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Abstract

For any manifold with polynomial volume growth, we show that the dimension
of the space of ancient caloric functions with polynomial growth is bounded by the
degree of growth times the dimension of harmonic functions with the same growth.
As a consequence, we get a sharp bound for the dimension of ancient caloric func-
tions on any space where Yau's 1974 conjecture about polynomial growth harmonic
functions holds.

0. Introduction

Given a complete manifold M and a constant d, #; (M) is the linear space of har-
monic functions of polynomial growth at most d. Namely, u € #;(M) if Au =0,
and for some p € M and a constant C;, depending on u,

sup |u| <Cy(1+ R)¢ forall R. (0.1)
Br(p)

In 1974, S. T. Yau conjectured that #; (M) is finite-dimensional for each d when
Ricys > 0. The conjecture was settled in [6]; see [5]-[9] and [11] for more results. '
In fact, [6]-[8] proved finite dimensionality under much weaker assumptions of
(D a volume doubling bound;

2) a scale-invariant Poincaré inequality or mean value inequality.

The natural parabolic generalization is a polynomial growth ancient solution of
the heat equation. A solution of the heat equation is often called a caloric function.
Ancient solutions are ones that are defined for all negative t—these are the solutions
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4172 COLDING and MINICOZZI I

that arise in a blowup analysis. Given d > 0, u € £;(M) if u is ancient, d,u = Au,
and for some p € M and a constant C,,,

sup  |u|<Cu(1+R)? forall R. 0.2)
Br(p)x[—R2,0]

On R", P, is the classical space of caloric polynomials that generalize the Hermite
polynomials (see [14], [15], [27]). More generally, the spaces #; (M) play a funda-
mental role in geometric flows (see [10]-[12]). They were studied by Calle in her
2006 thesis (see [1], [2]), in the context of mean curvature flow.

A manifold has polynomial volume growth if there are constants C and dy so
that Vol(Br(p)) < C(1 + R)?V for some p € M, all R > 0. Our main result is the
following sharp inequality.

THEOREM 0.3
If M has polynomial volume growth and k is a nonnegative integer, then

k
dim Po (M) <) dim Jo; (M), 0.4)
i=0

The inequality (0.4) is an equality on R” (see Corollary 2.18 below). Since #4, C
Hg, for di < dz, Theorem 0.3 implies the following.

COROLLARY 0.5
If M has polynomial volume growth, then for all k > 1,

dim Por (M) < (k + 1) dim Ho (M). (0.6)

Combining this with the bound dim #; (M) < Cd"~! when Ricpn > 0 from [7]
gives the following corollary.

COROLLARY 0.7
There exists C = C(n) so that if Ricyrn = 0, then for d > 1,

dim £, (M) < Cd". 0.8)

The exponent #n in (0.8) is sharp: there is a constant ¢ depending on 7 so that for
d>1,

¢~ 14" < dim Py (R") < cd™. 0.9)

2 A volume doubling space with doubling constant Cp has polynomial volume growth of degree log, Cp.
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Recently, Lin and Zhang [24] proved very interesting related results, adapting the
methods of [6]-[8] to get the bound d"*1!.

Using parabolic gradient estimates of Li and Yau [23] and Souplet and Zhang
[30], one can show that if d < 2 and Ric > 0, then $y3(M) = H7(M) con-
sists only of harmonic functions of polynomial growth. In particular, Py (M) =
{Constant functions} for d < 1, by Yau [33] and Cheng and Yau [4], and, moreover,
dim $; (M) < n + 1, by Li and Tam [22], with equality if and only if M = R” by [3].

The exponent n — 1 is also sharp in the bound for dim #; when Ricyn > 0.
However, as in Weyl’s asymptotic formula, the coefficient of d"~! can be related to
the volume (see [7]):

dim #Hy (M) < C,Vayrd™ 1 4+ 0(d™1). (0.10)
® Vs is the “asymptotic volume ratio” lim, o, Vol(B;)/r".
o o(d"1) is a function of d with limg_, o 0(d"~1)/d"~! =0.

Combining (0.10) with Corollary 0.5 gives dim $;(M) < C,Vpd"™ + 0(d™) when
Ricymn > 0.

An interesting feature of these dimension estimates is that they follow from
“rough” properties of M and are therefore surprisingly stable under perturbation.
For instance, [8] proves finite dimensionality of J#; for manifolds with a volume
doubling and a Poincaré inequality, so we also get finite dimensionality for #; on
these spaces. Unlike a Ricci curvature bound, these properties are stable under bi-
Lipschitz transformations (cf. [26]). Moreover, these properties make sense also for
discrete spaces, vastly extending the theory and methods out of the continuous world.
Recently, Kleiner [19] (see also Shalom and Tao [29], [31], [32]) used this in part
in his new proof of an important and foundational result in geometric group theory,
originally due to Gromov [16]. We expect that the proof of Theorem 0.3 extends to
many discrete spaces, allowing a wide range of applications.

1. Ancient solutions of the heat equation
The next lemma gives a reverse Poincaré inequality for the heat equation (cf. [25]).

LEMMA 1.1
There is a universal constant ¢ so that if u; = Au, then

rz/ |Vu|2+r4/ 5 uffc/ u?. (1.2)
B 1 X[~ 55,01 B 4 x[~f55.0] Byx[-r2,0]

Proof
Let Qg denote Bg x [—R?,0], and let ¥ be a cutoff function on M. Since u; = Au,

integration by parts and the absorbing inequality 4ab < a? + 4b? give
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0, /uzwz = 2/u1/f2Au = —2/ |Vu2y? — 4/ uy (Vr, Vu)
<= [1vupy? +4 [y (13)
Integrating this in time from —R? to 0 gives

0
/ uzwz—/ uzl//sz (-/|Vu[2¢2+4fu2|w|2) dt. (1.4
=0 t=—R?2 —R2

In particular, we get

0 0
/ /|Vu|21ﬂ2dt 5/ u?y? +4/ fuzjvwizdt. (1.5)
—R2 t=—R2 —R2

Let || < 1 be one on Bg/», have support in Bg, and satisfy |[Vi/| <2/R, so we get

16
/ |Vu|? 5/ w+— | (1.6)
ORr/2 Brx{t=—R?} R? Jog

Next, we argue similarly to get a bound on u?2. Namely, differentiating, then integrat-
ing by parts and using that u;, = Au gives

8,/|Vu|2w2=2/(Vu,Vu,)w2 =—2fuf¢2—4fu,¢(vu,vw)
<= [ty +a [ 1vupiyp a7
Integrating (1.7) in time from —R? to 0 gives
|wupyr— [ vy
t=0 t=—R2
0
5/ (—/ufw2+4f|w|2|w|2) dr. (1.8)
—R2

Letting ¥ be as above, we conclude that

16
f u? < — |Vu |? +/ |Vu %, (1.9)
R2 —_R2
ORr/2 Or Brx{t=—R?}

Next, choose some rq € [4r/5, r] with

vic I 25
/ uzf——z (/ uz) dt:—Z/ T (1.10)
Boxtt=—r3} 9% )2\, It Jo,
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Applying (1.6) with R = r; and using the bound (1.10) at r; gives

16 20
/ |Vu|2§/ |Vu|2§/ u2+—2/ w<= | ur (111)
str_ Q%_ By, X{t=—’12} ry or ry Jor

For simplicity, ¢ is a constant independent of everything that can change from line to
line. It follows from (1.11) that there must exist some p € [r/5,2r/5] so that

25 [0 25
/ Vul> < = 2(/ |Vu|2)dz=—2 IVul?
B;Sr_x{l=—P2} 3r _42L5 BZSZZ 3r str_

¢ 2
e (1.12)
rtJo,

Now applying (1.9) with R = p and using (1.11) and (1.12) gives
16
[ u,2§—2/ |Vu|2+/ |Vu|2§—cZ/ 2. (1.13)
Qp/2 p=Jo, Box{t=—p2} rJo, 0

COROLLARY 1.14
IfVol(BR) < C(1 4+ R)4V and u € Py(M), then 3*u = 0 for 4k > 2d + dy + 2.

Proof

Since the metric on M is constant in time, 0; — A commutes with d; and, thus, (d; —
A)3u =0 forevery j.Let Qg denote Bg x [—R?,0]. Applying Lemma 1.1 to u on
Q; for some r, then to u; on Qﬁ;, and so on, we get a constant cx depending just on
k so that

|8%u)? < Tk u?< —[—:-If-erol(B,)supuZ
0 4 rak 0 rak 0
ng r r

< Cegr® 4% (1 4 r)2d+dr (1.15)

Since 4k > 2d + dy + 2, the right-hand side goes to zero as r — oo, giving the
corollary. O

We will prove Corollary 0.5 next, though it will eventually be a corollary of
Theorem 0.3.

Proof of Corollary 0.5
Choose an integer m with 4m > 2k + dy + 2. Corollary 1.14 gives that 07"« = 0 for
any u € P, (M). Thus, any u € P5; (M) can be written as
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u=po+tpi+--+t"pp_y, (1.16)

where each p; is a function on M. Moreover, using the growth bound u € Pyx (M)
for ¢ large and x fixed, we see that p; = 0 for any j > k. (See [24, Theorem 1.2]
for a similar decomposition under more restrictive hypotheses and [20] for a splitting
result for ancient positive solutions on homogeneous spaces.)

We will show next that the functions p; grow at most polynomiaily of degree d.
Fix distinct values —1 <] <t < -+ <ty <tx4+1 = 0. We claim that the (k + 1)-
vectors

(1,4;,12,...,tF) 1.17)

are linearly independent in R¥+1 for i =1,...,k + 1. If this was not the case, then
there would be some (nontrivial) (ay, . . .,ax) € R¥*! thatis orthogonal to all of them.
But this means that there would be k£ + 1 distinct roots to the degree k polynomial

a0+a1t+---+aktk, (1.18)

which is impossible, and the claim follows. Let e; € RK+1 pe the standard unit vec-

tors. Since the (1,4,17,..., t,k )’s span R¥*1 we can choose coefficients b} so that
for each j,

e =Zbl.j(1,t,-,ti2,...,t,.k). (1.19)
i

It follows from (1.16) and (1.19) that
pi(x) =" bju(x,1). (1.20)
i

Since u € P (M), (1.20) implies that each p; is a linear combination of functions
that grow polynomially of degree at most 2k, and thus p; grows polynomially of
degree at most 2k.

Since u satisfies the heat equation, it follows that Apy = 0 and

Ap; = +Dpj+1. (1.21)

Thus, we get a linear map Wy : Por (M) — Hop (M) given by Wo(u) = pg. Let Ko =
Ker(Wy). It follows from this that

dim Po (M) < dim Ko + dim Hop (M). (1.22)

If u € Ky, then pr = 0and Apg_; =0, so we get a linear map ¥; : Ko — Hox (M)
given by W;(u) = pr—1. Let K be the kernel of ¥; on K. It follows as above that

dim Ko < dim K + dim Hpp (M). (1.23)

Repeating this k + 1 times gives the theorem. O
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LEMMA 1.24
Ifu € Py (M) can be written as u = po(x) + tp1(x) + -+ + t* pr(x), then

|ps @) = € (1+ 1xPE7). {1:28)
Proof
By assumption, there is a constant C so that
luGx, )| < C(1 + [t]F + |x|*). _ (1.26)
Following the proof of Corollary 0.5, fix —1 <t; <t <+ <ty <lgy1 = —% and

coefficients bij so that (1.19) holds for each j. Observe that (1.19) gives, for each j,

Zbiju(x, R’t;) = ZZb{pe(x)sztf = ZZbijpg(x)sztf
i L i

AR |

1

= R¥ p;(x). (1.27)

Thus, given R > 2 and x € Bg, we get that

|R¥ p;(x)| = ‘thiju(x, R%t;) §Iril’a}x|bij|lZlu(x, R?t;)|

< C(1+ |x* + max |R*;|¥) <3C R*. (1.28)
1
From this, we conclude that sup,, | p;| < 3C R*~%/, O

Proof of Theorem 0.3

Following the proof of Corollary 0.5, each u € $P,; (M) can be expanded as u =
po(x) + tp1(x) + -+ + t* pr(x). By Lemma 1.24, the linear map Wy : Por (M) —
Hor (M) given by Wo(u) = pi actually maps into H#o(M ), and thus

dim Pop (M) < dim Ho(M) + dimKer(Wy). (1.29)

Similarly, Lemma 1.24 implies that the map ¥; maps the kernel of Wy, to H(M).
Applying this repeatedly gives the theorem. O

2. Caloric polynomials
It is a classical fact that $; (R™) consists of caloric polynomials, that is, polynomials
in x, ¢t that satisfy the heat equation (see [14], [15], [27]). We compute the dimensions
of these spaces.

Given a polynomial in x and ¢, define its parabolic degree by considering ¢ to
have degree 2. Thus, x|"! x; 2™ has parabolic degree m1 +mx +2my. A polynomial
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in x, ¢ is homogeneous if each monomial has the same parabolic degree. Let A7)
denote the homogeneous degree p polynomials on R”. The parabolic homogeneous
degree p polynomials A", are

Ay =AY StA) , ®1PAT_ D @.1)

LEMMA 2.2
For each positive integer p, we have dim(Pp(R") N A7) = dim A}, and

p
dim Pp(R") = » " dim A7, (2.3)
Jj=0

Proof
Observe that d; and A map A, to A',_». Moreover, given any u € A']’,_z, we have

I |
(0, — A)[tu = 3200 = M+ 23— A)Pu — ] =y, 2.4)

Therefore, the map (9; — A) : A7 — A7 _, is onto. Since the kernel of this map is
Pp(R™) N A", we conclude that

dim(£,(R") N A%) = dim A’ — dim A}, _, = dim 4}, (2.5)
This gives both claims. O
LEMMA 2.6
If p > n, then
1 " n—1 )

———p" <dim4” < S 2.7

n—nf = =Ty G5
Proof

To get the upper bound, we use that p > n to get

_ 1\ — yn—1 n—1 n—1
_(4n=-D! _(+n-D"" @p" 2 1

dim A" = = e 2.8
M == = =1 -0l -’ 28)
The lower bound follows similarly since (ﬁ!‘{:__ll))!! > (% O

The dimension bounds for #;(R”) in (0.9) follow by combining Lemmas 2.2
and 2.6.
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2.1. Harmonic polynomials

For each j, the Laplacian gives a linear map A : A;‘. — A;f_z. The kernel H ]” C A;?
of this map is the linear space of homogeneous harmonic polynomials of degree j on
R”. The next lemma shows that this map is onto.

LEMMA 2.9

For each d, the map A : A’I}+2 — AZ is onto.

Proof

Take an arbitrary u € A”. For each nonnegative { < d /2, define u, and v; by
ug = |x|?¢Atu, (2.10)
ve = |x|%ug = |x|22A . (2.11)

Note that o = u. We will use repeatedly that if v € A}, then homogeneity gives
(x,Vv) =kv. (2.12)
Using this and A|x|? = 2n, we get for each £ that
Avg = (€ + 1)(2n + 40)|x[* Atu + 2(V[x PEFD W ALY) 4 [xPEFD AL,
=+ 1)2n + 40)|x|* Abu + 4(€ + 1)(d = 20)|x|*¢Atu + |xPEFD ALY,
=+ 1)2n+4d —40)uy + ugsq. (2.13)
Thus, if we define positive constants ¢, = (£ + 1)(2n + 4d — 4£), then we have that
Avg =cpug + Ugyq. (2.14)

Let k be the greatest integer less than or equal to %. Note that ug41 = vg4+1 =0. It
follows from this and (2.14) that

A(vk — CkVk—1 + CkCk—1Vk—2 — CkCk—1Ck—2Vk—=3 +**) (2.15)
is a nonzero multiple of ug = u, giving the lemma. O
COROLLARY 2.16
For each positive integer k, we have dim Hy! = dim A} —dim A} _, and
dim #; (R") = dim A} + dim A7_,. (2.17)
Proof

Note that A : A;? — A;?_Z gives a linear map with kernel equal to H ]” The map is
onto by Lemma 2.9, giving the first claim. Summing the first claim gives (2.17). O
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COROLLARY 2.18
For each k, (0.4) is an equality on R”.

Proof
Corollary 2.16 and Lemma 2.2 give
k k 2
D dim I (R") = ) (dim A3, +dim A%, )= dim A7
j=0 j=0 i=0
= dim P, (R?). (2.19)

O
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