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Stickland amino acid fermentations occur primarily among species of Clostridia. An ancient form of
metabolism, Stickland fermentations use amino acids as electron acceptors in the absence of stronger
oxidizing agents and provide metabolic capabilities to support growth when other fermentable sub-
strates, such as carbohydrates, are lacking. The reactions were originally described as paired fermenta-
tions of amino acid electron donors, such as the branched-chain amino acids, with recipients that include
proline and glycine. We present a redox-focused view of Stickland metabolism following electron flow
through metabolically diverse oxidative reactions and the defined-substrate reductase systems, including
for proline and glycine, and the role of dual redox pathways for substrates such as leucine and ornithine.
Genetic studies and Environment and Gene Regulatory Interaction Network (EGRIN) models for the
pathogen Clostridioides difficile have improved our understanding of the regulation and metabolic
recruitment of these systems, and their functions in modulating inter-species interactions within host-

pathogen-commensal systems and uses in industrial and environmental applications.

© 2022 Elsevier Ltd. All rights reserved.

1. Introduction

Stickland amino acid fermentations evolved early in the history
of life on earth given the abundance of amino acids in planetary
ecosystems [1]. In 1934, Stickland identified paired oxidative and
reductive fermentation of amino acids in Clostridium sporogenes
that supported anaerobic growth in the absence of glucose [2].
Oxidative Stickland reactions remove electrons from donor amino
acids (Fig. 1A) [3]. Donors such as alanine and the branched chain
amino acids leucine, isoleucine and valine start with two more
hydrogens than their cognate keto acids [4], while donors such as
threonine or methionine have equivalent oxidation states with
their keto acids [3]. The Stickland reductive reactions transfer
electrons to an acceptor amino acid, commonly proline [5], glycine
[6,7], and also to leucine [8]. In aggregate, the Stickland systems
provide redox reactions that can be recruited to support changing
needs in cellular metabolism.
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Stickland metabolism is a hallmark of the Cluster XI Clostridia,
which includes Clostridioides difficile and Paraclostridium bifer-
mentans that carry the proline, glycine, and reductive leucine sys-
tems (Fig. 2) [5,8,9]. Other clusters including many, but not all,
species of Cluster I (C. sporogenes, C. botulinum), Cluster II
(H. histolyticum), and Cluster XIVa (C. scindens) carry one or more
reductive systems (Fig. 2). Outside of the Clostridia, these systems
are uncommon but occur in other branches of phylum Firmicutes
and some Archaea [10—13].

Multiple genes comprise each Stickland reductase, enzymes that
have defined substrate specificities. The glycine reductase genes
grdABC encode a selenoenzyme and thioredoxins trxA and trxB
(Figs. 1B and 2B) [7] that metabolize glycine to acetate and
ammonia [14]. Some species carry multiple grdB or grdX homologs
to ferment chemically related substrates such as sarcosine and
betaine (Fig. 2B) [6,15]. The had genes encode enzymes that reduce
leucine to isocaproate, with electron handling via eftA1 and eftB1
(Figs.1C and 2C) [8]. Homologous systems in other Clostridia reduce
alanine, glutamate, caffeate, or phenylalanine to their derivative
carboxylates [16,17]. The proline reductase’s prdABC genes encode a
selenoenzyme that metabolizes proline to 5-aminovalerate and
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Fig. 1. Clostridial Stickland fermentation pathways. Legend: (A) Oxidative Stickland fermentations generate one ATP and yield two low-potential electrons to ferredoxin (Fd) or
flavodoxin per amino acid; R = amino acid side group. (B) Glycine reductase oxidizes one equivalent of thioredoxin (Trx) to yield ammonium, acetate, and ATP. (C) Reductive leucine
metabolism in Clostridioides difficile oxidizes three equivalents of NADH and reduces one equivalent of ferredoxin, yielding isocaproate. Equivalent pathways in other Clostridia
reduce alanine to propionate (C. propionicum), glutamate to butyrate (C. symbiosium), or phenylalanine to phenylpropionate (C. sporogenes) [65]. (D) Proline reductase oxidizes one

equivalent of NADH to NAD-+, yielding 5-aminovalerate.

couples electron transfer with the bacterial Rnf system (Figs. 1D and
2A) [5]. Originally named for its role in Rhodobacter nitrogen fix-
ation, this system operates broadly among bacteria to generate ion
gradients and regenerate electron carriers [4,18].

In contrast to the substrate specificity of the reductive pathways,

the known oxidative Stickland pathways have greater promiscuity.
Oxidative metabolism of alanine produces acetate via alanine's
deamination to pyruvate and oxidation via pyruvate:ferredoxin
oxidoreductase (pfo) [19], a pathway that other pyruvate-
generating amino acids, such as cysteine and serine, may follow.
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Fig. 2. Genetic organization of the Stickland pathways among Clostridial clusters. Legend: Stickland reductase loci across Clostridia identified using BLAST [13,66] to the C. difficile

and P. bifermentans prd, grd, and had operon genes. Cluster 1: C. botulinum ATCC3502 and C.

sporogenes ATCC3584; Cluster II: Hathawaya histolytica NCTC503 (formerly Clostridium

histolyticum); Cluster XI: C. difficile ATCC43255 and P. bifermentans DSM638; Cluster XIVa: Clostridium scindens ATCC35704. A: prd proline-reductase genes: prdR: transcriptional
activator; prdF: proline racemase; prdA prdB and prdC: selenoenzyme subunits; prdD: di-thiol stabilizing protein; prdE: putative stabilizing protein. H. histolytica lacks a homologous
locus. Putative ORFs with unknown functions shown in gray. B: Glycine reductase (grd) genes. The grdAB: selenoenzyme subunits that complex with grdE and the grdC and grdD and
may include grdX; trx: thioredoxin; trxB genes: thioredoxin reductases; The R for C. sporogenes indicates a putative glycine-responsive riboswitch. C: Reductive leucine pathway:
IdhA: 2-hydroxyisocaproate dehydrogenase; hadA: 2-hydroxyisocaproate CoA transferase; hadl: dehydratase activator; hadB and hadC: (R)-2-hydroxyisocaproyl-CoA dehydratase;
acdB: acyl-CoA dehydrogenase; etfA and eftB: electron transfer flavoproteins. C. scindens and H. histolytica lack a homologous locus.

Indolepyruvate:ferredoxin oxidoreductase (iorAB) metabolizes
tryptophan and potentially other aromatic amino acids [20]. The
genes and enzyme systems supporting oxidative metabolism of
other amino acids remain ill-defined in many species [9,21,22] but
exist per known oxidative products such as isovalerate from leucine
and isobutyrate from valine [23,24].

Each Stickland system variably conserves cellular carbon and
nitrogen. 5-aminovalerate production may excrete 100% of pro-
line's carbon and nitrogen. In contrast, ammonia and acetate from
glycine metabolism may be excreted or shunted into pathways
producing ethanol, or pyruvate via fixation of CO, with acetate by
pyruvate:ferredoxin oxidoreductase [25]. Oxidative leucine meta-
bolism deaminates and decarboxylates the leucine, releasing iso-
valerate, while reductive leucine metabolism can excrete 100% of
the carbon backbone as isocaproate [8,23]. While a seeming loss of

cellular carbon, these metabolites have potential extracellular
benefit to Stickland fermenters, particularly within dense ecosys-
tems where they may cross-feed other species that provide sup-
porting nutrients [23].

2. Energetic contributions of Stickland metabolism

Stickland-fermented amino acids are relatively weak electron
acceptors with reduction potentials between —-190mV (mV)
and —10 mV, as compared to an endpoint of +810 mV for electron
flow to molecular oxygen [26,27]. Nevertheless, they serve as an
important electron sink under anoxic conditions and in the absence
of stronger oxidizing agents [8,16,28,29]. In supplementing
substrate-level phosphorylation on the oxidative branch (Fig. 3A),
the Stickland reductases optimize further energy capture from
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Fig. 3. Reduction potential of electrons in C. difficile’s Stickland systems. Legend: Redox potentials of species pairs from Buckel et al. [67] and Thauer et al. [68]. (A) The prototypical
oxidative half-reaction of Stickland metabolism transfers two low-potential electrons from a 2-oxoacid donor to ferredoxin by enzymes such as pyruvate:ferredoxin oxidoreductase
(PFOR) or indolepyruvate:ferredoxin oxidoreductase (IOR), with substrate-level phosphorylation (SLP) by coupled phosphotransacylase and acyl kinase reactions. The electrons held
by ferredoxin may be transferred to NADH by the Rnf complex, with concomitant extrusion of one proton per electron transfer. (B) The glycine reductase (GR) system transfers two
electrons from NADH or NADPH to glycine, forming acetylphosphate, with substrate-level phosphorylation by acetate kinase. (C) In the reductive leucine pathway (R)-2-
hydroxyisocaproate dehydrogenase (LdhA) first reduces 2-oxoisocaproate to (R)-2-hydroxyisocaproate (2-OH-isocaproate), with NADH as the electron donor and no known en-
ergy salvage mechanism. Then, an acyl-CoA dehydrogenase (AcdB) reduces isocaprenyl-CoA to isocaproyl-CoA using two electrons from NADH while an electron transfer system
(EtfAB) promotes two electrons from NADH to ferredoxin in an electron-bifurcating mechanism (EBF). (D) Proline reductase (PR) reduces p-proline to 5-aminovalerate. Rnf coupling
extrudes approximately 1.1 protons per molecule of proline. The standard Gibbs free energy of formation 4G° for the proline reductase reaction was calculated using Hess's Law and
the estimated standard 4G of formation for the individual species from MetaCyc [69], then converted to standard redox potential using the equation E° = AG°/(—nF), where n =2
electrons transferred and F is Faraday's constant. The standard redox potential of the proline and 5-aminovalerate pair was calculated by subtracting the redox potential contri-
bution of NADH/NAD™", 320 mV, from the reaction standard redox potential.

electrons via mechanisms including substrate-level phosphoryla- transport systems [23], including the brnQ-family transporters for
tion, as with glycine reductase (Fig. 3B), electron bifurcation re- branched chain amino acids [35] and Clostridial app and opp oli-
actions in the reductive leucine pathway (Fig. 3C), or Rnf complex gopeptide transport systems [23,36]. Gut-colonizing species
coupling with proline reductase (Fig. 3D). Genetic and biochemical harboring a proline reductase also commonly co-express a 4-
studies have shown other direct interactions among electron hydroxyproline dehydratase (pfID) and pyrroline-5-carboxylate
bifurcating reactions and the Rnf system [30], creating a potential reductase (proC) to convert 4-hydroxyproline, a breakdown prod-
“anaerobic reductosome” to coordinate energy-generation from uct of animal-origin collagen, to proline [37,38], illustrating how

pathways such as butyrate production from glycolytic, ethanol- host and dietary factors feed Stickland fermenters [23]. Some
amine, or Wood-Ljungdahl acetogenic reactions [4,31]. species also metabolize ornithine to proline and alanine, providing

Thus, a more nuanced view of Stickland metabolism considers a robust redox pair for Stickland metabolism that has been asso-
recruitment of the oxidative and reductive half reactions relative to ciated with rapid biomass expansion [23,39]. Purinolytic species of
energetic needs, substrate and electron carrier availability, and Clostridia metabolize xanthine to formiminoglycine and subse-

local redox potential. Reductive metabolism of abundant amino quently to glycine to support reductive glycine metabolism [40],
acids can support high-flux energy-generating pathways, such as again leveraging substrates that may be abundant in dense eco-
oxidative glycolytic reactions, by regenerating electron carriers systems such as the gut, midden heaps, or anaerobic marine and
with additional energy harvest (Fig. 3). Conversely, oxidative riparian sediments. Some species further process Stickland me-
metabolism of amino acids for energy can be balanced with other tabolites for energetic and non-energetic purposes, such as alde-
forms of reductive metabolism such as mixed acid fermentations hyde/alcohol and lactate dehydrogenases that reduce Stickland
converting pyruvate to lactate or to ethanol. Nisman et al. alluded metabolites to regenerate NAD™ [31], and C. difficile's HpdBCA

to this modularization in 1948, noting coupling of glycine's reduc- decarboxylase (hpdBCA) that converts the Stickland tyrosine
tion to acetate with oxidative reactions of non-amino acid sub- metabolite 4-hydroxyphenylacetate to p-cresol, a metabolite
strates including glucose, pyruvate, or acetaldehyde [32,33]. shown to have anti-microbial activities against some Gram nega-

tive species and potential influence on a host's dopaminergic

h he level of alteri h ic behavi 29,41-46].
3. Genomic systems supporting Stickland metabolism pathways, to the level of altering phenotypic behaviors [29, ]

Stickland fermenters harbor additional machinery to transform 4. Regulatory control of the Stickland reductase systems
exogenous amines into fermentable substrates. Nearly all Stickland

fermenters are proteolytic, identified microbiologically by rapid In the presence of proline, C. difficile's PrdR proline reductase
degradation of proteins such as gelatin or proteolytic activity in regulator induces prd gene expression and inhibits glycine reduc-
Clostridial meat-granule media [34], and demonstrated genomi- tase expression (Fig. 2) [47,48]. Indirect effects have also been

cally by multiple excreted proteases and peptide and amino acid demonstrated by Rex, the sensor of NAD+/NADH balance and
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cellular redox state [47]. However, little is known about the tran-
scriptional regulation of reductive leucine metabolism, or how
C. difficile and other Clostridia coordinate transcriptional regulation
among their Stickland reductase systems relative to changing
conditions.

In vitro and in vivo analyses of C. difficile have supported new
Environment and Gene Regulatory Interaction Networks (EGRIN) to
define co-regulatory gene modules and transcription factors con-
trolling the pathogen's conditional behaviors, including those seen
in vivo with protective versus disease-promoting commensals [49].
Model predictions inferred the partitioning and differential
expression of the Stickland reductase genes, particularly separation
of proline reductase genes from the glycine and reductive leucine
pathways (Fig. 4A; http://networks.systemsbiology.net/cdiff-
portal/). Members of the grd and had reductase systems co-occur
in EGRIN modules, #10, 129, 147 and 159, indicating capacity for

A C
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co-expression of the reductase systems, and with genes involved in
fatty acid metabolism, electron transport, and the Wood-Ljungdahl
pathway (Fig. 4A). EGRIN further inferred coordinate regulation at
the level of three transcriptional regulators, PrdR, CD630_16930,
and the sigma factor SigL (Fig. 4A—B) with predicted inputs from 17
additional transcription factors, including CcpA, FapR and SigD
(Fig. 4C). EGRIN's predictions correlate with known effects of the
PrdR and CcpA regulators on the proline and glycine reductase
systems [47,50] and Sigl-mediated expression of the reductive
leucine and other amino acid degradation pathways [51,52]. Model
predictions further inferred regulation by CD630_16930, an ArsR-
family transcription factor [53] located in a genetic locus adjacent
to a thioredoxin gene system. Given the existence of these regulator
homologs in other Stickland-fermenting Clostridia, these loci pro-
vide starting points to explore regulation of the reductases in other
species of clinical, industrial, and environmental importance.
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Fig. 4. EGRIN module and co-regulatory predictions for C. difficile's Stickland reductase systems. Legend: EGRIN modules containing the prd, grd and had genes were defined in
Arrieta-Ortiz et al. [49] and are available through the C. difficile Portal at http://networks.systemsbiology.net/cdiff-portal/(A) Conditional partitioning of Stickland reductase systems
across EGRIN modules of co-regulated genes. Only Stickland reductase system genes are shown. Module ID number (starting with the ‘#’ symbol) is indicated for each EGRIN
module that has more than one gene of interest. The number of additional non-reductase genes in each module is indicated with the ‘(+) notation, such as (+24) for module #95.
Gene modules are color-coded according to their functional enrichment. The three regulators with the highest number of target EGRIN modules among the displayed modules were
included: PrdR, SigL and CD630_16930. (B) Pearson correlations calculated across the C. difficile transcriptional compendium [49] among the EGRIN modules in panel (A) showing
positive correlations among grd- and had-associated modules, but weak to negative associations with the prd-associated modules #84 and 95. (C) Biotapestry [70] visualization of
the inferred transcriptional network for the Stickland reductase systems. Regulators without common gene names are shown using the CD630 nomenclature (“CD630_#####").
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5. Contributions of Stickland metabolism on inter-species
interactions and in industrial applications

The Stickland pathways support high flux redox metabolism for
commensal and pathogenic Clostridia, particularly during early
colonization of anaerobic host ecosystems [23,54]. The amino acids
fermented in Stickland reductive pathways are notably abundant in
host-origin mucins [55], providing a source of reductive substrates
along the cephalocaudal axis of the gut. Differential recruitment of
the Stickland reductive systems in Clostridioides difficile and in the
protective Stickland-fermenting commensal, Paraclostridium bifer-
mentans modulate critical events early in the pathogen's coloni-
zation to impact host outcomes from infection [23,49]. Host
protection against C. difficile infection has also been reported with
the Stickland-fermenting Cluster XI species Clostridium hiranonis,
and Cluster XIVa species Clostridium scindens [56,57]. Preventive
and therapeutic considerations in C. difficile disease may thus
consider the effects of disease-triggering antibiotics that indis-
criminately target commensal Stickland fermenters, and mecha-
nisms to support their recovery, including via bacteriotherapeutic
re-introduction, modulation of dietary or host-origin fermentable
substrates, or to support other commensals to enhance their re-
covery within disrupted intestinal ecosystems [23,56]. Targeting of
the Stickland pathways may also be considered for other Clostridial
pathogens including C. botulinum and for associated applications in
food safety.

The Stickland metabolites from oxidative aromatic amino acids
have known bioactive properties in complex host-microbiota eco-
systems, including inhibition of other microbial species [58], and
neuroendocrine activities on host tissues [23,44—46]. In mouse
monocolonization studies with Paraclostridium bifermentans, for
instance, colonization increases gut concentrations of tryptamine
and tyramine [23], degradation products of tryptophan and tyro-
sine, respectively, which have known neuroendocrine effects on
gut functioning, heart rate, and in the central nervous system
[59,60].

Stickland fermenters support metabolic processes in other set-
tings, particularly in anoxic sediments and in methane and biofuel
production [61,62]. Stickland fermenters have capacity to produce
substrates of industrial use, such as 5-aminovalerate for polyamide
synthesis [63], and from broader input feedstocks than aerobic
strains may use. Many products of oxidative aromatic amino acid
fermentations produce substrates such as phenylacetate and
toluene that have broader chemical and industrial uses [64]. Thus,
defining the metabolic inputs and gene regulatory networks to
modulate induction of these systems has broad applicability in how
we interact with commensal and pathogenic Stickland species, and
their constructive use in diverse applications.
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