Metalorganic Chemical Vapor Deposition of α -Ga₂O₃ and α -(Al_xGa_{1-x})₂O₃ thin films on m-plane sapphire substrates A F M Anhar Uddin Bhuiyan^{1,a)}, Zixuan Feng¹, Hsien-Lien Huang², Lingyu Meng¹, Jinwoo Hwang², and Hongping Zhao^{1,2,b)} ¹Department of Electrical and Computer Engineering, The Ohio State University, Columbus, OH 43210, USA ²Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, USA ^{a)}Email: bhuiyan.13@osu.edu ^{b)}Corresponding author Email: zhao.2592@osu.edu #### **Abstract** Single α phase (Al_xGa_{1-x})₂O₃ thin films are grown on m-plane sapphire (α -Al₂O₃) substrates via metalorganic chemical vapor deposition (MOCVD). By systematically tuning the growth parameters including the precursor molar flow rates, chamber pressure and growth temperature, the epitaxial growth of high-quality phase pure α -(Al_xGa_{1-x})₂O₃ films (0 \leq x \leq 1) are demonstrated with smooth surface morphologies and alloy homogeneities by comprehensive material characterization. The asymmetrical reciprocal space mapping (RSM) reveals fully relaxed films for α -(Al_xGa_{1-x})₂O₃ films with $x \le 0.5$. The coherent growth of α -(Al_xGa_{1-x})₂O₃/ α -Al₂O₃ superlattice (SL) structures are demonstrated with abrupt interfaces and uniform Al distribution for higher Al composition at x = 0.78 in α -(Al_xGa_{1-x})₂O₃ layer. Influence of the growth parameters such as the growth temperature and chamber pressure on the phase stabilization and Al incorporation in the α-(Al_xGa_{1-x})₂O₃ films are investigated. While lower growth temperatures facilitate the phase stabilization of α-Ga₂O₃ thin films, lower chamber pressure leads to higher Al incorporation in α -(Al_xGa_{1-x})₂O₃ films. High resolution x-ray spectroscopy (XPS) was utilized for determining the Al compositions and bandgaps of α-(Al_xGa_{1-x})₂O₃. Furthermore, the evolution of the valance and conduction band offsets at α -Al₂O₃/ α -(Al_xGa_{1-x})₂O₃ heterojunctions are evaluated with the variation of Al compositions which reveals the formation of type-I (straddling) band alignment between α -Al₂O₃ and α -(Al_xGa_{1-x})₂O₃. **Keywords:** Ultra-wide bandgap, corundum α-(Al_xGa_{1-x})₂O₃ thin film, m-plane sapphire, metalorganic chemical vapor deposition (MOCVD) #### I. Introduction Gallium oxide (Ga₂O₃), having five different polymorphs (α , β , γ , δ and ϵ) [1] and an ultrawide bandgap energy (~4.5-5.3 eV) [2, 3], is a transparent semiconducting material promising for high-power electronics due to its high predicted breakdown field strength (~8 MV/cm) [3]. Among different polymorphs, monoclinic β-phase Ga₂O₃ has attracted the most attention in recent years because of its availability of single crystal native substrates [4], controllable n-type doping [5-7] and possibility for bandgap engineering by alloying with Al₂O₃ [9-21]. The recent demonstrations of the epitaxial growth of high-quality phase pure β -(Al_xGa_{1-x})₂O₃ (x \leq 0.52) alloys on differently oriented β -Ga₂O₃ substrates [9-15] and high performance β -(Al_xGa_{1-x})₂O₃/ β -Ga₂O₃ (x \leq 0.26) heterostructure based modulation doped field-effect transistors (MODFETs) [18-21] promise this material's potential in applications such as integrated power electronics and radio-frequency electronics. While the performance of (Al_xGa_{1-x})₂O₃/Ga₂O₃ heterostructure based MODFET devices largely depends on the Al incorporation in β -(Al_xGa_{1-x})₂O₃ layers, the high Al composition β-(Al_xGa_{1-x})₂O₃ alloys are not energetically favorable due to the structural phase transformation and domain rotation [10,22,23], which impedes the pathway to achieve larger bandgap energy with higher band offsets at (Al_xGa_{1-x})₂O₃/Ga₂O₃ interface [12,24]. Only recently, metastable rhombohedral corundum structured α -Ga₂O₃ (space group R $\overline{3}$ C), with a large bandgap of 5.3 eV [2], has generated substantial interest in the scientific community. This is because α -Ga₂O₃ thin films can be epitaxially grown on inexpensive isostructural sapphire substrates [2, 25-36] and its electrical conductivity can be controlled [25, 28]. Moreover, α -Ga₂O₃ can be alloyed with other corundum oxides (Fe₂O₃, Cr₂O₃, V₂O₃), which provides opportunities for the formation of quantum heterostructures. The bandgap engineering of α -Ga₂O₃ by alloying with α -Al₂O₃ and α -In₂O₃ over a large bandgap interval (3.7-9.2 eV) [38,39] also extends the electronic and optoelectronic applications into new regimes that are currently unachievable by monoclinic β -(Al_xGa_{1-x})₂O₃ alloys due to the limited Al incorporation. The demonstration of α -Ga₂O₃ based Schottky diodes and MESFET devices have also revealed this material's immense potential in high power electronics and deep ultraviolet optoelectronics [40]. Considering the enormous possibilities of α-Ga₂O₃ and its alloys in high-power and high frequency electronic applications, several studies have been conducted on the epitaxial growth of α -Ga₂O₃ and α -(Al_xGa_{1-x})₂O₃ alloys by different growth techniques including mist chemical vapor deposition [2,27,28,31,35,41,42], molecular beam epitaxy (MBE) [30,32,36,43] and halide vaporphase epitaxy (HVPE) [29,33]. Previously, homoepitaxial growth of α-Al₂O₃ thin films was successfully demonstrated by MBE [44] and PLD [45] on atomically regulated sapphire substrates. As single crystal α-Ga₂O₃ native substrates are not available yet due to its metastability in the ambient atmosphere, the heteroepitaxial growth of α -Ga₂O₃ and α -(Al_xGa_{1-x})₂O₃ alloys are mostly investigated on inexpensive sapphire substrates which possesses the same corundum structure. Despite of having a large lattice mismatch between α-Ga₂O₃ and α-Al₂O₃ [~4.8% (a-axis) and \sim 3.54% (c-axes), respectively [28,29,31]], the controllable doping of α -Ga₂O₃ on c- and m- plane sapphire substrates have been reported by using mist-CVD growth technique [27,28,46]. Heteroepitaxial growth of α-Ga₂O₃ and α-(Al_xGa_{1-x})₂O₃ alloys on different crystal planes of sapphire substrates (c-[2,26,27,29,31,33,35,36,41,42], a-[36,43], m-[28,32,43] and r-[30,34,43]) have been investigated by different growth methods. MBE growth of Nd (neodymium) doped α-(Al_xGa_{1-x})₂O₃ alloys have been studied with different Al concentrations on differently oriented sapphire substrates (r-, a-, and m- planes) for laser application [43]. The growth of undoped α - (Al_xGa_{1-x})₂O₃ thin films on c-plane sapphire substrates by mist-CVD growth method has been reported with Al compositions up to 81% [41]. The mist CVD growth of α -Ga₂O₃ thin films on c-plane sapphire substrates have been demonstrated with lower edge dislocation density by using α -(Al_xGa_{1-x})₂O₃ as a quasi-composition-graded buffer layer [47]. Band discontinuities at mist CVD grown α -Ga₂O₃/ α -(Al_xGa_{1-x})₂O₃ heterointerfaces grown on c-plane sapphire substrates were also determined by x-ray photoemission spectroscopy [42]. While most of the growths of α -Ga₂O₃ thin films are investigated on c-plane sapphire substrates, recent studies on the growth of α -Ga₂O₃ films on c-plane sapphire substrates have revealed the formation of a few-monolayer thick (~3 nm) α -Ga₂O₃ interlayer at the substrates and epilayer interface, which subsequently transforms to β -phase as a form of rotational domain due to a large in-plane lattice mismatch between α -Ga₂O₃ and sapphire substrate [26,36]. These studies indicated that the growth of phase pure α -Ga₂O₃ alloys on c- sapphire substrates are limited by the film thicknesses. However, on a-plane sapphire substrates with a relatively smaller in-plane lattice mismatch, the isomorphic phase stabilization of α -Ga₂O₃ up to a film thickness of 14.3 nm has been reported [36]. On the other hand, relatively thicker isomorphic α -Ga₂O₃ layers were grown on r- plane sapphire substrates with a thickness of 217 nm [30]. However, further increase of the film thicknesses leads to the nucleation of β -Ga₂O₃ with the epitaxial relationship of ($\bar{2}$ 01) β -Ga₂O₃ || (0001) α -Ga₂O₃ on c-plane facets that are exposed during the growth of α -Ga₂O₃ [30]. These studies imply that the growth of phase pure α -Ga₂O₃ and α -(Al₃Ga_{1-x})₂O₃ alloys are highly dependent on the crystal orientations of sapphire substrates. While achievable film thicknesses of phase pure α -Ga₂O₃ is limited due to the phase transition that occurs by the formation of c-plane facets on α -Ga₂O₃ surface during the growth on c- and r-plane sapphire, a crystal plane that is perpendicular to the c-plane such as a- or m-planes can potentially promote the growth of phase pure α -Ga₂O₃ and α -(Al_xGa_{1-x})₂O₃ alloys by avoiding the formation of c-plane facets. Based on this principle, by using m-plane sapphire substrate, a recent MBE growth study have revealed a pathway to achieve phase pure (56-84.3 nm thick) α -(Al_xGa_{1-x})₂O₃ alloys for the entire Al composition range with bandgap energies of 5.4-8.6 eV [32]. Although controllable conductivity was not achieved by this MBE growth study, another work on the mist CVD growth of Sn doped α -Ga₂O₃ thin film grown on m-plane sapphire substrates was demonstrated with promising transport properties such as a room temperature mobility of 65 cm²/V.s at a high doping concentration of 1.2 x 10¹⁸ cm⁻³ [28]. Previously, the growth of phase pure α -(Al_xGa_{1-x})₂O₃ alloys and α -Ga₂O₃ films were also investigated on a-plane sapphire substrates by using MBE
growth technique [36,43]. Although quite a few studies have been conducted on the epitaxial growth of α -Ga₂O₃ films and its alloy on differently oriented sapphire substrates by different growth techniques, MOCVD growths of α -Ga₂O₃ and α -(Al_xGa_{1-x})₂O₃ alloys are not reported yet. In this study, for the first time, we investigated the MOCVD growth of α -Ga₂O₃ and α -(Al_xGa_{1-x})₂O₃ alloys on m-plane sapphire substrates for the entire Al composition range. The MOCVD grown α -Ga₂O₃/ α -(Al_xGa_{1-x})₂O₃ superlattice structures with different Al compositions have also been studied. Moreover, the evolution of the band offsets at α -Al₂O₃/ α -(Al_xGa_{1-x})₂O₃ heterointerfaces with the variation of Al compositions from 0% to 78% are also investigated by XPS measurement. The crystalline structure and quality of the epi-films, strain characteristics, compositional homogeneity, surface morphology and the band gaps of α -(Al_xGa_{1-x})₂O₃ are evaluated by comprehensive characterization via x-ray diffraction (XRD), high resolution scanning transmission electron microscopy (HR STEM), energy dispersive x-ray spectroscopy (EDX), x-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), field emission scanning electron microscopy and Raman spectroscopy, which reveal the high quality epitaxial growth of α -Ga₂O₃ and α -(Al_xGa_{1-x})₂O₃ alloys on m-plane sapphire substrates via MOCVD. # **II. Experimental Section** #### II.A. MOCVD growth α-Ga₂O₃ and α-(Al_xGa_{1-x})₂O₃ thin films were grown on m-plane sapphire substrates by using Agnitron Agilis MOCVD reactor. Trimethylaluminum (TMAl) and Triethylgallium (TEGa) were used as Al and Ga precursors, respectively. Pure O₂ gas was used as O-precursor and Argon (Ar) was used as the carrier gas. The growth temperature was varied from 650 °C to 880 °C. The reactor pressure was tuned between 20 torr and 80 torr. TEGa molar flow rate was varied from 0 (for Al₂O₃ growth) to 19.12 μmol min⁻¹, while the TMAl molar flow rate was adjusted from 0 (for Ga₂O₃ growth) to 11.59 μmol min⁻¹. The O₂ molar flow rate was kept constant at 500 sccm. The growth rate was varied from 0.27-1.33 μm/hr for α-(Al_xGa_{1-x})₂O₃ thin films with various Al composition. Prior loading the substrates into the growth chamber, the substrates were ex-situ cleaned by using solvents. High temperature in-situ cleaning under O₂ atmosphere for 5 mins at 920 °C was performed prior to the initiation of the epitaxial growth. #### II.B. Materials characterization The Al compositions, crystalline structure and quality of the films were evaluated by XRD measurements using a Bruker D8 Discover with Cu K α radiation x-ray source (λ =1.5418 Å). The strain characteristics of the films were investigated by XRD asymmetrical reciprocal space mapping for different Al compositions. Field emission scanning electron microscopy (FESEM, FEI Helios 600) and atomic force microscopy (AFM, Bruker AXS Dimension Icon) were used to characterize the surface morphology and the surface roughness, respectively. Room temperature Raman spectroscopy was performed by using a laser beam of 514 nm (Renishaw–Smiths Detection Combined Raman-IR Microprobe). To confirm the Al compositions and to estimate the bandgap energies, XPS measurements were performed by using Kratos Axis Ultra X-ray photoelectron spectrometer with a monochromatized Al K α x-ray source (E_{photon} = 1486.6 eV). The band offsets at α -Al₂O₃/ α -(Al_xGa_{1-x})₂O₃ heterointerfaces for different Al compositions were also determined by utilizing XPS with an energy resolution of 0.1 eV. The electron pass energy was set at 20 eV for high resolution scans and 80 eV for the survey scans. C 1s core level at 284.8 eV was used to calibrate the binding energy. A Thermo Fisher Scientific Titan scanning transmission electron microscopy, operated at 300 kV, was used to obtain high angle annular dark field (HAADF) STEM images and EDS spectral mapping. Film thicknesses were obtained from the cross-sectional FESEM and STEM HAADF images as well as from STEM-EDS elemental mapping profile of α -(Al_xGa_{1-x})₂O₃ thin films. #### III. Results and Discussions In order to evaluate the crystalline structure, quality and the strain state of the α -(Al_xGa_{1-x})₂O₃ thin films, high resolution XRD was performed for different Al compositions. Figure 1(a) shows the XRD ω -2 θ scans of the α -(Al_xGa_{1-x})₂O₃ thin films grown on m-plane sapphire substrate. The films were grown by systematically tuning the [TMAl]/[TEGa+TMAl] molar flow rate ratios from 0% to 100%. The optimized growth conditions such as the TEGa and TMAl molar flow rates, growth temperature and chamber pressure for the growth of α -Ga₂O₃ and α -(Al_xGa_{1-x})₂O₃ films with different Al compositions are listed in Table 1. High intensity prominent diffraction peaks from (30 $\bar{3}$ 0) reflection of α -(Al_xGa_{1-x})₂O₃ are observed with the same crystal orientation as the substrate, as shown in the XRD spectra in Figure 1(a). The Al compositions of α -(Al_xGa_{1-x})₂O₃ films, ranging from 0% to 100%, are determined by calculating the interplanar distance between α -Al₂O₃ substrate and α -Ga₂O₃ epi-film from the XRD peak positions of α -Al₂O₃ and α -Ga₂O₃. As the Al molar flow rate increases, the peak corresponding to $(30\bar{3}0)$ reflection of α - $(Al_xGa_{1-x})_2O_3$ shifts toward the α -Al₂O₃ substrate peak, indicating the reduction of the lattice mismatch between the substrate and the epi-film. No other peaks are observed from the ω -2 θ scan in a wide 2 θ range. The single crystallinity of the films is also confirmed by the XRD φ -scan of the off-axis $(22\bar{4}0)$ diffractions from α - $(Al_xGa_{1-x})_2O_3$. Only twofold rotational symmetry was observed from the $(22\bar{4}0)$ φ -scans for both 78% and 0% Al composition samples as shown in Figure 2(b), implying the absence of any rotational domains. Figure 1(c) shows the full width at half maximum (FWHM) omega rocking curve (RC) for $(30\bar{3}0)$ α - $(Al_xGa_{1-x})_2O_3$ reflections for different Al compositions. RC FWHM values decrease with the increase of Al compositions, indicating better crystalline quality of the films for higher Al composition samples, which can be attributed to the reduced lattice mismatch between substrate and epilayers due to higher Al incorporation. Unlike the mist-CVD growth of α -Ga₂O₃ on c-plane sapphire substrates where the growth of high-quality single crystalline α -Ga₂O₃ thin films was found to be difficult due to the appearance of the c-plane facets on Ga₂O₃ surface [26, 36], the phase control of α -Ga₂O₃ and (Al_xGa_{1-x})₂O₃ has been successfully attained by MOCVD on m-plane sapphire substrates. The c-plane facets formed on the growth surface lead to the phase transformation. Previous efforts on the growth of α -Ga₂O₃ films on c-plane sapphire substrates showed the transition from α - to β -phase with an epitaxial relationship of ($\bar{2}$ 01) β -Ga₂O₃ || (0001) sapphire as the film exceeds a few nanometers of thickness [26, 36]. In case of the growth on r-plane, relatively thicker α -Ga₂O₃ films were found to be stabilized as c-plane remains at an angle with the growth plane [30]. That study demonstrated that the phase stability can be maintained until the c plane facets are formed on the growth surface. On the other hand, m-plane of the sapphire substrates is perpendicular to the c-plane, and thus prevents the possibility of the c-plane facet formations during the growth, allowing phase pure α -Ga₂O₃ epitaxy on m-plane sapphire substrates [32]. While the use of m-plane sapphire substrates primarily promotes the growth of phase pure α -Ga₂O₃ and (Al_xGa_{1-x})₂O₃, the MOCVD growth conditions such as the growth temperature, [TMA1]/[TMA1+TEGa] molar flow ratio and chamber pressure also influence the phase stability of α -Ga₂O₃ and α -(Al_xGa_{1-x})₂O₃, as discussed in later sections. To investigate the strain state of the epitaxial films, asymmetrical reciprocal space mapping (RSM) was performed on α -(Al_xGa_{1-x})₂O₃ films for different Al compositions. Figures 2 (a)-(d) show the asymmetrical RSMs for (22 $\overline{4}$ 0) reflections of α -(Al_xGa_{1-x})₂O₃ films with 0%, 15%, 50% and 78% Al compositions. The fully relaxed and strained positions are shown by the tilted and vertical black dashed lines, respectively. The maximum reflection intensity of (22 $\overline{4}$ 0) α -(Al_xGa_{1-x})₂O₃ reciprocal lattice point (the out-of-plane reciprocal space lattice constant, Q₂) moves closer to α -Al₂O₃ substrate peak as the Al composition increases. Fully relaxed α -(Al_xGa_{1-x})₂O₃ films are observed for the Al compositions of 0%, 15% and 50% [Figures 1 (a)-(c)], as indicated by the alignment of the (22 $\overline{4}$ 0) α -(Al_xGa_{1-x})₂O₃ peak positions on the fully relaxed line (tilted dashed lines). However, for the sample with Al composition of 78% as shown in Figure 2 (d), the (22 $\overline{4}$ 0) peak position of α -(Al_xGa_{1-x})₂O₃ shifts toward the fully strained line, indicating the existence of compressive strain in α -(Al_xGa_{1-x})₂O₃ films for higher Al compositions (partial relaxation). The surface morphology and roughness of α -(Al_xGa_{1-x})₂O₃ films for the Al compositions spanning between 0% and 100% were evaluated by FESEM [Figures S1(a)-(j) in Supplementary material] and AFM imaging with a scan area of 5 μ m by 5 μ m as shown in Figures 3(a)-(j). All the films with different Al compositions show smooth and uniform surface morphologies as observed from the FESEM images in Supplementary
material. The surface RMS roughness of α -(Al_xGa_{1-x})₂O₃ films for different Al compositions range between 0.79 nm and 3.12 nm. The general trend shows that the surface roughness decreases with the increase of the Al compositions. As the Al composition increases from 0% to 58%, the RMS roughness decreases from 3.12 nm to 1.33 nm as shown in Figures 3(a)-(g). However, relatively thicker α -(Al_xGa_{1-x})₂O₃ films with 68% and 78% Al compositions show slightly higher RMS values as shown in Figures 3(h) and (i), which can be related to the growth conditions such as the precursor molar flow rates and relatively higher thicknesses of the films as listed in Table 1. Nevertheless, the homoepitaxial α -Al₂O₃ film exhibits very smooth surface morphology with RMS roughness of 0.79 nm as shown in Figure 3(j). Room temperature Raman spectra of the α -(Al_xGa_{1-x})₂O₃ films grown on m-plane sapphire substrates with different Al compositions ranging between 0% and 100% are shown in Figure 4. Raman spectrum of a single crystal m-plane sapphire substrate are also included in the figure. A single crystal sapphire with the a- and m-axes perpendicular to the c-axis possesses trigonal symmetry. Among all the vibrational modes (Raman active, infrared active or acoustic) of the sapphire corundum crystal, only two A_{1g} modes and five E_g modes are Raman active [48,49]. We could resolve six different Raman bands (two A_{1g} and four E_g) from the α -(Al_xGa_{1-x})₂O₃ films for different Al compositions, which agree well with the Raman modes of the m-plane sapphire crystal [48,49]. In the recorded Raman spectra as shown in Figure 4, the bands at around 417 and 645 cm⁻¹ belong to the A_{1g} vibrational mode and the peaks at around 378, 430, 578, and 750 cm⁻¹ can be assigned to the E_g mode. The Raman spectra of the α -(Al_xGa_{1-x})₂O₃ for all investigated Al compositions show very similar features as compared to the spectrum of the sapphire substrates without any obvious Raman shifts, suggesting that the symmetry of the α -(Al_xGa_{1-x})₂O₃ crystal structures are well maintained. While very low intensity E_g mode located at 750 cm⁻¹ are observed for all the Al compositions investigated, the E_g mode at 578 cm⁻¹ cannot be identified for lower Al composition samples (0%-36%), which can be attributed to the higher strain relaxation of the epifilms due to the increase in the lattice mismatches. To investigate the influence of the growth temperature and chamber pressure on the epitaxial growth, two α-Ga₂O₃ films grown at growth temperatures of 650°C and 880°C (at 20 torr chamber pressure) and two α -(Al_xGa_{1-x})₂O₃ films grown with the same [TMA1]/[TMA1+TEGa] molar flow ratio (49.24%) at different chamber pressures of 20 and 80 torr (880°C) were compared by XRD ω-2θ scan profiles as shown in Figures 5(a) and (b). The growth of phase pure α-Ga₂O₃ on m-plane sapphire substrates was observed at growth temperature of 650°C [Figure 5(a)(ii)]. However, at relatively higher growth temperature (880°C), the film exhibits the co-existence of both α and β phases, as indicated by XRD diffraction peaks from (30 $\bar{3}$ 0) α -Ga₂O₃ and (020) β -Ga₂O₃ [Figure 5(a)(i)], suggesting that the phase pure α-Ga₂O₃ can be stabilized at lower temperature. Previous study on mist-CVD growth of α-Ga₂O₃ films on c-plane sapphire substrates reported that the α-Ga₂O₃ films remain stable up to 660°C and the phase stability of α-Ga₂O₃ can be extended up to 1100°C by alloying with Al [50]. In our study, although α-Ga₂O₃ films grown at higher temperature exhibited phase transformation, α-(Al_xGa_{1-x})₂O₃ films are found to remain stable up to 880°C for all the Al compositions investigated. While the growth temperature showed strong influence on the phase stability of α -Ga₂O₃, the Al incorporation in α -(Al_xGa_{1-x})₂O₃ films are found to have strong dependence on the growth chamber pressure. With the same [TMAI]/[TMAI+TEGa] malar flow ratio of 49.24%, the Al composition decreased from 78% to 60% as the chamber pressure increased from 20 to 80 torr [Figure 5(b)], indicating that the higher chamber pressure led to the lower Al incorporation in α -(Al_xGa_{1-x})₂O₃ films. This can be ascribed to the increase of the gas phase reaction of precursors due to the increase of chamber pressure [5]. In order to investigate the impact of the film thicknesses on the strain state and the surface morphologies, four α -(Al_xGa_{1-x})₂O₃ films (x = 50%) with targeted thickness of 75 nm, 30 nm, 15 nm and 7.5 nm were grown. The strain state of the epitaxial films was characterized by asymmetrical reciprocal space mapping (RSM) as shown in Figure 6. The 75 nm thick α -(Al_{0.50}Ga_{0.50})₂O₃ film is found to be fully relaxed as evidenced by the alignment of the epi-film peak on fully relaxed (tilted) line [Figure 6(a)]. As the film thickness reduces from 75 nm to 15 nm, the α-(Al_{0.50}Ga_{0.50})₂O₃ layer peak starts to shift toward the fully stained (vertical) line, indicating the epi-films are partially relaxed [Figure 6(b) and (c)]. Meanwhile, the peak from the 7.5 nm thick α -(Al_{0.50}Ga_{0.50})₂O₃ film is found to be aligned vertically to the substrate peak indicating the same Q_x value as shown in Figure 6(d), which confirms that the 7.5 nm thick α -(Al_{0.50}Ga_{0.50})₂O₃ layer has the same in-plane lattice constant as the sapphire substrate, indicating a fully coherent growth of α-(Al_{0.50}Ga_{0.50})₂O₃ up to a thickness of 7.5 nm. The surface roughnesses of α-(Al_{0.50}Ga_{0.50})₂O₃ films are also investigated by AFM imaging as a function of film thicknesses as shown in Figure S2 of the supplementary material. The surface roughness monotonically reduces from 1.72 nm to 0.39 nm, as the film thicknesses decreases from 75 nm to 7.5nm, indicating the film thicknesses have a strong influence on the surface morphology. The crystalline structure of α -Ga₂O₃ and α -(Al_xGa_{1-x})₂O₃ films with different Al compositions were investigated using high-resolution STEM imaging. Figures 7 (a)-(f) show the atomic resolution HAADF-STEM images for α -(Al_xGa_{1-x})₂O₃ films with 0% [Figures 7 (a)-(b)], 50% [Figures 7 (c)-(d)] and 78% [Figures 7 (e)-(f)] Al compositions. Zero percent Al composition sample (α -Ga₂O₃) was imaged from <0001> zone axis and α -(Al_xGa_{1-x})₂O₃ films with 50% and 78% Al compositions were imaged from $\langle 12\overline{3}\overline{1}\rangle$ zone axis. Undisturbed α -phase structures without noticeable compositional segregation or phase transformation were observed from the STEM images from all Al compositions. The sharp contrasts between the α -Al₂O₃ substrates (dark) and α -(Al_xGa_{1-x})₂O₃ epi-films (bright) indicate high quality α -Al₂O₃/ α -(Al_xGa_{1-x})₂O₃ interfaces. However, at higher magnification, α-Ga₂O₃ films exhibit less abrupt interface due to the large lattice mismatch between the substrate and the epi-layer [Figures 7(b)] as compared to the 50% and 78% Al composition samples [Figures 7(d) and (f)]. For all three samples, the epilayers show slight contrast variations, especially near the interface, which can be related to the strain relaxation of the films. Dislocations, such as threading dislocations, can be seen as dark and vertical lines stemming from the interface toward the top of the film as shown in the HAADF STEM image in Figure 7(a), where there exists high level of strain between α -Ga₂O₃ and α -Al₂O₃. We see less dislocations in other samples (x=50 and 78%), which is expected since there exists less strain in those samples. The evidence of strain at the interface and its relaxation can also be found in the HAADF STEM image in Figure 7(a). The interface region (near the dashed line) has darker contrast, which should be the result of de-channeling of the incoming electrons due to the strain near the interface. The darker region vertically extends by about a few nanometers, which suggests that the lattice relaxes within a few nanometers of the film. The x = 50% or x = 78% samples, on the other hand, do not show such strain (i.e. dark contrast at the interface) or its relaxation at or near the interface. Additionally, energy dispersive x-ray spectroscopy (STEM-EDS) was performed to estimate the Al compositions and evaluate the chemical homogeneity throughout the entirety of the α -Ga₂O₃ and α -(Al_xGa_{1-x})₂O₃ films with different Al compositions (Figures 8). Figures 8 (a)(e)(i) show the cross sectional HAADF STEM images taken for 0%, 50% and 78% Al samples. The film thicknesses estimated from the cross-sectional STEM images are found to be 85 nm, 150 nm and 200 nm for Al composition of 0%, 50% and 78%, respectively, which show a good agreement with those extracted from the SEM cross-sectional images. The EDS color maps of Ga (blue) and Al (green) elements in Figures 8(b)-(c) [0% Al], 8(f)-(g) [50% Al] and 8(j)-(k) [78% Al] reveal the abrupt interfaces with chemical homogeneity of the films for different Al compositions. The line scan along the film thickness direction [orange lines in Figures 8(a), (e), and (f)] provides the concentration of each element, as shown in Figures 8(d), (h), and (l), respectively. All the samples show uniform and homogeneous distribution of Al and Ga throughout the films. The average Al compositions estimated from the STEM-EDS elemental maps show a good agreement with those extracted from the XRD measurements. In addition to the growth of α -(Al_xGa_{1-x})₂O₃ thin films, we also investigated the growth of α -Al₂O₃/ α -(Al_xGa_{1-x})₂O₃ superlattice (SL) structures by varying the Al compositions. Figure 9(a) shows the schematic of 8 periods α -Al₂O₃/ α -(Al_xGa_{1-x})₂O₃ SL structure grown with 78% Al composition. The targeted
thickness of each period was 25 nm consisting of a 15 nm thick α -Al₂O₃ barrier and a 10 nm thick α -(Al_xGa_{1-x})₂O₃ well layers. The structural quality, strain and the interfacial abruptness were evaluated by XRD ω -2 θ and RSM scans as shown in Figures 9(b) and (c), respectively. High intensity, sharp and distinguishable high order satellite peaks (up to 5th order) were observed from the ω -2 θ scans, indicating the growth of high-quality SL structures with abrupt interfaces with 78% Al compositions. The asymmetrical RSM map of (22 $\overline{4}$ 0) reflections from α -Al₂O₃/ α -(Al_xGa_{1-x})₂O₃ SL structures are shown in Figure 9(c). All the peaks originated from the SL satellites are found to align vertically with the α -Al₂O₃ substrate peak, suggesting the same Q_x value which confirm the coherent growth of fully strained α -(Al_xGa_{1-x})₂O₃ SL structure grown on m-plane sapphire substrate. The structural and interfacial quality of the α -(Al_xGa_{1-x})₂O₃/ α -Al₂O₃ and α -(Al_xGa_{1-x})₂O₃/ α -Ga₂O₃ SL structures grown with different Al compositions were also evaluated by atomic resolution STEM imaging. Figures 10 (a,e) and (b,f) show the HAADF-STEM images taken for α -(Al_xGa_{1-x})₂O₃/ α -Al₂O₃ SL structures grown with 78% and 50% Al compositions in α -(Al_xGa_{1-x})₂O₃ layers, respectively. Similarly, α -(Al_xGa_{1-x})₂O₃/ α -Ga₂O₃ SL structures grown with 50% and 17% Al compositions are shown in Figures 10 (c,g) and (d,h), respectively. The STEM images confirm the growth of 8 periods alternating SLs, maintaining the α -phase throughout the entire structures. The SL structure grown with 78% Al composition as shown in Figures 10 (a,e) exhibits relatively sharp interfaces between α -(Al_xGa_{1-x})₂O₃ and α -Al₂O₃ layers with a decent structural homogeneity. The SLs grown with 50% Al compositions as shown in Figures 10 (b,f) and (c,g) also maintain fair quality at the interface, although less sharp than the 78% SLs. The α -(Al_xGa_{1-x})₂O₃/ α -Ga₂O₃ SL with 17% Al compositions in α -(Al_xGa_{1-x})₂O₃ layer show more inhomogeneous interface [Figures 10 (d,h)]. The STEM-EDS maps of the corresponding SL structures are shown in Figures 11 (a-p). The cross sectional HAADF STEM images for α -(Al_xGa_{1-x})₂O₃/ α -Al₂O₃ SLs with 78% and 50% Al compositions and α -(Al_xGa_{1-x})₂O₃/ α -Ga₂O₃ SLs with 50% and 17% Al compositions are shown in Figures 11 (a), (e), (i) and (m), respectively. The EDS color maps of Ga (blue) and Al (green) components in Figures 11 (b,c), (f,g), (j,k) and (n,o) correspond to the Ga and Al concentrations of Figures 11(d), (h), (l) and (p) for different SLs with different Al compositions. The elemental plots in Figures 11(d), (h), (l) and (p) show the alternating compositional profiles of the periodic structures. Although the periodicities of the SL structures are found to be maintained for all the SLs, the alloy homogeneity and the interface abruptness reduces as the Al compositions in the α -(Al_xGa_{1-x})₂O₃ layers decrease. The average Al composition estimated from the STEM-EDS elemental maps for different SL structures closely match with the targeted Al compositions in α (Al_xGa_{1-x})₂O₃ layers. The elemental compositions and the band gaps of α -(Al_xGa_{1-x})₂O₃ thin films and the band offsets at α -Al₂O₃/ α -(Al_xGa_{1-x})₂O₃ heterojunctions are estimated by using high resolution XPS. The XPS survey spectra as shown in Figure S3 of the supplementary materials for α -(Al_xGa_{1-x})₂O₃ films with different Al compositions exhibit no metallic contaminants in the films, indicating the growth of highly pure α -(Al_xGa_{1-x})₂O₃ films on m-plane sapphire for the whole Al composition range. The Al compositions in the films were estimated by using the areas of Ga 3s, Al 2s and Al 2p core level spectra by using their corresponding sensitivity factors of S_{Ga 3s} = 1.13, S_{Al 2s} = 0.753, S_{Al 2p} = 0.5371 after applying the Shirley background subtraction. The detail calculations of Al compositions in α -(Al_xGa_{1-x})₂O₃ films using XPS measurements are listed in Table S1 of the supplementary materials. The Al compositions determined by XPS measurements correlate well with those estimated from XRD and STEM-EDS mapping. By utilizing XPS, the bandgap energies of the α -(Al_xGa_{1-x})₂O₃ thin films were also determined for different Al compositions. The bandgap energies of wide bandgap semiconductor materials can be extracted by analyzing the onset of inelastic spectrum at the higher binding energy side of a strong intensity core level peak [42,51,52]. As the energetically lowest inelastic scattering that an electron experiences on its way to the surface is its excitation from the valance band to the conduction band, the fundamental lower limit of the inelastic scattering corresponds to the bandgap of the material [51]. In this study, for the bandgap determination, Ga $2p_{3/2}$ core levels were used for α -(Al_xGa_{1-x})₂O₃ thin films (x = 0% - 78%) and O 1s core level was used for α -Al₂O₃ film (x = 100%), as exemplarily shown in Figures 12 (a)-(c) for α -(Al_xGa_{1-x})₂O₃ films with 0% and 50% and α -Al₂O₃ film, respectively. The inset of each figure represents the zoomed view of the background region of the core levels. The onset of inelastic loss spectra was determined from the intersection of the linear extrapolation of the loss spectra curve to the constant background. By measuring the onset of inelastic background relative to the Ga 2p_{3/2} [Figures 12(a) and (b)] and O 1s core [Figure 12(c)] level peaks, the bandgap energies of α-Ga₂O₃, α-(Al_{0.50}Ga_{0.50})₂O₃ and α- Al_2O_3 thin films were calculated as 5.41 \pm 0.15 eV, 6.45 \pm 0.15 eV, and 8.81 \pm 0.15 eV, respectively. The bandgaps of other Al composition samples were also determined by similar approach, as listed in Table 2. The error bars correspond to the standard deviation of the estimated onset of inelastic losses. Figure 12 (d) shows the bandgaps of α -(Al_xGa_{1-x})₂O₃ films as a function of Al composition. With the increase of the Al compositions, the bandgaps of α -(Al_xGa_{1-x})₂O₃ were found to increase monotonically from 5.41 eV (α-Ga₂O₃) to 8.81 eV (α-Al₂O₃). The experimental bandgap energies extracted in this study by using XPS are in a close agreement with the theoretically predicted bandgap values based on first-principles hybrid density functional theory (DFT) [8]. The bowing parameter (b) extracted from the quadratic fitting of the bandgap values was found to be 2.16 eV, which matches well with the theoretically calculated value [1.78 eV (indirect) and 1.87 eV (direct) [53]]. The band offsets are considered as critical material properties for semiconductor heterostructure device design. In this study by utilizing XPS, we have also measured the band offsets at α -(Al_xGa_{1-x})₂O₃/ α -Al₂O₃ heterojunctions for the entire Al composition range. Three types of samples were prepared for the band offset measurement as shown in the schematics of Figure S4 in supplementary materials: 50 nm thick (a) α -Al₂O₃ and (b) α -(Al_xGa_{1-x})₂O₃ layers with 0%, 50% and 78% Al compositions directly grown on m-plane sapphire substrate, and (c) thin (2 nm) layer of α -(Al_xGa_{1-x})₂O₃ [x = 0%, 50% and 78%] grown on 50 nm thick α -Al₂O₃ layer on top of sapphire substrate for capturing all the electronic states from the α -(Al_xGa_{1-x})₂O₃/ α -Al₂O₃ interfaces. The Kraut's method was employed for the determination of the valance (ΔE_v) and conduction (ΔE_c) band offsets as follows [54]. $$\Delta E_{v} = (E_{Ga\,3s}^{AlGaO} - E_{VBM}^{AlGaO}) - (E_{Al\,2p}^{AlO} - E_{VBM}^{AlO}) - (E_{Ga\,3s}^{AlGaO/AlO} - E_{Al\,2p}^{AlGaO/AlO})$$ (1) $$\Delta E_c = E_g^{AlO} - E_g^{AlGaO} - \Delta E_v$$ (2) Here, the energies of the valance band minimum and Ga 3s core levels for α-(Al_xGa_{1-x})₂O₃ are defined as E_{VBM}^{AlGaO} and $E_{Ga\ 3s}^{AlGaO}$, respectively. Similarly, E_{VBM}^{AlO} and $E_{Al\ 2p}^{AlO}$ represent the valance band minimum and the Al 2p core levels for α -Al₂O₃. The Ga 3s and Al 2p core levels from the α - $(Al_xGa_{1-x})_2O_3/\alpha$ -Al₂O₃ heterointerfaces are defined as $E_{Ga}^{AlGaO/AlO}$ and $E_{Al}^{AlGaO/AlO}$, respectively. The bandgaps of α -Al₂O₃ and α -(Al_xGa_{1-x})₂O₃ are represented as E_g^{AlO} and E_g^{AlGaO} . The Al 2p and Ga 3s core levels and the valance band spectra for α -Al₂O₃ and α -(Al_xGa_{1-x})₂O₃ films and α -(Al_xGa_{1-x})₂O₃/α-Al₂O₃ heterojunctions are shown as exemplarily in Figure 13, for 50% Al compositions. The core level positions are determined by fitting with Gaussian and Lorentzian line shapes after applying the Shirley background subtraction and the valance band onsets are determined by linear extrapolation of the leading edge to the background. By using equation (1), the valance band offsets of 0.03, 0.10 and 0.27 eV were determined at α -(Al_xGa_{1-x})₂O₃/ α -Al₂O₃ interfaces with Al compositions of 78%, 50% and 0%. The corresponding conduction band offsets of 0.90, 2.26, and 3.13 eV were calculated from equation (2) by using the valance band offsets and the bandgaps of α -(Al_xGa_{1-x})₂O₃ and α -Al₂O₃. The measured core-level binding energies, the valance and conduction band offsets at α-(Al_xGa_{1-x})₂O₃/α-Al₂O₃ interfaces with Al compositions of 78%, 50% and 0% are summarized in Table 3. Finally, the evolution of the band alignments between α -Al₂O₃ and α -(Al_xGa_{1-x})₂O₃ grown on m-plane sapphire substrates with Al compositions of 78%, 50% and 0% are plotted in Figure 14.
The α -(Al_xGa_{1-x})₂O₃/ α -Al₂O₃ interfaces show type-I (straddling) band alignment for all the investigated Al compositions which is consistent with the theoretical DFT predictions for α -Ga₂O₃/ α -Al₂O₃ interfaces [8,55]. Previously, type I band discontinuity at mist-CVD grown α -(Al_xGa_{1-x})₂O₃/ α -Ga₂O₃ interfaces on c-plane sapphire substrates was also reported [42]. As the Al composition increases, both valance and conduction band offsets between α -Al₂O₃ and α -(Al_xGa_{1-x})₂O₃ are found to decrease as shown in Figure 14. The valance (Δ E_v) and conduction (Δ E_c) band offsets of 0.27 eV and 3.13 eV were determined at α -Ga₂O₃/ α -Al₂O₃ interface, which closely match with theoretical calculations (Δ E_v = 0.24 eV and Δ E_v = 3.24 eV) [8]. Since O 2p localized states dominate the valance band, much weaker variations in the valance band offsets are observed as compared to the variations in the conduction band offsets. Such weaker variation in the valance band offsets are predicted by theory [8,55] and was also reported by previous experimental studies on both α - [42] and β - [12] phase (Al_xGa_{1-x})₂O₃/Ga₂O₃ heterointerfaces. #### **IV. Conclusion** In summary, the epitaxial growth of high-quality phase pure α -(Al_xGa_{1-x})₂O₃ thin films and α -(Al_xGa_{1-x})₂O₃/ α -Al₂O₃ SL structures on m-plane sapphire substrates are successfully demonstrated by MOCVD. The structural, physical, and surface morphological properties such as the Al incorporation, strain characteristics, RC FWHMs, surface RMS roughness, interfacial abruptness, and alloy homogeneity of α -Ga₂O₃ and α -(Al_xGa_{1-x})₂O₃ alloys were investigated by comprehensive characterization. XRD and atomic resolution STEM images for different Al composition samples reveal high crystalline quality of the films with sharp interfaces and homogenous Al distribution. The coherent growth of α -(Al_xGa_{1-x})₂O₃/ α -Al₂O₃ SL structures were also confirmed by XRD, STEM and RSM mapping. Although smooth surface morphologies were observed, lower Al composition samples exhibit relatively higher surface RMS roughness due to the increase in the lattice mismatch between the substrate and epilayer. The epitaxial stabilization of phase pure α -Ga₂O₃ was observed for lower growth temperature (650°C). Higher chamber pressure led to lower Al incorporation in α -(Al_xGa_{1-x})₂O₃ films due to the increase in the gas phase reaction of precursors. By varying the Al compositions from 0% to 100%, the bandgap energies from 5.41 eV to 8.81 eV with a bowing parameter of 2.16 eV were extracted by XPS measurement. The determined band offsets reveal the formation of type-I (straddling) band alignment at α -(Al_xGa_{1-x})₂O₃/ α -Al₂O₃ heterointerfaces. Both valance and conduction band offsets increase with the decrease of the Al compositions in α -(Al_xGa_{1-x})₂O₃ films. The valance and conduction band offsets of 0.27 eV and 3.13 eV were determined between α -Ga₂O₃ and α -Al₂O₃, respectively. The results from this study on the epitaxial growth of ultrawide bandgap α -Ga₂O₃ and α -(Al_xGa_{1-x})₂O₃ alloys and the band offset at α -(Al_xGa_{1-x})₂O₃/ α -Al₂O₃ will contribute in designing and fabricating future high power heterostructure based electronic and optoelectronic devices. ## **Supplementary Online Material** See the supplementary material for the FESEM images of α -(Al_xGa_{1-x})₂O₃ films with different Al compositions, AFM images for α -(Al_{0.50}Ga_{0.50})₂O₃ films grown with different thicknesses, the XPS survey spectra, schematic of the samples grown for band offset measurements and the summary of the Al compositions calculated by using Ga 3s, Al 2p and Al 2s core level spectra from XPS. #### Acknowledgements The authors acknowledge the Air Force Office of Scientific Research FA9550-18-1-0479 (AFOSR, Dr. Ali Sayir) for financial support. The authors also acknowledge the National Science Foundation (Grant No. 1810041, No. 2019753) and Semiconductor Research Corporation (SRC) under the Task ID GRC 3007.001 for partial support. Electron microscopy was performed at the Center for Electron Microscopy and Analysis (CEMAS) at The Ohio State University. ## **Data Availability Statements** The data that support the findings of this study are available from the corresponding author upon reasonable request. #### References - 1. R. Roy, V. G. Hill, and E. F. Osborn, J. Am. Chem. Soc. 74, 719 (1952). - 2. D. Shinohara and S. Fujita, Jpn. J. Appl. Phys. 47, 7311 (2008). - 3. M. Higashiwaki and G. H. Jessen, Appl. Phys. Lett. 112, 060401 (2018). - 4. A. Kuramata, K. Koshi, S. Watanabe, Y. Yamaoka, T. Masui, and S. Yamakoshi, Jpn. J. Appl. Phys., Part 1 55, 1202A2 (2016). - 5. Z. Feng, A. F. M. A. U. Bhuiyan, M. R. Karim, and H. Zhao, Appl. Phys. Lett. 114, 250601 (2019). - 6. G. Seryogin, F. Alema, N. Valente, H. Fu, E. Steinbrunner, A. T. Neal, S. Mou, A. Fine, and A. Osinsky, Appl. Phys. Lett. 117, 262101 (2020). - 7. Z. Feng, A F M A. U. Bhuiyan, Z. Xia, W. Moore, Z. Chen, J. F. McGlone, D. R. Daughton, A. R. Arehart, S. A. Ringel, S. Rajan, and H. Zhao, Phys. Status Solidi RPL. 14, 2000145 (2020). - 8. H. Peelaers, J. B. Varley, J. S. Speck, and C. G. Van de Walle, Appl. Phys. Lett. 112, 242101 (2018). - 9. A F M A. U. Bhuiyan, Z. Feng, J. M. Johnson, Z. Chen, H.-L. Huang, J. Hwang, and H. Zhao, Appl. Phys. Lett. 115, 120602 (2019). - 10. A F M A. U. Bhuiyan, Z. Feng, J. M. Johnson, H.-L. Huang, J. Sarker, M. Zhu, M. R. Karim, B. Mazumder, J. Hwang, and H. Zhao, APL Mater. 8, 031104 (2020). - 11. A F M A. U. Bhuiyan, Z. Feng, J. M. Johnson, H.-L. Huang, J. Hwang, and H. Zhao, Cryst. Growth Des. 20, 6722 (2020). - 12. A F M A. U. Bhuiyan, Z. Feng, J. M. Johnson, H.-L. Huang, J. Hwang, and H. Zhao, Appl. Phys. Lett. 117, 252105 (2020). - 13. A F M A. U. Bhuiyan, Z. Feng, J. M. Johnson, H.-L. Huang, J. Hwang, and H. Zhao, Appl. Phys. Lett. 117, 142107 (2020). - 14. A F M A. U. Bhuiyan, Z. Feng, L. Meng, H. Zhao, J. Mater. Res. MOCVD growth of (010) β-(Al_xGa_{1-x})₂O₃ thin films (2021). https://doi.org/10.1557/s43578-021-00354-8 - 15. T. Oshima, T. Okuno, N. Arai, Y. Kobayashi, and S. Fujita, Jpn. J. Appl. Phys. Part 1 48, 070202 (2009). - 16. S. W. Kaun, F. Wu, and J. S. Speck, J. Vac. Sci. Technol. A 33, 041508 (2015). - 17. P. Vogt, A. Mauze, F. Wu, B. Bonef, and J. S. Speck, Appl. Phys. Express 11, 115503 (2018). - 18. S. Krishnamoorthy, Z. Xia, C. Joishi, Y. Zhang, J. McGlone, J. Johnson, M. Brenner, A. R. Arehart, J. Hwang, S. Lodha, and S. Rajan, Appl. Phys. Lett. 111, 023502 (2017). - 19. P. Ranga, A. Bhattacharyya, A. Rishinaramangalam, Y. K Ooi, M. A. Scarpulla, D. Feezell and S. Krishnamoorthy, Appl. Phys. Express 13, 045501 (2020). - 20. Y. Zhang, A. Neal, Z. Xia, C. Joishi, J. M. Johnson, Y. Zheng, S. Bajaj, M. Brenner, D. Dorsey, K. Chabak, G. Jessen, J. Hwang, S. Mou, J. P. Heremans, and S. Rajan, Appl. Phys. Lett. 112, 173502 (2018). - 21. N. K. Kalarickal, Z. Feng, A F M A. U. Bhuiyan, Z. Xia, J. F. McGlone, W. Moore, A. R. Arehart, S. A. Ringel, H. Zhao, and S. Rajan, IEEE Transaction on Electron Devices, 68, 29-35 (2021). - 22. A F M A. U. Bhuiyan, Z. Feng, J. M. Johnson, H.-L. Huang, J. Sarker, M. Zhu, M. R. Karim, B. Mazumder, J. Hwang, and H. Zhao, APL Materials 8 (8), 089102 (2020). - 23. J. M. Johnson, H.-L. Huang, M. Wang, S. Mu, J. B. Varley, A. F. M. A. U. Bhuiyan, Z. Feng, N. K. Kalarickal, S. Rajan, H. Zhao, C. G. Van de Walle, and J. Hwang, APL Materials 9, 051103 (2021). - 24. S. Mu, H. Peelaers, Y. Zhang, M. Wang, and C. G. Van de Walle, Appl. Phys. Lett. 117, 252104 (2020). - 25. T. Kawaharamura, G. T. Dang, and M. Furuta, Jpn. J. Appl. Phys. 51, 040207 (2012). - 26. R. Schewski, G. Wagner, M. Baldini, D. Gogova, Z. Galazka, T. Schulz, T. Remmele, T. Markurt, H. von Wenckstern, M. Grundmann, O. Bierwagen, P. Vogt, and M. Albrecht, Appl. Phys. Express. 8, 011101 (2015). - 27. K. Akaiwa, and S. Fujita, Jpn. J. Appl. Phys. 51, 070203 (2012). - 28. K. Akaiwa, K. Ota, T. Sekiyama, T. Abe, T. Shinohe, and K. Ichino, Phys. status solidi. 217, 1900632 (2020). - 29. Y. Oshima, E. G. Villora, and K. Shimamura, Appl. Phys. Express. 8, 055501 (2015). - 30. M. Kracht, A. Karg, M. Feneberg, J. Bläsing, J. Schörmann, R. Goldhahn, and M. Eickhoff, Phys. Rev. Appl. 10, 024047 (2018). - 31. K. Kaneko, H. Kawanowa, H. Ito, and S. Fujita, Jpn. J. Appl. Phys. 51, 020201 (2012). - 32. R. Jinno, C. S. Chang, T. Onuma, Y. Cho, S.-T. Ho, D. Rowe, M. C. Cao, K. Lee, V. Protasenko, D. G. Schlom, D. A. Muller, H. G. Xing, D. Jena, Sci. Adv. 7, (2021). - 33. D.-W. Jeon, H. Son, J. Hwang, A. Y. Polyakov, N. B. Smirnov, I. V. Shchemerov, A. V. Chernykh, A. I. Kochkova, S. J. Pearton, and I.-H. Lee, APL Mater. 6, 121110 (2018). - 34. M. Lorenz, S. Hohenberger, E. Rose, and M. Grundmann, Appl. Phys. Lett. 113, 231902 (2018). - 35. G. T. Dang, T. Yasuoka, Y. Tagashira, T. Tadokoro, W. Theiss, and T. Kawaharamura, Appl. Phys. Lett. 113, 062102 (2018). - 36. Z. Cheng, M. Hanke, P. Vogt, O. Bierwagen, and A. Trampert, Appl. Phys. Lett. 111, 162104 (2017). - 37. K. Kaneko, T. Nomura, and S. Fujita, Phys. Status Solidi C 7, 2467 (2010). - 38. N. Suzuki, K. Kaneko, and S. Fujita, J. Cryst. Growth 364, 30 (2013). - 39. A. K. Harman, S. Ninomiya, and S. Adachi, J. Appl. Phys. 76, 8032 (1994). - 40. G. T. Dang, T. Kawaharamura, M. Furuta, and M. W. Allen, IEEE Trans. Electron Devices 62, 3640 (2015). - 41. H. Ito, K. Kaneko, and S. Fujita, Jpn. J. Appl. Phys. 51 100207 (2012). - 42. T. Uchida, R. Jinno, S. Takemoto, K. Kaneko, and S. Fujita, Jpn. J. Appl. Phys. 57, 040314 (2018). - 43. R. Kumaran, T. Tiedje, S. E. Webster, S. Penson, and W. Li, Opt. Lett. 35, 3793 (2010). - 44. T. Maeda, M. Yoshimoto, T. Ohnishi, G. H. Lee, and H.
Koinuma, J. Cryst. Growth 177, 95 (1997). - 45. D. Shiojiri, R. Yamaguchi, S. Kaneko, A. Matsuda, and M. Yoshimoto, J. Ceram. Soc. Japan. 121, 467 (2013). - 46. K. Akaiwa, K. Kaneko, K. Ichino, S. Fujita, Jpn. J. Appl. Phys. 55, 1202BA (2016). - 47. R. Jinno, T. Uchida, K. Kaneko, and S. Fujita, Appl. Phys. Express 9, 071101 (2016). - 48. G. Pezzotti and W. Zhu, Phys. Chem. Chem. Phys. 17, 2608 (2015). - 49. W. Zhu and G. Pezzotti, J. Raman Spectrosc. 42, 2015 (2011). - 50. R. Jinno, K. Kaneko, and S. Fujita, Jpn. J. Appl. Phys. 60, SBBD13 (2021). - 51. M. T. Nichols, W. Li, D. Pei, G. A. Antonelli, Q. Lin, S. Banna, Y. Nishi, and J. L. Shohet, J. Appl. Phys. 115, 094105 (2014). - 52. B. W. Krueger, C. S. Dandeneau, E. M. Nelson, S. T. Dunham, F. S. Ohuchi, and M. A. Olmstead, J. Am. Ceram. Soc. 99, 2467 (2016). - 53. H. Peelaers, J. B. Varley, J. S. Speck, and C. G. Van de Walle, Appl. Phys. Lett. 115, 159901 (2019). - 54. E. A. Kraut, R. W. Grant, J. R. Waldrop, and S. P. Kowalczyk, Phys. Rev. Lett. 44, 1620 (1980). - 55. T. Wang, W. Li, C. Ni, and A. Janotti, Phys. Rev. Appl. 10, 011003 (2018). # **Table Captions** **Table 1.** Summary of α-(Al_xGa_{1-x})₂O₃ films grown with different [TMAl]/[TEGa+TMAl] molar flow rate ratio ranging from 0% to 100%. The corresponding TEGa and TMAl molar flow rates, growth temperature, Al compositions, film thicknesses and growth rates are included. All films were grown at chamber pressure of 20 torr. **Table 2.** Comparison between the Al compositions extracted from XRD and XPS measurements, showing good agreement. The corresponding energy bandgaps measured by XPS are also included. **Table 3.** Summary of the valance and conduction band offsets at α -(Al_xGa_{1-x})₂O₃/ α -Al₂O₃ interfaces, estimated by using valance band maximum, Ga 3s, and Al 2p core levels from XPS measurements. ## **Figure Captions** - **Figure 1.** (a) XRD ω -2θ scan profiles for the (30 $\overline{3}$ 0) reflections of α -(Al_xGa_{1-x})₂O₃ films grown on m-plane sapphire substrates. Red arrows indicate the peak positions of α -(Al_xGa_{1-x})₂O₃ films for Al compositions ranging from 0% to 100%. (b) XRD Φ -scan profiles of the asymmetric (22 $\overline{4}$ 0) peak of (30 $\overline{3}$ 0) reflections of α -(Al_xGa_{1-x})₂O₃ films for Al compositions of 78% and 0%. (c) XRD rocking curve FWHMs of α -(Al_xGa_{1-x})₂O₃ films as a function of Al compositions. - Figure 2. X-ray asymmetrical reciprocal space mapping (RSMs) around (22 $\overline{4}$ 0) reflections of α-(Al_xGa_{1-x})₂O₃ films grown with Al compositions of (a) 0%, (b) x= 15%, (c) x= 50%, and (d) 78%. - **Figure 3.** The surface AFM images (5μm x 5μm scan area) of α-(Al_xGa_{1-x})₂O₃ films grown with different Al compositions. - **Figure 4.** Room-temperature Raman spectra of α -(Al_xGa_{1-x})₂O₃ films grown by varying the Al compositions from 0% to 100%. The excitation wavelength was 514 nm. - **Figure 5.** XRD ω-2θ scan spectra of (a) α-Ga₂O₃ films grown at (i) 880°C and (ii) 650°C with the same chamber pressure of 20 torr. (b) α-(Al_xGa_{1-x})₂O₃ films grown at the same growth temperature (880°C) and [TMAl]/[TMAl+TEGa] molar flow ratio (49.24%) with different chamber pressures of (i) 80 and (ii) 20 torr. - **Figure 6.** Asymmetrical reciprocal space mapping (RSMs) around (22 $\overline{4}$ 0) reflections of α-(Al_{0.50}Ga_{0.50})₂O₃ films grown with (a) 75 nm, (b) 30 nm, (c) 15 nm, and (d) 7.5 nm thicknesses. - **Figure 7.** Atomic resolution cross-sectional HAADF-STEM images of (a, b) α-Ga₂O₃ and α- $(Al_xGa_{1-x})_2O_3$ films with (c, d) 50% and (e, f) 78% Al compositions with (a, c, e) 5 nm and (b, d, f) 2 nm scale. The white dashed lines represent the substrate-epilayer interfaces. The HAADF-STEM images were taken from the <0001> (α-Ga₂O₃ films) and <12 $\overline{31}$ > (α-(Al_xGa_{1-x})₂O₃ films) zone axes. **Figure 8.** STEM-EDS mapping for (a-d) α-Ga₂O₃ and α-(Al_xGa_{1-x})₂O₃ films with (e-h) 50% and (i-l) 78% Al compositions. (a) HAADF images for (a) α-Ga₂O₃ and α-(Al_xGa_{1-x})₂O₃ films with (e) 50% and (i) 78% Al compositions with their corresponding (b, f, j) Ga and (c, g, k) Al EDS maps and (d, h, l) atomic fraction elemental profile as indicated by the orange arrows in (a, e, i). **Figure 9.** (a) Schematic of 8 period α- $(Al_xGa_{1-x})_2O_3/\alpha$ - Al_2O_3 superlattice structure grown with 78% Al composition in α- $(Al_xGa_{1-x})_2O_3$ layers; (b) XRD ω-2θ scan spectrum of the (30 $\overline{3}$ 0) reflection; and (c) x-ray asymmetrical reciprocal space mapping (RSMs) around (22 $\overline{4}$ 0) reflection of the SL structure with 78% Al composition. **Figure 10.** Atomic resolution cross-sectional HAADF-STEM images of 8 period α- $(Al_xGa_{1-x})_2O_3/\alpha$ -Al₂O₃ superlattice structures grown with (a, e) 78% and (b, f) 50% Al compositions. In addition, 8 period α- $(Al_xGa_{1-x})_2O_3/\alpha$ -Ga₂O₃ SL structures with (c, g) 50% and (d, h) 17% Al compositions are also shown with (a,b,c,d) 50 nm and (e,f,g,h) 2 nm scale. Corresponding layer thicknesses are included for different structures. The white dashed lines represent the substrate-epilayer interfaces. The HAADF-STEM images of α- $(Al_xGa_{1-x})_2O_3/\alpha$ -Al₂O₃ superlattice structures with 78% and 50% Al compositions were taken from $<24\overline{6}1>$ and <0001> zone axes, respectively. And both α- $(Al_xGa_{1-x})_2O_3/\alpha$ -Ga₂O₃ SL structures with 50% and 17% Al compositions were viewed along $<12\overline{3}1>$ zone axes. **Figure 11.** STEM-EDS mapping for α-(Al_xGa_{1-x})₂O₃/α-Al₂O₃ superlattice structures grown with (a-d) 78% and (e-h) 50% Al compositions and α-(Al_xGa_{1-x})₂O₃/α-Ga₂O₃ SL structures with (i-l) 50% and (m-p) 17% Al compositions. (a,e,i,m) HAADF images with their corresponding (b, f, j,n) Ga and (c, g, k,o) Al EDS maps and (d, h, l, p) atomic fraction elemental profile as indicated by the orange arrows in (a, e, i, m). **Figure 12.** The bandgap energies of (a) α-Ga₂O₃, (b) α-(Al_xGa_{1-x})₂O₃ films with 50% Al composition and (c) α-Al₂O₃ films determined by calculating the energy difference between Ga $2p_{3/2}$ or O 1s core level peak and the onset of energy loss spectrum. The inset figures represent the zoomed view of the background region of the Ga $2p_{3/2}$ and O 1s core levels. (d) The bandgap energies of α-(Al_xGa_{1-x})₂O₃ films as a function of Al compositions, showing a good agreement with the theoretically predicted bandgap values [8]. **Figure 13.** Al 2p and Ga 3s core-levels and valence band (VB) spectra from 50 nm thick (a) α-Al₂O₃ film (b) α-(Al_xGa_{1-x})₂O₃ film and (c) α-(Al_xGa_{1-x})₂O₃/α-Al₂O₃ interface with x = 0.50. Data are shown as blue open circles and the fitted curves are represented as black dashed lines for Ga 3s and Al 2p core-levels. Red solid straight lines represent the linear fitting of VB spectra of α-Al₂O₃ and α-(Al_xGa_{1-x})₂O₃ films. **Figure 14.** Summary of the valance and conduction band offsets at α -Al₂O₃/ α -(Al_xGa_{1-x})₂O₃ interfaces with Al composition of 78%, 50% and 0%, The corresponding bandgap energies of α -(Al_xGa_{1-x})₂O₃ films for different Al compositions are also included. Table 1. Summary of α -(Al_xGa_{1-x})₂O₃ films grown with different [TMA1]/[TEGa+TMA1] molar flow rate ratio ranging from 0% to 100%. The corresponding TEGa and TMA1 molar flow rates, growth temperature, Al compositions, film thicknesses and growth rates are included. All films are grown at chamber pressure of 20 torr. | Sampl
e Id | TEGa molar
flow rate
(μmole min ⁻¹) | TMAl molar
flow rate
(µmole min ⁻¹) | [TMAI]/[TM
Al+TEGa]
(%) | Growth
Temper
ature
(°C) | Al composi tion (%) | (Al _x Ga _{1-x})
₂ O ₃ film
thickness
(nm) | Growth rates (µm/hr) | |---------------|---|---|-------------------------------|-----------------------------------|---------------------|---|----------------------| | #1 | 19.12 | 0 | 0 | 650 | 0 | 85 | 0.51 | | #2 | 19.12 | 0.76 | 3.82 | 880 | 15 | 88 | 0.53 | | #3 | 19.12 | 1.06 | 5.25 | 880 | 21 | 89 | 0.53 | | #4 | 19.12 | 1.50 | 7.27 | 880 | 28 | 92 | 0.55 | | #5 | 19.12 | 2.21 | 10.36 | 880 | 36 | 110 | 0.66 | | #6 | 19.12 | 4.22 | 18.08 | 880 | 50 | 150 | 0.90 | | #7 | 19.12 | 6.62 | 25.72 | 880 | 58 | 128 | 0.96 | | #8 | 14.35 | 7.73 | 35.00 | 880 | 68 | 156 | 0.94 | | #9 | 11.95 | 9.76 | 44.96 | 880 | 75 | 173 | 1.04 | | #10 | 11.95 | 11.59 | 49.24 | 880 | 78 | 200 | 1.33 | | #11 | 0 | 6.62 | 100.00 | 880 | 100 | 135 | 0.27 | **Table 2.**Comparison between the Al compositions estimated from XRD and XPS measurements, showing a good agreement. The corresponding bandgaps measured by XPS are also included. | Sample
Id | [TMAI]/[TMAI+
TEGa]
(%) | Al
composition
(XRD)
(%) | Al
composition
(XPS)
(%) | Bandgap
energy
(eV)
(± 0.15 eV) | |--------------|-------------------------------|-----------------------------------|-----------------------------------|--| | #1 | 0 | 0 | 0 | 5.41 | | #4 | 7.27 | 28 | 30 | 5.99 | | #6 | 18.08 | 50 | 50 | 6.45 | | #8 | 35.00 | 68 | 65 | 7.30 | | #10 | 49.24 | 78 | 75 | 7.88 | | #11 | 100.00 | 100 | 100 | 8.81 | Table 3. Summary of the valance and conduction band offsets at α -(Al_xGa_{1-x})₂O₃/ α -Al₂O₃ interfaces, estimated by using valance band maximum, Ga 3s, and Al 2p core levels from XPS measurement. | Al
compositi
on | Bandgap
energy
(eV) | (E _{Al 2p} - E _{VBM}) (eV) | $(E_{Ga3s}^{AlGaO} - E_{VBM}^{AlGaO}) - (eV) (\pm 0.04 \text{ eV})$ | (E ^{AlGaO/GaO} - E ^{AlGaO/GaO} (eV) | ΔE _v (eV) | ΔE _c (eV) | |-----------------------|---------------------------|---
---|---|----------------------|----------------------| | | $(\pm 0.15 \text{ eV})$ | (± 0.04 eV) | (± 0.04 eV) | $(\pm 0.02 \text{ eV})$ | (± 0.06 eV) | (± 0.22 eV) | | 100% | 8.81 | 70.75 | | | | | | 78% | 7.88 | | 157.47 | 86.68 | 0.03 | 0.90 | | 50% | 6.45 | | 157.36 | 86.51 | 0.10 | 2.26 | | 0% | 5.41 | | 157.31 | 86.29 | 0.27 | 3.13 | # Figure 1 **Figure 1.** (a) XRD ω -2θ scan profiles for the (30 $\overline{3}$ 0) reflections of α -(Al_xGa_{1-x})₂O₃ films grown on m-plane sapphire substrates. Red arrows indicate the peak positions of α -(Al_xGa_{1-x})₂O₃ films for Al compositions ranging from 0% to 100%. (b) XRD Φ -scan profiles of the asymmetric (22 $\overline{4}$ 0) peak of (30 $\overline{3}$ 0) reflections of α -(Al_xGa_{1-x})₂O₃ films for Al compositions of 78% and 0%. (c) XRD rocking curve FWHMs of α -(Al_xGa_{1-x})₂O₃ films as a function of Al compositions. # Figure 2 Figure 2. X-ray asymmetrical reciprocal space mapping (RSMs) around (22 $\overline{4}$ 0) reflections of α-(Al_xGa_{1-x})₂O₃ films grown with Al compositions of (a) 0%, (b) x= 15%, (c) x= 50%, and (d) 78%. Figure 3 Figure 3. The surface AFM images ($5\mu m \ x \ 5\mu m \ scan \ area$) of α -(Al_xGa_{1-x})₂O₃ films grown with different Al compositions. **Figure 4.** Room-temperature Raman spectra of α -(Al_xGa_{1-x})₂O₃ films grown by varying the Al compositions from 0% to 100%. The excitation wavelength was 514 nm. Figure 5 **Figure 5.** XRD ω -2 θ scan spectra of (a) α -Ga₂O₃ films grown at (i) 880°C and (ii) 650°C with same chamber pressure of 20 torr. (b) α -(Al_xGa_{1-x})₂O₃ films grown at same growth temperature (880°C) and [TMAl]/[TMAl+TEGa] molar flow ratio (49.24%) with different chamber pressures of (iii) 80 and (iv) 20 torr. # Figure 6 **Figure 6.** Asymmetrical reciprocal space mapping (RSMs) around (22 $\overline{4}$ 0) reflections of α-(Al_{0.50}Ga_{0.50})₂O₃ films grown with (a) 75 nm, (b) 30 nm, (c) 15 nm, and (d) 7.5 nm thicknesses. Figure 7 **Figure 7.** Atomic resolution cross-sectional HAADF-STEM images of (a, b) α -Ga₂O₃ and α -(Al_xGa_{1-x})₂O₃ films with (c, d) 50% and (e, f) 78% Al compositions on (a, c, e) 5 nm and (b, d, f) 2 nm scale. The white dashed lines represent the substrate-epilayer interfaces. The HAADF-STEM images were taken from the <0001> (α -Ga₂O₃ films) and <12 $\overline{31}$ > (α -(Al_xGa_{1-x})₂O₃ films) zone axes. ### Figure 8 **Figure 8.** STEM-EDS mapping for (a-d) α -Ga₂O₃ and α -(Al_xGa_{1-x})₂O₃ films with (e-h) 50% and (i-l) 78% Al compositions. (a) HAADF images for (a) α -Ga₂O₃ and α -(Al_xGa_{1-x})₂O₃ films with (e) 50% and (i) 78% Al compositions with their corresponding (b, f, j) Ga and (c, g, k) Al EDS maps and (d, h, l) atomic fraction elemental profile as indicated by the orange arrows in (a, e, i). ## Figure 9 **Figure 9.** (a) Schematic of 8 period α- $(Al_xGa_{1-x})_2O_3/\alpha$ - Al_2O_3 superlattice structure grown with 78% Al composition in α- $(Al_xGa_{1-x})_2O_3$ layers; (b) XRD ω-2θ scan spectrum of the (30 $\overline{3}$ 0) reflection; and (c) x-ray asymmetrical reciprocal space mapping (RSMs) around (22 $\overline{4}$ 0) reflection of the SL structure with 78% Al composition. Figure 10 **Figure 10.** Atomic resolution cross-sectional HAADF-STEM images of 8 period α- $(Al_xGa_{1-x})_2O_3/\alpha$ -Al₂O₃ superlattice structures grown with (a, e) 78% and (b, f) 50% Al compositions. In addition, 8 period α- $(Al_xGa_{1-x})_2O_3/\alpha$ -Ga₂O₃ SL structures with (c, g) 50% and (d, h) 17% Al compositions are also shown with (a,b,c,d) 50 nm and (e,f,g,h) 2 nm scale. Corresponding layer thicknesses are included for different structures. The white dashed lines represent the substrate-epilayer interfaces. The HAADF-STEM images of α- $(Al_xGa_{1-x})_2O_3/\alpha$ -Al₂O₃ superlattice structures with 78% and 50% Al compositions were taken from $<24\overline{6}1>$ and <0001> zone axes, respectively. And both α- $(Al_xGa_{1-x})_2O_3/\alpha$ -Ga₂O₃ SL structures with 50% and 17% Al compositions were viewed along $<12\overline{3}1>$ zone axes. ## Figure 11 **Figure 11.** STEM-EDS mapping for α-(Al_xGa_{1-x})₂O₃/α-Al₂O₃ superlattice structures grown with (a-d) 78% and (e-h) 50% Al compositions and α-(Al_xGa_{1-x})₂O₃/α-Ga₂O₃ SL structures with (i-l) 50% and (m-p) 17% Al compositions. (a,e,i,m) HAADF images with their corresponding (b, f, j,n) Ga and (c, g, k,o) Al EDS maps and (d, h, l, p) atomic fraction elemental profile as indicated by the orange arrows in (a, e, i, m). Figure 12 **Figure 12.** The bandgap energies of (a) α-Ga₂O₃, (b) α-(Al_xGa_{1-x})₂O₃ films with 50% Al composition and (c) α-Al₂O₃ films determined by calculating the energy difference between Ga $2p_{3/2}$ or O 1s core level peak and the onset of energy loss spectrum. The inset figures represent the zoomed view of the background region of the Ga $2p_{3/2}$ and O 1s core levels. (d) The bandgap energies of α-(Al_xGa_{1-x})₂O₃ films as a function of Al compositions, showing a good agreement with the theoretically predicted bandgap values. Figure 13 **Figure 13.** Al 2p and Ga 3s core-levels and valence band (VB) spectra from 50 nm thick (a) α-Al₂O₃ film (b) α-(Al_xGa_{1-x})₂O₃ film and (c) α-(Al_xGa_{1-x})₂O₃/α-Al₂O₃ interface with x = 0.50. Data are shown as blue open circles and the fitted curves are represented as black dashed lines for Ga 3s and Al 2p core-levels. Red solid straight lines represent the linear fitting of VB spectra of α-Al₂O₃ and α-(Al_xGa_{1-x})₂O₃ films. Figure 14 **Figure 14.** Summary of the valance and conduction band offsets at α -Al₂O₃/ α -(Al_xGa_{1-x})₂O₃ interfaces with Al composition of 78%, 50% and 0%, The corresponding bandgap energies of α -(Al_xGa_{1-x})₂O₃ films for different Al compositions are also included. ## Supplementary material # Metalorganic Chemical Vapor Deposition of α -Ga₂O₃ and α -(Al_xGa_{1-x})₂O₃ thin films on m-plane sapphire substrates A F M Anhar Uddin Bhuiyan^{1,a)}, Zixuan Feng¹, Hsien-Lien Huang², Lingyu Meng¹, Jinwoo Hwang², and Hongping Zhao^{1,2,b)} ¹Department of Electrical and Computer Engineering, The Ohio State University, Columbus, OH 43210, USA ²Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, USA ^{a)}Email: bhuiyan.13@osu.edu ^{b)}Corresponding author Email: zhao.2592@osu.edu **Figure S1** Surface view FESEM images of α -(Al_xGa_{1-x})₂O₃ films with different Al compositions. **Figure S2** Surface AFM images of α -(Al_{0.50}Ga_{0.50})₂O₃ films grown with (a) 75 nm, (b) 30 nm, (c) 15 nm, and (d) 7.5 nm thicknesses. Figure S3. Survey spectra of α -(Al_xGa_{1-x})₂O₃ films with Al compositions of x = 0%, 28%, 50%, 68%, 78% and 100%. #### Table S1 Summary of the calculated Al contents for α -(Al_xGa_{1-x})₂O₃ samples grown with different [TMAl]/[TMAl+TEGa] molar flow rate ratios (Table 1) by using the area of Ga 3s, Al 2s and Al 2p core levels with their respective sensitivity factors (S_{Ga 3s} = 1.13, S_{Al 2s} = 0.753, S_{Al 2p} = 0.5371). The Al compositions in the α -(Al_xGa_{1-x})₂O₃ samples were determined by comparing the areas for the Ga 3s with the Al 2s and Al 2p core level spectra by using below formula: Al composition (%) = 100 $$X = \frac{\frac{Area_{Al\ 2s}}{RSF_{Al\ 2s}}}{\frac{Area_{Ga\ 3s}}{RSF_{Ga\ 3s}} + \frac{Area_{Al\ 2s}}{RSF_{Al\ 2s}}}$$ | Sample
No. | [TMAI]/[TM
Al+TEGa]
(%) | Area _{Ga 3s}
RSF _{Ga 3s} | Area _{Al 2s} RSF _{Al 2s} | $\frac{Area_{Al2p}}{RSF_{Al2p}}$ | Al content (%)
(By using Ga
3s and Al 2s
core levels) | Al content (%)
(By using Ga
3s and Al 2p
core levels) | Al
content
(%)
(XRD) | |---------------|-------------------------------|---|--|----------------------------------|--|--|-------------------------------| | 4 | 7.27 | 7739.2 | 3168.5 | 3300.9 | 29.05% | 29.90% | 28% | | 6 | 18.08 | 6740.1 | 6547.7 | 6861.3 | 49.28% | 50.45% | 50% | | 8 | 35.00 | 4299.0 | 7906.6 | 7792.8 | 64.78% | 64.45% | 68% | | 10 | 49.24 | 3568.7 | 10535.6 | 10353.8 | 74.70% | 74.37% | 78% | **Figure S4** Schematic of (a) 50 nm thick α -Al₂O₃, (b) α -(Al_xGa_{1-x})₂O₃ films grown on m-plane sapphire substrate, and (c) 2 nm thick α -(Al_xGa_{1-x})₂O₃ films grown on top of 50 nm thick α -Al₂O₃ layer on m-plane sapphire substrate. The Al compositions in α -(Al_xGa_{1-x})₂O₃ films are tuned as 0%, 50% and 78%.