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5Present address: Ginkgo Bioworks, Boston, MA 02210, USA
6Present address: Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA 02111, USA
7Lead contact

*Correspondence: nitin.baliga@isbscience.org

https://doi.org/10.1016/j.chom.2021.09.008
SUMMARY
We present predictive models for comprehensive systems analysis of Clostridioides difficile, the etiology of
pseudomembranous colitis. By leveraging 151 published transcriptomes, we generated an EGRINmodel that
organizes 90% of C. difficile genes into a transcriptional regulatory network of 297 co-regulated modules,
implicating genes in sporulation, carbohydrate transport, and metabolism. By advancing a metabolic model
through addition and curation of metabolic reactions including nutrient uptake, we discovered 14 amino
acids, diverse carbohydrates, and 10metabolic genes as essential forC. difficile growth in the intestinal envi-
ronment. Finally, we developed a PRIME model to uncover how EGRIN-inferred combinatorial gene regula-
tion by transcription factors, such as CcpA and CodY, modulates essential metabolic processes to enable
C. difficile growth relative to commensal colonization. The C. difficile interactive web portal provides access
to these model resources to support collaborative systems-level studies of context-specific virulence
mechanisms in C. difficile.
INTRODUCTION

Clostridioides difficile, the etiology of pseudomembranous coli-

tis, causes more than 500,000 infections, 30,000 deaths, and

$5 billion per year in US healthcare costs (Lessa et al., 2015). In-

fections arise through a variety of conditions that modulate the

pathogen’s ability to colonize and expand in the gut. Antibiotic

ablation of the commensal microbiota alters nutrient states in in-

testinal environments due to lack of competition for nutrients

from host, dietary, or microbial origin. The pathogen modifies

its metabolism to respond to these altered states, which stimu-

lates subsequent cellular programs that can promote coloniza-

tion and growth. Stress and starvation conditions trigger

C. difficile sporulation, biofilm formation, and release of mucosal

damaging toxins (Aktories, 2011; Antunes et al., 2012; Saujet

et al., 2011).

Symptomatic infection requires the production of toxins from

the C. difficile pathogenicity locus (PaLoc), which includes the

genes tcdA, tcdB, and tcdE that respectively encode the A and

B toxins and holin involved in toxin export (Govind and Dupuy,

2012). The PaLoc also contains tcdR and tcdC sigma and anti-

sigma factors, respectively (Mani and Dupuy, 2001; Matamouros

et al., 2007). C. difficile elaborates toxin to extract nutrients from
Cell Host &
the host and promote spore shedding (Edwards et al., 2016a;

Martin-Verstraete et al., 2016; Walter et al., 2014). Regulation

of PaLoc expression occurs via a complex network of transcrip-

tion factors (TFs) and small molecule inputs, of which direct pri-

mary regulators have been described, but more complex and

combinatorial effects remain unclear (Martin-Verstraete et al.,

2016). Toxin production triggers host immune responses that

alter the redox state of the gut environment and can induce

C. difficile stress responses to cell wall, oxidative, and other

damaging stimuli (Bradshaw et al., 2017; Kint et al., 2017; Neu-

mann-Schaal et al., 2018; Woods et al., 2016). As per all mi-

crobes, C. difficile adapts to complex, dynamic environments

through changes in metabolism coordinated by a gene regulato-

ry network (GRN) (Brooks et al., 2011; Elena and Lenski, 2003).

However, the mechanisms by which the GRN and metabolic

pathways integrate to modulate C. difficile pathogenesis remain

ill-defined (McDonald et al., 2018; Vemuri et al., 2017).

The C. difficile 630 (CD630) genome encodes 4,018 genes,

with �309 candidate TFs (including sigma factors), 1,030 meta-

bolic genes, and 1,330 genes with unknown function (Monot

et al., 2011; Riedel et al., 2015). The clinical ATCC43255 strain

of C. difficile, used to capitulate symptomatic infections in

mouse models, encodes 4,117 genes and �327 putative TFs,
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of which�97% have orthologs in the CD630 strain (Girinathan et

al., 2021). To address questions regarding the broader systems-

level interplay among genes in colonization and infection,

we used computational modeling and network inference

algorithms to construct an environment and gene regulatory in-

fluence network (EGRIN) model for C. difficile. This model lever-

ages a compendium of 151 public transcriptomes that surveyed

responses of CD630 in diverse contexts. The EGRIN model

consists of modules of putatively co-regulated genes identified

based on their co-expression over subsets of conditions, enrich-

ment of functional associations, chromosomal proximity, and

shared cis-acting gene regulatory elements (GREs) within their

promoter regions. Further, using regression analysis, EGRIN

also captures the combinatorial regulation of genes within

each module as a function of the weighted influences of TFs.

The model supports a systems-level understanding of the infec-

tive capacity of this obligate anaerobe under different in vitro and

in vivo conditions.

In addition, we have advanced a metabolic network model of

C. difficile to understand how conditional regulation manifests

physiologically, by adding reactions and associated genes sup-

porting the exchange of nutrients required for growth within the

host. Integration of transcriptional and metabolic networks into

a phenotype of regulatory influences integrated with metabolism

and environment (PRIME) model supports prediction of condi-

tional fitness contribution of every TF and metabolic gene of

C. difficile (Immanuel et al., 2021). Analyses uncover TFs driving

essential adaptive responses in vivo. This analytic framework

provides a systems-level view of the transcriptional and meta-

bolic networks that coordinate C. difficile’s colonization, growth,

expression of toxin, and adaptions to changing environments

with host infection. Our models identified multiple TFs that coor-

dinate critical aspects within each of these components,

including contributions from PrdR, which regulates the Stickland

proline and glycine reductase systems and other energy-gener-

ating pathways, and Rex, a regulator modulating energy balance

in C. difficile (Bouillaut et al., 2013, 2019). We successfully vali-

dated PRIME-identified enhanced epistasis between ccpA and

codY in the presence of a protective gut commensal. These find-

ings refine the context and roles of these and other regulators in

C. difficile virulence and provide specific targets of vulnerability

for model-informed interventions against this pathogen. The

compiled datasets, algorithms, and models can be explored

interactively through a community-wide web resource at http://

networks.systemsbiology.net/cdiff-portal/.

RESULTS

Reconstruction of the environment and gene regulatory
influence network (EGRIN) model for C. difficile 630
To investigate C. difficile’s transcriptionally driven adaptive stra-

tegies, we compiled 151 public transcriptomes from 11 indepen-

dent studies on CD630 (Table S1). This compendium captures

diverse transcriptional responses of C. difficile to commensals,

in vitro and in vivo responses to nutrient conditions, and conse-

quences of TF deletions. The transcriptome compendium

together with functional associations information was analyzed

with a suite of network inference tools (i.e., cMonkey2 and the In-

ferelator) to infer an EGRIN model for C. difficile (Figure 1A;
2 Cell Host & Microbe 29, 1–15, November 10, 2021
Arrieta-Ortiz et al., 2015; Reiss et al., 2015). The resulting EGRIN

model organized 3,995 of 4,018 CD630 genes into 406 gene

modules and inferred module regulation by 138 of 309 genomi-

cally identified TFs that putatively act through GREs discovered

within gene and operon promoters. Among the Inferelator impli-

cated regulatory networks, 255 modules were controlled by

more than one TF, and 120 were regulated by more than two

TFs (Figure S1). The TF module assignments support subse-

quent hypothesis-driven design of ChIP-seq and TF-deletion ex-

periments to validate the regulatory network architecture under

physiologically relevant environments.

Residual scores reflect the coherence of gene co-expression

patterns and evaluated the quality of modules within the EGRIN

model (Reiss et al., 2006). The lower the residual score, the

higher the quality of the module. Using an empirical approach,

a residual cutoff of 0.55 identified a functionally meaningful set

of 297 high-quality modules (73% of the total 406 modules)

based on the relative enrichment of related functionswithinmod-

ules that passed filtering (Figure 1B). This threshold was similar

to the threshold used to identify high-quality EGRIN modules

for Mycobacterium tuberculosis (Peterson et al., 2014). The

high-quality modules captured transcriptional regulation of

3,617 genes (90%) in CD630, with average membership of 20

genes per module (Figures 1C and 1D). These metrics were

consistent with models developed for other organisms (Brooks

et al., 2014; Peterson et al., 2014), a remarkable finding given

that the transcriptional dataset used to construct the C. difficile

model was less than 10% the size of compendia used to

construct models for other species.

Validation of the modular architecture and regulatory
mechanisms uncovered by the C. difficile EGRIN model
We tested the accuracy of the EGRIN model to reconstruct previ-

ously characterized regulons and recapitulate key aspects of

C. difficile biology. We performed functional enrichment analysis

using an updated annotation of C. difficile genome (Girinathan

et al., 2021). This analysis identified 93 of 297 modules (31%)

with significant enrichment of functionally related genes in 45

pathways (hypergeometric test adjusted p value% 0.05). Among

these pathways, 14 were overrepresented in three or more mod-

ules (Figure 2A), highlighting the capacity of the model to discover

conditional partitioning of cellular processes.Wealso investigated

whether the EGRINmodel identified known regulatory interactions

between TFs and their target genes. We compiled regulons (i.e.,

target genes) of 13 characterized TFs in C. difficile, representing

a network of 1,349 TF-gene interactions (Table S2). Notably, a to-

tal of 57 modules (19% of all high-quality modules) were signifi-

cantly enriched with nine of these TF regulons (Figure 2B). The

EGRIN model recapitulated 514 of the 1,208 (42.5%) previously

characterized interactions, a value consistent with the EGRIN

recall rate for M. tuberculosis (41%–49%) (Peterson et al., 2014).

The poor recall of the remaining four regulons (141 regulatory in-

teractions) could be due to underrepresentation of expression

data from conditions inwhich these regulons are active. This anal-

ysis also uncovered combinatorial regulation of genes across 19

modules (i.e., enrichedwithmore than one TF regulon). Consistent

with the known hierarchical scheme for regulation of sporulation

(Saujet et al., 2013), Spo0A putatively influenced expression of

161 genes across at least eight modules in combination with

http://networks.systemsbiology.net/cdiff-portal/biclusters
http://networks.systemsbiology.net/cdiff-portal/biclusters
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Figure 1. Inference pipeline and general properties of the resulting EGRIN model of C. difficile

(A) Framework used to build the EGRIN model.

(B) Distribution of residual values for the 406 detected co-regulated gene modules. 297 modules with residual % 0.55 (shown in purple) were labeled as high

quality.

(C) Distribution of gene count for the high-quality gene modules.

(D) Coverage of all genes (4,018), the subset of metabolic genes (1,030), and TFs (309) by EGRIN modules for different residual thresholds. The red dashed line

indicates the 0.55 residual cutoff.
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sigma factors implicated in sporulation (e.g., SigE). EGRIN also

predicted CcpA contributions in six modules in combination

with CodY, PrdR, and SigL, illustrating the complexity of modular

transcriptional regulation in C. difficile. EGRIN detected gene co-

regulation within and across functionally related operons. For

example, module #152, enriched with the SigD regulon, contains

16 genes among four operons including the flagellar operon

flgG1G-fliMN-CD630_02720-htpG, and pyrBKDE, CD630_30270-

CD630_30280-malY-CD630_30300, and CD630_32430-prdA

(Figure S2A).

Gene clustering in EGRIN is constrained by the de novo dis-

covery of conserved GRE(s) within promoters to cluster genes

that are co-regulated, and not just co-expressed. The GREs

represent putative TF-binding sites that are independently impli-

cated by the Inferelator and protein-DNA interaction maps as

regulators of genes within the same module (Bonneau et al.,

2007; Brooks et al., 2014; Peterson et al., 2014). For instance, In-

ferelator regression-based analysis assigned 138 TFs as puta-

tive regulators of the EGRINmodules, hypothesizing TF-GRE as-

sociations. While the paucity of characterized binding sites in

C. difficile limited validation of TF-GRE mappings, the predicted

context-specific TF regulation of genes within modules can
guide ChIP-seq experiments to support validation. Notably, we

determined that the GREs within promoters of genes in modules

#182 and #308 recapitulated the previously characterized

consensus binding sequences for CodY and SigL (Figures 2C,

2D, S2B, and S2C) (Dineen et al., 2007; Soutourina et al., 2020).

C. difficile’s EGRINmodel uncovers regulatory networks
for the pathogenicity locus
We evaluated EGRIN capacity to recall known mechanisms of

PaLoc regulation and provide additional information regarding

complex regulatory effects on toxin production. The EGRIN

model captured certain previously described effects of CodY

on toxin gene expression (Figure 2E), as shown in module

#182, which is enriched with CodY targets including tcdA. In

agreement with the EGRIN-predicted CodY regulation of PaLoc

genes, genes encoding the toxin tcdA and its regulator tcdR

were significantly overexpressed upon deletion of codY (Fig-

ure 2G). Interestingly, tcdB (which is not part of module #182)

was also upregulated in the codY mutant, suggesting that this

effect might be an indirect consequence of disrupted CodY

regulation of tcdR (Figure 2G). Lower affinity of CodY for the

tcdA promoter has been proposed (Dineen et al., 2007).
Cell Host & Microbe 29, 1–15, November 10, 2021 3
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Figure 2. The EGRIN model of C. difficile recapitulates known biology of the pathogen

(A) Co-regulated gene modules are enriched with functional terms derived from expert curated annotation of the C. difficile genome (Girinathan et al., 2021). The

pie chart shows terms over-represented in three or more modules. Number of modules associated with each functional term is shown in parenthesis.

(B) Enriched EGRIN modules among nine (out of 13) manually defined and experimentally supported TF regulons (Table S2).

(C) EGRIN identified the known DNA binding motif of CodY (Dineen et al., 2010).

(legend continued on next page)
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A B Figure 3. The EGRIN model offers insights

on potential functions of uncharacterized

genes of C. difficile

Hypotheses regarding the functions of 48 un-

characterized genes were generated based on

their membership in high-quality EGRIN modules

significantly enriched with specific functional

terms.

(A) Barplot with the number of unknown genes

associated with each functional term (from the

C. difficile genome annotation in Girinathan et al.,

2021).

(B) The involvement of 10 uncharacterized genes in

sporulation was supported by their significant

downregulation (with respect to a wild-type con-

trol) in single deletion strains of sporulation regu-

lators (Table S1). Boxes cover the 25th–75th

percentile range (median is indicated by horizontal

black line).
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However, the presence of the CodY motif in most members of

module #182, including tcdA (purple font in Figure 2E) suggests

direct influence of CodY on tcdA. The EGRIN model also identi-

fied previously reported connections between sporulation and

toxin production (Underwood et al., 2009). The tcdB toxin gene

was assigned to module #397, which was significantly enriched

with genes controlled by Spo0A, the master regulator of sporu-

lation (Figure 2F). Additional members of the PaLoc were as-

signed to other modules, supporting the presence of multiple

condition-dependent promoters within the PaLoc (Table S3).

Assignment of putative functions to genes in EGRIN
modules
Approximately 33% of gene features in the CD630 genome have

unknown functions. The C. difficile EGRIN model provides a

resource to define putative functions of uncharacterized genes

per functional associations among co-regulated genes (i.e.,

guilt-by-association) (Wolfe et al., 2005). We predicted functions

for 48 uncharacterized genes by mining functional enrichment of

modules under different experimental conditions (Table S4),

involving 13 functional categories such as ‘‘sporulation’’ and

‘‘other sugar-family transporters’’ (Figure 3A).

Ten genes were assigned sporulation-related functions based

on their presence in the modules #206 and #251 (Figure 3B).

Module #206 includes 7 stage-III sporulation genes and 2

stage-IV sporulation genes (Figure S3A). Module #251 includes

the sporulation-associated sigma factors SigG andSigE (located

in the same operon) (Figure S3B). Decreased expression of the

10 genes upon deletion of sporulation sigma factors supported

their role in sporulation. Seven genes associated with mother
(D) EGRIN also identified the known DNA binding motif of SigL (Soutourina et al.

(E) The EGRIN model recapitulated the previously reported influence of CodY on

regulon and contains a GRE (shown in C) similar to the experimentally determine

(F) The EGRINmodel captured the interaction between toxin expression and sporu

by sporulation-related transcriptional regulators.

(G) Expression profiles of tcdAB and tcdR (positive regulator of the PaLoc). Log2 ra

grouped by condition blocks. Boxes cover the 25th–75th percentile range (media
cell-specific roles based on their decreased expression in sigE

(six genes) and sigK (one gene) deletion strains. Two additional

genes were downregulated in a sigG deletion strain, suggesting

functions in the forespore. Notably, Tn-seq studies for gene es-

sentiality in C. difficile identified 7 of the 10 genes as required for

sporulation (Dembek et al., 2015) (Figures S3A and S3B).

Module #48 contains two adjacent operons (4hbd-cat2-

CD630_23400-abfD and sucD-cat1) associated with aminobuta-

noate degradation (Figure S3C). CodY and PrdR regulate both

operons. Hence, we predicted that the 4 uncharacterized genes

in this module may also support amino acid metabolism (Table

S4). In support of this hypothesis, CD630_08760 and

CD630_08780 are both differentially expressed upon codY dele-

tion. Recent studies suggest that CD630_ 08760may function as

a tyrosine transporter per its homology to the CodY-regulated

neighbor gene, CD630_08730 (Bradshaw et al., 2019). De-

creases in tyrosine uptake and Stickland fermentation in clinical

isolates lacking CD630_08760 and CD630_08780 further sup-

port this hypothesis (Steglich et al., 2018). Altogether, we as-

signed 48 genes to functions in sporulation (10 genes), sugar

transport (12 genes), and others. These examples illustrate use

of context-specific co-regulation of genes in EGRIN to predict

functions for uncharacterized genes. EGRIN can also aid in

designing experiments (e.g., gene perturbations) to validate

these predictions within relevant environmental contexts.

EGRIN uncovers differentially active regulatory
networks during in vivo infection
We investigated the differential activity of EGRIN modules

across conditions (Table S1) to discover regulatory mechanisms
, 2020).

tcdA expression. The module #182 contains tcdA, it is enriched with the CodY

d CodY motif.

lation via module #397 that contains tcdB and is enriched with genes regulated

tios were computed with respect to dataset-specific references (Table S1) and

n indicated by horizontal black line).
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Figure 4. The EGRIN model identifies TFs driving the in vivo response of C. difficile when interacting with gut commensals

(A) Expression profile of module #48 across the transcriptional compendium used to build EGRIN. Each box represents log2 fold-change (with respect to a

dataset-specific reference, Table S1) of members of the module in a single transcriptome. Transcriptomes are color coded according to their membership in the

11 condition blocks in the compendium and ranked based on their median log2 fold-change. The ‘‘early infection’’ condition block is statistically overrepresented

in the 20% of highest (indicated with the 80% dashed line) transcriptomes median log2 fold-change.

(legend continued on next page)
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that drive C. difficile’s colonization and adaption to in vivo envi-

ronments (Janoir et al., 2013; Janvilisri et al., 2010). Analyses

identified 680 genes across 43 modules that were significantly

upregulated in vivo, while 1,325 genes across 82 modules

were significantly downregulated (STAR Methods; Data S1).

Notably, module #48 (described above) was upregulated during

early infection (Figure 4A). In contrast, module #158 was upregu-

lated at later stages of infection (Figure 4B). This module is

enriched for putative PrdR and EutV co-regulated ethanolamine

utilization genes and contains eut operons that encode ethanol-

amine fermentative enzymes (Nawrocki et al., 2018) (Figure S3D).

Ethanolamine is prevalent within gut secretions and is also

released from damaged host tissues, providing a carbon and ni-

trogen source for C. difficile. The predicted co-regulation of this

genemodule by PrdR (Pearson correlation =�0.29 and p value =

9.7e�04) suggests additional in vivo functions of PrdR to opti-

mize C. difficile metabolism in gut environments. The negative

relation between prdR expression and module #158 expression

indicates that enhanced utilization of ethanolamine in vivo may

contribute to the decreased survival observed in hamsters in-

fected with a prdR deletion strain (Bouillaut et al., 2019).

With capacity to identify intestinal contributions to C. difficile

responses, we leveraged the EGRIN model to analyze

commensal modulation of the pathogen’s virulence, using tran-

scriptomic datasets from gnotobiotic mice monocolonized with

the mouse-infective strain C. difficile ATCC43255 or co-colo-

nized withC. difficile and the protective gut commensal species

Paraclostridium bifermentans, or infection-worsening species

Clostridium sardiniense (Girinathan et al., 2021). These data-

sets were not used in model construction. By mapping sets of

differentially expressed genes into the EGRIN model we

uncovered differential regulation of modules across 18 cellular

processes and their associated TFs in the presence of

P. bifermentans or C. sardiniense (Figures 4C–4F).

One Spo0A-enriched module (module #385) was upregulated

by 24 h of infection inmonocolonizedmice (Figure 4C). The same

modulewas upregulated by 24 h of infection inC. sardiniense co-

colonized mice, in addition to three other modules enriched with

sporulation genes and the Spo0A regulon (modules #82, #206,

and #261 in Figure 4D). On the other hand, no sporulation-en-

riched modules were detected by 24 h of infection in

P. bifermentans co-colonized mice (Figure 4E). Comparison of

C. sardiniense co-colonized mice and P. bifermentans co-colo-

nized mice discovered four sporulation-enriched modules (mod-

ules #82, #206, #242, and #261) in the virulent context with

C. sardiniense (Figure 4F), a finding confirmed by higher spore

biomass of C. difficile when co-colonized with C. sardiniense

(Girinathan et al., 2021). This analysis suggested that the
(B) Expression profile of module #158. Only one condition block (‘‘in vivo versus

(C) EGRIN modules enriched with genes differentially expressed (absolute log2 fol

24 versus 20 h of infection. x axis shows module IDs. Modules were annotated a

regulons (Table S2).

(D) Enriched EGRIN modules in C. sardiniense+C. difficile co-colonized mice vers

only abbreviations of functional terms not shown in other panels are displayed. M

‘‘Spo0A/�.’’

(E) Enriched EGRIN modules in P. bifermentans+C. difficile co-colonized mice ve

(F) Enriched EGRIN modules in P. bifermentans+C. difficile co-colonized mice v

comparisons, only modules with absolute median fold-changesR 0.5 and enrich

cover the 25th-75th percentile range (with medians shown as horizontal lines).
sporulation pathway is an indicator of C. difficile disease, rein-

forcing the Spo0A-mediated link between sporulation and toxin

production recapitulated by the model (Figure 2F).

Module #319 contains genes associated with electron trans-

port via Rnf ferredoxin systems, and steps in glycolytic, buta-

noate, and succinate metabolism (Figure S3E). This module

was consistently downregulated in P. bifermentans co-colonized

mice (Figure 4E), while it was upregulated in C. sardiniense co-

colonized mice (Figure 4F). These findings highlight activation

of multiple co-regulated energy-generating pathways in hyper-

virulent states of C. difficile infection, which may contribute to

virulence and the pathogen’s responses to changing redox

states from host inflammatory responses. Remarkably, the

EGRIN model identified the NAD+/NADH sensing regulator Rex

as a potential repressor of module #319 (Inferelator regression

coefficient = �0.075). Hence, the observed downregulation of

module #319 in P. bifermentans co-colonized mice may indicate

increased Rex activity in C. difficile from an associated nutrient

depleted state less able to support its growth (Girinathan et

al., 2021).

Four modules enriched with SigD target genes encoding

flagellar components (modules #184, #295, #296, and #358)

were downregulated in monocolonized mice at 24 h (Figure 4C),

indicating repression of motility to divert cellular resources to-

ward pathogenesis. This finding is supported by increased viru-

lence of C. difficile strains lacking a functional flagellum (Dingle

et al., 2011). In summary, EGRIN analyses generated mecha-

nistic insights and hypotheses for the interplay of specific genes

and TFs for sporulation, energy production, and flagella synthe-

sis that might underlie the enhanced and subdued virulence of

C. difficile in different contexts.

Metabolic network analyses elucidate in vivo metabolic
adaptations of C. difficile
To investigate how specific genes within C. difficile contribute to

in vivo phenotypes needed to develop symptomatic infection, we

extended a previously developed icdf834 metabolic model for

CD630 (Kashaf et al., 2017; Larocque et al., 2014). We added 4

genes for molybdenum utilization and cofactor synthesis and

exchange reactions to account for C. difficile capacity to utilize

mannitol, fructose, sorbitol, raffinose, succinate, and butanoate

(Janoir et al., 2013; Theriot et al., 2014). We refer to this updated

model as icdf836 (Figure 5A). The model derived for CD630 was

projected onto homologous genes and associated reactions in

C. difficile ATCC43255. In total, 766 out of 836 genes (92%) in

the icdf836modelwereconservedacross the twostrains (DataS2).

We validated the completeness and accuracy of this model by

confirming its ability to predict biomass production in three
in vitro’’) was found in the 20% of highest fold-change.

d-change > 1 and adjusted p value < 0.05) inC. difficilemonocolonized mice at

ccording to their functional enrichment and overlap with manually curated TF

us C. difficilemonocolonized mice at 24 h of infection. Due to space constraint,

odules enriched with Spo0A, and sporulation sigma factors are indicated with

rsus C. difficile monocolonized mice at 24-h of infection.

ersus C. sardiniense+C. difficile co-colonized mice at 24 h of infection. For all

ed with TF regulons or functional categories are displayed. In all panels, boxes
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Figure 5. Metabolic model predictions

(A) Details of the in vitrometabolic models (icdf834 and icdf836) of C. difficile 630 (Kashaf et al., 2017). General properties of the icdf836 model (generated in this

study) after adding the required in vivo exchanges, transports and reactions are shown. The ‘‘*’’ indicates that there were two duplicated genes in the icdf834

model, reducing the total number of genes to 832.

(B) ROC curves showing the accuracy of icdf834- and icdf836-predicted gene essentiality in nutrient-rich medium evaluated against a Tn-seq functional screen

(Dembek et al., 2015).

(C) Details of the in vivo (monocolonized) model derived using the GIMME algorithm (Becker and Palsson, 2008) on the icdf836 model where only the active

reactions are included from in vivo transcriptome.

(D) Venn diagram showing the number of model-predicted essential genes for growth ofC. difficile 630 in vitro versus in vivo. Only genes predicted as essential for

in vivo (monocolonized) growth were considered in the analysis.
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different growth media compositions: (1) minimal medium, (2)

basal defined medium, and (3) complex, nutrient-rich medium

(STAR Methods). The model accurately predicted C. difficile’s

requirements for six amino acids: cysteine, leucine, isoleucine,

proline, tryptophan, and valine (Karasawa et al., 1995). Using a

Tn-seq generated genome-wide fitness screen (Dembek et al.,

2015), we tested the accuracy of model-predicted importance

of each gene in supporting the growth of C. difficile in nutrient-

rich conditions using a receiver-operator characteristic (ROC)

curve. The area under the ROC curves for the icdf834 and

icdf836 models were 0.763 (p value = 0.015) and 0.764 (p value =

0.029), respectively (Figure 5B), indicating that both models

significantly outperformed a random model.

We next extended and applied the model to predict C. difficile

behaviors and gene essentiality in vivo. C. difficile transcrip-

tomes from specifically colonized gnotobiotic mice (Girinathan

et al., 2021) were input into the GIMME algorithm (Becker and

Palsson, 2008). Per the in vivo gene expression, we determined

that 712 of the 1,273 reactions in the icdf836 model were active

and likely to be important for colonization and growth over the

course of monocolonized infection (Figure 5C). The model

made two notable predictions in vivo regarding the pathogen’s

metabolism. First, the icdf836 model predicted 14 amino acids

to be required for C. difficile growth in vivo, in contrast to the 6
8 Cell Host & Microbe 29, 1–15, November 10, 2021
required in vitro (Data S2). These amino acids included the domi-

nant Stickland-fermented amino acids that were also required

in vitro (e.g., proline and branched-chain amino acids) and addi-

tional amino acids such as arginine, glutamate, lysine, and

methionine, which also function in cell wall synthesis, nitrogen

cycling, and responses to oxidative stress. Second, the model-

predicted C. difficile’s switch from preferential use of glucose

in vitro in complex media, to simultaneous utilization in vivo of

diverse carbohydrate sources including fructose, galactose,

maltose, and sugar alcohols (e.g., mannitol and sorbitol) to

promote colonization and growth (Data S2). Seven of these car-

bohydrate sources were described in other mouse infection

studies illustrating support for these findings across C. difficile

strains, and in germ-free and conventional mouse models

(Data S2) (Janoir et al., 2013; Jenior et al., 2017; Theriot

et al., 2014).

Integration of EGRIN and metabolic model reveals the
interplay of regulation andmetabolism duringC. difficile

in vivo adaptations
To evaluate how transcriptional regulation modulates C. difficile

metabolic and physiological responses, we integrated the tran-

scriptional and metabolic networks into a PRIME model. PRIME

evaluates context-specific TF essentiality (Immanuel et al., 2021).
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Figure 6. PRIME-estimated metabolic fluxes and gene essentiality in mono- and P. bifermentans co-colonized conditions

(A) BioTapestry visualization of in vivo gene regulatory network for C. difficile 630: 79 essential genes with Inferelator-predicted transcriptional regulators are shown.

The genes and regulators shown as five-digit numbers represent the nomenclature preceded by ‘‘CD630_.’’ All regulators with less than two essential targets were

combined in the ‘‘others’’ meta-regulator. The ‘‘#’’ symbol indicates the 10 genes predicted as essential in the monocolonized condition but not essential in vitro.

(B) PRIME-estimated metabolic fluxes for each reaction in the mono- and co-colonized conditions. Z score transformation was independently applied to each

reaction and condition. The ‘‘*’’ symbol indicates that there is some contention about the existence of this pathway in C. difficile, and it may need to be revised in

future models.
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We first inferred a transcriptional network of 1,401 TF-metabolic

gene interactions, using the transcriptome compendium compiled

for theCD630 strain. This step inferred combinatorial andweighted

regulatory influencesof215TFson731metabolicgenesas input for

PRIME to model downstream consequences on metabolic flux

through associated enzymatic reactions. We used the CD630

models to generate orthologous models for ATCC43255 by

leveraging the high degree of conservation of TFs (97%) andmeta-

bolic genes (92%) between the two strains. Finally, we generated

condition-specific PRIME models for ATCC43255 using transcrip-

tomic data (for genes conserved in both strains) from mono- and

P. bifermentans co-colonized mice. This approach uncovered

how CcpA and CodY act synergistically during in vivo adaptation

of ATCC43255, especially in the presence of P. bifermentans.

Thus, the model projection strategy is useful to study evolutionary

conserved adaptive mechanisms across strains of C. difficile.

However, this strategy will not be useful to study strain-specific

phenotypes, which would require strain-specific network models.

Comparative analysis of datasets and network models across

strains will be ultimately needed to elucidate how genomic differ-

ences across strains manifest in distinct clinical phenotypes and

outcomes.
PRIME predicted conditionally essential metabolic genes and

networks that promote C. difficile’s growth in vivo (i.e., in mono-

colonized mice). In simulating the consequences of single gene

deletions, PRIME predicted that pathogen growth inmonocolon-

izedmousewould decrease byR 65%with individual knockouts

of 10 genes involved in one-carbon cycling reactions, and nucle-

otide and central carbohydrate metabolism (Figures 5D and 6A;

Table S5). Thesemetabolic pathways represent potential targets

that drive C. difficile’s colonization and other factors required

to develop symptomatic infections. PRIME also predicted

C. difficile’s shift from carbohydrate utilization toward amino

acid utilizing pathways in vivo, per the enhanced set of 14 amino

acids, including the preferred Stickland-related amino acids

(leucine and proline) known to support metabolism and growth

(Janoir et al., 2013; Jenior et al., 2017; Theriot et al., 2014).

Many of these amino acids show high abundance within the

gut lumen in gnotobiotic and in antibiotic-treated conventional

mice that enhance C. difficile capacity to colonize and expand

(Girinathan et al., 2021). Using transcriptome profiles of

C. difficile from P. bifermentans co-colonized mice, PRIME pre-

dicted that P. bifermentans inhibits C. difficile biomass at least

3.6-fold, in agreement with the 3.2-fold inhibition observed
Cell Host & Microbe 29, 1–15, November 10, 2021 9



Table 1. Experimental validation of PRIME-predicted synergistic epistasis between CcpA and CodY

TF

KO strain

Monocolonized PBI co-colonized

PRIME prediction Experiment PRIME prediction Experiment

Relative

growth

(Log10)
a Essentialityb

Relative growth (Log10)
a,c

Essentialityb

Relative

growth

(Log10)
a Essentialityb

Relative growth (Log10)
a,c

Essentialityb24 h 24 h

DccpA �0.716 essential 0.609* non-essential �0.144 non-essential 0.315# non-essential

DcodY �0.482 essential �1.181** essential �0.176 non-essential 0.527# non-essential

DccpA

DcodY

�1.198 essential �1.299*** essential �0.885 Essential �1.708*** essential

aRelative growth with respect to wild-type genotype.
bGene deletions that reduce C. difficile growth by more than 65% (i.e., log10(relative growth) < �0.456) were labeled as essential.
cT test p values R 0.05 are indicated with the ‘‘#’’ symbol and were considered not significant. The ‘‘*,’’ ‘‘**,’’ and ‘‘***’’ symbols indicate p values <

0.05, < 0.01, and < 0.001, respectively.
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experimentally (Girinathan et al., 2021). PRIME also predicted

that the growth inhibition is likely a consequence of

P. bifermentans scavenging essential nutrients, including

glucose and Stickland-fermentable amino acids, which drives

metabolic remodeling in the pathogen by reducing flux through

reactions required in vivo for biomass production (Figure 6;

Data S2).

A key advantage of PRIME is its extended capability to evaluate

TF essentiality. We evaluated PRIME performance by generating

ROC curves for gene essentiality predictions. The area under

the ROC curve was comparable for the icdf834 and icdf836

models (Figure S4). Given CcpA and CodY influence on toxin pro-

duction and metabolic genes (Antunes et al., 2012; Dineen et al.,

2010), we leveraged PRIME to predict the phenotypic conse-

quences of single and double knockouts in ccpA and codY in

mono- and P. bifermentans co-colonized mice (Table 1). PRIME

predicted that three genes regulated by CcpA (pgsA, ribC, and

CD630_02440)were essential in themono- and co-colonizedcon-

ditions (Figure 6A). Similarly, PRIME predicted that three genes

regulated by CodY (drm, glmM, guaA) were essential in mono-

and co-colonized mice. One additional gene (pupG) was only

essential in monocolonized mice (Figure 6A). Strikingly, PRIME

predicted the double knockout of CcpA and CodY to synergisti-

cally inhibit C. difficile growth (as compared with single TF knock-

outs), especially in P. bifermentans co-colonized mice. Five of the

six PRIMEessentiality predictionswere validated in germ-free and

P. bifermentans-colonized mice infected with wild-type or mutant

strains of C. difficile (Table 1; Figure S5). PRIME also offered

mechanistic insights into the conditional phenotypes of

C. difficile by revealing how the single and double knockouts of

ccpA and codY remodeled the metabolic state of the pathogen

in mono- and co-colonized contexts (Figure 6B). For example, re-

actions associated with the one-carbon pool by the folate

pathway were inactive in the co-colonized condition but were

differentially affected by the gene knockouts in the monocolon-

ized mouse. PRIME also predicted that flux for reactions associ-

ated with teichoic acid biosynthesis and terpenoid backbone

biosynthesis was invariable in the monocolonized mice but sensi-

tive to gene deletions in co-colonizedmice. In summary, by delin-

eating how transcriptional regulation propagates throughout the

metabolic network to manifest in fitness, PRIME offers the capa-

bility to investigate how C. difficile adapts to complex biotic and

abiotic changes within the in vivo environment.
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The C. difficile web portal, a resource for the C. difficile

community
We have released the C. difficile web portal (http://networks.

systemsbiology.net/cdiff-portal/) to provide a discovery and

collaboration gateway for the C. difficile scientific community.

The portal aims to accelerate the advancement of the science

and understanding of C. difficile biology, and the relationships

among gene regulation, metabolism, and virulence. Within the

portal, users can access publicly available datasets (e.g., tran-

scriptional compendia), models, software, and supporting re-

sources. The portal includes information on more than 4,000

C. difficile genes, 1,273 metabolic reactions, and 406 EGRIN

modules. The EGRIN model can be interactively explored and

queriedwith gene set enrichment analysis to elucidate regulatory

networks that may be relevant for a user-specified group of

genes. Genes can be explored in the context of genome annota-

tions, expression profiles, regulatory and metabolic member-

ship, and other functional genomic information across data-

bases including COG, Uniprot, and PATRIC (Consortium, 2017;

Galperin et al., 2015; Wattam et al., 2014). The portal provides

access to detailed information on (1) genes, (2) predicted gene

modules, and (3) metabolic reactions (Figure S6A).

Each module page includes summary statistics for the mod-

ule, context-specific differential activity patterns, GREs, TF

regulatory influences, enrichment of biological functions and

pathways, and information on each module member gene.

The module pages are structured to facilitate the assessment

of the quality and statistical significance of the modules and

highlight functional connections, while allowing users to imple-

ment their own filters (e.g., regression coefficient and adjusted

p value thresholds) (Figure S6B). The portal includes a table of

metabolic reactions with details of each reaction, associated

genes, metabolites, and sub-systems. Metabolites and sub-

systems are defined as taxonomic vocabularies that collect

and group associated reactions to identify related metabolic

processes. In addition, the portal provides access to algo-

rithms, software, and data and will include information about

animal models, strains, and other C. difficile-relevant commu-

nity resources. As additional datasets are communicated,

model predictions and tools will be successively updated to

support systems-level analyses and assist in hypothesis gener-

ation in C. difficile biology and to enable tangible clinical

interventions.

http://networks.systemsbiology.net/cdiff-portal/
http://networks.systemsbiology.net/cdiff-portal/
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DISCUSSION

C. difficile is unique among gut anaerobes in possessing a

diverse carbon source metabolism to enable colonization and

growth in gut environments. These systems further exist within

a complex network of gene regulatory modules that modulate

growth, energy balance, and stress responses. Capacity to un-

derstand these systems-level integration points has remained

challenging in the absence of robust systems biology models

to infer C. difficile’s in vivo behaviors. We acknowledge the

detailed studies from multiple groups over prior decades that

provided a critical mass of information on C. difficile’s nutrient

and gene-level responses to support development of an EGRIN

model for a gut anaerobe and toxigenic species. We emphasize

that this information, the most for any obligate anaerobe, still

represents a small fraction of that normally used to develop thor-

ough EGRIN models. Despite this caveat, the EGRIN model was

effective in uncovering functional and mechanistic insights into

regulatory and metabolic responses of the pathogen in contexts

not covered by the training transcriptome dataset—both in vitro

and in vivo (i.e., in the presence of commensals). While this dem-

onstrates the utility of the EGRINmodel to analyze new transcrip-

tomes that were not used for training (Figures 4C–4F and S7), it

also underscores the potential for further improving the model

with new data and experimental validations. In the future, we

will improve model coverage and performance using an

ensemble modeling approach with a larger compendium of tran-

scriptomes from new infection- and treatment-relevant contexts

to identify condition-specific regulatory networks with probabi-

listic association across genes, environmental contexts, and

regulatory mechanisms (Brooks et al., 2014). Similarly, perfor-

mance for the icdf834 model (extended into the icdf836 model

in this study) in predicting gene essentiality in an in vitro context

was similar to that of a new metabolic model for C. difficile

(iCN900, Norsigian et al. 2020), published during the develop-

ment of the PRIME model, with area under the ROC curve of

0.76 and 0.7, respectively. We will periodically update both

EGRIN and PRIME models to incorporate new transcriptomes

and improved metabolic models. The models will also be refined

using new tools for genetically manipulating C. difficile strains,

including ATCC43255 (Peltier et al., 2020), which will enable tar-

geted validations of regulatory influences of TFs and GREs on

critical aspects of its metabolism, growth, and virulence.

The C. difficile EGRIN model enables a number of predictions

relevant to in vivo disease. For example, PrdR, a regulator of the

Stickland proline reductase (prdABDEF) and other genes, has

long been hypothesized to have a role in PaLoc gene expression

through as-yet unknown mechanisms. EGRIN identified com-

bined PrdR and CodY effects on tcdA gene expression (sug-

gested by the enrichment of module #182 with both PrdR and

CodY regulons), providing a regulatory integration point and

broader set of co-regulated genes to support further experi-

ments. Biclustering also identified interactions between

Spo0A, another regulator hypothesized to modulate PaLoc

expression, and tcdB expression in module #397. The identified

modules, associated genes and regulators provide information

to support further experimental investigation of combinatorial ef-

fects of these and other regulators identified in PaLoc gene-

associated modules. The EGRIN model also predicted PrdR
has an important role in vivo based on its systems-level effects

on critical metabolic and regulatory networks supporting coloni-

zation, metabolism, and growth. These PrdR-mediated interac-

tions involve multiple direct and indirect effects upon other

modules (e.g., module #48 and module #158) and aspects of

the pathogen’s metabolism and gene regulation.

The current model did not identify all previously characterized

regulators of PaLoc expression, including SigD regulation of

TcdR, and effects of other more recently identified PaLoc regu-

lators such as RstA and LexA, for which limited datasets exist

from wild-type or mutant strains cultured under relevant nutri-

tional and other environmental contexts. Additional datasets

with isogenic regulator mutants will likely improve predictions

while further validating previously defined biologic effects. None-

theless, as shown with our in vivo analyses, application of the

EGRIN and PRIME models to new datasets offers key insights

into causal mechanistic drivers of adaptive strategies of the

pathogen. Notably, the CD630 model was trained on <10% of

transcriptome information and <2% of ChIP-seq datasets used

for constructing EGRIN models for other organisms. Yet, both

models demonstrated high levels of accuracy in recapitulating

previously characterized regulatory and metabolic phenomena

associated with C. difficile growth in vitro and mouse infection

and colonization. Thus, the predictive capabilities of EGRIN

and PRIME serve as formative tools to uncover biological in-

sights through hypothesis-driven design of experiments to char-

acterize regulatory andmetabolic mechanisms that are essential

for infection and colonization by C. difficile (e.g., CD630_16930

and CD630_17820 are putative regulators of PRIME-predicted

essential genes; Figure 6A). This model-driven design of experi-

ments will iteratively improve the coverage and accuracy of reg-

ulatory and metabolic mechanisms modeled by EGRIN and

PRIME. We can also improve the models significantly by ex-

panding the datasets with experiments that probe transcriptional

and metabolic responses of the pathogen in infection-, host-,

and treatment-relevant contexts that are poorly represented in

the current compendium of transcriptomes. Some of the poorly

represented conditions in the transcriptome compendium

include in vivo responses of C. difficile to antibiotic treatment,

as well as its responses to host-relevant conditions such as

oxidative stress, acidic pH, and nutrient starvation (Edwards

et al., 2016b). Thus, EGRIN and PRIME will serve as a commu-

nity-wide resource for model-driven experimentation that will

iteratively advance systems-level understanding of adaptive

strategies employed byC. difficile to infect and colonize the host.

Leveraging additional Tn-seq and in vivo transcriptomic data-

sets, the expanded icdf836 model identified a broader set of

amino acids, in addition to genes and anaerobe-specific path-

ways, needed to support colonization and growth expansion

in vivo. Notably, predictions of in vivo gene essentially identified

folate one-carbon cycling pathways including those connected

with Wood-Ljundahl fixation of carbon dioxide to acetate (Göss-

ner et al., 2008). Predictions of gene essentiality also identified

multiple nucleotide synthesis and salvage pathway genes that

were essential in vivo but not in vitro, including ones associated

with xanthine transport andmetabolism, an abundant nucleotide

in gut secretions that originates from host sources (Girinathan et

al., 2021). Lastly, the systems approach using the two models

has identified genes and TFs across disparate pathways,
Cell Host & Microbe 29, 1–15, November 10, 2021 11
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including sporulation, flagella biosynthesis, sugar metabolism,

and biosynthesis of aromatic and branched-chain amino acids,

which contribute to growth in an intestinal environment. Once

experimentally validated, these essential genes represent vul-

nerabilities that can be rationally targeted with small molecules,

bacteriotherapeutics, or other patient interventions. We believe

that by democratizing the disparate data, algorithms, and

models through interactive exploration capabilities, the

C. difficile web portal will accelerate collaborative systems

analysis of host-pathogen-commensal interactions by engaging

the wider scientific community.

We illustrate additional predictions from the C. difficile EGRIN

model to enable gene- through systems-level analyses of the

pathogen. The C. difficile genome still contains a high number

of genes of unknown function. Model predictions allowed us to

assign putative functions to 48 genes, including ones associated

with sporulation, carbohydrate transport, and metabolism. Inte-

gration of the regulatory and metabolic network models with

PRIME enabled unprecedented insight into the essential role of

TFs in mediating combinatorial control of metabolism in different

colonization contexts, vis-à-vis presence and absence of the

protective commensal P. bifermentans. For instance, PRIME

accurately predicted synergistic epistasis between the CodY

and CcpA networks, a phenotype that was not attributable to a

single downstreammetabolic gene, reaction, or process. Rather,

the significantly diminished growth of a double knockout of

CodY and CcpA (especially in P. bifermentans co-colonized

mice) appears to emerge from the interplay of more than 35

TFs regulating �80 genes catalyzing reactions across more

than two dozen metabolic processes. Furthermore, by uncover-

ing conditionally essential genes and pathways, PRIME can be

used to understand how C. difficile escapes therapies and

develop strategies to block these escape routes with synergisti-

cally acting secondary antibiotics. The C. difficile web portal

makes all of the tools and resources available to the broader

research community, providing a platform for collaboration and

to support systems-level investigations of the pathogen and its

interactions with the host and commensal microbiota.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

C. difficile transcriptomes included in

transcriptional compendium

See Table S1 N/A

Genes associated with C. difficile SigB

activity

Boekhoud et al., 2020 GEO: GSE152515

C. difficile transcriptome during lactate and

glucose supplementation

Hofmann et al., 2021 GEO: GSE149911

C. difficile metabolic model Kashaf et al., 2017 icdf834

C. difficile Tn-seq gene essentiality Dembek et al., 2015 N/A

C. difficile genome annotation Monot et al., 2011 N/A

C. difficile genome annotation Girinathan et al., 2021 N/A

C. difficile operon predictions Dehal et al., 2010 http://microbesonline.org/operons/

C. difficile protein-protein interaction

network

Szklarczyk et al., 2016 https://string-db.org

C. difficile experimentally supported TF

regulons

See Table S2 N/A

Software and algorithms

R v3.3.3-4.1.0 (R Core Team, 2013) N/A

Matlab R2019a https://www.mathworks.com/

products/matlab.html

N/A

cMonkey2 Reiss et al., 2015 https://github.com/baliga-lab/cmonkey2

Inferelator Arrieta-Ortiz et al., 2015 https://github.com/ChristophH/Inferelator

GIMME Becker and Palsson, 2008 N/A

PRIME Immanuel et al., 2021 https://github.com/baliga-lab/PRIME

DESeq2 Love et al., 2014 https://github.com/mikelove/DESeq2

MEME suite Bailey et al., 2015 https://meme-suite.org/meme/

Biotapestry Paquette et al., 2016 http://www.biotapestry.org

Cytoscape Shannon et al., 2003 https://cytoscape.org

Drupal https://www.drupal.org/home N/A

Adobe Illustrator CS Adobe Inc N/A

Inkscape 1.0.2 https://inkscape.org N/A

Other

The C. difficile Portal This study http://networks.systemsbiology.net/

cdiff-portal/

R notebook with scripts to perform

computational analyses using the

reconstructed EGRIN model

This study https://github.com/marioluisao/Predictive-

regulatory-network-models-for-systems-

analysis-of-C.-difficile
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Nitin S.

Baliga (nitin.baliga@isbscience.org).

Materials availability
This study did not generate new unique reagents.
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Data and code availability
d This paper analyzes, publicly available existing transcriptional data. These accession numbers for datasets are listed in the key

resources table. The compiled transcriptional compendium is available in the interactive and open access C. difficileWeb Por-

tal (http://networks.systemsbiology.net/cdiff-portal/).

d All models and supporting resources reported in this study are available in C. difficile Web Portal (http://networks.

systemsbiology.net/cdiff-portal/).

d Original code is publicly available at theC. difficileWeb Portal (http://networks.systemsbiology.net/cdiff-portal/). The code can

also be found at https://github.com/marioluisao/Predictive-regulatory-network-models-for-systems-analysis-of-C.-difficile.

d Any additional information required to reanalyze data reported in this paper is available from the lead upon request.
METHOD DETAILS

C. difficile genome annotation
An ATCC43255 reference genome was generated and annotated to support in vivo transcriptome studies of C. difficile per discrep-

ancies noted in the RefSeq genome, particularly among bacteriophage loci and other mobile elements (Girinathan et al., 2021). The

updated reference genome was annotated using the NCBI Prokaryotic Genome Automatic Annotation Pipeline (Tatusova et al.,

2016), PATRIC (Wattam et al., 2014), and PROKKA (Seemann, 2014) to extract gene features for support of transcriptome pathway

enrichment analyses. Bacteriophage loci and genes were identified using PHASTER (Arndt et al., 2016).

C. difficile transcriptional compendium
To generate a transcriptional compendium for C. difficile, required for constructing an EGRIN model, a total of 151 publicly available

transcriptomes of C. difficile 630 (identified by searching for the ‘Clostridioides difficile 630’ term) were downloaded from the NCBI

Gene Expression Omnibus (GEO) repository (Barrett et al., 2013) in March 2020. Downloaded transcriptomes were generated by 11

independent studies (Table S1)(Berges et al., 2018; Dineen et al., 2010; Fimlaid et al., 2013; Giordano et al., 2018; Hastie et al., 2018;

Ho and Ellermeier, 2015; Hofmann et al., 2018; Janoir et al., 2013; Janvilisri et al., 2010; Ng et al., 2013; Pishdadian et al., 2015). To

integrate this data into a single dataset, we computed the log2 fold-change of each transcriptome with respect to a (study-specific)

control condition, as performed in the generation of other transcriptional compendia (Moretto et al., 2016; Peterson et al., 2014;

Tanay et al., 2005). This stepwas not necessary for transcriptional data collected with dual channel arrays that included a normalizing

control channel. The resulting transcriptional compendium contained a total of 4,091 gene features and 127 conditions. The 127 con-

ditions in the transcriptional compendium were organized in 11 distinct condition blocks (e.g., sporulation, fur deletion), as shown in

Table S1. A brief description of each condition included in the final transcriptional compendium is available in the C. difficile Portal.

Construction of the EGRIN model
The EGRINmodel forC. difficilewas constructed in two stages. First, we used cMonkey2 (Reiss et al., 2015), a biclustering algorithm,

on the compiled compendium of 127 C. difficile transcriptomes to simultaneously detect co-regulated gene modules and the con-

ditions where co-regulation occurs. cMonkey2 integrates functional annotation from the STRING database (Szklarczyk et al., 2016),

gene promoter sequences from the RSAT database (Nguyen et al., 2018), and operon predictions fromMicrobesOnline (Dehal et al.,

2010) when detecting gene modules. cMonkey2 was run using default parameters. Briefly, we used 2,000 iterations to optimize the

co-regulated gene modules, each one with 3-70 genes. In each iteration, cMonkey2 refined the gene modules by evaluating and

modifying (if necessary) condition and gene memberships. cMonkey2 biclustering approach allowed genes and conditions to be as-

signed to a maximum of two and 204 different modules, respectively. De novo GRE search was performed using MEME v. 4.12.0

(Bailey et al., 2015). Second, we used the Inferelator (Arrieta-Ortiz et al., 2015), a network inference algorithm, to identify potential

transcriptional regulators for the 406 genemodules generated by cMonkey2. The Inferelator uses a Bayesian Best Subset Regression

to estimate the magnitude and sign (activation or repression) of potential interactions between TFs and gene modules based on TF

transcriptional profiles andmodule eigengenes (i.e., first principal component) (Plaisier et al., 2016). We bootstrapped the expression

data (100 times) to avoid regression overfitting (Arrieta-Ortiz et al., 2015). The Inferelator generates two scores for each TF-module

interaction, the corresponding regression coefficient (i.e., beta) and a confidence score. The second score indicates the likelihood of

the interaction. The final set of TF-module interactions was defined as the 805 interactions with absolute beta valuesR 0.1. Inkscape

and Adobe Illustrator were used to generate composite figures.

Literature-derived TF regulons
We mined available literature to compile a list of experimentally supported targets for the 13 partially characterized C. difficile tran-

scriptional regulators (involved in sporulation, motility, carbon metabolism, among other processes) shown on Table S2 (Antunes

et al., 2011, 2012; Berges et al., 2018; Bouillaut et al., 2019; Dineen et al., 2010; Dubois et al., 2016; Fimlaid et al., 2013; Kint

et al., 2017; El Meouche et al., 2013; Saujet et al., 2013, 2011; Soutourina et al., 2020). The manually compiled regulons represented

a total of 1,349 regulatory interactions and involved 1,044 genes. Target genes included in the compiled TF regulons were supported

by transcriptional data, protein-DNA binding data and in silico analysis of promoter regions (e.g., presence of known regulators DNA

binding motif).
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DNA motif comparison
The MEME suite (Bailey et al., 2015) was used (with default parameters) to reconstruct the known DNA binding motifs of CodY and

SigL based on the promoter sequence of their reported target genes (Dineen et al., 2010; Soutourina et al., 2020). Reconstructed TF

binding motifs were compared to the GREs associated with modules of interest using Tomtom with default parameters but without

scoring of reverse complement sequences.

Function assignment to uncharacterized genes
To predict the potential role of uncharacterized genes, gene functions were predicted based on the functional enrichment of EGRIN

modules (evaluated as explained in the ‘Module enrichment evaluation’ section). Function assignments were restricted to uncharac-

terized genes located in functionally enriched modules in which 45% or more of the annotated members (i.e., genes with putative

function) were assigned to the over-represented function term. This second filter was implemented to focus on EGRIN modules

that were involved in a specific function. Thus, increasing the likelihood that the uncharacterized genes were also involved in the

same function.

Analysis of in vivo data
In vivo transcriptomic data from gnotobiotic mice mono-colonized with C. difficile ATCC43255 or co-colonized with P. bifermentans

orC. sardiniense (Girinathan et al., 2021) were analyzed as previously described using the updated reference genome of ATCC43255

to extract gene features for subsequent analysis with DESeq2 (Love et al., 2014). For each relevant comparison (e.g., C. difficile

mono-colonized mice at 24-h vs 20-h of infection) we defined the set of differentially expressed genes (DEGs) as the genes with

DESeq2 adjusted p-value < 0.05 and absolute log2 fold-change > 1. Up- and downregulated genes with orthologs in the CD630 strain

were independently mapped into the EGRIN model (as explained below in the ‘Module enrichment evaluation’ section) to identify

differentially expressed modules. To gain insights into the adaptation of C. difficile to the evaluated in vivo conditions, we focused

on differentially expressed EGRIN modules that were also enriched with functional pathways or manually-curated TF regulons.

We restricted downstream analyses to the enriched modules with absolute median DESeq2 log2 fold-change R 0.5.

Analysis of transcriptomes not used for training
To illustrate the capability of the EGRIN model to offer functional and mechanistic insights into transcriptional regulation from

C. difficile transcriptomes that were not included in the compendium used for generating the EGRIN model, we mapped the sets

of DEGs upon induced overexpression of SigB (Boekhoud et al., 2020) and low glucose supplementation (Hofmann et al., 2021)

into the EGRIN model (Figure S7). EGRIN modules enriched with DEGs were identified as explained above.

Metabolic model refinement
A published genome-scale metabolic model of C. difficile 630 strain, icdf834 (Kashaf et al., 2017), was used in this study and

expanded by adding reactions required for in vivo survival of the pathogen. The icdf834 model incorporates 1,227 metabolic reac-

tions and 807 metabolites. The metabolic reactions were mapped through gene-protein-reaction (GPR) associations to 832 genes,

which represent 80% of 1,030 annotatedmetabolic genes in the CD630 genome (Figure 5A). The original icdf834 model contains two

duplicated genes (CD630_28720 and CD630_23220) due to quotation marks in the GPR definitions. We removed these duplicated

genes and confirmed that this change did not affect the GPR as the duplicated genes were in an ‘OR’ relationship in the same re-

action. We also curated pathway annotations that were incorrectly designated using default KEGG annotations (Kanehisa et al.,

2017). For example, most anaerobes do not utilize the tricarboxylic citric acid (TCA) cycle, although some reactions, in reverse, sup-

port aspects of pyruvate, succinate and oxaloacetemetabolism. In the icdf834model, we changed subsystempathway annotation of

two reactions - i) acetyl-CoA:oxaloacetate C-acetyltransferase and ii) succinyl-CoA synthase from TCA cycle to pyruvatemetabolism

and butanoate fermentation respectively (Data S2). Similarly, we updated reactions originally assigned to gluconeogenesis and the

pentose phosphate pathway. We evaluated the homology of metabolic genes between C. difficile 630 and ATCC43255 strain of

C. difficile in order to use the icdf834 model for representing the in vivo infection state of ATCC43255 strain. The details of 766 genes

that are predicted in this homology analysis is provided in Data S2. We then extended the model by adding four genes

(CD630_08700, CD630_08680, CD630_17090 and CD630_10810) and eight exchange reactions that are required for the growth

of the pathogen in the in vivo micro-environment, based on KEGG annotations. We also expanded the proline reductase (PR) and

glycine reductase (GR) systems by adding alanine, branched chain amino acids (valine, leucine and isoleucine) and aromatic amino

acids (phenyl alanine, tyrosine and tryptophan) as donors in the Sticklandmetabolism (Jackson et al., 2006), increasing the total num-

ber of reactions from 1,227 to 1,273 (Data S2). We named this expanded version of the model as ‘‘icdf836’’. Then, the transcriptome

of C. difficile profiled from in vivo infections of specifically-colonized gnotobiotic mice (Girinathan et al., 2021) was mapped onto the

icdf836model using theGIMME algorithmwith a default threshold (12) for reaction normalized scores, as reported previously (Becker

and Palsson, 2008). We decided to use the default value because previous studies have demonstrated that GIMME performance is

robust to threshold selection (Becker and Palsson, 2008; Opdam et al., 2017). This resulted in amodel with 712 (642) active reactions

for the mono-colonized (P. bifermentans co-colonized) model, with no changes in the number of genes. This model represents the

in vivo state of C. difficile. We applied the constraint-based method for simulating the metabolic steady-state of C. difficile using

flux-balance analysis (FBA) (Becker and Palsson, 2008; Orth et al., 2010). The initial validation steps involved checking the capacity

of the icdf834 model to produce biomass in defined media conditions including 1) minimal medium, 2) basal defined medium and 3)
e3 Cell Host & Microbe 29, 1–15.e1–e5, November 10, 2021
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complex, nutrient-rich medium (compositions used according to Larocque et al., 2014). Then, we tested the performance of both

icdf834 and icdf836 models using gene essentiality predictions by FBA.

Gene essentiality prediction
A gene was considered ‘‘essential’’ if its in silico deletion in the metabolic model reduced the biomass by >65%. By this analysis, the

model classified each gene as ‘‘essential’’ or ‘‘non-essential’’. We compared the gene essentiality predictions from nutrient-rich me-

dia constraints with the available experimental Tn-seq data (Dembek et al., 2015) and deduced the confusion matrix to derive true

positive rates (TPR) and false positive rates (FPR). This led to the elucidation of sensitivity and specificity of the model using ROC

curve analysis. We then applied the same strategy and predicted the essential genes in vivo using FBA with the expanded and

GIMME-derived context-specific network, icdf836. All model simulations related to FBA were performed on MATLAB_R2019a

platform using the recent version of COBRA (The COnstraint-Based Reconstruction and Analysis) toolbox (Heirendt et al., 2019).

In silico gene essentiality predictions were performed using the COBRA toolbox ‘single-gene-deletion’ function in MATLAB.

PRIME model development
Three PRIME models were constructed for C. difficile during in vivo (mono- and P. bifermentans co-colonized mice) and in vitro

growth. Briefly, we first inferred a TF-gene transcriptional network using the Inferelator with incorporation of TF activity, estimated

using the signed (positive or negative) TF-gene interaction network compiled for 13 TFs (Table S2), as we have previously done

for other species (Arrieta-Ortiz et al., 2015, 2020). To infer a global network, 288 putative transcriptional regulators without known

targets were also included as potential regulators. The inferred network included 5,801 TF-gene interactions with absolute regression

coefficientsR 0.1. The transcriptional networkwas then integratedwith the icdf836metabolicmodel as explained in (Immanuel et al.,

2021). Importantly, PRIME models were made context-specific by excluding metabolic reactions associated with lowly expressed

genes, as explained above.

Network visualization
Illustration of transcriptional and metabolic networks were generated using BioTapestry (Paquette et al., 2016) and Cytoscape

(Shannon et al., 2003).

QUANTIFICATION AND STATISTICAL ANALYSIS

Module enrichment evaluation
We used a hypergeometric test to identify modules of co-regulated genes in the EGRIN model that were statistically enriched with

manually compiled TF regulons (Table S2) or functional pathways derived from curated annotation of C. difficile genome (Girinathan

et al., 2021). Only gene modules with adjusted hypergeometric test p-value% 0.05 and containing five or more genes from the rele-

vant TF regulon or functional pathway were considered enriched. The same approach was used to identify EGRINmodules enriched

with any gene set of interest.

Transcriptional profiles of EGRIN modules
To identify EGRIN modules that were responsive (i.e., up- or down-regulated) to a particular perturbation (i.e., condition block)

included in the compiled transcriptional compendium (Table S1), for each module we computed condition-wise median of the

log2 ratios of all genes in the module. Then, the set of conditions assigned (during biclustering) to a module was organized in

ascending order based on the computed median values, and divided in quintiles. A hypergeometric test was used to identify con-

dition blocks over-represented in the first and fifth quintiles, which correspond to the ones with the lowest and highest log2 ratios,

respectively. Hypergeometric test p-values % 0.001 were considered significant. To filter out modules with inconsistent fold-

changes, only modules enriched with condition blocks in their first (or fifth) quintile and average log2 ratios < -1 (or average log2 ratios

> 1) were considered differentially active and included in Data S1. A total of 261 instances of differential activity, involving 218

modules, were identified.

To evaluate the probability of observing modules with differential activity (as defined previously) by chance, we generated

1,000,000 biclusters by randomly sampling from genes and conditions in the transcriptional compendium. The number of genes

in each bicluster was defined by randomly sampling the distribution of gene counts for the EGRIN modules. A similar approach

was used to define the number of conditions in each random bicluster. Overall, we observed 66,977 instances of differential activity

(involving 64,038 random biclusters). Remarkably, the proportion of EGRIN biclusters with differential activity (53.7%) is significantly

higher (hypergeometric test p-value < 1e-145 based on the estimated null distribution) than the proportion ofmodules with differential

activity in the set of random biclusters (6.4%).
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ADDITIONAL RESOURCES

The C. difficile web portal
The C. difficile portal (http://networks.systemsbiology.net/cdiff-portal/) utilizes the powerful build, search, collaboration, and visual-

ization features of the Drupal content management system. Leveraging Drupal’s modularity and extensibility, we developed this con-

tent management system into a data management, analysis, and visualization framework to support C. difficile research.

Due to the complexity of the information provided by the genome and models, it is critical to provide a user-friendly and flexible

search and filtering capabilities. By taking advantage of Drupal’s built-in search interface and implementing Apache Solr search,

the portal database includes the capability to search by facets, which together with sorting enables users to start with general

searches and then quickly pinpoint specific information.

In order to provide a comprehensive functional genomics resource for theC. difficile community, genome annotations from several

different sources were merged and imported into the C. difficile Portal. Curated genome annotations for C. difficile strain 630 pub-

lished by Monot et al. (Monot et al., 2011), were downloaded from MicroScope platform (Vallenet et al., 2017). Additional functional

annotations were downloaded from PATRIC (Wattam et al., 2014) and Uniprot (Consortium, 2017) and merged with curated genome

annotations. Overall, 4,018 genes were included in theC. difficile Portal. TheC. difficile genome included 1,030metabolic genes, 309

TFs, 270 small non-coding RNAs (sRNAs) (Soutourina et al., 2013), 87 tRNAs, 32 rRNAs and 17miscellaneous RNAs (miscRNAs). The

genome included 1,330 genes with unknown function. Furthermore, gene essentiality data from Dembek et al. (Dembek et al., 2015)

was integrated with gene annotations.
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