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e Systems biology models identify complex host and inter-
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e C. sardiniense worsens disease through cross-feeding and

growth enhancement

e Findings inform successful bacteriotherapeutic development

against C. difficile
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In brief

Girinathan et al. define complex
mechanisms by which individual gut
commensals limit or worsen
Clostridioides difficile pathogenicity.
Integrated, high-resolution analyses of
metabolomic, metatranscriptomic and
phenotypic outcomes identify complex
intermicrobe interactions in vivo to
delineate how commensals uniquely
shape the intestinal environment to
impact microbial programs, which may
enlighten bacteriotherapeutic
approaches.
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SUMMARY

Leveraging systems biology approaches, we illustrate how metabolically distinct species of Clostridia pro-
tect against or worsen Clostridioides difficile infection in mice by modulating the pathogen’s colonization,
growth, and virulence to impact host survival. Gnotobiotic mice colonized with the amino acid fermenter
Paraclostridium bifermentans survive infection with reduced disease severity, while mice colonized with
the butyrate-producer, Clostridium sardiniense, succumb more rapidly. Systematic in vivo analyses revealed
how each commensal alters the gut-nutrient environment to modulate the pathogen’s metabolism, gene reg-
ulatory networks, and toxin production. Oral administration of P. bifermentans rescues conventional, clinda-
mycin-treated mice from lethal C. difficile infection in a manner similar to that of monocolonized animals,
thereby supporting the therapeutic potential of this commensal species. Our findings lay the foundation
for mechanistically informed therapies to counter C. difficile disease using systems biology approaches to
define host-commensal-pathogen interactions in vivo.

INTRODUCTION

Clostridioides difficile infections cause substantial morbidity and
mortality (Allegretti et al., 2019; Worley et al., 2020). Fecal micro-
biota transplant (FMT) has become standard of care for recurrent
infections by reconstituting a protective microbiota (Leslie et al.,
2019). Mechanisms of commensal protection have included
conversion of host-primary to -secondary bile acids, which
inhibit C. difficile spore germination (Buffie et al., 2015), produc-
tion of antimicrobial peptides (Mills et al., 2018; Valdés-Varela
et al., 2016; Zheng et al., 2018), and a promiscuous commensal
bacteriophage that can disrupt pathogen growth (Baktash et al.,
2018). However, we know little about the molecular mechanisms
by which specific microbes modulate the pathogen’s virulence
in vivo. Given FMT-related deaths in immunocompromised pa-

tients (Marcella et al., 2021), therapies informed by molecular
mechanisms of action will enable options with improved safety
and efficacy.

C. difficile’s pathogenicity locus (PaLoc) contains the TcdA
and TcdB toxins and TcdE holin involved in toxin release. TcdR
encodes a sigma factor specific for the toxin gene promoters
(Bouillaut et al., 2015; Mani and Dupuy, 2001). In vivo,
C. difficile, like other cluster XI Clostridia, utilizes diverse carbon
sources including carbohydrates, amino acids fermented via
Stickland reactions, and ethanolamine (Dubois et al., 2016).
Stickland metabolism can drive rapid pathogen growth, particu-
larly with abundant proline, glycine, or leucine, which serve as
electron acceptors for the prd, grd, and had enzyme systems,
respectively (Bouillaut et al., 2015; Hofmann et al., 2018; Neu-
mann-Schaal et al., 2015). The pathogen also fixes carbon
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through the Wood-Ljungdhal pathway to generate acetate for
metabolism (Nawrocki et al.,, 2018; Neumann-Schaal et al.,
2019). C. difficile’s conditional regulatory networks closely inte-
grate its cellular metabolism and virulence programs, particularly
through the CodY and CcpA metabolic repressors that repress
Paloc expression under nutrient sufficiency (Martin-Verstraete
et al., 2016) and promote toxin expression with starvation to
extract nutrients from the host. CodY and CcpA coregulate addi-
tional gene systems in cellular metabolism, sporulation, and
stress responses by sensing host and commensally produced
factors including inflammatory ROS and antimicrobial peptides
(Kint et al., 2017; Neumann-Schaal et al., 2018).

Host and microbiota can thus influence the pathogen’s viru-
lence via multiple mechanisms. Among Stickland-fermenting
cluster Xl Clostridia, Paraclostridium bifermentans preferentially
uses Stickland fermentations for energy. In contrast, Clostridium
sardiniense, a glycolytic cluster | species, produces abundant
butyrate through anaerobic carbohydrate fermentation (Moore,
1993). Both species colonize the human gut yet have very
different metabolic capabilities.

Using defined colonization and infection experiments in gnoto-
biotic mice (Reeves et al., 2012; Wilson et al., 1986) with Environ-
mental and Gene Regulatory Influence Network (EGRIN) and
Phenotype of Regulatory Influences integrated with Metabolism
and Environment (PRIME) models of C. difficile’s conditional regu-
latory networks (Arrieta-Ortiz et al., 2021), we show how individual
species of commensal Clostridia affect host survival of C. difficile
infection, at the level of the microbial pathways and small mole-
cules that modulate C. difficile’s regulatory networks to drive path-
ogen growth and virulence. Findings promoted development of a
defined bacteriotherapeutic able to rescue an infected conven-
tional host from lethal infection. By defining how individual com-
mensals systematically modulate C. difficile’s physiology, we
enable mechanistically informed approaches for this disease.

RESULTS

Single commensals dramatically alter host outcomes
from C. difficile infection

C. difficile infection in 6-week-old germ-free mice caused rapid
demise (Figures 1A and 1B). Symptoms developed at 20 h
post-challenge with weight loss and diarrhea. Animals demon-
strated focal epithelial damage with neutrophilic infiltrates at
24 h (Figure 1C versus 1D) that by 32 h showed widespread ero-
sions and worsening symptomatic disease.

In contrast, mice precolonized with P. bifermentans prior to
C. difficile challenge survived (Figure 1B; p < 0.0001) with milder
symptoms and colonic damage (Figure 1E versus 1D). Fourteen
days post-infection, animals regained lost weight and demon-
strated intact intestinal epithelium with lymphocytic infiltrates
having replaced acute neutrophilic infiltrates (Figure 1F).

Mice precolonized with C. sardiniense developed more rapidly
lethal infection (Figure 1B; p < 0.0001), with epithelial sloughing
and neutrophils entering the lumen at 20 h of infection (Figure 1G)
followed by widespread mucosal denudation and rapid demise
(Figure 1H).

Toxin levels (Figure 11) at 20 h, the first point of symptoms, were
comparable among cohorts although pathogen vegetative and
spore biomass in C. sardiniense co-colonized mice were 3-fold
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higher (Figures 1J and 1K). However, by 24 h C. difficile mono-
colonized and C. sardiniense co-colonized mice demonstrated
2 to 3-fold higher toxin levels, vegetative biomass, and neutro-
philic infiltrates than P. Bifermentans co-colonized mice (Figures
1land 1J). After 14 days, toxin levels in surviving P. Bifermentans
co-colonized mice fell >80% from acute levels (Figure 1l).

While C. sardiniense biomass rose 10-fold in C. difficile-
infected mice, P. bifermentans biomass did not change acutely.
Commensal colonization also did not alter toxin integrity or
cytotoxic activity (Figures 1L and 1M).

Commensals condition the gut-nutrient environment
prior to C. difficile’s introduction

Given commensal effects on pathogen biomass, carbon-source
enrichment analyses of the gut-metabolomic environment eval-
uated the nutrient content available for C. difficile growth and
metabolism (Figures 2A and 2B).

Germ-free cecal contents were enriched for multiple classes
of carbohydrates (Figures 2A and 2C) including hexoses, pen-
toses, and sugar alcohols of dietary origin that have poor ab-
sorption from the gut (Pruss and Sonnenburg, 2021; Theriot
et al., 2014). Gut contents were also enriched for multiple
fermentable amino acids (Figures 2D and 2E), including the
Stickland-acceptor amino acid proline (Figure 2E), and multiple
purines and pyrimidines (Figures 2A and 2F). In the absence of
colonizing microbiota, SCFA were not detected (Figure 2G).

Colonization with C. sardiniense or with P. bifermentans mark-
edly altered luminal conditions prior to C. difficile’s introduction.
C. sardiniense monocolonization enriched multiple amine-con-
taining carbon sources (Figure 2A, top) including Stickland-
fermentable amino acids (Figures 2D and 2E), y-glutamyl amino
acids (Griffith et al., 1979), and polyamines. Branched-chain
amino acids increased 2 to 3-fold (Figure 2D) and ornithine
>16-fold over germ-free levels (Figure 2E).

C. sardiniense depleted luminal fructose, left mannitol and
sorbitol unchanged, and enriched amino sugars, including those
originating from host glycoconjugates (Figure 2C). C. sardiniense
monocolonization produced >5-fold increases in hypoxanthines
and metabolites produced by other purinolytic Clostridia (Brad-
shaw, 1960) (Figure 2F) and > 10-fold increases in the uracil me-
tabolites 3-ureidopropionate and beta-alanine (Vogels and Van
der Drift, 1976) (Figure 2F). The SCFA fermentation metabolites
acetate and butyrate were produced (Figure 2G).

In contrast, P. bifermentans monocolonization depleted poly-
amines and Stickland acceptor and other fermentable amino
acids (Figure 2A, middle), consuming > 70% of proline, > 50%
of glycine, > 50% of threonine, and 80% of 4-hydroxyproline, a
host collagen-degradation product, which many Stickland fer-
menters convert to proline (Figure 2E) (Huang et al., 2018).
P. bifermentans produced abundant 5-aminovalerate (Figure 2H)
from proline, isocaproate from reductive leucine Stickland
metabolism (Kim et al., 2006), and isobutyrate, isovalerate, and
2-methylbutyrate from Stickland oxidative fermentation of
branched-chain amino acids (Figure 2G). Stickland aromatic
amino acid metabolites including 3-phenylpropionate from
phenylalanine, 3-(4-hydroxy-phenylpropionate) from tyrosine,
and indole lactate from tryptophan were also produced (Figure 2I).

P. bifermentans consumed > 50% of fructose, left sugar-
alcohol levels unchanged (Figure 2C) and produced acetate and
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Figure 1. P. bifermentans protects germ-free mice from lethal C. difficile infection while C. sardiniense promotes more severe disease
(A) Experimental overview.

(B) Survival curves.

(C-H) Colonic hematoxylin and eosin (H&E) stains. Magnification: 200x (C-E); 100x (F and G); and 40x (H).

(C) Normal germ-free mucosa.

(D) C. difficile-infected mice at 20 h, showing epithelial stranding and vacuolation (black arrows) and neutrophil infiltrates (blue arrow).

(E) P. bifermentans co-colonized mice at 20 h of infection showing vacuolization of apical colonocytes (black arrows) but nominal inflammation.

(F) P. bifermentans- and C. difficile-infected mice at 14 days showing intact epithelium and lymphocytic infiltrates (black arrow).

(G) C. sardiniense- and C. difficile-infected mice at 20 h of infection showing surface epithelial loss and pseudomembrane formation (black arrow) and transmural
neutrophilic infiltrates entering the lumen (blue arrows).

(H) C. sardiniense co-colonized mice at 24 h of infection showing epithelial denudation and severe submucosal edema (asterisk).

(I) Logo of extracellular cecal ToxinB (1g/g). Bars show mean and standard deviation. Mann-Whitney significance values: *0.01 < p < 0.05; **0.001 < p < 0.01;
***0.0001 < p < 0.001; ***p < 0.0001.

(J) Log1o C. difficile vegetative CFU. Bars show mean and standard deviation.

(K) Spore biomass per gram of cecal contents. Bars show mean and standard deviation.

(L) Western blot of cecal contents showing intact toxinB in C. difficile (CD) infected, P. bifermentans + C. difficile, or C. sardiniense + C. difficile co-colonized mice.
(CTL, control toxinB).(M) Effects of GF, P. bifermentans, or C. sardiniense-monocolonized cecal contents on the toxicity of exogenously added toxinB. No
differences were noted in toxinB cytopathic effect against human fibroblasts. See Figure S1.

propionate (Figure 2G). P. bifermentans monocolonization en-
riched hypoxanthines (Figure 2F). 3-ureidopropionate increased
to a lesser extent than in C. sardiniense-monocolonized mice
and without increased beta-alanine (Figure 2F).

C. difficile monocolonized mice demonstrated the broadest
depletion of carbohydrate and amine-containing carbon
sources (Figure 2A, bottom). The pathogen-depleted Stick-

land-acceptor amino acids consuming > 50% of glycine,
> 70% of proline, and > 85% of 4-hydroxyproline (Figure 2E),
with a concomitant increase in 5-aminovalerate (Figure 2H);
v-glutamyl amino acids, other fermentable amino acids
(including cysteine and threonine), and N-acetyl conjugates of
proline, branched-chain amino acids, and polyamines were
also depleted. Hexoses, pentoses, and sugar alcohols were
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Figure 2. Commensal alteration of cecal carbon sources

(A) Significantly enriched carbon-source groups in germ-free (left) versus monocolonized mice (right), showing groups with a Benjamini-Hochberg corrected p
value < 0.05. Horizontal bars indicate percentage of biochemicals enriched in each carbon-source group comparing germ-free cecal contents with
C. sardiniense-monocolonized mice (CSAR) at 7 days (top); P. bifermentans monocolonized mice (PBI) at 7 days (middle); or C. difficile monocolonized for 20 h

(bottom).

(B) Significantly enriched carbon sources between C. difficile monocolonized mice at 20 h of infection (right) versus C. sardiniense monocolonized for 7 days +
20 h of C. difficile infection (top) or P. bifermentans monocolonized for 7 days + 20 h of C. difficile infection (bottom).(C-H and J-L) Specifically enriched
compounds (y axis) across colonization states (x axis). z axis shows original scale mass spectrometry counts. Error bars indicate standard deviation. Values for a
given compound are comparable across experimental groups.

In panels (C)—~(H), (J), and (K): stack-plot height indicates mean, error bars show standard error of the mean (SEM).

(C) Carbohydrates.
(D) Stickland donor amino acids.

(E) Stickland-acceptor and other fermentable amino acids.

(legend continued on next page)
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depleted, including > 99% of mannitol and sorbitol and > 80%
of fructose (Figure 2C).

C. difficile monocolonization produced acetate (Figure 2G)
and Stickland branched-SCFA metabolites isobutyrate, isoval-
erate, 2-methylbutyrate, and isocaproate (Figure 2G). Aromatic
amino acid metabolites specific to the pathogen’s Stickland
metabolism were also produced, including phenylacetate and
phenyllactate from phenylalanine, indole acetate from trypto-
phan, and p-cresol from the p-hydroxyphenylacetate metabolite
of tyrosine metabolism (Passmore et al., 2018; Steglich et al.,
2018) (Figure 21). C. difficile has a unique capacity to metabolize
histidine-producing imidazole lactate and 4-imidazole acetate
(Neumann-Schaal et al., 2019) (Figure 2I).

By 24 h of infection, with deteriorating mucosal conditions
(Figures 1G and 1H), C. sardiniense and C. difficile co-colo-
nized mice (Figure 2B, top) further enriched Stickland and other
fermentable amino acids (Figures 2D and 2E), as gross blood,
known to be abundant in Stickland-fermentable amino acids
(Takach et al., 2014), entered the gut lumen (Figure 1H). Uracil
levels increased > 8-fold and 3-ureidopropionate increased >
40-fold compared with C. difficile monocolonized mice (Fig-
ure 2F). In contrast, P. bifermentans and C. difficile co-colo-
nized mice showed nominal differences in amine-containing
carbon sources compared to C. difficile monocolonized mice
(Figures 2D and 2E). P. bifermentans-specific aromatic amino
acid metabolites predominated in the co-colonized state, with
reduced levels of C. difficile-specific histidine metabolites,
suggesting a dominance of P. bifermentans’s Stickland meta-
bolism (Figure 2l). These findings illustrated C. sardiniense’s ca-
pacity to create a nutrient-enriched environment for C. difficile
while P. bifermentans depleted preferred nutrients.

Microbial colonization altered additional host and microbial-
origin metabolites. All three species enriched primary bile acids
capable of inhibiting C. difficile germination, including B-muricho-
late (Figure 2J), and chenodeoxycholate (Figure 2L), and others
with germination-stimulatory effects including cholate and tauro-
cholate (Figure 2K) (Francis et al., 2013; Sorg and Sonenshein,
2009). All three species deconjugated host taruine-conjugated
bile acids per detectable cholate, ursodeoxycholate (Figure 2L)
and chenodeoxycholate (Figure 2K). In contrast, only C. difficile
demonstrated 7a-hydroxysterol dehydrogenase activity (Bakonyi
and Hummel, 2017) per detectable 7-ketodeoxycholate in mono-
and co-colonized states (Figure 2L). P. bifermentans increased
host-origin compounds with anti-inflammatory and neurotrans-
mitter activities, including ethanolamide endocannabinoids,
sphingosine-containing compounds, and metabolites of amino
acid fermentations (Figure 2B, middle) (Lee et al., 2016).

¢? CellPress

P. bifermentans and C. sardiniense differentially
modulate C. difficile gene expression in vivo

The commensal alterations in gut nutrients drove global per-
turbations in C. difficile gene expression (Figures 3A-3D). In
monocolonized mice C. difficile induced transport and meta-
bolic systems for glucose, fructose, ribose, and disaccharides
(Figures 3A and 3C), dipeptides and oligopeptides, and
Wood-Ljungdahl pathway genes for CO, fixation to acetate.
By 24 h the pathogen upregulated ethanolamine utilization
genes, enabling the capacity to use ethanolamine and
amino-alcohol lipids from damaged mucosa (Nawrocki
et al., 2018).

With C. sardiniense’s enrichment of amino acids and poly-
amines, C. difficile upregulated amino acid and polyamine trans-
porters, pathways to convert C. sardiniense-enriched ornithine
to Stickland-fermentable substrates (Fonknechten et al., 2009),
and its Stickland proline reductase and reductive leucine-
pathway genes (Figures 4A and 4B).

With P. bifermentans co-colonization (Figures 3C and 3D),
C. difficile adapted its metabolism to available nutrients, upre-
gulating genes to utilize sugar alcohols, particularly for
mannitol and galactitol transport, followed by sorbitol, disac-
charides, and polysaccharides—carbon sources not utilized
by P. bifermentans (Moore, 1993). C. difficile also upregulated
genes for the transport and metabolism of xanthines (Brad-
shaw, 1960) concomitant with P. bifermentans’ enrichment
of these compounds.

In the presence of either commensal, C. difficile downregu-
lated cobalamin (Figures 3A-3D), and folate biosynthesis genes
when co-colonized with C. sardiniense (Figure 3A), suggesting
commensal-C. difficile cross-feeding with these nutrients.

Commensal colonization profoundly altered the pathogen’s
cellular machinery. With C. sardiniense co-colonization,
C. difficile upregulated genes associated with transcription and
DNA replication (Figures 3A and 3B). In contrast, by 20 h in
P. bifermentans co-colonized mice, the pathogen significantly
downregulated translation, ribosome production, and ATP syn-
thesis (Figures 4C and 4D).

C. difficile-expressed stress-response genes as host inflamma-
tion evolved (Costa et al., 2016; Knippel et al., 2020), responses
altered with commensal co-colonization. By 20 h of infection
C. difficile monocolonized mice enriched CRISPR-gene expres-
sion and two temperate bacteriophage (Arndt et al., 2019) with ho-
mology to phiMMPO1 (locus 3; Figure 3A), and phiCDHM19 (locus
2; Figure 3A). Diffocin-lytic genes (Gebhart et al., 2015), a phage-
origin locus induced by quorum sensing, which can lyse other
C. difficile, and cell-wall turnover enzymes were also enriched.

(F) Hypoxanthine and uracil metabolites.
(G) Cecal SCFAs. Z axis shows mM of SCFA per gram of cecal contents,
(H) Proline Stickland metabolite 5-aminovalerate.

(I) Heatmap of C. difficile and P. bifermentans-specific Stickland aromatic amino acid and histidine metabolites in cecal contents at 24 h of infection. Color scale
shows generalized logarithm (glog)- transformed mass spectroscopy metabolite counts. Hierarchical clustering by Pearson similarity and minimum-distance

linkage are shown by metabolite on the left y axis.

(J-L) Specifically enriched compounds (y axis) across colonization states (x axis). z axis shows original scale mass spectrometry counts. Error bars indicate
standard deviation. Values for a given compound are comparable across experimental groups.

(J) Muricholate.

(K) Chenodeoxycholate.

(L) Cholate and ursodeoxycholate bile acids among conditions.
Additional supporting information are found in Data S1 and S5.
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Horizontal bars indicate the percentage of genes enriched within the pathway in C. difficile monocolonized mice (left) or in mice co-colonized with C. sardiniense
or P. bifermentans prior to C. difficile infection (right). Pathways with a Benjamini-Hochberg adjusted p value < 0.05 are shown.

(A) C. difficile monocolonized mice at 20 h of infection versus C. sardiniense and C. difficile co-colonized mice.(B) Comparison in panel (A) at 24 h of infection.(C)
Comparison of C. difficile monocolonized with P. Bifermentans co-colonized mice at 20 h of infection.(D) Comparison in panel (C) at 24 h of infection.

(E-H) DESeqg-normalized reads for the PaLoc genes: (E) tcdA, (F) tcdB, (G) tcdR, and (H) tcdE. X axis indicates the colonization condition; Y axis the log1o DeSeq
read counts normalized for biomass differences. Bars show mean and standard deviation. Brackets indicate significant DESeq2 adjusted p values: *0.01 <p <

0.05; **0.001 < p <0.01; ***0.0001 < p < 0.001; **p <

In C. sardiniense co-colonized mice, C. difficile induced sporula-
tion pathways and oxidative-stress responses, including nitrore-
ductases, spore-associated superoxide dismutase (sodA), cata-
lase (cotG), and genes for terpenoid backbone synthesis,
peptidoglycan and spore-coat components with anti-oxidant ac-
tivities (Bosak et al., 2008). Two additional bacteriophage loci with
homology to phiMMPO3 (loci 1 and 5; Figure 3B) were induced. In
contrast, none of these systems showed upregulation with
P. bifermentans co-colonization (Figures 3C and 3D).

Each commensal differentially affected C. difficile’s PalLoc
expression, which, in combination with alterations in pathogen
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0.0001 Additional supporting information is found in Data S2 and Data S8.

biomass, impacted toxin levels and host disease (Figures 1l
and 1J). The biomass-adjusted expression of tcdB, tcdA,
and tcdE in C. difficile monocolonized and P. bifermentans
co-colonized mice remained comparable at 20 and 24 h of
infection (Figures 3E-3G), in spite of a 12-fold increase in
tcdR expression in P. Bifermentans co-colonized mice (Fig-
ure 3H). While C. sardiniense co-colonized mice showed
reduced tcdB, tcdA, and tcdE expression at 20 and 24 h of
infection, these effects occurred in the context of higher path-
ogen vegetative biomass and released toxin in cecal contents
(Figures 11 and 1J).
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Significantly enriched pathways in C. sardiniense and P. bifermentans monocolonized mice and with C. difficile infection. Pathways with Benjamini-Hochberg
adjusted p values < 0.05 are shown. The left-hand y axis shows enriched pathways; x axis indicates the percentage of enriched genes per category.

(A) C. sardiniense-monocolonized mice at 7 days prior to C. difficile infection versus after 20 h of C. difficile infection.

(B) C. sardiniense and C. difficile co-colonized mice at 20 versus 24 h of infection.

(C) P. bifermentans monocolonized mice at 7 days versus after 20 h of C. difficile infection.

(D) P. bifermentans and C. difficile co-colonized mice at 20 versus 24 h of infection. Additional supporting information is found in Data S3, S4, and S8.

C. difficile infection profoundly alters commensal gene
expression

C. difficile infection also systematically altered each commen-
sal’s gene expression, metabolism, and stress responses (Fig-
ures 4A-4D). C. sardiniense-monocolonized mice expressed
systems involved in mucin degradation and metabolism and in
the biosynthesis of cobalamin and folate (Figure 4A). Three
bacteriophage loci, two with homology to Clostridial bacterio-
phage vB_CpeS_CP51 (loci 3 and 1), and one with homology
to phiCT19406B (locus 4; Figure 4A, bottom), were also induced
(Arndt et al., 2019).

By 20 h of infection, concomitant with evolving mucosal dam-
age, C. sardiniense profoundly downregulated its mucin-degra-
dation machinery (Figure 4A), while inducing genes for ascorbate
transport and metabolism (Figure 4A)—systems that protect
against oxidative stress. Multiple peptide and amino acid trans-
port systems, and genes involved in the transport and meta-
bolism of xanthines, were enriched. By 24 h C. sardiniense had
profoundly downregulated ribosome production and sporula-
tion. Energy generation and transport by 24 h of infection were
also significantly affected with downregulation of multiple elec-
tron-transport systems and C. sardiniense’s nickel-based hy-
drogenase (Figure 4B) while upregulating the expression of
F-type ATP-synthesis genes (Figure 4B).

In monocolonized mice, P. bifermentans showed high expres-
sion of its Stickland reductase systems (Figure 4C) in addition to
protein translation and export and energy generation. As with
C. sardiniense, P. bifermentans upregulated cobalamin synthe-
sis genes. By 20 h of infection these processes showed reduced
gene expression compared with the monocolonized state (Fig-
ure 4C) with enrichment of multiple amino acid transport systems
and a putative bacteriophage with homology to phiCT19406A
(Arndt et al., 2019). By 24 h of infection, P. bifermentans induced
expression of genes for ethanolamine utilization (Figure 4D), sug-
gesting a retooling of its metabolism for newly available carbon
sources from damaged mucosa, in addition to genes for ribo-
flavin transport and biosynthesis. Multiple stress-response sys-
tems, including lexA, relA, and CSP-family cold-shock proteins
were downregulated by 24 h of infection, in addition to genes
involved in ribosome production, cell division, and flagellar
motility (Figure 4D).

Differential contributions of commensal arginine
fermentation on C. difficile virulence

C. sardiniense and P. bifermentans can each ferment arginine to
ornithine via the arginine deiminase (ADI) pathway, a system that
C. difficile lacks (Pols et al., 2021). However, C. difficile,
P. bifermentans, and other Stickland fermenters can convert
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Figure 5. Commensal-pathogen ornithine cross-feeding
(A) C. sardiniense’s arginine deiminase pathway genes.
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(B-E) log1o DESeqg2 normalized ADI gene expression. Bars show mean and standard deviation. (B) arcA, arginine deiminase (****p = 0.0001; *p = 0.0387). (C) arcB,
ornithine carbamoyltransferase. (D) arcD, arginine:ornithine antiporter (***p = 0.0008). (E) arcC, carbamate kinase (*p = 0.0259).

(F) C. difficile ornithine to alanine conversion genes (operon_0246) and unlinked ornithine cyclodeaminase (UAB_RS0203800).

(G-0O) DESeqg2 normalized expression for operon_0246 genes. Bars show mean and standard deviation. Significance values indicated with *0.01 < p < 0.05;

**0.001 < p < 0.01; *0.0001 < p < 0.001; ***p < 0.0001.
(G) ord, 2,4-diaminopentanoate dehydrogenase.

(H) ortA, 2-amino-4-ketopentanoate thiolase o subunit.

(l) ortB, B subunit.

(J) oraS, D-ornithine aminomutase S component.
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ornithine to Stickland-fermentable substrates (Fonknechten
et al.,, 2009). The species-level context of the ADI pathway
demonstrated very different outcomes on C. difficile growth
and host survival (Figure 5).

By 20 h of infection, C. sardiniense upregulated expression of
its arcA arginine deiminase (Figure 5B), arcC carbamate kinase
(Figure 2E), and arcD arginine-ornithine antiporter (Figure 2D),
which imports arginine and exports the ornithine product,
identifying a cause for the elevated ornithine in C. sardiniense-
monocolonized mice (Figure 2E). In C. difficile the most strongly
enriched genes with C. sardiniense co-colonization converted
ornithine to alanine (Figures 5F-5N), a product able to support
oxidative Stickland metabolism, cell-wall and protein synthesis,
and other growth-promoting pathways (Peltier et al., 2011;
Shrestha et al., 2017). C. difficile’s OraSE D-ornithine aminomu-
tase (Figures 5J and 5K) requires cobalamin (Chen et al., 2001),
another factor for which C. sardiniense induced biosynthetic
gene expression prior to C. difficile’s introduction (Figure 4A).
The pathogen’s ornithine cyclodeaminase (Figure 5F), which
converts ornithine to the Stickland-acceptor proline, remained
constitutively expressed (Figure 50).

In contrast to C. sardiniense, at 20 h of infection
P. bifermentans downregulated its arcD arginine-ornithine anti-
porter (Figures 5P and 5T) while maintaining constitutive expres-
sion of its ornithine cyclodeaminase (Figure 5U), thereby
conserving a proline-convertible carbon source for its Stickland
metabolism (Figure 5D).

Figure 5V illustrates putative interspecies effects of
ADI fermentation on C. difficile in vivo. While the non-
Stickland fermenter C. sardiniense-enriched luminal ornithine
for C. difficile’s use, P. bifermentans’s combined ADI and Stick-
land pathways supported its own metabolism and growth,
depriving C. difficile of these growth-promoting carbon sources.

Systems biology models predict epistatic effects of

C. difficile’s CodY and CcpA PalLoc metabolic repressors
on pathogen phenotypes in vivo

CcpA and CodY repress C. difficile toxin expression when
sufficient GTP, Stickland-fermentable substrates, and carbohy-
drates support metabolism (Dubois et al., 2016). Their absence
supports toxin gene derepression. PRIME model predictions
have inferred additional epistatic effects of codY and ccpA on
the pathogen’s ability to grow in vivo (Arrieta-Ortiz et al., 2021).
Using recently optimized genetic manipulation systems to create
serial deletion mutants in C. difficile (STAR Methods), we evalu-
ated the effects of these regulators in the gnotobiotic and
P. Bifermentans co-colonized states (Figure 6).

¢? CellPress

The C. difficile mutants AcodY, AccpA, and double Aco-
dYAccpA were each lethal in monocolonized mice while
P. bifermentans co-colonized mice survived (Figure 6A). Pathogen
cecal biomass and toxin levels identified P. bifermentans’s
effects on toxin production among strains (Figures 6B-6D).
P. bifermentans co-colonized mice infected with the AccpA
mutant demonstrated reduced C. difficile vegetative biomass
and toxin at 16 h (Figures 6B and 6C). At 24 h of infection, toxin
levels were comparable between colonization states with the
mutant and fell >80% after 14 days in surviving P. Bifermentans
co-colonized mice (Figure 6C).

In contrast, AcodY infected mice had better growth with
P. Bifermentans co-colonization, while the double mutant grew
poorly (Figure 6B). At 16 h of infection the AcodY mutant showed
comparable vegetative biomass in monocolonized and co-colo-
nized states and elevated spore biomass in P. Bifermentans
co-colonized mice (Figure 6D). Toxin levels with the AcodY
mutant were elevated at 16 h compared with wild-type controls,
although levels in P. Bifermentans co-colonized mice were
70% lower than in AcodY monocolonized controls (Figure 6C).
However, from 16 to 24 h, toxin levels fell >40-fold in
P. Bifermentans co-colonized mice (Figure 6D), in spite of the
AcodY mutant’s higher vegetative biomass at 24 h in co-colo-
nized mice (Figure 6B).

In C. difficile monocolonized mice PRIME model predictions
inferred single- and double-mutant strain dysregulation of cen-
tral carbon metabolism, as well as lipid and nucleotide biosyn-
thesis, limiting growth in this nutrient-rich state as compared
with wild type (Figure 6E) (Arrieta-Ortiz et al., 2021). In contrast,
in the P. bifermentans nutrient-depleted state (Figure 6F), PRIME
predicted single CodY or CcpA deletion to be nonessential for
mutant growth relative to wild type, but severe growth repression
in the double mutant per epistatic interactions of CodY and CcpA
on genes supporting metabolism of remaining gut-available car-
bon sources—namely sugar alcohols, polysaccharides, and
supporting electron-transport systems—combined with dysre-
gulation of essential genes in lipid, cell-wall, and nucleotide
biosynthesis (Arrieta-Ortiz et al., 2021). These findings illustrated
P. bifermentans’s continued protection in the absence of the
CodY and CcpA metabolic PalLoc repressors and predicted pu-
tative targets within these regulons that modulate the pathogen’s
adaptations to diverse in vivo environments.

P. bifermentans bacteriotherapy rescues infected
conventional mice

To assess P. bifermentans’s use as a therapeutic, clindamy-
cin-treated conventional mice were orally challenged with

K) oraE, D-ornithine aminomutase E component.

M) orr, ornithine racemace.
N) nhaC, Na+/H+ antiporter.
0) Ornithine cyclodeaminase (OCD) expression.

Q) arcA, arginine deiminase.

R) arcB, ornithine carbamoyltransferase.

(S) arcC, carbamate kinase.

(T) arcD, arginine-ornithine antiporter (*p = 0.0227).
(U) OCD.

(
(
(
(
(
(
(
(

L) ora_ARF, reactivating factor for adenosylcobalamine-dependent D-ornithine aminomutase.

P) Schematic of P. bifermentans ADI and OCD genes. Bars show mean and standard deviation.

(V) Schematic showing differing effects of the ADI arginine fermentation in C. sardiniense and P. bifermentans on C. difficile metabolism.
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Figure 6. Combinatorial effects of C. difficile’s CodY and CcpA PalLoc metabolic repressors on infection in mono- and P. bifermentans co-

colonized mice

(A) Survival curves of GF and P. bifermentans co-colonized mice infected with C. difficile wild-type (WT) or mutant strains (n

> 6 mice per group). All

P. bifermentans co-colonized mice survived and differed significantly from monocolonized controls (p < 0.0001). 4codY-infected mice declined more rapidly than
WT infected mice (p = 0.01), while lethality in 4ccpA-infected mice was delayed (p = 0.0002).

(B-D) Cecal biomass and extracellular toxinB levels.Bars show mean and standard deviation. C. difficile-associated mice (blue); mice monocolonized with
P. bifermentans and infected with C. difficile (green). Asterisks indicate Mann-Whitney p values: *0.01 < p < 0.05; **0.001 < p <0.01; ***0.0001 < p < 0.001; ***p

< 0.0001.
(B) Log1 of nug toxinB levels per gram of cecal contents.

(C) Cecal logqq of C. difficile vegetative cells (D) Spores at 16 h, 24 h, and 14 days in surviving P. bifermentans co-colonized mice.

(E and F) Ratio of actual mutant to WT strain growth at 24 h of infection (gray bars) versus PRIME model predictions in monocolonized (blue bars) and
P. bifermentans co-colonized mice (green bars), respectively. Asterisks indicate significant t test p values in comparisons of mutant versus wild-type C. difficile
strain growth at 24 h of infection; * < 0.05, ** < 0.01, *** < 0.001. Dashed red lines indicate the PRIME threshold below which a given mutant is predicted to limit

in vivo growth relative to WT. Additional supporting information of host body mass changes and P. bifermentans biomass is found in Figure S2.

1,000 C. difficile spores. At the onset of symptomatic infec-
tion mice received 108 CFU of P. bifermentans or vehicle-
only control by gavage (Figure 7A). All P. bifermentans-
treated mice survived while control-treated mice demon-
strated 40% lethality (Figure 7B, p = 0.0061). At 30 h after
C. difficile challenge, at the height of symptomatic infection,
P. bifermentans-treated mice demonstrated reduced toxin
levels and pathogen vegetative and spore biomass (Figures
7C-7E). By 14 days, surviving mice had low to undetectable
toxin (Figure 7C) and had largely cleared both species (Fig-
ures 7D and 7E).
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Clindamycin treatment enriched multiple carbon sources able
to support C. difficile and P. bifermentans growth including
Stickland-acceptor amino acids, polyamines, and y-glutamyl
amino acids (Figures 7F and 7G), nutrients that were also en-
riched in C. sardiniense-monocolonized mice (Figure 2A). In con-
trol infected mice, the pathogen-depleted oligosaccharides,
pentoses, and Stickland-acceptor and y-glutamyl amino acids
(Figure 7G, top). With P. bifermentans treatment, these and
additional compounds were depleted (Figure 7G, bottom). Clin-
damycin treatment also depleted host ethanolamine endocan-
nabinoids and sphingosines, which showed improved recovery
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Figure 7. P. bifermentans oral bacteriotherapy protects C. difficile-infected conventional mice
(A) Experimental overview. Samples for timed analyses (circles) were taken before and after clindamycin, at 30 h post-infection (12 h post-treatment), and at

14 days in surviving mice.

(B) Survival curve; blue: C. difficile-infected and vehicle control treated; green: P. bifermentans-treated mice showed improved survival (p = 0.0081).

(C-E) Cecal toxin and C. difficile biomass. Bars show mean and standard deviation. Horizontal dotted line shows thresholds of detection. (C) Log+o g ToxinB/g in
cecal contents (*p = 0.026). (D) Cecal log1, C. difficile vegetative (*“p = 0.0087) and (E) spore biomass (p = *0.0411).

(F) Carbon-source enrichment analyses in mice pre and post-clindamycin treatment show enriched groups with a Benjamini-Hochberg corrected p value < 0.05.
(G) Enriched carbon source groups between post-clindamycin-treated and mice at 30 h of infection with C. difficile (top) or with P. bifermentans treatment
(bottom). Additional supporting information of host body mass changes and P. bifermentans biomass are found in Figure S3. Supporting data for carbon-source

enrichment results are found in Data S5 and S9.

in P. bifermentans-treated mice (Figure 7G). These findings vali-
dated P. bifermentans’s therapeutic efficacy in an infected
conventional host through reductions in pathogen biomass
and toxin.

DISCUSSION

We leveraged systems biology approaches to understand
C. difficile’s in vivo responses to protective versus disease-
promoting commensals. Using a tractable gnotobiotic infec-
tion model, we identified the remarkably protective effects of a
single commensal species, P. bifermentans, against C. difficile,
and the capacity for another Clostridial species, C. sardiniense,
to cause worse disease. Findings informed interventional studies
in conventional, antibiotic-treated mice where P. bifermentans

administration rescued infected mice from lethal infection. These
findings have important implications to treat and prevent
C. difficile infections, including that residual microbiota and those
in uncharacterized FMT preparations can contain both protective
and disease-exacerbating species that may exhibit different be-
haviors in antibiotic-depleted versus intact microbiota.

The development and severity of C. difficile infection occurs as
a function of the pathogen’s biomass, toxin production, and
duration to which host tissues are exposed to the toxin. Each
commensal modulated C. difficile’s virulence through multiple
mechanisms (graphical abstract). Commensal colonization
altered the gut-nutrient environment per enrichment or depletion
of C. difficile-preferred carbon sources and required micronu-
trients, factors that modulated the pathogen’s growth, stress re-
sponses, and toxin production.
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Commensal colonization also affected pathways impacting
C. difficile’s cellular integrity. C. difficile in monocolonized mice
upregulated diffocins, a locus induced through quorum-sensing
mechanisms that lyses a portion of the population, releasing toxin
to promote mucosal damage and nutrient release to support sur-
viving populations (Gebhart et al., 2015). Multiple temperate
bacteriophage harboring lytic peptidoglycan hydrolases were
induced in monocolonized and C. sardiniense co-colonized
mice (Garneau et al., 2018). Sporulation also induces lytic trans-
glycosylases, including UAB_RS0210585 (CD630_18980), a
SigK-regulated gene believed to be involved in mother-cell lysis
(Saujet et al.,, 2013), which was significantly upregulated in
C. difficile and C. sardiniense co-colonized mice. While these pro-
cesses have been demonstrated to contribute to toxin release in
other toxigenic species, including C. perfringens, Shigella, and en-
terotoxigenic E. coli (ETEC) (Bielaszewska et al., 2012; Duncan,
1973; Meouche and Peltier, 2018), they warrant further analysis
regarding their role in C. difficile pathogenesis.

In response to C. sardiniense’s enrichment of amine-contain-
ing carbon sources, C. difficile upregulated multiple amino acid
transporters, Stickland fermentation pathways, and genes to
convert C. sardiniense-enriched ornithine to Stickland-metabo-
lizable substrates. C. difficile and C. sardiniense biomass
expanded and, with nutrient release from damaged tissues,
further stimulated microbial growth and toxin production, result-
ing in a rapidly lethal infection.

Notably, C. sardiniense and P. bifermentans possess arginine-
deiminase fermentation pathways, a system that modulates very
different effects in vivo with C. difficile infection (Figure 5E). With
C. sardiniense, the commensal’s export of ornithine provided
one among many enriched nutrient sources for C. difficile. In
contrast, P. bifermentans’s production of ornithine, with conver-
sion to proline for its own metabolism, would deprive C. difficile
of this nutrient source, while enhancing its ability to compete
against the pathogen. This example highlights the importance
of the underlying genomic and metabolomic context of path-
ways shared among commensal species when considering their
effects on other microbes and on host phenotypes.

P. bifermentans limited C. difficile’s growth and toxin produc-
tion through multiple mechanisms, including in the absence of
C. difficile’s CodY and CcpA Paloc repressors. As a glycolytic
and active Stickland fermenter, P. bifermentans depleted fruc-
tose and amino acids preferred by C. difficile, leaving sugar alco-
hols, complex polysaccharides, and P. bifermentans-enriched
hypoxanthines available. C. difficile adjusted its metabolism
for these carbon sources but by 24 h of infection showed
reduced biomass and toxin compared with monocolonized
and C. sardiniense co-colonized mice. P. bifermentans co-colo-
nization also downregulated pathogen genes supporting transla-
tion and ribosome production in addition to cellular lytic systems
and oxidative stress pathways, suggesting additional mecha-
nisms by which P. bifermentans could reduce the host’s expo-
sure to toxin (graphical abstract). PRIME model predictions
inferred additional combinatorial effects of CodY and CcpA on
gene networks for metabolic adaptations, electron transport,
and biosynthetic reactions to support growth under the complex
nutrient conditions encountered in vivo.

Host symptomic infection, as evidenced by epithelial damage
with neutrophil entry into the gut lumen, induced oxidative stress
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systems in all three species. C. difficile and C. sardiniense
strongly induced sporulation responses when co-colonized,
including the spore-coat proteins superoxide dismutase (sodA)
and manganese catalase (cotG), responses that may illustrate
how sporulation in the confined space of the gut lumen can
benefit vegetative cell populations of the same and other species
by detoxifying host-produced ROS. Notably, P. bifermentans
can grow in concentrations of up to 10% O, (STAR Methods)
(Leja, 2014), conditions under which C. sardiniense and
C. difficile cannot survive, an additional factor that may support
its ability to compete with C. difficile during gut inflammation.
P. bifermentans colonization also reduced the severity of the
host’s acute inflammatory responses (Figure 1E; graphical ab-
stract), in part from reduced host exposure to high levels of
C. difficile toxin (Figure 1l).

Interventional studies in antibiotic-treated conventional mice
illustrated P. bifermentans’s efficacy as an oral bacteriothera-
peutic. Clindamycin treatment enriched multiple amino acid
and carbohydrate sources, including those enriched in GF
and C. sardiniense-monocolonized mice, illustrating relevance
of findings from germ-free infection studies to complex micro-
biota. These findings support a broader systems-level view
for perturbations that create complex nutrient states conducive
to C. difficile colonization and rapid growth in vivo given the
pathogen’s diverse carbon-source metabolism and adaptation
to different gut environments. Notably, nutrient conditions
enhancing C. difficile growth can also enhance the growth of
commensal Stickland fermenters. Within the colon, unab-
sorbed dietary and host factors, mucins in particular, provide
fermentable carbohydrates and amino acids, including the
Stickland acceptors proline, glycine, and leucine (Wesley
et al., 1985). However, disease-triggering antimicrobials to
which C. difficile often harbors innate resistance, such as clin-
damycin, beta-lactams and fluoroquinolones, rapidly ablate
competing Stickland fermenters, opening preferred nutrient
sources for C. difficile’s rapid growth (Battaglioli et al., 2018;
Peng et al., 2017) with risks for population crashes that can
abruptly release toxin.

Stickland fermentation is a hallmark of cluster XI Clostridial
metabolism and occurs in other Clostridial species, notably
Clostridium scindens (cluster XIVa), which carries the proline
and glycine reductases but lacks orthologous reductive
leucine-pathway genes (STAR Methods). While conversion of
progermination primary bile acids to germination-inhibitory
secondary bile acids mediates aspects of C. scindens’ protec-
tion against C. difficile (Buffie et al., 2015; Thanissery et al.,
2017), we show capacity of commensals, singly or in aggre-
gate, to rapidly change the gut-nutrient environment to modu-
late C. difficile’s virulence. Notably, the P. bifermentans and
C. sardiniense strains used did not demonstrate 7a«-hydroxys-
terol-dehydrogenase activity in mice, while C. difficile did
through its production of 7-ketodeoxycholate (Bakonyi and
Hummel, 2017).

Stickland fermenters represent < 1% of the human gut
microbiota. Our findings highlight the importance of these
low-abundance species to consume C. difficile growth-promot-
ing nutrients and identify complex conditions that other com-
mensals, singly or in aggregate, could create to modulate
C. difficile’s virulence. These conditions act in concert with the
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host’s digestive and immune functioning. Host and commensal
effects may also explain why C. difficile phenotypes identified
in vitro do not necessarily reflect behaviors seen in vivo. Armed
with refined mechanistic knowledge, findings establish a robust
framework in which to develop therapeutics with enhanced effi-
cacy and improved safety for this disease.
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REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

toxin B ELISA - monoclonal antibody BBI solutions, Madison, WI, USA BM347-T4G1

toxin B ELISA - monoclonal antibody BBI solutions, Madison, WI, USA BM347-N4A8

Bacterial and virus strains

Clostridioides difficile ATCC, 10801 University Boulevard, ATCC 43255
Manassas, VA 20110, USA

Clostridium sardiniense DSMZ, InhoffenstraBe 7B DSM 599
38124 Braunschweig, Germany

Paraclostridium bifermentans DSMZ, InhoffenstraBBe 7B DSM 14991
38124 Braunschweig, Germany

Chemicals, peptides, and recombinant proteins

Streptavidin-HRP Thermo-Fisher, Waltham, MA, USA N504

Clindamycin phosphate Millipore-Sigma, St. Louis, MO PHR1021

C. difficile cell culture toxin assay Quidel, San Diego, CA 92121, USA 03-05000

Polyscreen PVDF membrane Perkin Elmer, Waltham, MA, 02451, USA NEF1002

SuperSignal West Pico Plus Western Blotting Thermo-Fisher, Waltham, MA, 02451, USA 34577

Substrate

Ethyl ether Millipore-Sigma, St. Louis, MO EX0190-8

Boron trifluoride-methanol Millipore-Sigma, St. Louis, MO 15716

Minion sequencing cartridge Oxford Nanopore MIN106D

Zymo Direct-zol RNA purification kit Zymo, Irvine, CA R2081

Ribo-Zero Gold rRNA removal kit lllumina, San Diego, CA MRZH116

NEBNext bacterial RNA kit New England Biolabs, Ipswich, MA E7850X

rRNA Depletion Kit New England Biolabs, Ipswich, MA E6310X

TruSeq mRNA Library Prep kit lllumina, San Diego, CA 20020594, 20020493

NEBNext Ultra Il Directional RNA library prep kit New England Biolabs, Ipswich, MA E7760L

Qubit dsDNA HS Assay Kit Thermo-Fisher, Waltham, MA Q32854

Zymo Quick-DNA Fecal/Soil Microbe Miniprep Kit Zymo, Irvine, CA 11-322

PBS Millipore-Sigma, St. Louis, MA P3813-10PAK

Z-FIX Thermo-Fisher, Waltham, MA NC9351419

CHROMID® C. difficile Biomérieux, Durham, NA CHROMID® C. difficile

Brucella agar with 5% sheep’s blood, hemin Becton Dickinson, Canaan, CT 8807311

and vitK1

BHI broth Anaerobe Systems, Morgan Hill, CA AS-872

Critical commercial assays

Global Metabolomics
RNA sequencing

Metabolon, Raleigh, NC
HMS Biopolymers Core, Boston, MA

Global Metabolomics Screen
NextSeq sequencing services

Deposited data

RNAseq data and CSAR genomic data

C. difficile ATCC43255 closed genome

NCBI Bioproject https://www.ncbi.nlm.

nih.gov/bioproject/
NCBI https://www.ncbi.nim.nih.gov/
genome/?term=NZ_CP049958.1

BioprojectID: PRUNA755661

AccessionlD: NZ_CP049958.1

Experimental models: Organisms/strains

Swiss Webster Gnotobiotic Mice
Swiss Webster Conventional Mice

Massachusetts Host-Microbiome Center

Taconic Farms, Taconic, NY

SWGF
SW

(Continued on next page)
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Continued

REAGENT or RESOURCE

SOURCE

IDENTIFIER

Oligonucleotides

Table S1 oligonucleotides

IDT DNA http://www.idtdna.com/

Ordered direct from vendor

Recombinant DNA

pMSRO http://www.addgene.org/ 78750

Software and algorithms

Bowtie2 http://bowtie-bio.sourceforge.net/ Bowtie 2.2.2
bowtie2/index.shtml

HTseq https://pypi.org/project/HTSeq/ HTseq 0.11.1

Kraken2 https://ccb.jhu.edu/software/kraken2/ Kraken2

DESeq2 https://bioconductor.org/packages/ DESeqg2 1.26
release/bioc/html/DESeqg2.html

Prism GraphPad, San Diego, CA Prism 8.0

Metaboanalyst https://www.metaboanalyst.ca/ Metaboanalyst 4.0

Python http://www.python.org/ Python 3.7.6

Matplotlib python library https://matplotlib.org/ Matplotlib 3.4.2

OriginLab http://www.originlab.com/ OriginLab 2021

MinKNOW Oxford Nanopore MinKNOW v3.6.5

Unicycler https://github.com/rrwick/Unicycler Unicycler v.0.4.8

Flye assembler https://github.com/fenderglass/Flye Flye 2.4.1

Mauve http://darlinglab.org/mauve/ Mauve 2.4.0
mauve.html

NCBI Prokaryotic Genome Automatic https://www.ncbi.nlm.nih.gov/ NCBI PGAP

Annotation Pipeline
PATRIC

PROKKA
PHASTER

genome/annotation_prok/
https://www.patricbrc.org/
https://github.com/tseemann/prokka
https://phaster.ca

Genome Annotation Service
PROKKA 1.13.7
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RESOURCE AVAILABILITY

Lead contact

Lynn Bry, MD, PhD, Ibry@bwh.harvard.edu

Materials availability

® Type collection strains are available from the ATCC (http://www.atcc.org/) and DSMZ strain collections (http://www.dsmz.de).

® The pMSRO plasmid vector used for mutant construction has been deposited into Addgene, ID: 78750.

o Mutant strains in C. difficile ATCC43255 may be requested from Dr. Dupuy or Bry’s laboratories or through the Crimson core
resource (https://crimson-core.partners.org/). Users requesting infectious C. difficile isolates must provide institutional docu-
mentation for strain handling at biohazard level 2.

o Chemical reagents and supplies are available as per referenced vendors in the STAR Methods.

® Gnotobiotic and conventional Swiss-Webster mice are available from Taconic Farms (Taconic, NY) or through the Massachu-
setts Host-Microbiome Center’s gnotobiotic resource.

Data and code availability

® The updated C. difficile ATCC43255 reference genome has been deposited to NCBI under accession# NZ_CP049958.1.
® The C. sardiniense genome has been deposited to NCBI under accession# JAIKTU000000000.

® Metatranscriptomic datasets are available through NCBI under GEO ID: GSE182613.

o Carbon source maps, metabolomic datasets, and statistical results from metabolomic enrichment analyses are available in the
supplemental Excel files GF_CarbonSourceEnrichment.xlsx and CONV_CarbonSourceEnrichment.xIsx.
® Microbial gene-level content and statistical results from metatranscriptomic analyses are available in the supplemental Excel

files TranscriptomeGeneContent.xlsx and RNAseq_TranscriptomeEnrichment.xlIsx.

® The open source python libraries and code for RNAseq analyses are available from the respective referenced sites in the STAR

Methods.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Bacterial strains and culture conditions

Table S1: Strains and Culture Conditions, Related to STAR Methods section: Bacterial strains and culture conditions, shows the bac-
terial strains and in vitro culture conditions. For quantitation of C. difficile and commensal biomass, mouse cecal contents were
collected into pre-weighed Eppendorf tubes with 0.5mL of pre-reduced PBS with 40mM cysteine (Millipore-Sigma, St. Louis, MO)
as a reducing agent. Tubes were weighed after adding material and transferred into a Coy anaerobic chamber (Coy Labs, Grass
Lake, MI) at 37°C for serial dilutions with plating to selective C. difficile CHROMID® agar (Biomérieux, Durham, NC) or Brucella
agar (Becton Dickinson, Canaan, CT) for commensal quantitation. C. difficile colonies were counted at 48 hours of incubation and
identified as large black colonies. For the AcodY AccpA double mutant, colonies were quantitated at 72 hours of incubation.
Commensal colonies were counted after 24h of incubation. C. sardiniense were identified as small, round beta-hemolytic colonies,
and P. bifermentans as opaque and larger round colonies. Representative colonies were species-confirmed by rapid ANA (Remel,
Lenexa, KS). For studies in conventional mice, pre-infection and post-clindamycin fecal pellets showed no positive colonies on
C. difficile CHROMID® agar.

For studies of microaerophilic growth, P. bifermentans was cultured in tryptone-yeast (TY) media with resazurin (Moore, 1993),
without additional cysteine or other reducing agents, and that had been equilibrated to O, levels of 0.5%, 1%, 5% and 10% (n=3
cultures per condition). TY media exposed to 0.5% O or higher levels of oxygen caused oxidation of the resazurin dye. Control sam-
ples were incubated in TY under anaerobic gas mix or ambient air (21% O,) as a negative control. Samples were serially diluted and
plated to Brucella agar after 24h of culture at 37°C to quantitate viable CFU.

C. difficile spore preparations and counts were defined by exposing pre-weighed material to 50% ethanol for 60 minutes followed
by serial dilution and plating to C. difficile CHROMID® agar, as described (Bucci et al., 2016). Vegetative cell biomass was
calculated by subtracting the spore biomass from the total biomass and normalizing to the cecal mass. Data were evaluated in Prism
8.0 (GraphPad, San Diego, CA) for visualization and log-rank tests of significance among groups. A p value <0.05 was considered
significant.

Construction of C. difficile mutant strains

Table S2: Plasmids and Oligonucleotides Used, Related to STAR Methods section Construction of C. difficile mutant strains, indi-
cates plasmid vectors and primer sequences (IDTDNA, Redwood City, CA) used to generate gene-deleted mutants in
ATCC43255. Mutants were created using the toxin-mediated Allele-Coupled Exchange (ACE) vector (Girinathan et al., 2020). For de-
letions, allelic exchange cassettes were designed to have approximately 900 bp of homology to the chromosomal sequence in both
up- and downstream locations of the sequence to be altered. The homology arms were amplified by PCR from C. difficile strain
ATCC43255 genomic DNA and purified PCR products were cloned into the Pmel site of pMSRO using NEBuilder’s HiFi DNA Assem-
bly. pPMSRO0-derived plasmids were transformed into E. coli strain NEB10p and inserts verified by sequencing. Plasmids were then
transformed into E. coli HB101 (RP4) and transferred by conjugation into C. difficile ATCC43255 after a brief period of heat shock as
described (Kirk and Fagan, 2016).

Mouse studies

All animal studies were conducted under an approved institutional IACUC protocol. Defined-colonization experiments were conduct-
ed in negative pressure BL-2 gnotobiotic isolators (Class Biologically Clean, Madison, WI). Conventional studies were conducted in
OptiMice containment cages (Animal Care Systems, Centennial, CO) (Lavin et al., 2018). Mice were singly housed for all studies.

Gnotobiotic mouse colonization studies

One week prior to infection with C. difficile equal ratios of 6-7 week old male and female gnotobiotic mice were gavaged with 1x108
CFU of P. bifermentans, C. sardiniense, or sterile vehicle control, and allowed to colonize for 7 days prior to challenge with 1x10° of
wild-type or mutant C. difficile spores. Fecal pellets from mice were cultured prior to infection to confirm association with the defined
species, or maintenance of the GF state. Progression of disease was assessed via body condition scoring (Fekete et al., 1996) and
body mass measurements taken by ethylene-oxide sterilized, battery powered OHAUS scales (Thermo-Fisher, Waltham, MA). Mice
were sacrificed at a BCS of 2-, or at defined timepoints at 7 days of commensal monocolonization or GF controls, and at 20, 24h or
14 days post-C. difficile challenge. For C. difficile mutant infection studies, timepoints at 16h and 24h post-challenge were collected.
Cecal contents were collected for functional studies. The Gl tract and internal organs were fixed in zinc-buffered formalin (Z-FIX,
Thermo-Fisher, Waltham, MA) for histopathologic assessment.

Conventional mouse infection studies

5-week old conventional mice (Taconic Farms, Inc., Taconic, NY) were singly housed and acclimated for a week prior to treatment
with USP-grade clindamycin phosphate (10mg/kg; Sigma Chemical, St. Louis, MO) via intraperitoneal (IP) injection. 24 hours
post-clindamycin treatment, mice were challenged with 1x10° wild-type C. difficile spores via oral gavage and treated with 1x10®
CFU of P. bifermentans or vehicle control at 12h post C. difficile challenge, the earliest point of symptomatic diarrhea in conventional
mice. Progression of disease was assessed via BCS and body mass measurements. Survival studies were followed to 14 days post
C. difficile challenge. For C. difficile biomass, toxin B levels and cecal metabolomic studies, 12 mice per group were also sacrificed

Cell Host & Microbe 29, 1-16.e1-e7, November 10, 2021 e3




Please cite this article in press as: Girinathan et al., In vivo commensal control of Clostridioides difficile virulence, Cell Host & Microbe (2021), https://
doi.org/10.1016/j.chom.2021.09.007

¢ CelPress Cell Host & Microbe

and cecal contents collected at pre-clindamycin treatment, post-clindamycin treatment just prior to C. difficile challenge, 30 hours
post C. difficile challenge (18 hours after receiving P. bifermentans or vehicle control by gavage), and at 14 days following control or
P. bifermentans treatment.

METHOD DETAILS

Histopathologic analyses

Formalin-fixed gut segments from GF or specifically-associated mice were paraffin embedded and 5um sections cut for staining with
hematoxylin and eosin (H&E; Thermo-Fisher, Waltham, MA) as described (Bry and Brenner, 2004). Slides were visualized under a
Nikon Eclipse E600 microscope (Nikon, Melville, NY) to assess epithelial damage per cellular stranding and vacuolation, the nature
of Inflammatory infiltrates, mucosal erosions, and tissue edema. Lumenal neutrophils were quantified by a Pathologist by evaluating
ten 400X high powered fields (HPFs) across at least 3 colonic sections per mouse. Neutrophils were identified by presence of
segmented nuclei and pale to finely granular cytoplasm (Belzer et al., 2011). Data were plotted in Prism and comparisons among
colonization states by timepoint evaluated by Mann-Whitney log-rank test.

Toxin B ELISA

Cecal toxin B levels were quantified as described (Zarandi et al., 2017). Briefly, microtiter plates were coated with 5 ng/mL of anti-
TcdB capture antibody (BBI solutions, Madison, WI). Supernatants of spun cecal contents and standard curve controls of toxin B
(ListLabs, Campbell, CA) were assayed in triplicate. After incubation and washing with anti-toxin B biotinylated antibody (mouse-
anti-C.difficile TcdB; BBI solutions, Madison, WI) followed by high Sensitivity Streptavidin-HRP conjugate (Thermo-Fisher, Waltham,
MA), signal was detected with TMB substrate (Thermo-Fisher, Waltham, MA) at 450nm using a BioTek Synergy H1 plate reader
(Biotek Instruments Inc, Winoski, VT). Values were analyzed in Prism 8.0 (GraphPad, San Diego, CA) to calculate ng of toxin B/
gram of cecal contents. Significant differences among groups were evaluated by non-parametric Kruskal-Wallis ANOVA and Dunn’s
post-test. A p value <0.05 was considered significant.

Effects of colonization on toxin function

The Quidel C. difficile cell culture functional toxin assay (Beck et al., 2014) was used to evaluate if commensal colonization altered the
functional toxicity of C. difficile toxin. Cecal contents were collected from germfree mice or from mice monocolonized for 7 days with
P. bifermentans, or C. sardiniense. 100uL of purified toxin B control solution (Quidel Inc., San Diego, CA) was added to 1 gram of cecal
contents and incubated for 30 minutes prior to making 1:10 to 1:500 serial dilutions in the Quidel-provided dilution buffer and adding ma-
terials to confluent cultures of human MRC-5 fibroblasts. Fibroblast cells were incubated at 37 C for 48 hours and checked daily by com-
pound microscope for signs of cytopathic effect (CPE) indicated by balling up of cells and loss of adhesion. Additional control samples
included cecal contents incubated with toxin B for 30 minutes followed by addition of neutralizing antibody to confirm specificity of CPE
by toxin B. Cells where CPE occurred in the presence of toxin B, but not with cecal contents alone or with neutralizing antibody were called
positive. All conditions were repeated in triplicate. The highest dilution at which CPE occurred was identified for each condition.

Western blot for Toxin B integrity

Cecal supernatants from mice at 20h of infection were subjected to SDS-PAGE and transferred to PVDF membrane (PerkinElmer,
Waltham, MA) as described (Girinathan et al., 2018). Toxin B was detected by using Sheep Primary Antibody, Donkey Secondary
Antibody (R&D Systems, Minneapolis MN), diluted 1:1000 in 5% nonfat dry milk blotting buffer (25mM Tris, pH 7.4, 0.15M NaCl,
0.1% Tween 20), and by chemiluminescence using the SuperSignal West Pico Plus Western Blotting Substrate (part# 34577;
Thermo-Scientific, Waltham, MA).

Metabolomic studies

For GF colonization studies cecal contents from 8 mice per group across 2 experimental replicates were harvested from GF mice at
baseline, after 7 days of monocolonization with P. bifermentans or C. sardiniense, and at 24h post-infection with C. difficile alone or
with each commensal (6 groups, 48 mice total). For conventional studies, cecal contents were collected from 12 mice per group prior
to clindamycin treatment, 24h post-clindamycin treatment prior to C. difficile challenge, and at 30h post C. difficile challenge, at the
height of symptomatic infection. Materials were snap frozen into pre-weighed tubes and weighed to determine mass of cecal con-
tents. Global metabolomic screen of samples was performed by Metabolon (Raleigh, NC) with sample extraction and MALDI-TOF
analyses as described (Fletcher et al., 2018; Ryals et al., 2007). Results were obtained as Original Scale mass spectrometry counts.

Cecal short chain fatty acid measurements

Volatile short chain fatty acids from specifically-associated mice (n=6 mice/group across two experimental replicates) were quantified
as described (Moore, 1993). In brief, acidified internal standards with 100 pL of ethyl ether anhydrous or boron trifluoride-methanol was
added to 100ul of supernatant from homogenized cecal contents. Chromatographic analyses were carried out on an Agilent 7890B
system with flame ionization detector (FID). Chromatogram and data integration were carried out using the OpenLab ChemStation
software (Agilent Technologies, Santa Clara, CA). SCFA in samples were identified by comparing their specific retention times relative
to the retention time in the standard mix. Concentrations were determined and expressed as mM of each SCFA per gram of sample for
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the raw cecal/fecal material. The Agilent platform cannot discriminate the isomers isovalerate and 2-methylbutyrate and thus reports
these compounds out as a single peak and interpolated value.

Carbon source enrichment analyses

A variation of pathway enrichment analysis (Marco-Ramell et al., 2018) was used to evaluate carbon source availability and consump-
tion in vivo. Curated carbon source groups, optimized to reflect carbon source metabolism of gut commensal species, were devel-
oped with review of primarily literature regarding anaerobic metabolism of carbohydrate, amino acid and other amine-containing
compounds, lipids, aromatic compounds, purines and pyrimidines, vitamins, micronutrients and other input sources for microbial
metabolism and growth. Additional sources of reviewed information included published maps of C. difficile’s biochemical pathways
(Janoir et al., 2013; Pettit et al., 2014) and BioCyc and MetaCyc content for C. difficile strain CD630 (Marco-Ramell et al., 2018). A
carbon source group required a minimum of 6 biochemicals for evaluation. For studies in GF mice, 506 biochemicals, of 787 identified
by the Metabolon panel, 64.3% of the dataset, were curated into carbon source groups. For studies in conventional mice, 667 bio-
chemicals of 858, 77.8% of the dataset, were curated into carbon source groups. The carbon source mappings and results in spe-
cifically-associated and conventional mice are available in supplemental files Data S6: Carbon Source Enrichement Analyses in
Specifically-associated Mice, Related to Figure 2 and STAR Methods section: Carbon source enrichment analyses, and Data S9:
Carbon Source Enrichment Analyses in Conventional Mice, Related to Figure 7 and STAR Methods section: Carbon source enrich-
ment analyses.

Mass spectrometry datasets were filtered to remove biochemicals with values <50,000 counts across all samples (<3% of bio-
chemicals). Remaining zero-value data points were assigned a value of 25,000 to support calculation of Log, fold-change between
comparisons. Datasets were Log, transformed for significance testing of each biochemical by Welch’s T test and Benjamini-Hoch-
berg multi-hypothesis correction (Benjamini, 1995; van den Berg et al., 2006). Thresholds for enrichment used a Log, fold-change of
>0.32192809 (1.25X), and a Log, fold-change < -0.32192809 (-1.25X) for depletion, and per-biochemical adjusted p value <0.05.
Biochemicals in pairwise comparisons were ranked by adjusted p value and up to the top 40% of significantly changing biochemicals
were used in analyses.

The number of enriched and depleted biochemicals per carbon source group, and total number of enriched and depleted biochem-
icals in datasets were calculated. Carbon source groups with >4 enriched or >4 depleted biochemicals underwent hypothesis
testing by hypergeometric test, followed by Benjamini-Hochberg multi-hypothesis correction (Benjamini, 1995). An adjusted p value
<0.05 for enriched or depleted carbon source groups was considered significant. Significantly enriched or depleted groups were
plotted using the Python library Matplotlib (Hunter, 2007). Results for biochemicals within enriched groups were plotted in OriginLab
(Origin Lab, Wellesley Hills, MA) using the 3D XYY function, or with the Metaboanalyst 4.0 visualization tools (Chong et al., 2018).

Cluster analyses of Stickland metabolites

Stickland aromatic amino acid and histidine metabolites with known specificity for C. difficile or P. bifermentans (Mead, 1971; Neu-
mann-Schaal et al., 2019) were clustered by mouse sample using the Metaboanalyst 4.0 clustering tools and Pearson’s correlation
matrices (Chong et al., 2018). Similarities among samples were evaluated by amova (Schloss, 2020).

ATCC43255 and C. sardiniense genome annotation

Given discrepancies for multiple genes and bacteriophage loci in the RefSeq genome for C. difficile ATCC43255, a closed, reference
genome was generated using Oxford Nanopore Gridlon sequencing (Oxford Nanopore Technologies, Oxford, UK) according to the
manufacturer’s instructions. The prepared library was sequenced on a MIN106D flow cell (R9.4.1) for 72 hours using the fast calling
model. Reads were base called in real-time and demultiplexed using MinKNOW v3.6.5. The genome was de novo assembled using
reads >5 kb in size with Flye v2.4.1 (Kolmogorov et al., 2019) to produce one circular contig with 400X coverage and size of
4,313,281 bp. A second hybrid assembly using the nanopore long reads with short reads generated by Miseq sequencing (GenBank:
SRS5656519) was generated using Unicycler v.0.4.8 (Wick et al., 2017). Mauve (Darling et al., 2011) was used to align and determine
the synteny of both assemblies.

To correct potential stop codon and frameshift sequencing errors in coding regions, the hybrid assembly was compared to 26 pre-
existing de novo SPAdes assemblies for ATCC43255 generated using lllumina MiSeq data from Worley, et al. (Worley et al., 2020).
The corrected genomic data is available in NCBI under Accession#: NZ_CP049958.1.

The updated reference genome was annotated using the NCBI Prokaryotic Genome Automatic Annotation Pipeline (Sayers et al.,
2020), PATRIC (Wattam et al., 2017), and PROKKA (Seemann, 2014) to extract gene features for support of transcriptome pathway
enrichment analyses. Bacteriophage loci and genes were identified using PHASTER (Arndt et al., 2019).

A genome for C. sardiniense (GenBank: SRR15509127) was generated using the methods a in Nudel, et al. by lllimina MiSeq and
annotated as described (Nudel et al., 2018). To assess presence of a putative ornithine cyclodeaminase gene, the C. sardiniense
genome was subjected to nucleotide and protein BLAST using the ornithine cyclodeaminase nucleotide coding regions and amino
acid sequences from C. difficile ATCC43255 (genelD: UAB_RS0202485), P. bifermentans (genelD: fig|1490.7.peg.2150), the cluster |
Clostridium, Clostridium botulinum (GenBank: WP_072587252), and Enterococcus faecalis (GenBank; WP_002358614.1). No orthol-
ogous genes in C. sardiniense were identified.
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In vivo bacterial RNA sequencing

RNA was extracted from 15-20mg of flash frozen cecal contents (n=6 mice per group) using the Zymo Direct-zol RNA purification kit
(R2081; Zymo, Irvine, CA). The quality of extracted RNA was assessed using an Agilent 2100 Bioanalyzer (Agilent Technologies, Lex-
ington, MA) and samples with RNA Integrity Number (RIN) >= 8.0 were processed through Ribo-Zero Gold rRNA removal kit
(MRZH116; lllumina, San Diego, CA) or NEBNext bacterial and rRNA Depletion Kit to deplete prokaryotic and eukaryotic rRNAs,
and eukaryotic poly-A mRNAs (New England Biolabs, Ipswich, MA). The transcriptome sequencing libraries were constructed using
the lllumina TruSeq mRNA Library Prep kit (20020594, 20020493; lllumina, San Diego, CA) or NEBNext Ultra Il Directional RNA library
prep kit (New England Biochemical, Ipswich, MA), per the manufacturer’s specifications. Library sizes were checked using a Bio-
analyzer DNA High Sensitivity chip and TapeStation and quantified using Qubit dsDNA HS Assay Kit (Q32854; Thermo-Fisher, Wal-
tham, MA). For sequencing runs, 12 libraries were pooled and sequenced on an lllumina Nextseg500 (lllumina, San Diego, CA) in
paired-end 150 (PE150) nucleotide runs.

Metatranscriptome data processing

To map reads to gene features, the P. bifermentans ATCC638 (DSM14991) reference genome, NZ_AVNC01000001.1, was obtained
from PATRIC (Davis et al., 2020) and Mus musculus C57BL6/J genome, GCF_000001635.26, from NCBI. The genomes for C. difficile
ATCC43255 and C. sardiniense DSM599 were generated as described. The annotated gene content used in analyses for all three
species is in suppelmental file Data S7: Metatranscriptome Gene Content, Related to STAR Methods sections Metatranscriptome
Data Processing, and Metatranscriptome Enrichment Analyses.

Paired-end reads were quality filtered and trimmed then mapped to mouse and microbial genomes using Bowtie2 (Langmead,
2012) using strict requirements for read orientation. The “—no-mixed” and “-no-discordant” flags were used to ensure that paired
reads aligned to the same section of the genome in the expected orientation, respectively. Read pairs with a mapping quality
<10, a measure of alignment uniqueness, were filtered. Reads aligning to >1 genome was flagged for subsequent analysis to identify
potential sites of homology among genomes.

Mapped reads were assigned to gene features using HTSeq (Anders et al., 2015) with flags “—nonunique all” to allow reads map-
ping to multiple features to be called to account for polycistronic RNAs, and “-a 10” to set the minimum mapping quality score at 10, a
measure of alignment uniqueness. The identity of unaligned reads was analyzed with Kraken2 (Neves et al., 2017) to confirm asso-
ciation of mice with the expected species.

HTSeq results from each experimental replicate were binned by species and formatted for DESeg2 analyses (Guo et al., 2013).
Gene features where no set of experimental replicates averaged more than 10 reads per replicate were filtered from further analysis
(<3% of genes). A widely used DESeq?2 analysis template was modified for differential expression analysis (https://gist.github.com/
stephenturner/f60c1934405c127f09a6). Read data from all experimental replicates of a given organism were included for pairwise
DESeg2 analyses to ensure the same adjusted read counts and estimates of dispersion across pairwise comparisons.

Metatranscriptome enrichment analyses

For C. difficile, mappings leveraged multiple previously published gene-level and pathway annotations for CD630 (Dembek
et al., 2015; Hofmann et al., 2018; Janoir et al., 2013), assignments of gene function in the C. difficile EGRIN model
(Arrieta-Ortiz et al., 2021), and the bacterial-based Riley schema (Riley, 1993) to define microbial pathways and super-path-
ways, with addition of pathways such as “Mucin Degradation” to describe commensal-host categories, or ones that were
missing or incompletely annotated in public resources. An operon map of C. difficile genes was created from the BioCyc con-
tent for CD630 (Marco-Ramell et al., 2018). Genes present in ATCC43255, but not CD630, were treated as single-cistron op-
erons. PATRIC and PROKKA (Seemann, 2014) annotation of the C. sardiniense and P. bifermentans genomes were used to
develop pathway maps for these species. Gene features in the commensals were also subjected to BLAST against the CD630
reference genome to provide additional annotation information. The annotated microbial gene features are shown in supple-
mental file Data S7: Metatranscriptome Gene Content, Related to STAR Methods sections: Metatranscriptome Data Process-
ing, and Metatranscriptome Enrichment Analyses.

A minimum of 8 genes across at least 2 putative operon structures were required to define a pathway category. Thresholds for gene
enrichment or depletion were set at +/-1.5X fold-change (Log, fold-change of +/- 0.584962501) and with a DESeq2 per-gene
adjusted p value <0.05. Up to the top 40% of significantly changing genes, ranked by the per-gene adjusted p value, were analyzed
in each pairwise comparison. Pathways with a minimum of 5 enriched or of 5 depleted genes underwent hypothesis testing by hy-
pergeometric test. Multi-hypothesis adjusted p values were calculated using the Benjamini-Hochberg method (Benjamini, 1995).
Pathways with an adjusted p value <0.05 were considered significant. Enriched pathways were plotted using Python library Mat-
plotlib (Hunter, 2007). The results of enrichment analyses are shown in supplemental data file Data S8: Metatranscriptome Enrich-
ment Analyses, Related to Figures 3 and 4 and STAR Methods section: Metatranscriptome Enrichment Analyses. Heatmaps of all
genes in enriched or depleted pathway categories were visualized using the Metaboanalyst 4.0 tools (Chong et al., 2018), with hier-
archical gene-level clustering by Pearson similarity and minimum-distance linkage.

Genomic DNA extraction and qPCR
Genomic DNA was extracted from cecal contents using the Zymo Quick-DNA Fecal/Soil Microbe Miniprep Kit (kit# 11-322; Zymo,
Irvine, CA) and gPCR was performed using Tagman primers and probes specific for P. bifermentans, C. sardiniense and C. difficile
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with the conditions as described (Abdel-Gadir et al., 2019; Bucci et al., 2016) on a QuantStudio 12K Flex Real time PCR system
(Applied Biosystems, Beverly, MA). Samples were run in triplicate and compared against standard curves of known biomass of
each organism spiked into germfree cecal contents and then extracted to provide normalized CFU counts per gram of cecal
contents.

Clostridium scindens Stickland reductase gene analysis

The genomes of C. scindens ATCC35704 (GenBank: NZ_CP036170), VE202-05 (GenBank: GCA_000471845.1), MSK 1.16
(RefSeq: GCF_013304115.1), and MGYG-HGUT-013-3 (RefSeq: GCF_902373645.1) were interrogated by protein and nucleotide
BLAST with each of the full length coding regions from the C. difficile ATCC43255 and P. bifermentans DSM14991 proline reductase
(ord genes) (Bouillaut et al., 2013; Jackson et al., 2006), glycine reductase (grd genes) (Andreesen, 1994; Berges et al., 2018), and
reductive leucine pathway genes (had operon genes) (Kim et al., 2006). Putative orthologs with >80% identity and >80% query
coverage were evaluated further. C. scindens orthologs, if present, were aligned with the corresponding regions in C. difficile and
P. bifermentans using the PATRIC multi-sequence alignment tool (Wattam et al., 2017). Aligned regions are shown in Figure S4:
Stickland reductase genetic loci in C. difficile, P. bifermentans and C. scindens, Related to STAR Methods section: Clostridium
scindens Stickland reductase gene analysis.

QUANTIFICATION AND STATISTICAL ANALYSIS

Numbers of mice or experimental replicates studied are noted in the figures, associated figure legends, and/or STAR Methods
sections. Complete details of statistical analysis can be found in the associated figure legends and/or STAR Methods sections.
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