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Quantitative prediction of conditional vulnerabilities in
regulatory and metabolic networks using PRIME
Selva Rupa Christinal Immanuel 1, Mario L. Arrieta-Ortiz1, Rene A. Ruiz 1, Min Pan1, Adrian Lopez Garcia de Lomana1,5,
Eliza J. R. Peterson 1✉ and Nitin S. Baliga 1,2,3,4✉

The ability of Mycobacterium tuberculosis (Mtb) to adopt heterogeneous physiological states underlies its success in evading the
immune system and tolerating antibiotic killing. Drug tolerant phenotypes are a major reason why the tuberculosis (TB) mortality
rate is so high, with over 1.8 million deaths annually. To develop new TB therapeutics that better treat the infection (faster and more
completely), a systems-level approach is needed to reveal the complexity of network-based adaptations of Mtb. Here, we report a
new predictive model called PRIME (Phenotype of Regulatory influences Integrated with Metabolism and Environment) to uncover
environment-specific vulnerabilities within the regulatory and metabolic networks of Mtb. Through extensive performance
evaluations using genome-wide fitness screens, we demonstrate that PRIME makes mechanistically accurate predictions of context-
specific vulnerabilities within the integrated regulatory and metabolic networks of Mtb, accurately rank-ordering targets for
potentiating treatment with frontline drugs.
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INTRODUCTION
Mycobacterium tuberculosis (Mtb) kills more people than any other
microbe, and it has thus far resisted every attempt to bring the
pandemic under control. Part of the pathogen’s success is its ability
to diversify itself phenotypically and survive both host and drug
bactericidal action1–3. Phenotypic heterogeneity (both stochasti-
cally and environmentally induced) seems to be an intrinsic
characteristic of the pathogen and a major reason why standard
chemotherapy of tuberculosis (TB) requires 6 months of treatment,
and 5% of cases are not cured even then4,5. To develop better
interventions that account for pathogen heterogeneity, we need to
identify the most important factors (e.g., transcriptional regulators)
that create variation as well as the downstream effectors (e.g.,
regulatory target genes) that mediate drug tolerance.
Metabolic activity undoubtedly contributes to Mtb phenotypic

heterogeneity and antibiotic tolerance. For example, changes in
metabolism can affect the amount of drug target present6, the
ability to generate toxic products7, and the efflux of antibiotics8.
Mtb alters its growth and metabolism in response to stressful
conditions through regulatory programs primarily encoded at the
transcriptional level. Indeed, modeling host-related stresses
in vitro produces large transcriptional changes in Mtb, particularly
in metabolic pathways; consistently ~25% of differentially
expressed genes are metabolic genes from hypoxic
(GSE116353)9, acidic pH (GSE165514), or nutrient limited
(GSE165673) conditions. To develop effective antibiotic regimens,
we need to understand at a systems-level and mechanistic-level
how specific regulatory mechanisms conditionally activate and
repress genes to redirect flux through metabolic networks to
generate and support drug tolerant phenotypes. This mechanistic
understanding will uncover new vulnerabilities in Mtb’s regulatory
and metabolic networks that can be rationally targeted in new
drug regimens to achieve faster and complete clearance of the
pathogen.

Previously, approaches to model the influence of transcriptional
regulation on metabolism have used boolean logic (regulatory
Flux Balance Analysis—rFBA)10, protein–DNA (P–D) interactions
(Probabilistic Regulation Of Metabolism—PROM)11,12, and
regression-based regulatory influences (Integrated Deduced
REgulation And Metabolism—IDREAM)13 to predict how transcrip-
tional regulation of enzyme-coding genes modulates flux through
their catalyzed reactions. Briefly, rFBA models the influence of
transcriptional regulation on metabolism using boolean “on or off”
states of metabolic genes, depending on the expression level of a
transcription factor (TF) and its implicated role as a putative
activator or repressor of that gene. The extensive manual curation
required to develop rFBA and its inability to model TF activity as a
continuous (i.e., not boolean) function greatly limits its application
and accuracy. In contrast, PROM outperformed rFBA by using a
probabilistic approach to model the regulation of a metabolic
gene by a TF using a compendium of transcriptome profiles to
calculate probabilities11. However, PROM is limited in that it relies
on a P–D interaction map for the regulatory network. P–D
interactions are typically generated in a limited set of conditions
by using an overexpressed TF as a bait to enrich and locate its
genome-wide binding locations. P–D interactions are fraught with
false positives (due to TF overexpression) and false negatives (due
to lack of context for TF regulation across environmental
conditions). Notwithstanding these caveats, PROM was useful in
uncovering the mechanism by which pretomanid potentiates
bedaquiline action on Mtb by disrupting a regulatory network that
confers tolerance to the recently FDA-approved drug14. A third
model, IDREAM addressed the shortcoming of using P–D
interactions in PROM by constraining flux using TF regulatory
influences from a predictive systems-scale Environment and Gene
Regulatory Influence Network (EGRIN) model. An EGRIN model is
inferred in two steps using (a) cMonkey, which identifies the
specific context in which subsets of genes are co-regulated
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(biclusters) by a conserved regulatory mechanism(s); and (b)
Inferelator, which predicts TFs and environmental factors that
causally influence the expression of genes within those biclus-
ters15–17. By integrating false discovery rates (FDR) for EGRIN-
inferred regulatory influences, IDREAM achieved significantly
better performance than rFBA and PROM in predicting synthetic
lethal interactions between TFs and metabolic genes in yeast13.
However, IDREAM does not incorporate quantitative environment-
specific TF regulatory influences that are modeled by EGRIN, and is
therefore also limited in accurately predicting environment-
specific consequences of TF perturbations. For the reasons stated
above, PROM, rFBA, and IDREAM are limited in their ability to
predict environment-specific phenotypic consequences of pertur-
bations to TFs.
Additionally, there are algorithms (e.g., OptORF18, EMILiO19, and

BeReTa20) that have the potential to predict the consequence of
regulatory and metabolic network perturbations. They were
originally designed to identify perturbations that maximize flux
towards a desired metabolite and some of their features make
them not well-suited for predicting systems-wide conditional
outcomes of TF perturbation. For instance, OptORF18 and EMILiO19

use binary or fixed weights to model TF influences, which does not
capture changes in relative strength of transcriptional regulation
of metabolic genes across environments. By contrast, BeReTa20

does take into account weighted, combinatorial influences of TFs,
but the analysis is restricted to genes encoding reactions of
specific pathways of interest to an industrial application. Thus,
none of these algorithms were designed to predict systems level
phenotypic consequences (e.g., fitness and growth rate) of
perturbations to the transcriptional network.
Here, we report the development of Phenotype of Regulatory

influences Integrated with Metabolism and Environment (PRIME),
which incorporates environment-dependent combinatorial regu-
lation of metabolic genes to mechanistically predict how
individual TFs contribute to the phenotype of Mtb in any given
environment. Through the use of comprehensive experimental
validations, we demonstrate that PRIME significantly outperforms
the previous methods in accurately predicting regulatory and
metabolic genes that are conditionally required for growth on
carbon sources that are specific for in vitro (glycerol) and in vivo
(cholesterol) growth of Mtb. Further, PRIME has uncovered the
interplay of regulatory and metabolic mechanisms that underlies
Mtb’s response to drug treatment. The accuracy of PRIME in
predicting quantitative phenotypic effects of TF perturbations is
demonstrated by high correlation between predicted and
experimentally validated consequences of knocking out all
metabolism-associated TFs (one-at-a-time) on isoniazid (INH)
treatment-specific fitness of Mtb strains. Through this analysis,
we have discovered new vulnerabilities in Mtb that can potentiate
INH action, which are supported by experimental validation.

RESULTS
Condition-specific integration of regulation and metabolism
using PRIME
A causal and mechanistic model of the transcriptional regulatory
network and its quantitative influence on metabolic flux is
required to characterize how the 21421 TFs encoded in the Mtb
genome enable its physiological adaptations to disparate host
relevant contexts including antibiotic treatment. Using the
Inferelator15,22,23, which applies a Bayesian regression-based
approach to estimate TF activity (TFA), we constructed an EGRIN
network from a compendium of 664 transcriptomes for Mtb that
represented transcriptional changes across 77 environmental
conditions including drug treatment, pH, oxygen and carbon
source utilization (Supplementary Data 1) (http://www.colombos.
net/)24. Relative changes in the expression of every gene across all

conditions were modeled as the sum of weighted influences for a
minimal set of TFs. Altogether in the EGRIN network, 142 TFs were
implicated in the regulation of 2905 genes acting through a
combinatorial scheme represented by 4820 TF–gene interactions
(see Supplementary Data 2 for details). The EGRIN network
recapitulated 2410 of the 4546 TF–gene interactions from a P–D
network of Mtb, which was derived through both physical binding
(from ChIP-seq experiments) and functional evidence (from
transcriptional profiling)21,25. We refer to this subset of 2410
weighted TF influences as the “EGRIN-PD” network (Supplemen-
tary Data 2 and Supplementary Fig. 1).
We investigated the degree to which EGRIN and EGRIN-PD

models captured the regulation of 1011 genes that encode
enzymes implicated in catalyzing 1229 reactions in the iEK101126

model of the Mtb metabolic network. This analysis demonstrated
that whereas EGRIN-PD modeled 1252 regulatory influences of
104 TFs on 605 genes associated with 409 metabolic reactions,
EGRIN modeled 2568 regulatory influences of 129 TFs on 750
genes associated with 725 metabolic reactions. We leveraged the
EGRIN and EGRIN-PD wiring diagrams and weights of regulatory
influences inferred by the Inferelator to predict how change in the
activity of a TF in a given environment manifests in altered flux
through a metabolic reaction catalyzed by their regulated gene
product. In order to integrate regulation with metabolism, we had
to account for combinatorial regulation of metabolic genes, with
each of 349 out of the 750 metabolic genes predicted to be
putatively regulated by ≥2 TFs and 111 TFs were predicted to
regulate ≥2 metabolic genes (Supplementary Fig. 2 and Supple-
mentary Data 3), and association of ≥2 gene products to each of
313 reactions in Mtb.
PRIME calculates “quantitative influence” of each TF on a target

gene by taking the product of the Inferelator-assigned regression
weight (β) of that TF-gene interaction and the expression level of
the TF. The absolute expression level of a TF is calculated as a
scaled value of signal intensity (for microarray data) or read counts
(for RNA-Seq) based on distribution of values across the
transcriptome compendium (Fig. 1a; see “Methods” section). For
a metabolic gene that is regulated by multiple TFs, PRIME
calculates the relative contribution of each TF to the regulation
of that gene in a given environment by dividing its quantitative
influence with the sum of quantitative influences of all TFs that
regulate that gene. In this scheme, a TF will have a large relative
consequence on the expression of a metabolic gene in an
environment in which the TF is active and in high abundance, and
the influences of other TFs are minimal. But the relative
contribution of the TF will be proportionally lower if other TFs
are also actively regulating that gene in that environment. Thus,
this approach accounts for regulation of a metabolic gene by
multiple TFs, and it simultaneously corrects for environment-
specific changes in combinatorial regulatory schemes. For a TF
that regulates multiple genes encoding enzymes or enzyme
subunits for the same reaction, we consider the largest regulatory
influence of that TF on any of those genes to predict its influence
on flux through that reaction. Thus, together these advancements
also account for complex combinatorial associations between
regulation and metabolism to assign a single reaction influence
factor (RIF, γ) to each TF-reaction association. The consequence of
TF regulation (or knockout) on flux through a reaction is calculated
by multiplying this final TF-induced relative inhibition of that
reaction (i.e., RIF) to the maximum possible flux through that
reaction. In this manner, by updating upper bounds of flux
through all reactions catalyzed by regulated gene products of a
specific TF, PRIME constrains the metabolic network to a new
solution space, to enable the prediction of “environment-specific”
growth consequences of perturbing a given TF (Fig. 1b and
Supplementary Fig. 1).
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Performance assessment of PRIME
We investigated if the advancements in PRIME significantly
improved its performance over PROM and IDREAM vis-à-vis
accuracy of predicting environment-specific phenotypic conse-
quences of knocking out TFs (Fig. 2a and Supplementary Fig. 3). To
perform this comparison, we first updated the PROM model with
the latest version of the Mtb P–D interaction map12,21 and the
current version of the metabolic network model iEK101126 (1011
genes encoding enzymes for 1229 reactions) that was used to
construct PRIME. Using the methodology described in the original
PROM paper11,12, 2416 out of 2555 P–D interactions for 104 TFs
were mapped to 605 genes assigned to 632 reactions in the
iEK1011 metabolic network model. This represents a significant
improvement in the overall coverage of TFs and metabolic genes
in the PROM model (Table 1 and Fig. 2a). In parallel, we also
developed the IDREAM model for Mtb by incorporating FDR
values for 3643 regulatory influences for 142 TFs within the EGRIN
model (FDR < 0.25) on a total of 641 genes associated with 639
reactions within iEK1011 (Table 1 and Fig. 2b). The slightly higher
numbers of TFs and metabolic genes in IDREAM and PRIME (Fig.
2b) are because they use the Inferelator-derived regulatory

network model, which has better coverage of genome-wide TF
regulation across diverse environments, relative to the P–D
interaction map generated in standard growth conditions that
was used in PROM (Fig. 2c). However, the numbers of TF–gene
interactions in PRIME and IDREAM were not identical. This is
because IDREAM incorporates TF–gene interactions using FDRs
derived using a modified elastic net22 and multiple Inferelator runs
on different subsets of the transcriptome compendium. By
contrast, PRIME uses a confidence score and the regression
coefficient (β) deduced using Bayesian regression22 (Supplemen-
tary Fig. 4 and see “Methods” section). Hence, although the
updated PROM and IDREAM models were not identical, they were
similar to PRIME in terms of coverage of the total number of TFs
and metabolic genes allowing comparative analysis of their
performance (Table 1).
We compared the performance of PRIME, PROM and IDREAM by

assessing their accuracy (sensitivity and specificity) in predicting
environment-specific consequences of knocking out TFs on the
growth of Mtb in minimal medium with glycerol or cholesterol as
the carbon source. While Mtb is typically grown with glycerol
during in vitro culture, the pathogen is capable of utilizing
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host-derived lipids, such as cholesterol, during infection. It is
known that distinct metabolic genes and networks are associated
with these two modes of growth. Accuracy of model predictions
were evaluated using a leave-one-out cross validation (LOOCV)
strategy27 for comparison of model predictions to experimentally
determined phenotypic consequences of transposon mutagenesis
in genome-wide fitness screens (TnSeq) of Mtb cultured with
glycerol or cholesterol28,29. Specifically, for each model we
generated a set of receiver-operating characteristic (ROC) curves
by plotting the true positive rates (TPR) (i.e., proportion of model-
predicted essential genes that were verified by experiment) and
false positive rates (FPR) (i.e., proportion of model-predicted
essential genes that were experimentally determined to be non-
essential) by leaving out one TF in each analysis. The distribution
of area under the ROC curves (ROC AUC) from the LOOCV analysis
of model predictions of which TFs are essential for Mtb growth
was used as a metric of performance.
First, we investigated the influence of EGRIN-PD or EGRIN

networks generated using different Inferelator15,22,23 parameter
settings (Zellner’s g value) on the performance of PRIME. Briefly, in
the Bayesian implementation of the Inferelator, a modified
Zellner’s g value is used to control the amount of variance in
the model that is explained by prior information (i.e., a P–D
network)22. In other words, a g value = 1 gives no preference to
interactions supported by prior information over the novel
TF–gene interactions. By increasing values of g > 1, more
preference is given to TF–gene interactions from the prior
network, resulting in a higher recall of the EGRIN-PD network.
We evaluated performance of PRIME using both EGRIN and EGRIN-
PD regulatory networks generated using four g values. This
analysis demonstrated that the performance of PRIME was

relatively robust to g values and significantly better with EGRIN
over EGRIN-PD, irrespective of the g-value (Supplementary Fig. 5).
The potential explanation for higher performance with EGRIN is
that a regression-based approach uncovers a greater number of
novel TF–gene interactions that are conditionally active in
different environmental contexts, relative to a P–D interaction
map that is typically generated in a limited number of
environmental contexts using methodologies such as ChIP-seq.
Therefore, here onwards all results reported for PRIME are based
on regulatory influences from the EGRIN network.
The LOOCV analysis demonstrated that the performance of

PRIME was significantly better relative to PROM and IDREAM in
both cholesterol and glycerol carbon sources (Fig. 3a, b and
Supplementary Fig. 6). In addition to providing a rigorous means
for performance evaluation, the LOOCV analysis also identified a
clear division of TFs in terms of their ROC-AUC values for the
PRIME model. Further analysis revealed that the top performing
TFs (20 and 12 TFs for glycerol and cholesterol, respectively)
contributed maximally (up to 65% of overall biomass accumula-
tion) to the overall fitness of Mtb (Supplementary Data 4). Out of
119 TFs with TnSeq data, the cholesterol-specific fitness con-
sequences of knocking out 65% of all TFs (77 TF KOs) were
accurately predicted by PRIME, whereas IDREAM and PROM
accurately predicted only 45% (53 TFs) and 30% (35 TFs),
respectively (Fig. 3c). Similarly, PRIME accurately predicted
glycerol-specific fitness consequences for knocking out 92 out of
119 TFs (77%), whereas IDREAM accurately predicted 55% (65 TFs)
and PROM predicted 36% (43 TFs) (Fig. 3d). In addition, we
compared the performance of PRIME to IDREAM and IDREAM-
hybrid models, both generated with EGRIN FDR cutoffs of 0.05 and
0.25. PRIME outperformed both IDREAM and IDREAM-hybrid in
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predicting phenotypic consequences of TF KOs on Mtb growth in
glycerol and cholesterol (Supplementary Fig. 7). Interestingly,
PRIME EGRIN also outperformed PRIME EGRIN-PD, again reinfor-
cing how a regression-based approach better captures meaningful
environment-specific TF regulation relative to physical P-D
interactions mapped using ChIP-seq in one condition with
overexpressed TFs. Finally, we compared performance of PROM
and PRIME in predicting gene essentiality using the same EGRIN-
PD network, which excludes regression-inferred regulatory influ-
ences not supported by ChIP-seq. This comparison demonstrates
that PRIME outperforms PROM even when both methods use the
same EGRIN-PD network. Notably, the performance of PROM was
similar irrespective of whether EGRIN-PD or the ChIP-seq derived
network was used (Supplementary Fig. 8).
Using PRIME, 22 and 7 TFs were accurately predicted (either

essential or non-essential) for growth only with either glycerol or
cholesterol, respectively, as determined by experimental fitness
screening (Fig. 3e). Similarly, 51 and 25 metabolic genes were
accurately predicted by PRIME for growth on either glycerol or
cholesterol, respectively (Fig. 3f and see Supplementary Data 4 for
a complete list of PRIME-predicted and experimentally determined
consequences of knocking out 142 TFs on Mtb growth on glycerol
and cholesterol). Among the PRIME predicted essential TFs,
Rv2506, Rv3050c, Rv2760c, and Rv0348 are essential for growth
on cholesterol, presumably because they conditionally regulate
genes encoding enzymes or enzyme subunits catalyzing essential
metabolic processes during cholesterol utilization (Fig. 3g). For
example, Rv2506 represses genes likely to be involved in
branched-chain amino acid catabolism, which leads to the
production of acetyl-coA and propionyl-coA30. Propionyl-coA is
also an endpoint of cholesterol degradation and can be toxic to
Mtb31. It is possible that Rv2506 repression of branched-chain
amino acid metabolism genes prevents accumulation of toxic
metabolic intermediates during growth on cholesterol. All in all,
perturbation of cholesterol utilization in Mtb could induce
metabolite intoxication31, unbalanced central metabolism32 or
lead to carbon starvation33. As such, TFs such as Rv2506, Rv3050c,
Rv2760c, and Rv0348 represent potential vulnerabilities in the
cholesterol utilization pathways of Mtb that could be targeted by
drugs. Notably, these TFs were also ascertained to be essential by
the TnSeq screen performed with cholesterol as the carbon
source28 and are non-essential in glycerol (shown as inactive
nodes in Fig. 3h). Other TFs (Rv1990c, Rv0023, and Rv0757) were
predicted (and validated by TnSeq28) to be essential for growth

with both carbon sources or only essential for growth on glycerol
(e.g., Rv0238 and Rv1423).

PRIME rank identifies the essential transcriptional factors and
genes for survival during drug treatment
We used PRIME to investigate the regulatory and metabolic
networks that drive physiological adjustments (e.g., cell wall
modifications, shifts in metabolism and respiration) to enable the
pathogen to survive and persist during drug treatment. To expose
novel network vulnerabilities of Mtb in response to drug
treatment, we generated transcriptome profiles of Mtb treated
for 24 h with high-doses and low-doses of seven drugs
(Supplementary Data 5). The transcriptome profiles were analyzed
using the PRIME model to identify the metabolic networks and
their associated regulators that were essential for growth in the
absence and presence of drug treatment. This analysis found clear
distinction in TF essentiality between the untreated and drug-
treated PRIME models and revealed that drug doses largely group
together (Fig. 4a). Interestingly, the TF essentiality profiles of
rifampicin (a transcription inhibitor) were dose-dependent; the
rifampicin profile at low-dose clustered separately, while the high-
dose profile clustered with linezolid (a protein synthesis inhibitor).
The resemblance to linezolid at high-dose suggests that a
secondary effect of strong rifampicin-induced transcription
inhibition also impacts translation. Furthermore, we observed that
the TF essentiality profiles of isoniazid (inhibitor of cell wall
synthesis) were quite distinct to the other six drugs. In fact, 58 TFs
become conditionally essential in the presence of isoniazid
because of their mechanistic role in regulating 569 metabolic
reactions required for supporting growth during isoniazid treat-
ment. This highlights the multitude of regulatory-metabolic
networks associated with cell wall disruption in Mtb and the
extreme vulnerability in cell wall metabolism.
Focusing on isoniazid (INH), we evaluated the accuracy of these

predictions against experimentally-determined fitness values from
a genome-wide TnSeq screen performed in the presence of a
subinhibitory concentration of INH34. Notwithstanding the differ-
ence in dosage of drug treatment of the input transcriptome data
used in the PRIME model (0.18, 1.8 µg/mL) and in the TnSeq
fitness screen (27 ng/mL), the LOOCV analysis demonstrated high
sensitivity and specificity of PRIME predictions of gene essentiality
(max ROC AUC= 0.685), significantly outperforming PROM (max
ROC AUC= 0.625) and IDREAM (ROC AUC= 0.6) (Fig. 4b). We also
used PRIME to rank order TFs based on their relative importance in

Table 1. Summary of PROM, IDREAM, and PRIME model features.

Mtb model features MTBPROM1.011 MTBPROM2.012 PROMa PROMa

(EGRIN-PD)
IDREAMb PRIME

Metabolic model iNJ661 iSM810 iEK1011 iEK1011 iEK1011 iEK1011

Number of reactions 1025 938 1229 1229 1229 1229

Number of metabolic genes in
the metabolic network

661 810 (759 genes in
iEK1011)

1011 1011 1011 1011

Regulatory network Balazsi 2008 Minch 2015 Minch 2015 EGRIN-PDc EGRINc by Elastic
net (FDR < 0.25)

EGRINc by Bayesian
regression (Precision = 50%)

Number of transcription factors 30 104 104 131 142 142

Number of interactions 218 2555 2555 2410 3643 4820

Number of genes in the
regulatory network (metabolic
/ total)

178/178 647/647 605/647 650/1509 641/2487 750/2905

Chandrasekaran et al.11, Ma et al.12.
aThe PROM model was updated in this study by incorporating the latest MN model for Mtb.
bThe IDREAM model was constructed for Mtb in this study to evaluate performance relative to the other methods.
cPlease see Supplementary Fig. 4 for the differences in the EGRIN models derived using Inferelator.
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supporting growth in the presence of INH, and compared these
ranks to TnSeq determined importance of TFs. There was striking
correlation (Spearman’s rho = 0.695; p-value = 0.0001) in the rank
ordering of TFs based on the predicted (PRIME) and observed
(TnSeq) magnitude of growth inhibition of Mtb in the presence of
INH upon knocking out each TF one-at-a-time (Supplementary Fig. 9).
The correlation increased (Spearman’s rho = 0.746, p-value =
0.0001) when only TFs implicated by EGRIN as regulators of
essential metabolic reactions were considered in this analysis,
demonstrating the remarkable accuracy of PRIME in capturing
how the differential regulation by TFs modulates flux through

essential metabolic reactions to manifest at a phenotypic level
(Fig. 4c). Notably, PRIME accurately predicted that knocking out
the top ten TFs one-at-a-time would result in at least 65% and up
to 95% Mtb growth inhibition during INH treatment, but not in the
absence of drug treatment, implicating these as conditional
vulnerabilities for significantly potentiating INH treatment (Sup-
plementary Data 6).
To aid in the interpretation of PRIME predictions, we developed

the PRIME pathway analysis (PPA) tool to uncover in a single-step
the specific metabolic reaction(s) regulated by a TF that make it
essential for growth in a given environmental condition. Given a
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TF, PPA identifies all reactions catalyzed by the genes it is
predicted to regulate, rank orders the target genes based on the
relative contribution of their gene product in driving flux towards
biomass accumulation, and outputs a TF-metabolic gene-reaction
map as a putative mechanism by which the TF is likely to be
essential in a given environmental context. Using PPA, we

identified the specific metabolic reactions that were mechan-
istically responsible for the conditional essentiality of 23 TFs
validated by TnSeq data34 to be essential in the presence of INH.
For example, we discovered the mechanisms underlying the
essentiality of Rv0827c, Rv1049, Rv1423, Rv1828, and Rv0472c for
growth in the presence of INH (Fig. 4d). Altogether, PPA
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uncovered that 58 of the 142 TFs were conditionally essential for
growth on INH because they conditionally regulate 569 key
reactions across 55 pathways, including 84 reactions within fatty
acid metabolism and mycolic acid biosynthesis (target of INH). In
so doing, PRIME has provided the most comprehensive systems
level perspective into strategies to potentiate INH killing by
targeting TFs that mediate Mtb’s metabolic response to INH
treatment.

DISCUSSION
We have demonstrated that by incorporating how TFs act
contextually in combinatorial schemes to regulate gene expres-
sion, PRIME outperformed PROM, IDREAM and IDREAM hybrid in
accurately predicting how transcriptional regulation redirects
metabolic flux to manifest in environment-specific phenotypes
of Mtb. The shortcoming of PROM can be attributed to its reliance
on P–D interactions for regulatory network, which are plagued
with false positive interactions (because overexpression of TFs can
force non-functional binding across the genome) and false
negative interactions because of lack of appropriate context
(e.g., missing co-factors). Hence, a P–D interaction does not
capture whether a TF is regulating a gene in a given condition,
which is better modeled by regulatory influences inferred using
regression analysis of transcript level changes in TFs and all genes
across the genome. However, despite incorporating regulatory
influences from EGRIN, IDREAM performance was inferior com-
pared to PRIME, and in fact its performance in predicting gene
essentiality in cholesterol and INH was worse than PROM. We also
demonstrated that IDREAM failed to outperform PRIME even when
FDR thresholds were relaxed (Supplementary Fig. 10). One
explanation could be that relative to the number of P–D
interactions used in PROM, IDREAM used nearly twice as many
EGRIN-based regulatory influences that were inferred from a wide
range of environmental contexts, without taking into account
combinatorial regulatory schemes, weights of regulatory influ-
ences, or the absolute expression levels of TFs to prune regulatory
edges that were not relevant for a given environmental context.
Hence, reliance on a P–D interaction map, and even just the
likelihood that a TF might regulate a gene based on regression
analysis are both insufficient to capture the complex environment-
dependent interplay of transcription and metabolism. Altogether,
these comparative analyses have demonstrated that four key
advancements in PRIME addressed the shortcomings of PROM and
IDREAM: (i) PRIME took full advantage of EGRIN predictions to
incorporate weights of TF regulatory influence on each gene; (ii)
PRIME calibrated the relative influence of each TF on a given
metabolic gene by accounting for all TFs that were also implicated
in the regulation of that gene; (iii) PRIME accounted for regulation
of multiple genes (that encode enzymes) for the same reaction by
considering which gene(s) contributed maximally towards flux
through that reaction in a given environmental context; and,
finally (iv) PRIME considered the absolute expression level of each
TF to evaluate the degree to which each regulatory influence was
active in a given environment. We posit that PRIME performance

could potentially improve even further upon uncovering and
incorporating roles in metabolism for genes of unknown function,
incorporating novel regulatory mechanisms (including post-
transcriptional and post-translational regulatory mechanisms),
and accounting for indirect influences of TFs on metabolism
through the regulation of other TFs.
By demonstrating better accuracy in predicting environment-

specific phenotypes of Mtb using EGRIN, PRIME overrides the need
for a condition-specific physical map of P-D interactions, which is
difficult to generate for many organisms, across all environments
of interest, and especially in some contexts, such as within
infected tissue. In fact, the incompleteness of the P–D interaction
map was demonstrated by the significant drop in the performance
of PRIME upon excluding regulatory influences that were not
supported by physical TF–gene interactions (i.e., EGRIN-PD). By
contrast, EGRIN is inferred directly from a compendium of
transcriptomes, which can be profiled across relevant environ-
mental conditions with minimal manipulation (e.g., without
overexpression of TFs) and even within infected cells using
technologies like Path-seq35. As a consequence, EGRIN discovers a
significantly larger number of novel regulatory mechanisms,
including the combinatorial schemes and specific environmental
contexts in which they are conditionally active. This explains why
PRIME discovered mechanisms that become conditionally essen-
tial in the presence of INH, but also accurately predicted the
relative importance of each TF for enhancing the potency of INH.
Based on this observation, we posit that PRIME will be especially
valuable to prioritize genes that represent novel context-
dependent vulnerabilities that could be targeted to potentiate
the action of any antibiotic and achieve faster clearance with a
lower dosage. By enabling the in-silico discovery of vulnerabilities
within the Mtb network, PRIME also overrides the need for large
scale transposon mutagenesis-based experiments (e.g., TnSeq,
TraSH, HITS, etc), which are resource-intensive and difficult to
perform across all conditions relevant to the lifecycle of Mtb.
Instead, PRIME can be used to rank prioritize the strains and
contexts in which to assay for an expected phenotype. This
capability is particularly powerful considering the numerous
mechanisms by which Mtb can be phenotypically different, with
different antibiotic sensitivities. Additionally, there is growing
evidence that upon gaining resistance to an antibiotic, the
regulatory and metabolic networks within a pathogen are
remodeled in order to reallocate resources for supporting the
new phenotype36. Using PRIME, we can delineate novel vulner-
abilities within these remodeled regulatory and metabolic net-
works to devise strategies for rationally disrupting the antibiotic
resistance phenotype with a second drug.
PRIME will also be useful in biotechnology applications to

further optimize the production of desired end products by
rewiring the regulatory networks of metabolically engineered
strains. Advancements in metabolic engineering have been
effective in substantially increasing flux towards the production
of a desired metabolite18–20,37 but there is a limit to which
metabolic engineering alone can improve the overall yield. It has
been proposed that further enhancements in yield would require

Fig. 4 Drug-specific predictions of PRIME. a Heatmap of PRIME derived fitness for all TF knockouts in the presence of seven primary drugs
and control at 24 h. The numbers indicate the concentration of drug used in μg/mL. INH isoniazid, BDQ bedaquiline, RIF rifampicin, LZD
linezolid, MOX moxifloxacin, CFZ clofazamine, PA824 pretomanid. b Sensitivity and specificity of PRIME, PROM, and IDREAM predicted TF
essentiality in the presence of INH as determined by LOOCV analysis for the area under the receiver operating characteristic curve (ROC AUC).
Statistical significance was calculated as p-value with two-sample t-test. ****: p-value < 0.0001. All the boxes in the boxplot indicate the upper
and lower quartiles of the data and the middle line is the median with the whiskers extending to 1.5× interquartile range. c Correlation of
TnSeq experimental fitness ranking of TFs and PRIME derived fitness ranks. d BioTapestry visualization showing a subset of the gene
regulatory network of Mtb with PRIME predictions during INH treatment. Some of the highlighted TFs were predicted as essential in the
presence of INH (Rv0827c, Rv1049, and Rv0472c), while others were predicted essential in both the absence and presence of INH (Rv1423,
Rv1828, Rv3246c, and Rv2610c). The lightened TFs were predicted essential in the untreated control but non-essential in the presence of INH
(Rv3681c, Rv1816, and Rv0576). All of these PRIME predictions were validated by experimental fitness screening in relevant conditions.
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reprogramming of the regulatory network to control when genes
of the engineered pathways are expressed, and to rationally up
and down regulate competing metabolic pathways to maximize
flux and resource allocation towards the desired objective. Hence,
by using PRIME, metabolic engineering of high-yielding strain
phenotypes can be identified. Although the capabilities of PRIME
are elucidated extensively using Mtb as a model system in this
study, we foresee the use and applications of PRIME in various
organisms due to its scalability.

METHODS
Construction of EGRIN gene regulatory network for
Mycobacterium tuberculosis
The Mtb EGRIN used in this study was constructed using the Inferelator
algorithm15,22,23 trained on a transcriptional compendium for Mtb with
3902 genes across 664 experimental conditions (downloaded from the
COLOMBOS database) and an experimentally supported signed Mtb P–D
network (generated as previously described in ref. 35). The original
transcriptional compendium contained a larger number of genes and
conditions but was modified to remove genes and conditions with missing
values. Briefly, we used the Inferelator to identify potential transcriptional
regulators for the 3902 Mtb genes in the expression compendium, as
previously performed for other species23,38. The Inferelator first estimates
the regulatory activities of each transcription factor activity (TFA) using the
expression profile of TF known targets (encoded in the signed P–D
network). Then, the Inferelator uses a Bayesian Best Subset Regression to
estimate the magnitude and sign (activation or repression) of potential
interactions between TFs and genes. As before, we bootstrapped the
expression data (20 times) to avoid regression overfitting. The Inferelator
generates two scores for each TF–gene interaction, the corresponding
regression coefficient (weight—β) and a confidence score. The second
score indicates the likelihood of the interaction. The final set of TF–gene
interactions was defined with a 0.5 precision cutoff. This means that 50% of
all interactions in the inferred network were already present in the signed
P–D network used for training, while the other half corresponded to
putative novel TF–gene interactions.

Development of PRIME
The PRIME algorithm has been developed by integrating weights (β) from
EGRIN with metabolic network (MN) models for phenotype prediction in a
context-specific manner (wiring diagram in Fig. 1). PRIME requires 1) a MN
in the format of constraints-based model39,40 in systems biology markup
language (SBML), an XML format as input, that are represented in silico in
the form of a stoichiometric matrix, wherein every column corresponds to
a reaction and every row corresponds to a metabolite. These constraints-
based models are used to integrate the regulatory influences by updating
the reaction flux, 2) a regulatory network containing TF and gene
interactions (one array of regulators and one array of corresponding gene
targets), 3) magnitude/weights (β) of regulatory influences for each of the
interactions (array of magnitudes) derived from Inferelator and 4) the gene
expression data profiled under a specific condition (gene ids and their
expression, provided as ratio to the control—in case of environment-
specific predictions the ratio between initial t0 and final time point tn). The
pipeline of PRIME initially links each metabolic gene in MN to its associated
regulators considering the combinatorial effects, followed by applying the
calculated reaction influence factor (RIF, γ). Specifically, we have
introduced a new way to calculate the RIF (γ), a value that quantitatively
constrains the reaction flux constraint space. The Eqs. 1–5 consists of the
details involved in each successive step within the algorithm.
Given a TF j influencing a metabolic gene i of reaction w, we define RIF

(γi;w ) as,

γi;w ¼ 1� βi;jP
j 2 J βi;j

� X 0
j

 !

; (1)

where J is the subset of all TFs that influence gene i and X 0
j is the scaled

expression of a TF j in a particular condition c of a coherent environmental
context B represented as

X 0
j ¼

Xj;c �min XjðBÞ
maxXjðBÞ �minXjðBÞ : (2)

Then, in case of reactions where there are two or more gene products (I)
involved in catalyzing the reaction w, the regulatory influence that exerts
the larger effect on that reaction w across the set of metabolic genes i 2 I
has been identified as,

gw ¼ min γi;w (3)

Else, gw ¼ γi;w when a single gene i is involved in the reaction w.
At this point, it is straightforward to incorporate calculated weights as

new upper bounds. The lower bound (a) and upper bound (b) used here
were computed via flux variability analysis, which gives as output the flux
span that can satisfy the constraints for a specific condition.

bPRIME ¼ b � g ¼ bð Þw gð Þw (4)

This bPRIME is the new upper bound calculated using PRIME to satisfy the
flux balance analysis (FBA)40 formalism, assuming steady state metabolic
concentrations, and defining the system mass balance as S:v ¼ 0, to
maximize the objective function Z ¼ cTv such that fluxes are within the
new boundary conditions,

a � v � bPRIME (5)

All variables and parameters used in the PRIME equations are listed in
Supplementary Table 1. The objectives in each prediction are defined
during FBA optimization. The phenotype predictions mentioned in this
study are the optimized biomass predicted by FBA. The complete PRIME
algorithm package and details of the required input dataset is available for
download from our GitHub Repository (https://github.com/baliga-lab/
PRIME). All model simulations related to FBA were performed on
MATLAB_R2019a platform using the recent version of COBRA41 -The
COnstraint-Based Reconstruction and Analysis toolbox. In silico gene
essentiality predictions were performed using the COBRA toolbox “single-
gene-deletion” function in MATLAB.

Incorporating drug treatment gene expression data on
metabolic model
The iEK101126 model of Mtb was used for all the predictions in this study.
For drug-specific models, we applied the gene expression data from both
drug-treated and untreated control experiments using the GIMME42

algorithm on the iEK1011 MN model. This step was carried out to constrain
the MN model to the specific condition being tested. We used GIMME
because of the flexibility in defining objective function during implementa-
tion. The GIMME algorithm is implemented in the MATLAB_R2019a
platform, using the “GIMME.m function” in the COBRA Toolbox after
processing the gene expression data through “mapExpressionToReactions.
m” function to convert the gene expression values as inputs to GIMME.

PROM models
For developing PROM models, we followed the PROM approach11,12 to
estimate the probability that a target gene is “ON” or “OFF” in the absence
of the TF i.e., in the event of a TF knockout. This was calculated from a gene
expression dataset as, Probability, P (Gene = 1|TF = 0) or P (TF = 1|Gene =
0). The gene expression threshold that delineated between the “ON” and
“OFF” states was set as quantile (0.33) from the input expression data. These
probabilities were then used to constrain the maximal fluxes of the reactions
catalyzed by the gene products in the metabolic model as p × Vmax, where
p is the probability of the gene being on. The user defined “kappa” value
was used as similar to earlier PROM models11. All PROM predictions and
simulations were performed using PROM.m (MATLAB script) on the
MATLAB_R2019a platform. We used iEK1011 metabolic network model in
XML format as input in the PROM. The P–D derived regulatory network was
obtained from the study21, similar to the MTBPROMV2.012.

IDREAM and IDREAM-hybrid models
For IDREAM and IDREAM-hybrid models, the GRN derived using Inferelator,
was integrated with the PROM pipeline as it had been done previously for
the yeast system13. We ran 200 iterations in Inferelator to calculate the FDR
for all predictions. For each gene, we estimated an FDR for each TF by
counting the fraction of models that identified that factor as a regulator.
Thus, if TF1 was predicted to regulate gene1 in 191 of 200 models, then
the TF–gene interaction identified would have an FDR = 0.045. We
included only those interactions that passed an FDR cutoff of 0.05 and
0.25. We used Inferelator-derived GRN to integrate it with iEK1011
metabolic network model of Mtb using the PROM framework. The user
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defined “kappa” value was used as similar to earlier PROM models11.
IDREAM does not rely on probabilities, hence the gene expression dataset
was not used in IDREAM instead ‘prob_prior’ in the PROM function was set
based on the EGRIN FDR values for each TF-gene interaction. If the TF is an
activator of a gene, we use the FDR value directly, if it is an inhibitor, we use
1-FDR value as “prob_prior”. For IDREAM-hybrid models, the conditional
probabilities calculated using gene expression dataset were used for the
additional indirect interactions. EGRIN network was derived using
Inferelator in R (Inferelator.pkg.R) and PROM predictions and simulations
were performed using PROM.m (MATLAB script) on the MATLAB_R2019a
platform as similar to PROM model development.

Performance assessment of PRIME predictions
The predictive power of PRIME as a binary classifier (essential or non-
essential) between the model predicted gene essentiality and experimen-
tally defined gene essentiality (TnSeq) has been performed using the ROC
curve. A gene was considered “essential” if its deletion reduced the
biomass by >85%. By this analysis, the model classified each gene as
“essential” or “non-essential”. We compared the gene essentiality
predictions from Mtb grown under glycerol and cholesterol as carbon
source with the available experimental TnSeq data28 and deduced the
confusion matrix to derive true positive rates (TPR) and false positive rates
(FPR). We also took advantage of the follow-up study where Bayesian
analysis was used to assign calls as essential and non-essential for the
same TnSeq dataset29. We expanded the analysis of TnSeq data to classify
essential and non-essential with a cutoff value of using cholesterol/glycerol
ratio of 0.6 in order to assign calls for all the genes. This classification led to
the elucidation of sensitivity and specificity of the model using ROC curve
analysis. Briefly, the gene expression data of Mtb profiled under growth on
Glycerol (GSE52020) and Cholesterol (GSE13978) were used to generate
condition-specific metabolic networks using GIMME. PRIME was applied on
these models to predict gene and TF essentialities according to the
condition tested. These predictions were then compared to the TnSeq
data28. A similar sensitivity and specificity analysis was performed while
validating the performance of PRIME for INH-specific predictions using
experimentally derived TnSeq data34. To construct the INH-specific
metabolic models, we used INH-treated Mtb transcriptome sequencing
(RNA-Seq) data generated in this study (see below).

PRIME Pathway Analysis (PPA) pipeline
The PRIME pathway analysis (PPA) pipeline was developed to derive the
metabolic association of a specified TF in a simple process by accessing
PRIME model genes and their interactions. The top ranked TFs and their
associated metabolic genes are further linked to their metabolic processes
using the PPA pipeline. PPA is provided as PRIMEanalysis.m (MATLAB
script). All analyses related to PPA were performed in MATLAB_R2019a
platform. The illustration of PPA-derived essential gene regulatory-
metabolic networks were deduced using BioTapestry tool (http://www.
biotapestry.org/).

Drug treatment culturing conditions
Experiments were performed using Mycobacterium tuberculosis H37Rv
grown with mild agitation at 37 °C in standard 7H9-rich media consisting of
Middlebrook 7H9 broth supplemented with 10% Middlebrook ADC, 0.05%
Tween-80, and 0.2% glycerol. Frozen 1mL stocks of Mtb cells were added
to 7H9-rich medium and grown until the culture reached an OD600 of
~0.4–0.8. The cells were then diluted to OD600 of 0.05 and added to 7H9-
rich medium containing drugs at the predetermined amounts. Samples, in
biological triplicate, were collected at 24 h after drug treatment by
centrifugation at high speed for 5 min, discarding supernatant and
immediately flash freezing the cell pellet in liquid nitrogen. Cell pellets
were stored at −80 °C until RNA extraction was performed.

RNA extraction
Cell pellets stored at −80 °C were resuspended in 600 μL of fresh lysozyme
solution in Tris-EDTA buffer pH 8.0 (5 mg per mL). The resuspended cells
were transferred to a tube containing Lysing Matrix B (MP Biomedicals,
Santa Ana, CA) and incubated at 37 °C for 30min. Following incubation,
60 μL (1/10th volume of lysate volume) of 10% SDS was added and then
tubes were vigorously shaken at maximum speed for 30 s in a FastPrep 120
homogenizer (MP Biomedicals) three times. Tubes were centrifuged for
1 min (maximum speed), then 66 μL of 3 M sodium acetate pH 5.2 added

and mixed well. Acid phenol (pH 4.2) was added at 726 μL and tubes were
inverted to mix well (~60 times). Samples were incubated at 65 °C for
5 min, inverting tubes to mix samples every 30 s. Then, centrifuged at
14,000 rpm for 5min and the upper aqueous phase was transferred to a
new tube. 3 M sodium acetate (pH 5.2) was added at 1/10th volume along
with 3x volumes of 100% ethanol. Sample was mixed well and incubated
at −20 °C for 1 hr or overnight. Following incubation, samples were
centrifuged at 14,000 rpm for 30min at 4 °C, ethanol was discarded and
500 μL of 70% ethanol was added. Samples were centrifuged again at
14,000 rpm for 10min at 4 °C, supernatant discarded, and any residual
ethanol removed using pipet. Pellet was allowed to air dry, resuspended in
30–40 μL of RNase free water and quantified by Nanodrop (Thermo
Scientific). This was followed by in solution genomic DNA digestion using
RQ1 DNase (Promega) following manufacturer’s recommendation.

Processing and analysis of RNA-Seq data
Sample collection and RNA-extraction was performed as described above.
Total RNA samples were depleted of ribosomal RNA using the Ribo-Zero
Bacteria rRNA Removal Kit (Illumina, San Diego, CA). Quality and purity of
mRNA samples was determined with 2100 Bioanalyzer (Agilent, Santa Clara,
CA). Samples were prepared with TrueSeq Stranded mRNA HT library
preparation kit (Illumina, San Diego, CA). All samples were sequenced on the
NextSeq sequencing instrument in a high output 150 v2 flow cell. Paired-
end 75 bp reads were checked for technical artifacts using Illumina default
quality filtering steps. Raw FASTQ read data were processed using the R
package DuffyNGS43. Briefly, raw reads were passed through a 2-stage
alignment pipeline: (i) a pre-alignment stage to filter out unwanted
transcripts, such as rRNA; and (ii) a main genomic alignment stage against
the genome of interest. Reads were aligned to M. tuberculosis H37Rv
(ASM19595v2) with Bowtie244, using the command line option “very-
sensitive.” BAM files from stage (ii) were converted into read depth wiggle
tracks that recorded both uniquely mapped and multiply mapped reads to
each of the forward and reverse strands of the genome(s) at single-
nucleotide resolution. Gene transcript abundance was then measured by
summing total reads landing inside annotated gene boundaries, expressed
as both RPKM and raw read counts. We used the raw read counts as input
for DESeq245 to obtain DESeq2 normalized counts. The RNA-Seq data of Mtb
response to drug exposure generated for this study are publicly available at
the Gene Expression Omnibus under accession number GSE165673.

DATA AVAILABILITY
Input files for PRIME used in this study are provided as Supplementary Data 7. All
PRIME-generated data are provided as supplementary materials. The RNA-Seq data
generated for this study are available in the Gene Expression Omnibus under
accession no. GSE165673.

CODE AVAILABILITY
PRIME code, with data and description for implementation, is available in GitHub
repository: https://github.com/baliga-lab/PRIME.
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