changes between successive orbits are progressive, the linear interpolated 
densities are used to capture the storm-time peak values, which can partially reflect the global response. Figure 2 
shows the temporal and spatial Northern Hemispheric distribution of thermospheric density and Joule heating per 
3h from 1200UT to 2400UT on 20 November 2003, intense geomagnetic storm. The areas with blank represent 
that the density observations are very sparse and linear interpolation fails to fill up the gaps.

During the geomagnetic storm, the thermospheric density increases at high latitudes at 60°N–80°N, at  
1500–1800UT (Figure 2b), then the density peaks at 1800–2100UT in the cusp region with 65°N-80°N (Figure 2c), 
which has also seen in Figure 1e. The NRLMSISE-00 model vastly underestimates the storm-time observation in 
the cusp region, especially to the density peaks (Figure 2g). Joule heating peaks at high latitude at 50°N–60°N, at 
1200–1500UT (Figure 2i), and then it increases in the middle latitudes at 1500–1800UT (Figure 2j). It can also 
be found that the thermospheric density delays Joule heating during the geomagnetic storm.

3.2.  Statistics for Time Difference

As shown in the storm event during November 20-21, 2003, it has been found that the thermospheric density 
peaks earlier than maximum values of Dst, and later than AE and Joule heating. To investigate the responses of 
thermospheric density to Dst and AE, the time differences between the peak thermospheric densities and Dst 
indices, and between peak densities and AE indices are statistically examined from 265 geomagnetic storms as 
shown in Figure 3. Figures 3a, 3c, and 3e show that the time differences between peak density and Dst are mainly 
concentrated on the negative during geomagnetic storms, which indicates that the Dst indices lag the storm-time 
thermospheric densities. As shown in Figures 3a and 3c, 55% of weak geomagnetic storms and 46% of moderate 
storms involve thermospheric density peaking within the combined ranges of −0.5 ∼ 0.5 hr and 0.5 ∼ 1.5 hr 
before Dst, while it peaks within the ranges from −0.5 ∼ 0.5 hr to 1.5 ∼ 2.5 hr for 67% intense geomagnetic 

Figure 1.  The temporal variations of different parameters under the intense geomagnetic storm event on November 20-21, 2003. (a) Dst index, (b) AE index, (c) 
total integrated Joule heating for northern (blue line) and southern hemisphere (red line), (d) thermospheric density observed from the CHAMP satellite (blue line) 
measurement, NRLMSISE-00 model (red line) simulation, compared with the prediction of the NRLMSISE-00 in the quiet time (black line), (e) density enhancement 
(storm time – quiet time) and (f) density discrepancy (observation – simulation) on the dayside, (g) density enhancement on the nightside and (h) density discrepancy on 
the nightside.
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storms in Figure 3e. In general, Dst lags thermospheric density for about 1 hr during geomagnetic storms, while 
the lag times are more concentrated at longer times as storms intensify.

Figures 3b, 3d, and 3f depict the time differences between the peak densities and AE indices for weak, moderate, 
and intense geomagnetic storms. During weak geomagnetic storms (Figure 3b), 57% of the cases involve thermo-
spheric densities peaking within the combined ranges of −0.5 ∼ 0.5 hr and 0.5 ∼ 1.5 hr after AE indices, while it 
peaks within the ranges from −0.5 ∼ 0.5 hr to 1.5 ∼ 2.5 hr for 63% of moderate storms (Figure 3d). In Figure 3f, 
61% of intense geomagnetic storms involve the peak density lagging AE within the ranges from 1.5–2.5 hr to 
3.5 ∼ 4.5 hr, which is longer than that for weak and moderate storms. As storm intensity increases, the lag time 
of density to AE increases.

AE and Dst indices represent the geomagnetic activity in the high latitude regions and equatorial regions. To 
explore the relation between high-latitude and low-latitude geomagnetic activity, the time difference between 
Dst and AE is calculated for weak, moderate, and intense storms in Figure 4a, 4c, and 4e. During weak geomag-
netic storms, Dst delays AE within the range of 0.5 ∼ 1.5 hr, while it is concentrated on the combined ranges of 
0.5 ∼ 1.5 hr and 1.5 ∼ 2.5 hr for moderate storms. For intense geomagnetic storms, the lag time of Dst to AE 
ranges from 2.5–3.5 hr to 4.5 ∼ 5.5 hr. In general, Dst lags AE for a longer time as storm intensity increases. This 
implies that the high latitudes have an initial effect on geomagnetic storms, then the middle-low latitude regions 
respond, and such lag time extends as storms intensify.

The time difference between the peaks in thermospheric density and Joule heating is also demonstrated in 
Figure 4b, 4d and 4f during geomagnetic storms. As shown in Figure 4b, the peak thermospheric density follows 
Joule heating within the combined ranges of −0.5 ∼ 0.5 hr and 0.5 ∼ 1.5 hr later during weak geomagnetic storms. 

Figure 2.  Intense geomagnetic storm event of 20 November 2003. (a–d) Thermospheric density observation, (e–h) NRLMSISE-00 model density, and (i–l) height-
integrated Joule heating during 20 November 2003, at 1200UT–1500UT, 1500–1800UT, 1800–2100UT, and 2100–2400UT, respectively. The patterns are plotted in 
latitude versus local time coordinates, with the center corresponding to the North Pole.
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Figure 4d shows that moderate storms involve peak density lagging Joule heating within the combined ranges of 
0.5 ∼ 1.5 hr and 1.5 ∼ 2.5 hr, while it ranges from 2.5–3.5 hr to 4.5 ∼ 5.5 hr for intense geomagnetic storms in 
Figure 4f. In other words, thermospheric density has a longer lag time behind Joule heating as storms intensify.

Figure 3.  (Left column) Time difference between thermospheric density peak and Dst peak, and (right column) between peak density and peak AE during (a) & (b) 
weak, (c) & (d) moderate, and (e) & (f) intense geomagnetic storms from 265 geomagnetic storm cases. Positive time differences mean that thermospheric density lags 
a longer time than Dst and AE indices.

Figure 4.  (Left column) Time difference between peak Dst and peak AE, and (right column) between peak thermospheric density and peak Joule heating during (a) 
& (b) weak, (c) & (d) moderate, and (e) & (f) intense geomagnetic storms from 265 geomagnetic storm cases. Positive time differences mean that Dst indices lag AE 
indices, and thermospheric density lags a longer time than Joule heating.
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3.3.  Statistics for Correlation

During the intense geomagnetic storm on November 20-21, 2003, thermospheric density enhancement varies 
with Dst, AE, and Joule heating, while the density discrepancy between observation and model increases due to 
the model underestimating the storm-time density enhancement. In Figure 5, 265 geomagnetic storms are statis-
tically analyzed to show the scatterplot and linear regression of peak density enhancement with Dst, AE, peak 
Joule heating, and peak density discrepancy, during geomagnetic storms. Figures 5–5c show that peak thermo-
spheric density enhancement increases with decreasing Dst, increasing AE, and peak Joule heating as geomag-
netic storms intensify. The correlation coefficients (r) of density enhancement with Dst (0.77), AE (0.64), and 
Joule heating (0.70) are also calculated. In Figure 5d, it can be noted that the peak density discrepancy increases 
with the peak density enhancement, while the correlation coefficient between density discrepancy and density 
enhancement is 0.97. This indicates that the NRLMSISE-00 model underestimates the impact of geomagnetic 
storms on the thermospheric density enhancement, especially to the storm-time peak density.

4.  Assimilation for Calibrating NRLMSISE-00
As shown in Figures 5a–5c, density enhancement has a quasi-linear relationship with Dst, AE, and Joule heating 
during geomagnetic storms. Dst, AE, and Joule heating can be used to roughly fit the quantitative functional rela-
tion of density enhancement. In addition, the density discrepancy correlates well with the density enhancement in 
Figure 5d. Thus, the relationship between density discrepancy and density enhancement can also be used to fit the 
functional relation of density discrepancy. As a result, based on the functional relation of density enhancement 
with Dst, AE, Joule heating, and density discrepancy, the assimilation for density discrepancy can be established 
as follows:

⎧

⎪

⎨

⎪

⎩

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑡𝑡0 = 𝑎𝑎 + 𝑏𝑏 × 𝐽𝐽𝐽𝐽𝑡𝑡1 + 𝑐𝑐 ×𝐷𝐷𝐷𝐷𝐷𝐷𝑡𝑡2 + 𝑑𝑑 × 𝐴𝐴𝐴𝐴𝑡𝑡3

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑡𝑡0 = 𝑒𝑒 ×𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑡𝑡0 + 𝑓𝑓

,� (6)

where JH, Dst, and AE are Joule heating, Dst, and AE indices during geomagnetic storms. The coefficients, a, b, 
c, and d are based on the relationship of density enhancement with Dst, AE, and Joule heating, while e and f are 

Figure 5.  Distribution of peak thermospheric density enhancement and (a) Dst, (b) AE, (c) peak Joule heating, and (d) peak density discrepancy from 265 geomagnetic 
storms cases. The blue line is the fitting line during storms.
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calculated from the relation between density discrepancy and density enhancement. In addition, t0, t1, t2, and t3 
are the peak times for density enhancement/density discrepancy, Joule heating, Dst, and AE. The response times 
of thermospheric density to geomagnetic activity indices (AE and Dst) and Joule heating vary as storms intensify. 
Based on the statistical conclusion of the time difference in Section 3.2, the relationship of t0 with t1, t2, and t3 
can also be displayed during weak, moderate, and intense geomagnetic storms, respectively:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑡𝑡1 = 𝑡𝑡0 − 1

𝑡𝑡2 = 𝑡𝑡0 + 1

𝑡𝑡3 = 𝑡𝑡0

,

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑡𝑡1 = 𝑡𝑡0 − 2

𝑡𝑡2 = 𝑡𝑡0 + 1

𝑡𝑡3 = 𝑡𝑡0

,

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑡𝑡1 = 𝑡𝑡0 − 4

𝑡𝑡2 = 𝑡𝑡0 + 1

𝑡𝑡3 = 𝑡𝑡0 − 3

,� (7)

In this study, 123, 103, and 39 geomagnetic storm cases are statistically explored for weak, moderate, and intense 
storms, respectively. 90% of the storm cases (111 weak, 103 moderate, and 35 intense geomagnetic storms) are 
used to calculate the coefficients (a, b, c, d, e, and f) fitted in functional Equation (6) and set up Equations (8–10) 
for weak, moderate and intense storms. The remaining 10% storms (not used to assimilate) including 12 weak, 10 
moderate, and 4 intense storms are used to test the calibration results. Based on the 90% geomagnetic storms, the 
calibration of NRLMSISE-00 for different magnitudes storms can be respectively expressed by

⎧

⎪

⎨

⎪

⎩

𝐸𝐸𝐸𝐸𝐸𝐸𝑡𝑡 = 1.7962 × 10
−12

+ 3.3707 × 10
−18

× 𝐽𝐽𝐽𝐽𝑡𝑡−1 − 3.4610 × 10
−14

×𝐷𝐷𝐷𝐷𝐷𝐷𝑡𝑡+1 + 5.9681 × 10
−16

× 𝐴𝐴𝐴𝐴𝑡𝑡

𝐸𝐸𝐸𝐸𝐸𝐸𝑡𝑡 = 0.9445 × 𝐸𝐸𝐸𝐸𝐸𝐸𝑡𝑡 – 1.0299 × 10
−12

,

� (8)

⎧
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⎪
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𝐸𝐸𝐸𝐸𝐸𝐸𝑡𝑡 = 7.6770 × 10
−13

+ 3.8214 × 10
−18

× 𝐽𝐽𝐽𝐽𝑡𝑡−2 − 4.4014 × 10
−14

×𝐷𝐷𝐷𝐷𝐷𝐷𝑡𝑡+1 + 1.0480 × 10
−15

× 𝐴𝐴𝐴𝐴𝑡𝑡

𝐸𝐸𝐸𝐸𝐸𝐸𝑡𝑡 = 0.9265 × 𝐸𝐸𝐸𝐸𝐸𝐸𝑡𝑡 – 1.2428 × 10
−12

,
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⎧
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× 𝐴𝐴𝐴𝐴𝑡𝑡−3

𝐸𝐸𝐸𝐸𝐸𝐸𝑡𝑡 = 0.7879 × 𝐸𝐸𝐸𝐸𝐸𝐸𝑡𝑡 – 9.7010 × 10
−13

,
� (10)

where EDE is the Estimated Density Enhancement, EDD is Estimated Density Discrepancy between in-situ 
observed density and original NRLMSISE-00 model. JH, Dst, and AE are Joule heating, Dst, and AE indices 
during geomagnetic storms. In this study, Joule heating, Dst, and AE from 90% of geomagnetic storms are used 
to fit the functional relations in Equations (8–10) for calibrating the original model. During a geomagnetic storm, 
the Joule heating, Dst, and AE can be obtained to calculate the EDD, as the storm-time calibration factor for the 
NRLMISIE-00 model. As a result, the sum of both the original NRLMSISE-00 and the EDD is calculated as the 
calibration results of NRLMSISE-00.

5.  Verification
5.1.  Assimilation (90% Storms) and Validation (10% Storms)

Based on the 90% of geomagnetic storms to fit the functional relation, the calibration of storm-time NRLM-
SISE-00 assimilated in Equations  (8–10) can be used to correct the simulation of storm-time thermospheric 
density. To test the simulation results of calibrated NRLMSISE-00 model during geomagnetic storms, the cali-
bration of NRLMSISE-00 for assimilation results with 90% of the storms and the validation with 10% of the 
storms are illustrated in Figure 6. Figure 6 depicts the peaks of calibrated NRLMSISE-00 (blue), observed ther-
mospheric densities (red), and original NRLMSISE-00 densities (black) during weak (a), moderate (b), and 
intense (c) storms. The assimilation is on the left of Figure 6 with white background, while the validation is 
shown on the right with green background.

During weak geomagnetic storms (Figure  6a), the observed density ranges from 0.4  ×  10 −11  kg/m 3 to 
1.3 × 10 −11 kg/m 3, while the original model ranges from 0.2 × 10 −11 kg/m 3 to 0.7 × 10 −11 kg/m 3. The observed 
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densities peak vastly larger than NRLMSISE-00. However, the calibrated NRLMSISE-00 ranges from 
0.5 × 10 −11 kg/m 3 to 1.1 × 10 −11 kg/m 3, fluctuating around the peak density observations. During moderate 
(Figure  6b) and intense (Figure  6c) geomagnetic storms, the observation ranges from 0.4  ×  10 −11  kg/m 3 to 
1.7 × 10 −11 kg/m 3 and 0.7 × 10 −11 kg/m 3 to 2.7 × 10 −11 kg/m 3, while the model ranges from 0.3 × 10 −11 kg/m 3 
to 0.8 × 10 −11 kg/m 3 and 0.3 × 10 −11 kg/m 3 to 1.0 × 10 −11. The NRLMSISE-00 model underestimates the peak 
observed density, but the calibration result simulates well, ranging from 0.6 × 10 −11 kg/m 3 to 1.3 × 10 −11 kg/m 3 
and 0.9 × 10 −11 kg/m 3 to 2.6 × 10 −11 kg/m 3. In general, the calibration results simulate thermospheric density 
better than the NRLMSISE-00 model.

The Mean Relative Error (MRE = 𝐴𝐴
𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜−𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜
 ) is also calculated and determined by the percentage between 

the observation-model difference and the observation for assimilation and validation during geomagnetic storms. 
During weak and moderate geomagnetic storms, MRE between the observed density (red line) and original model 
(black line) is about 35% (Figure 6a) and 40% (Figure 6b), while that for intense storms is 45% (Figure 6c). This 
indicates that the density discrepancy can increase as storms intensify. The MRE of the assimilation (red line 
and blue line on the left) is mostly between 10% and 15% for weak (Figure 6a) and moderate (Figure 6b) storms, 
while it is about 10% during intense storms (Figure 6c). For validation (red line and blue line on the right with 
green background), the MRE is about 10% for weak (Figure 6a), moderate (Figure 6b), and intense (Figure 6c) 
geomagnetic storms. In general, the MRE of the original model is about 40%, while after calibration it decreases 
to 10% during geomagnetic storms. Both assimilation and validation results can prove that the calibrated model 
results have a better agreement than the original model during geomagnetic storms.

5.2.  Calibration of the November 20-21, 2003 Intense Geomagnetic Storm With GRACE Satellite

As outlined in Section  3.1, the NRLMSISE-00 underestimated the observed thermospheric density, and the 
density discrepancy increased with density enhancement for an intense geomagnetic storm. According to vari-
ation of Dst during November 20-21, 2003, Equations (8–10) can be used to correct the original model and the 
validation of the calibration is verified with the GRACE satellite. Figure 7 depicts the variation of thermospheric 
density on November 20-21, 2003. The top row shows GRACE observed density on the dayside and nightside, 

Figure 6.  The calibrated density (blue line), the observed density (red line), and the density from original NRLMSISE-00 (black line) during (a) weak, (b) moderate, 
and (c) intense geomagnetic storms. The density with white background is the assimilation on the left of the Figure and the validation is shown on the right with green 
background.
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respectively, and the middle and bottom rows show the corresponding densities simulated by the original NRLM-
SISE-00 model and calibrated model.

On the dayside, Figure 7a shows that dayside thermospheric density increases at 9h at about 60°S, peaking about 
2.7 × 10 −11 kg/m 3 at 20hr in the cusp region at 60°S–75°S, and the nightside observed density increases to the 
peak about 2.5 × 10 −11 kg/m 3 at 85°S in Figure 7b. The cusp region is well-known for thermospheric density 
enhancements in the high-latitude thermosphere during geomagnetic storms (Kwak et al., 2009; Lühr et al., 2004; 
Wang et al., 2021). However, the original NRLMSISE-00 model vastly underestimates GRACE density obser-
vations in the cusp region, especially to the density peaks (Figures 7c and 7d). Billett et al. (2021) revealed the 
impact of solar-terrestrial energy on thermosphere, such as Poynting flux (PF) mainly depositing in the cusp 
regions. Even more, Knipp et al. (2021) concluded that Poynting flux in the cusp region often exceeds the energy 
intensity in the auroral zone. The NRLMSISE-00 model simulating observed density may underestimate energy 
deposition at high latitudes during geomagnetic storms.

After combining the dominated energy during storms, Joule heating, and geomagnetic activity indices, the cali-
brated NRLMSISE-00 can better reflect the storm-time density in Figures 7e and 7f. The dayside calibration 
increases to the peaks, 2.7  ×  10 −11  kg/m 3 at about 20hr at regions of 40°N-90°S, while it is wider than the 
observed density peak (Figure 7a). Figure 7f illustrates that calibrated model peaks at about 20hr at 75°S–85°S at 
about 2.5 × 10 −11 kg/m 3, slightly wider than the peak density observed in the nightside (Figure 7b). The original 

Figure 7.  Intense geomagnetic storm event of November 20-21, 2003. (Left column) Dayside density and (right column) nightside density from (a) & (b) Gravity 
Recovery and Climate Experiment satellite, (c) & (d) the original NRLMSISE-00 model, and (e) & (f) the calibrated model.
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model underestimates the equatorial density, while the calibrated model overestimates the thermospheric density 
at low latitudes.

According to previous studies, during the geomagnetic storm, solar wind brings tremendous energy into the 
magnetosphere-ionosphere-thermosphere system at high latitudes (Buonsanto, 1999; Sutton et al., 2009), heating 
the thermospheric density to increase (Wilson et al., 2006). Due to the large-scale gravity waves and wind surges, 
the density will also increase at low latitudes and equator (Emmert, 2015; Fuller-Rowell et al., 1994, 2013). The 
calibration of the model was calculated with the influence of Joule heating on density, while the gravity waves 
and neutral winds are not considered for density variation at the equator. Thus, the calibration model results for 
the equatorial density may be overestimated. In general, although the calibration has some errors to reflect the 
storm-time density variation, the simulation results of calibrated NRLMSISE-00 can reproduce the GRACE 
observation better than the original.

6.  Summary and Discussion
In this study, the relationships of thermospheric density with geomagnetic activity indices and Joule heating 
during geomagnetic storms were investigated for a period from 2002 to 2008, and employed to calibrate the ther-
mospheric model NRLMSISE-00. First, during moderate and weak storms, the response time of thermospheric 
density to AE indices is around 0–1 hr, while during intense storms it is about 2–4 hr. Second, Dst indices delay 
thermospheric densities for about 1 hr during storms. Third, the peak Dst indices delay the peak AE indices 
during geomagnetic storms. The time difference between Dst and AE is approximately 1–2 hr for weak and 
moderate storms, while it is about 3–5 hr for intense storms. Finally, the calibration of the NRLMSISE-00 model 
is established by the function of time differences and quasi-linear correlations between thermospheric density and 
geomagnetic activity indices, and between density and Joule heating. It can also be found that the calibration can 
improve the accuracy of simulation with MRE of 10%, better than the original model with MRE of 40%.

The high-latitude geomagnetic activity indices AE shows the changes in auroral electrojet, the difference between 
eastward electrojet (AU) and westward electrojet (AL), and the low-latitude geomagnetic activity indices Dst 
illustrates the variation of the equatorial ring current. Rostoker et  al.  (1980) found that the auroral electrojet 
varies with enhanced field-aligned currents (FACs) and particle precipitation in the nightside auroral region. This 
variation process of auroral electrojet is transient and takes short time to respond. The ring current increases with 
the injection of massive ions and electrons from the magnetotail to the inner magnetosphere, leading to global 
magnetic disturbance (Gonzalez et al., 1994). The magnetospheric perturbations associated with large-scale and 
strong variation need a longer time to transfer energy. In addition, Maggiolo et al. (2017) also found that the AE 
indices respond to the interplanetary magnetic field (IMF) Bz regarding shorter response time than the horizontal 
geomagnetic field (SYM-H) indices, which is used instead of Dst indices with higher time resolution. As a result, 
the low-latitude geomagnetic activity indices Dst can lag the high-latitude geomagnetic activity indices AE for 
a while.

Please note that the peak density enhancement and peak density discrepancy were used as proxies for every 
geomagnetic storm when the NRLMSISE-00 model discrepancies were explored. These discrepancies would 
represent the extreme cases (likely the largest errors) for the model to underestimate the densities during storms. 
Therefore, based on our results sampling the peak (extreme) values for the particular storms to establish the cali-
brated function, the calibration of the NRLMSISE-00 model may slightly overestimate the density observations 
in other times when the density responses are moderate (not the peaks). In addition, it is not considered the impact 
on equatorial density during geomagnetic storms, such as neutral winds and gravity waves. The calibrated model 
may overestimate the density observations at low latitude regions. Further study will take low-latitude influences 
on thermospheric density into account to calibrate the NRLMSISE-00 model, such as neutral winds and gravity 
waves.

Data Availability Statement
The CHAMP and GRACE neutral mass density is obtained from http://thermosphere.tudelft.nl/. The geomag-
netic activity indices Dst and AE are obtained from http://wdc.kugi.kyoto-u.ac.jp/. The DMSP data and ACE 
data are obtained from https://cdaweb.gsfc.nasa.gov/index.html/ and https://omniweb.gsfc.nasa.gov/. The solar 

http://thermosphere.tudelft.nl/
http://wdc.kugi.kyoto-u.ac.jp/
https://cdaweb.gsfc.nasa.gov/index.html/
https://omniweb.gsfc.nasa.gov/
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radiation proxy F10.7 is obtained from https://omniweb.gsfc.nasa.gov/form/dx1.html. The NRLMSISE-00 and 
Weimer model are from https://ccmc.gsfc.nasa.gov/.
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