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1 Introduction

In recent years, and in parallel to popular microeconometric identification strategies, empiri-
cal practice in applied macroeconometrics has turned towards “external” sources of plausibly
exogenous variation. Such external instrumental variables (IVs, or proxy variables) are now
routinely used to estimate causal effects through a simple Two-Stage Least Squares version
of Local Projections (Jorda, 2005; Ramey, 2016). Appealingly, this approach is valid even
without the assumption of invertibility — the ability to recover structural shocks from current
and past (but not future) values of the observed macro variables (Nakamura & Steinsson,
2018b; Stock & Watson, 2018).

However, applied researchers are often not just interested in dynamic causal effects, but
also want to learn about a particular shock’s contribution to macroeconomic fluctuations
(Christiano et al., 1999; Beaudry & Portier, 2006; Smets & Wouters, 2007). If the IV is a
perfect measure of the underlying structural macro shock, then the desired variance decom-
positions are readily computed from standard Local Projection regression output (Gorod-
nichenko & Lee, 2020). In many applications, though, it is likely that external shock measures
are contaminated by substantial measurement error, causing attenuation bias. For example,
Gertler & Karadi (2015) use high-frequency changes in asset prices around monetary policy
announcements as credible instruments for monetary shocks; since these instruments at best
capture a subset of all monetary shocks, simple direct regressions on the IV are likely to sub-
stantially understate the importance of monetary disturbances. Up to this point, the only
possible alternative approach was to combine the IV with conventional Structural Vector
Autoregressive (SVAR) methods (Stock, 2008; Mertens & Ravn, 2013), thus automatically
imposing the otherwise unnecessary and empirically dubious invertibility assumption.

In this paper, we show precisely to what extent external instruments are informative
about shock importance. Throughout, we consider an unrestricted linear moving average
model, disciplined only by IVs. This model nests conventional, invertible SVARs, as well
as essentially all linearized macro models. We prove three main results. First, without
further restrictions, the variance decomposition of the instrumented shock’s contribution to
macroeconomic fluctuations is interval-identified, with informative lower and upper bounds.
Second, if the researcher is willing to impose the assumption of recoverability — i.e., that
the shock is spanned by current, past and future values of the observed macro variables —
then both variance decompositions and historical decompositions (the shock’s contribution

to realized fluctuations) are point-identified. Third, we derive a simple Granger causality



pre-test for invertibility that we show exploits the strongest possible testable implication.
We complement this set of theoretical results with an extensive code suite that implements
all our inference procedures.

We adopt the exact same structural vector moving average (SVMA) model with external
IVs as in Stock & Watson (2018), but focus on variance decompositions, rather than im-
pulse responses. The key identifying assumption of this model is the availability of external
instruments that correlate with the shock of interest, but are otherwise dynamically uncor-
related with all other macro shocks. Importantly, the IVs may be contaminated by classical
measurement error. Stock & Watson (2018) show that, in this SVMA-IV model, relative
impulse responses (which normalize the impact effect) are point-identified, cf. also Mertens
(2015). While such relative impulse responses do not require identification of the scale of the
underlying shock, scale inevitably matters for variance and historical decompositions, and
so lies at the heart of the identification challenge we face in this paper.

We bound the importance of the instrumented structural shock from above and from
below by viewing the model as a dynamic measurement error model. Our question is: Given
the second moments (autocovariances) of the macro variables and the IVs, what can be said
about (forecast or unconditional) variance decompositions? The identification challenge is
that we do not know the signal-to-noise ratio of the IV a priori; however, we prove that it
is possible to bound this ratio using the moments of the data. At one extreme, our lower
bound corresponds to the previously discussed approach of treating the IV as the shock (zero
measurement error). If — as seems likely in practice — the IV is actually not perfect, then this
lower bound may substantially understate the true importance of the shock. At the other
extreme, given that we observe a certain degree of co-movement between the IV and the
macro observables at various leads and lags, we know that measurement error also cannot be
too pervasive. We translate this intuition into formal bounds and prove that these bounds
are sharp, i.e., they exhaust all the information about variance decompositions contained in
the second moments of the data.

We also characterize the set of additional assumptions that researchers could impose to
point-identify both variance and historical decompositions. Here our main result is that point
identification obtains if the instrumented shock is assumed to be recoverable, i.e., spanned
by all lags and leads of the endogenous macro variables. Appealingly, recoverability obtains
in any macro model with as many observables as shocks; in particular, it holds even in many
models with news and noise shocks, unlike the strictly stronger (and, as we show, testable)

invertibility assumption made in SVAR analysis (Leeper et al., 2013).



We provide the applied researcher with an easy-to-use code suite that constructs confi-
dence intervals for all parameters of interest. In a first step, we use a reduced-form VAR in
macro variables and IVs as a convenient tool for approximating the second moments of the
data. The second step then constructs sample analogues of our identification bounds and
inserts these into the confidence procedure of Imbens & Manski (2004); alternatively, we
also provide confidence intervals valid under the additional point-identifying restriction of
recoverability. We prove that our confidence intervals have asymptotically valid frequentist
coverage under weak nonparametric conditions on the data generating process.

To demonstrate the feasibility and applicability of our procedures, we bound the impor-
tance of monetary shocks for inflation dynamics in the U.S. We employ the high-frequency
IV proposed by Gertler & Karadi (2015), mentioned above. As discussed in Ramey (2016),
the rising importance of forward guidance since the early 1990s is likely to invalidate the
invertibility assumption and so threatens consistency of the standard SVAR-IV estimator
used by Gertler & Karadi. Indeed, we find that the data are consistent with substantial
non-invertibility. Applying our robust methodology, we find that monetary shocks are al-
most irrelevant for aggregate inflation in our post-1990 sample: The 90% confidence intervals
for the forecast variance contribution of monetary shocks rules out values above 8% at all
horizons. Thus, to the extent that inflation is a monetary phenomenon, it is so because of
the systematic part of U.S. monetary policy, not because of its erratic conduct.

Finally, we use a series of analytical and quantitative examples to give intuition for why,
in spite of its weak identifying assumptions, our method will often manage to give very tight

upper bounds on shock importance, consistent with our findings in the monetary application.

LITERATURE. Plagborg-Mgller & Wolf (2021) prove that the invertibility-robust Local Pro-
jection IV impulse response estimator has the same estimand as a recursive SVAR that in-
cludes the IV and orders it first. This paper complements our other work by analyzing the
identification of variance and historical decompositions, which requires completely different
mathematical arguments.

Non-invertibility and its effects on SVAR identification have received substantial atten-
tion in recent years (see the references in Plagborg-Mgller, 2019, sec. 2.3). Previous work has
emphasized that, in the empirically relevant case of foresight about economic fundamentals
or policy (“news”), conventional SVAR analysis invariably fails: Rational expectations equi-
libria create non-invertible SVMA representations, and so SVARs cannot correctly recover

the structural shocks (Leeper et al., 2013; Wolf, 2020). In contrast, non-invertibility poses



no challenge to the methods developed in this paper. We also show that, in the SVMA-IV
model, the degree of invertibility is set-identified. Our proposed test of invertibility is related
to the Granger causality tests developed in SVAR settings by Giannone & Reichlin (2006)
and Forni & Gambetti (2014). Finally, the weaker notion of “recoverability” studied here has
independently been proposed by Chahrour & Jurado (2021) outside the context of external
IV identification.!

OUTLINE. Section 2 defines the SVMA-IV model and the parameters of interest, and states
the identification problem. Section 3 derives our identification results. Section 4 gives a prac-
tical overview of our procedures and their implementation. Section 5 applies the procedures
to bound the importance of monetary shocks. Section 6 illustrates the usefulness and inter-
pretation of the upper bound on shock importance through analytical examples. Section 7
compares the finite-sample performance of our procedures to the SVAR-IV approach through
simulations. Section 8 concludes. Proofs of our main results are relegated to Appendix A.

The Matlab code suite and a supplemental appendix are available online.?

2 Econometric framework

We begin by defining the econometric model and the parameters of interest. Then we state

the identification problem.

2.1 Model

Following Stock & Watson (2018), we assume a SVMA-IV model. This model allows for
an unrestricted linear shock transmission mechanism and, unlike standard SVAR analysis,
does not require shocks to be invertible. We also assume the availability of valid external
IVs (proxy variables) — variables that correlate with the shock of interest, but not with the
other shocks. For notational clarity, we assume throughout that all time series below have
zero mean and are strictly non-deterministic.

First, we define the SVMA model, which places no restrictions on the linear transmission

of the vector of shocks ¢; to the vector of observed endogenous variables ;.

'Recoverability is formally equivalent to the assumption that the structural shock is spanned by current
and future reduced-form VAR forecast errors. Such dynamic rotations of u; have been exploited in non-IV
settings by Lippi & Reichlin (1994), Mertens & Ravn (2010), and Forni et al. (2017a,b).

’https://github.com/mikkelpm/svma_iv
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Assumption 1. The ny-dimensional vector y, = (Y1, -, Yn,t) of observed macro variables

is driven by an unobserved n.-dimensional vector e, = (€14, ...,€n. 1) of exogenous economic
shocks,
y=0(L)e, O(L)=> 6L (1)
=0

where L is the lag operator. The matrices Oy are each n, x n. and absolutely summable
across L. ©(z) is assumed to have full row rank for all complex scalars x on the unit circle.

The shocks are mutually orthogonal white noise processes:
Et ~ WN(O, In5>7

where 1,, denotes the n-dimensional identity matrix.

The (i, j) element ©, ; , of the moving average coeflicient matrix ©y is the impulse response
of variable i to shock j at horizon £. The j-th column of ©, is denoted by O, ;. and the i-th
row by ©;.,. The full-rank assumption guarantees a nonsingular stochastic process. This
condition requires n. > n,,, but — crucially — we do not assume that the number of shocks n.
is known. The mutual orthogonality of the shocks is the standard assumption in empirical
macroeconomics. The model is semiparametric in that we place no a priori restrictions on
the coefficients of the infinite moving average, except to ensure a valid stochastic process. In
particular, the infinite-order SVMA model (1) is consistent with all discrete-time Dynamic
Stochastic General Equilibrium (DSGE) models and all stable SVAR models for y;.

Second, we assume the availability of one or more external IVs for the shock of in-
terest, with the shock of interest specified to be the first one, ;,. Each of the n, IVs

2t = (214y -, Zn,+)" are assumed to correlate with the first shock but not the other shocks,
after controlling for lagged variables: For all i =1,... n,,
E(gi,tgl,t) 7é 07 E(gi,tgjﬂ') =0 fOI' a’u (]a T) 7é (17 t)? (2)

where Z;; is the population residual from projecting z;; on all lags of {z,y:}. The key
exclusion restriction is that the shock of interest €;, is the only contemporaneous shock to
correlate with the IVs z. Thus, Z; is a proxy for €;; (up to scale) that is contaminated by
classical measurement error. This is a strong assumption that must be carefully defended
in applications. Ramey (2016) and Stock & Watson (2018) survey the extensive applied
literature that has constructed plausibly valid external IVs for various shocks.

Using linear projection notation, we can equivalently express the IV exclusion restrictions



(2) as the assumption that the IVs z; are proportional to the shock of interest €, plus classical

measurement error v; (and possibly lagged observed variables).
Assumption 2. The IVs zp = (214, ..., 2n.t) Satisfy

o0

Z = Z(‘I’zztfe + Azytfg) +aley + 211}/21),5, (3)
(=1

where Wy is n, xXn,, Ay isn, Xn,, A is an n,-dimensional vector normalized to unit Euclidean
length and with its first nonzero element being positive, o > 0 is a scalar, and ¥, is a
symmetric positive semidefinite n, X n, matriz. The elements of ¥, and A, are absolutely
summable across ¢, and the polynomial x — det(I,, — > 2, Wyx’) has all its roots outside the
unit circle. The disturbance vector v, is a white noise process that is dynamically uncorrelated

with the structural shocks e;:
vy~ WN(0,1,.), Cov(ey,vr) = 0 xn, for all t,T.

The interpretation of external IVs as noisy measures of true shocks is discussed in Mertens
& Ravn (2013) and Stock & Watson (2018). In our notation (3), the scale parameter «
(along with the residual variance-covariance matrix ¥,) measures the overall strength of
the IVs, while the unit-length vector A determines which IVs are stronger than others.
The assumptions on the coefficients ¥, and A, ensure stationarity. We emphasize that the
linearity of equation (3) is not a structural assumption; it arises from a linear projection
(as in the “first stage” of cross-sectional IV). In particular, Assumption 2 is consistent with
the IV being a binary or censored series, since such a variable can still satisfy the moment
conditions (2) that are equivalent with equation (3).

Since we restrict attention to identification from second moments, we may without loss
of generality simplify notation by assuming that all disturbances are Gaussian.

/

Assumption 3. (¢},v)) is i.i.d. jointly Gaussian.

The Gaussianity assumption is strictly for notational convenience. We could instead have
maintained the above white noise assumptions (which allow for conditional heteroskedastic-
ity) and phrased all our results using linear projection notation. The sole meaningful restric-
tion is that we only exploit second moments of the data for identification, as is standard in

the applied macro literature, and without loss of generality for Gaussian data.® We drop the

3If we were to take the assumption of i.i.d. shocks seriously, and the shocks were not Gaussian, higher-
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Gaussianity assumption when developing inference procedures in Section 4.
Finally note also that Assumptions 1 to 3 together imply that the (n, 4+ n,)-dimensional

data vector (y;, z;)" is strictly stationary.

2.2 Parameters of interest

We are interested in the propagation of the first structural shock €;; to the macroeconomic

aggregates y;. This section lists the parameters of interest to the applied macroeconomist.

IMPULSE RESPONSES. As discussed above, the (i,1) element ©;;, of the moving average
coefficient matrix O, is the impulse response of variable ¢ to shock 1 at horizon ¢. We
distinguish such absolute impulse responses from relative impulse responses ©;1,/01 1,

which give the response of y; ;¢ to a shock to e;, that increases y; ; by one unit on impact.

INVERTIBILITY AND RECOVERABILITY. The shock e;, is said to be invertible if it is
spanned by past and current (but not future) values of the endogenous variables y;: €1 =
E(e14 | {yr}—ococr<t). This condition may or may not hold in a given moving average model
(1), depending on the impulse response parameters ©,. Conventional SVAR analysis invari-
ably imposes invertibility, since the SVAR model obtains from the additional assumptions
that n. = n, and that ©(L) has a one-sided inverse, so the shocks ¢, = ©(L) ™'y, are spanned
by current and past data. However, in many structural macro models, at least some of the
shocks cannot be recovered from only lagged macro observables, i.e., the moving average
representation is noninvertible. For example, this is often the case in models with news (an-
ticipated) shocks or noise (signal extraction) shocks (Blanchard et al., 2013; Leeper et al.,
2013). Furthermore, if n. > n,, it is impossible for all shocks to be invertible.

A continuous measure of the degree of invertibility is the R? value in a population regres-
sion of the shock on past and current observed variables (Sims & Zha, 2006, pp. 243-245;
Forni et al., 2019). More generally, we define

Ry = Var(E(e1s | {yr}-oocrzire)), (4)

the population R-squared value in a projection of the shock of interest on data up to time t+/¢

(recall that Var(e;;) = 1). If the shock is invertible in the sense of the previous paragraph,

order moments of the data would be informative about the parameters. However, we agree with most of the
literature that the assumption of i.i.d. shocks is too strong due to the likely presence of stochastic volatility.



then RZ = 1. Hence, if R2 < 1, then no SVAR model can generate the impulse responses
O(L), although the model is nearly consistent with SVAR structure if R2 ~ 1 (Wolf, 2020).

A weaker condition than invertibility is that the shock of interest is recoverable from
all leads and lags of the endogenous variables — that is, if E(e1; | {4r}—cocr<co) = €14, OF
equivalently if R2 = 1. A sufficient condition is that n. = n,, since then ©(L) automatically
has a two-sided inverse (Brockwell & Davis, 1991, Thm. 3.1.3), and thus the shocks &, =
O(L) 'y, are spanned by current, past, and future data. This is the case in many DSGE
models with news (i.e., anticipated) shocks (e.g., Leeper et al., 2013).

VARIANCE DECOMPOSITIONS. Variance decompositions are the key parameters of interest
in this paper. We focus in the main text on the forecast variance ratio (FVR), where the

FVR for the shock of interest for variable ¢ at horizon ¢ is defined as

-1
Var(yi,t+£ ‘ {y‘r}700<7'§t7 {51,T}t<7<oo) - Zm:() @ZZ,Lm

¢ Var<yi,t+f ‘ {y‘r}—oo<7'§t) Var(yi,t+e ’ {yﬂ'}—oo<7'§t)

The FVR measures the reduction in the econometrician’s forecast variance that would arise
from being told the entire path of future realizations of the first shock. The larger this
measure is, the more important is the first shock for forecasting variable ¢ at horizon ¢. The
FVR is always between 0 and 1.

Appendix B.1 defines and provides identification analysis for two additional variance
decomposition concepts. First, the forecast variance decomposition (FVD) is like the FVR
but instead conditions on the history of all past shocks {e,}_oc<r<t, rather than the history
of observables {y: } —oo<r<t. Under invertibility, the FVR and FVD are identical (since then
the information set {y,}_oo<r<¢ equals the information set {e;}_oo<r<;), explaining why the
previous SVAR literature has not distinguished between the two. Second, we consider the

unconditional frequency-specific variance decomposition (VD) of Forni et al. (2019, sec. 3.4).

HISTORICAL DECOMPOSITION. The historical decomposition of variable y;, at time ¢ at-
tributable to the shock of interest is defined as E(y;¢ | {€1,+ }—cocr<t) = D pop Oi1,661,4—¢-

2.3 Identification problem

Our goal for the remainder of the paper is to answer the question: Given Assumptions 1 to 3,
what do the second moments (autocovariances) of the data (y;, z;)" say about the parameters

of interest defined above? In particular, can we test whether the shock €, is invertible?



Stock & Watson (2018) showed that relative impulse responses are point-identified in the
SVMA-IV model. To see this transparently, consider the case with a single IV, so A = 1.

Since

Cov(Yits 2t | {Yrs 20} —oocr<t) = @O 14, (5)

the absolute impulse responses ©; 1, for all variables ¢ and all horizons ¢ are identified up
to the single scale parameter «. Thus, the relative impulse responses ©; 1 ,/01,1 ¢ are point-
identified, as a drops out from the fraction.

The main challenge addressed in this paper is that (partial) identification of variance and
historical contributions requires (partial) identification of the absolute impulse responses, and

thus of the scale parameter «.

3 Identification results

This section contains our main theoretical identification results. Readers who are primarily
interested in practical implementation are encouraged to skip ahead to Section 4. For expo-
sition, we start in Section 3.1 by deriving results for a simple static version of our SVMA-IV
model. We then turn to the general dynamic model in Sections 3.2 to 3.4, applying the static
results to the frequency domain representation of the data. We initially focus on the case

with a single IV, but we discuss the straight-forward extension to multiple IVs in Section 3.5.

3.1 Static model

To build intuition, consider a static version of the SVMA-IV model with a single instrument:

Y = Oa 10811 + &t

2t = Q€14 + Oy,

iid. Iy Oxn
(81713,1}15,515)/ ~ N O, Y .
Onyx2 E{

Here a,0, > 0 are scalars, & = Z;ﬁz O, joEjt is an n,-dimensional random vector that

captures all the structural shocks other than the one of interest, and X¢ = Var(&;).*

4While the static model is primarily intended to provide intuition about the analysis of the SVMA-IV
model, the results in this subsection are directly relevant for identification in the more restrictive SVAR
model with an external IV. In that framework, y; would denote the n, reduced-form VAR residuals, which

10



Our main parameter of interest is the Forecast Variance Ratio

Var(yi,t | 51,t) . @?,1,0

FVR = 1— _ .
! Var(y;) Var(y; +)

This is just the population R-squared value in the (infeasible) regression of y;; on €1;. Since
Cov(Yis, 2t) = a©; 1, it is easy to see that the FVR is identified up to a factor 1/a?:
FVRi\ = iQ o Covlis, )" (6)
’ @ Var(y; )
Thus, we ask: What does the variance-covariance matrix of the data (y;, z:)" say about the
scale parameter o%?

Our key insight is that the static model is nothing but a multivariate classical measure-
ment error model: Whereas we would like to measure the R-squared value from a regression
of y, on €1, we only observe the noisy proxy z; for the “regressor”. Intuitively, the con-
tribution of &1, to y, is not point-identified because the signal-to-noise ratio o?/c? of the
proxy z; is not known a priori. For example, upon observing a small correlation between
the IV and macro observables, we do not know whether this correlation is small because of
measurement error or because the shock is unimportant. Nevertheless, the moments of the
data are informative about the signal-to-noise ratio. At one extreme, the IV can never be
more than perfect — at best, there is no measurement error (infinite signal-to-noise ratio).
At the other extreme, the signal-to-noise ratio cannot be zero, since then the IV would not

correlate at all with macro observables. We now formalize this intuition.®

LOWER BOUND ON SHOCK IMPORTANCE. We begin with a lower bound on the importance
of the shock (and so on the amount of measurement error), or equivalently an upper bound

on o. To derive this bound, simply observe that
o < a? + o2 = Var(z).

This inequality binds when there is no measurement error in the IV, i.e., when o, = 0.

are linear functions of the vector ¢; of n. contemporaneous structural shocks.

5Our bounds do not follow from existing results in the literature on measurement error in linear regression
(e.g., Klepper & Leamer, 1984), since our parameters of interest are not regression coefficients.
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Mapping this upper bound on o into a lower bound on the FVR via (6), we get

FVR;, > Cov(yir, )*

_ ) 2
= Var(z) Var(y,;) Corr(yi, 2)" (7)

The lower bound corresponds to the population R-squared value in a regression of y;; on
2z, that is, a regression which treats the IV as if it were a perfect measure of the shock €1+
(up to scale). The attenuation bias imparted by the measurement error v, implies that this

regression yields a lower bound on the true FVR.

UPPER BOUND ON SHOCK IMPORTANCE. To derive the upper bound on the importance
of the shock (and on the amount of measurement error), or equivalently the lower bound on
o, define first z) = E(z | y) and 6}t = E(e1; | y). Then, by standard linear projection

algebra, we must have
Var(z)) = o® Var(sit) < o Var(e ;) = o’.

Intuitively, a® = Var(FE(z; | €14)) is the explained sum of squares from a projection of z; on
the shock e1,. This must weakly exceed the explained sum of squares Var(z) = Var(E(z |
y¢)) from a projection of z; on y;, simply because the variables in y; are effectively noisy
measures of the shock €, ; contaminated by other structural shocks &;, and uncorrelated with
v;. In other words, the explanatory power of the variables y, for the IV z; puts a lower bound
on the possible signal-to-noise ratio a?/0? = a?/(Var(z;) — a?). The inequality above binds
when the shock is invertible (d,t = E(e1t | y) = €1,4), i.e., when the macro observables y,
explain as much of the variation in the IV as the shock ¢, ; itself does.

Mapping the lower bound on o into an upper bound on the FVR via (6), we get

Cov(yi,t7 Zt)Q o Cov(yi,fd 22)2

FVR;; < ; = ;
Var(z;) Var(y;¢)  Var(z)) Var(y;.)

= Corr(y,. #)*. (8)

The upper bound corresponds to treating the projection zf = aslt of the IV on the macro

observables as a perfect measure of the shock (up to scale). This is correct if indeed the
shock were invertible (eh = €14), but otherwise overstates the importance of the shock.
Intuitively, unless the shock is in fact invertible, the upper bound mistakenly attributes too
much of the lack of co-movement between y, and z; to measurement error (rather than the

actual limited importance of €1 4).

12



Whereas the lower bound (7) on the FVR for variable i does not depend on the entire
set of observed macro aggregates y;, the upper bound (8) decreases monotonically as we add
more variables to the vector 3;. In particular, the upper bound equals the trivial bound of 1
if there is only one observable (n, = 1), since in this case we cannot rule out that the scalar
time series 1, is driven entirely by the first shock, with the imperfect correlation between
y; and z; purely caused by measurement error. However, when n, > 2, the upper bound
is generally below 1. We present an analytical example in Section 6.1 that shows how the
addition of extra observables helps sharpen identification, and clarifies the conditions under

which we can expect the upper bound to be close to the true FVR.

IDENTIFIED SET. The bounds o2 € [Var(z]), Var(z)] are sharp, i.e., exploit all information
contained in the second moments of the data, in the following sense. Suppose we are given
any non-singular variance-covariance matrix for the data (y;, 2;)’, as well as any value of a?
in our interval. We can then choose appropriate values of the remaining parameters such
that the model matches the given variance-covariance matrix of the data.”

Under what conditions are the bounds on o? — and thus on the FVR — likely to be tight
(i.e., close to the true FVR)? We can express the identified set for 1/a? in terms of the
underlying model parameters as follows:

1 o? 1 1 1

Cl o7 2X 3 e
o a? + U% ao? Var(E(ELt | yt>> a?

The lower bound is closer to the true value 1/a? when the actual signal-to-noise ratio /0?2
is larger, i.e., when the IV is stronger. The upper bound is closer to the true FVR when
the degree of invertibility RZ = Var(sit) = Var(E(e1+ | y)) is larger, i.e., when the macro
variables y; are more informative about the hidden shock e;;. Finally, the identified set is

never empty, and it collapses to a point only in case of a perfect IV and invertibility.

POINT IDENTIFICATION. Point identification obtains if the researcher assumes either that
the IV is perfect (o, = 0), in which case the lower bound for the FVR binds, or that the

shock of interest is invertible (5}t = £1,4), in which case the upper bound binds.

6Mathematically, when v; is a scalar, then ZZ = E(z | yt) x yi, so Corr(y, ZZ) =+1.

"This is achieved by the choices ©41,0 = 1 Cov(y, 2), 02 = Var(z) — o?, and X = Var(y,) —
L Cov(ys, z) Cov(ys, 2¢)'. This choice of o2 is nonnegative since Var(z;) > o2, and Lemma 1 in Ap-
pendix A.2.1 implies that the choice of ¥¢ is a positive semidefinite matrix since a? > Var(th ) =
Cov(zs,y:) Var(y)~! Cov(ys, 2¢).
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3.2 Dynamic model: shock scale

We now analyze identification in the general dynamic model of Section 2.1. The key idea in
our proofs is to apply the logic of the static model frequency-by-frequency to the frequency
domain representation of the data.

As in the static case, we begin in this section by characterizing the identified set for the
scale parameter a. While not economically interesting in itself, this scale parameter is ulti-
mately key to identification of our actual parameters of interest. We maintain Assumptions 1
to 3 throughout, but for the moment consider the case of a single IV (n, = 1), leaving the
generalization to Section 3.5. That is, z is a scalar and A = 1 in equation (3). We write

211/2 =0, > 0, a scalar.

PRELIMINARIES. It will prove convenient to define the IV projection residual that removes

any dependence on lagged observed variables:

Z =2 — B2 | {Ur 2r fmoocr<t) = Qg1 + 000, 9)

Note that z; is serially uncorrelated by construction.
Next, we need to define our notation for spectral density matrices. For any two jointly
stationary vector time series a; and b; of dimensions n, and ny, respectively, define the n, xn,

cross-spectral density matrix function (Brockwell & Davis, 1991, ch. 4 and 11)

o0

For any vector time series a;, we denote its spectrum by s,(w) = S4q(w).

LOWER BOUND ON SHOCK IMPORTANCE. We again begin with a lower bound on shock
importance (or the amount of measurement error), which corresponds to an upper bound on

the scale parameter o. As in the static model, we find
o® < a®+ o2 = Var(%) = aj . (10)

Thus, once we look at the residualized IV in (9), the bound construction works as in the

static case, with the boundary a = ayp corresponding to a perfect IV.
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UPPER BOUND ON SHOCK IMPORTANCE. For the upper bound on shock importance (or
the lower bound on a?), we apply a version of the argument from the static case to the joint
spectrum of the data at every frequency. First, as in the static case, we define the projections

of Z; and €14, respectively, just now onto all leads and lags of the endogenous variables y;:

2 = EGi | {yr}-socr<oo); (11)
511‘/ = E(gl,t | {yT}—OO<T<OO)'

Note that 22 = asit, since the measurement error v, is dynamically uncorrelated with ;.

Applying the same logic as in the static case at an arbitrary frequency w € [0, 27|, we have
szt(w) = “2351 (w) < a?s., (w) = a® x &= (12)

The last equality uses that the shock e;, is white noise with variance 1. Similar to the
static case, the inequality above arises because the “explained sum of squares” 5.1 (w) from a
frequency-specific projection of the shock €, on all leads and lags of the macro observables
y; must be less than the “total sum of squares” s., (w).® Exploiting the inequality (12) at all

frequencies, we obtain the lower bound
0% > 27 Sup, o - S:t (W) = af . (13)

The bound binds if at some frequency w € [0, 7] the observed macro aggregates are perfectly
informative about the hidden shock e;,. This is the natural dynamic, frequency-domain
analogue of the condition in the static case, where we required the static y; to be perfectly
informative about ;. If the macro aggregates are in fact not perfectly informative about
the shock at any frequency, then the lower bound attributes too much of the (frequency-by-

frequency) lack of co-movement between y; and z; to measurement error.

THE IDENTIFIED SET. The main theoretical result of this paper is that the above bounds

2 2
aip, 0 g are sharp.

Proposition 1. Let there be given a joint spectral density for w, = (y,, %), conlinuous and

positive definite at every frequency, with Z, unpredictable from {w;}_cocr<i. Choose any

8Brockwell & Davis (1991, Remark 3, p. 439) show that s;:(w) = syz(w)*sy(w)tsyz(w) and S.1 (w) =

Sye, (W)*sy(w)'sye, (w). Since the joint spectrum is positive semidefinite, s., (w) > s_ ( ) for all w.
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a € (app,ayp]. Then there exists an SVMA-IV model as in Assumptions 1 and 2 with the

giwen « such that the model-implied spectral density of w; matches the given spectral density.

Recall that the previous discussion has already shown that any value of a? ¢ [a? 5, a? 5]
is impossible. The proposition strengthens this result to say that, given the second moments
of the data, we cannot rule out any values of a? in the interval [o3 5, af 5].”

To interpret the identified set, we proceed as in the static model and express the interval
in terms of the underlying model parameters. We focus on the identified set for %, as
this transformation is again the most relevant one for identifying the FVR and degree of

invertibility /recoverability, as shown below. We can write the identified set for 1/a? as

! € o’ X ! ! X ! (14)
a? a? + o2 o2’ 1 —=2minfoepm s, .t(w) a? |
N— 17¢

~

instrument strength informativeness of data for shock

As in the static case, the lower bound is larger (and closer to the true %) when the instrument
2

is stronger in the sense of a higher signal-to-noise ratio a?/c?. The upper bound is again

smaller (and closer to the true —5) when the data are more informative about the shock of
interest. The relevant notion of informativeness, however, is now more complicated than in
the static case, for two reasons: First, we now exploit the explanatory power of all leads
and lags of the macro aggregates when forming the projection 5Lt = FE(e1s | {¥r}—oocr<oo);
and second, we consider all frequencies of the data separately. The upper bound is close to
the truth as long as the leads and lags of 1; are highly informative about the frequency-w
fluctuations of the shock at some frequency @ (e.g., in the long run @ = 0), in the sense that
the spectral density of the projection residual e; ; — SL vanishes at this frequency. This does
not require the macro variables to be informative about the shock at all frequencies (e.g., in
the short run @ ~ 7). We illustrate this point in Section 6.2.

Similar to the static case, the identified set for é does not collapse to a point unless
the instrument is perfect and there exists a frequency @ for which the data are perfectly

informative about the frequency-w cyclical component of the shock.

PRACTICAL UPPER BOUND ON SHOCK IMPORTANCE. In practice, we do not recommend
exploiting the sharp lower bound on « for estimation and inference. The reason is that aypg

in equation (13) equals the supremum of a function, which depends on the spectral density

9The proposition does not cover the knife-edge case o = a1, g due to economically inessential technicalities.
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matrix of the data. Nonparametric estimation of the supremum of an unknown function
is highly challenging given the moderate sample sizes available to applied macroeconomists
(Gafarov et al., 2018). For this reason, our implementation in Section 4 instead uses the

weaker bound

o = Var(3]) = /27r s:(w)dw < 21 sup sz (w) = atg. (15)
0 wel0,7]

Since o is given by an integral of the spectrum as opposed to a supremum, its point estimator

defined in Section 4 is consistent and asymptotically normal, as shown in Appendix B.8.1°
Since Var(z)) = o? Var(e}t) = a? x R?, the weaker lower bound on o? will nevertheless
be close to the truth if the shock of interest is close to being recoverable (R% = 1), and thus
in particular if the shock is close to being invertible (R ~ 1). In Section 6.3 we show by
example that the bound o? binds in a model with news shocks, which cannot be analyzed

using conventional SVAR-IV methods that assume invertibility.

3.3 Dynamic model: parameters of interest
Given the identified set for %, it is now straight-forward to derive identified sets for variance

decompositions as well as the degree of invertibility and recoverability.

VARIANCE DECOMPOSITIONS. The FVR satisfies

-1 g2 -1 -
= @ 1 [ -m 2
FVRi,Z _ Zm—() i,1,m _ = % Zm:(} COV(y by Rt ) ' (16)
Var(Yi e | {Yrf-cocr<t) @ Var(yi i1 | {Yr}—cocr<t)

Hence, as in the static case, the identified set for F'VR,;, equals the identified set for %,
scaled by the (point-identified) second fraction on the far right-hand side above. As discussed
previously, and as in the static case, the lower bound for the FVR depends on the strength
of the IV, and the upper bound on the FVR depends on the informativeness of the macro
variables for the shock of interest. Adding more variables to the vector y; of endogenous

observables always leads to a weakly narrower identified set (in percentage terms, since the

10Methods from the moment inequality literature could be applied to develop confidence intervals that
exploit our sharp lower bound a2 5 (Andrews & Shi, 2013, 2017; Chernozhukov et al., 2013). We leave this
more complicated option to future work. Alternatively, if researchers have a strong a priori reason to believe
that the shock is likely to be particularly important at certain frequencies, then they may fix frequency
bounds [w;,ws] and compute the integral in (15) by integrating over this interval only.
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parameter F'VR,, itself also changes when we change the vector v;). Unlike in the static
case, the upper bound in the dynamic case is generally below 1 even if we only observe a
single macro time series (n, = 1), as shown by example in Section 6.2.

Appendix B.1 derives bounds on the other variance decomposition concepts (VD and

FVD) introduced in Section 2.2. Bounding the FVD in particular requires more work.

DEGREE OF INVERTIBILITY & RECOVERABILITY. The definition (4) of R? implies

1 -
R? = E X Var(E(zt | {yr}—oo<T§t+€)>‘ <17>

Since the variance on the right-hand side above is point-identified, the identified sets for the
degree of invertibility (¢ = 0) and the degree of recoverability (¢ = oco) follow immediately
from the identified set for %

From the sharp bounds on R% and R?_, we can also derive testable conditions under which

the distribution of the observable data is consistent with invertibility or recoverability.

Proposition 2. Assume a2z > 0. The identified set for R contains 1 if and only if the
instrument residual Z; does not Granger cause the macro observables y;. The identified set

for R%. contains 1 if and only if the projection ZI 15 sertally uncorrelated.

According to Proposition 2, e, is certain to be noninvertible if and only if z; Granger
causes y; (which is equivalent with the condition that z; Granger causes y;). This result will
be the basis for the pre-test of invertibility in Section 4. Note, however, that a finding of
Granger non-causality need not imply that R2 = 1; the identified set for R? always includes
values below 1. Proposition 2 additionally implies that e is certain to be non-recoverable

if and only if %/, defined in (11), is serially correlated at some lag.!!

ABSOLUTE IMPULSE RESPONSES. For completeness, we note that the identified set for the

absolute impulse response O, is obtained by scaling the identified set for é, cf. equation
(5). This extends existing results on the point-identification of relative impulse responses

(Stock & Watson, 2018), as discussed at the end of Section 2.

We leave the development of a practical statistical test of recoverability to future research.
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3.4 Dynamic model: point identification

As we have seen, without further restrictions, our various parameters of interest are only
interval-identified, albeit with informative bounds. In this section we complement those
results by stating a menu of sufficient conditions, each of which guarantees point identification

of the FVR and historical decompositions.

INFORMATIVE INSTRUMENTS. Point identification obtains if the researcher is willing to
assume that the instrument is perfect, i.e., 0, = 0. In this case the lower bounds on the
FVR and degree of invertibility /recoverability bind. Indeed, since the instrument equals the
shock up to scale, z; = ae;4, the FVR and historical decompositions are easily computed
through regressions (Jorda, 2005; Gorodnichenko & Lee, 2020). Note that the assumption
that the IV is perfect is not testable.

INFORMATIVE MACRO AGGREGATES. The second set of sufficient conditions relates to the
informativeness of the macro aggregates y, for the hidden shock e;,. In this category, our
weakest condition for point identification is that the data y; is perfectly informative about
€1+ at some frequency, i.e., the spectral density of the projection residual €1, — 5}75 vanishes
at some frequency w. Then a = ayp, so the FVR and degree of invertibility /recoverability
are identified. This assumption is not testable.

A stronger but more easily interpretable assumption is recoverability, i.e., 517,5 = FEley, |
{Yr}—co<r<c0c) = €14 This assumption is testable, cf. Proposition 2. As explained in
Section 2.2, recoverability is restrictive, but it is a meaningfully weaker requirement than
invertibility in many economic applications, such as in the news shock model in Section 6.3
below. In particular, it is satisfied whenever there are as many shocks as variables, n. =
ny. Under recoverability, the shock itself can be identified as 1, = é%j , so the historical

decomposition E(y;; | {e1+}—cocr<t) = EWis | {31} _socr<t) is also identified.

3.5 Extension: multiple instruments

To conclude, we briefly extend the analysis to a model with multiple IVs for the shock of
interest (n, > 2). This extended multiple-IV model is testable, unlike the single-IV model.

As in the single-1V case, define the projection residual

Zr=2— E(ze | {Ury 2r foocrat) = QA1 + 22, (18)
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Appendix B.2 shows that the testable implication of the multiple-IV model is that the cross-
spectrum s,:(w) has a rank-1 factor structure. The validity of the multiple-IV model can be
rejected if and only if this factor structure fails.

When the multiple-IV model is consistent with the distribution of the data, then the
identification analysis can be reduced to the single-IV case in Sections 3.2 to 3.4. Specifically,
Appendix B.2 shows that (i) A is point-identified, and (ii) the identified sets for «, variance
decompositions, and the degree of invertibility are the same as the identified sets that exploit

only the scalar instrument

1

5= ———— N Var(3) 2. 19

"7V Var(z) 1A (2)" % (19)

Intuitively, 2, o< E(e1; | Z:). Because Z; is a linear combination of all n, instruments, the
identified sets are narrower than if we had used any one instrument z;, in isolation.

In Appendix B.3 we also derive sharp bounds in the more general case of multiple instru-

ments being correlated with multiple structural shocks, as in Mertens & Ravn (2013).

4 Practical implementation

We now describe the practical implementation of our inference procedures for variance de-
compositions and our test of invertibility of the shock of interest. To keep the exposition
self-contained, we review some of the conclusions from Section 3. For ease of notation we fo-
cus on the case with a single IV z; in this section. The generalization to multiple instruments
is straight-forward, cf. Section 3.5.

The key Proposition 1 in Section 3 showed that, without further assumptions, variance
decompositions and the degree of invertibility are only partially identified. That is, even
if the sample size were infinite so we knew the autocovariance function of the observed
data W, = (y;, z:)" perfectly, we would not be able to exactly pinpoint the true values of
these parameters. However, we were able to derive informative bounds on the parameters of
interest. The remainder of this section gives an overview of how to compute those bounds in
practice, how to do inference on the identified set, and how the additional a priori assumption
of recoverability allows for consistent point estimation of all economic parameters of interest.

As mentioned in the introduction, a Matlab code suite that implements all steps below

is available online.

20



4.1 Preliminaries: approximating the autocovariance function

Our bounds are simple functions of the autocovariances of the data W; = (y;,2;). The
first step of our procedure is thus to estimate this autocovariance function. Though vari-
ous estimators could in principle be used in conjunction with our identification results, we
choose here to approximate the distribution of the observed data with a finite-order VAR
(we discuss nonparametric consistency below). Note that this is an approximation of the
reduced-form dynamics of the data; we do not need to assume a structural VAR model and
the restrictive invertibility assumption that goes with it. Since our analysis in Section 3
assumes stationarity, the data should be appropriately transformed and detrended prior to
the analysis.'?

As a first step, we select the VAR lag length p by a standard information criterion, such
as the Akaike Information Criterion (AIC). We then estimate a VAR(p) model for the data
W = (y;, z)" by OLS. Finally, we compute the VAR-implied estimates of the autocovariances
and cross-covariances of y; and the projection residual Z; = 2z, — E(2; | {Yr, 2r }—cocr<t—1)-
Denote these estimates by \//z;(it), C/()\\/(Zt,yt+h), and éaz(yt,yt_h) for h = 0,1,...; see

Appendix A.1 for explicit formulas.

4.2 Pre-test for invertibility

Though our identification bounds below are valid irrespective of the invertibility of the
shocks, some researchers may wish to have available a convenient pre-test of the null hy-
pothesis of invertibility. Proposition 2 showed that the distribution of the data is consistent
with the shock of interest €;; being invertible if and only if the IV z; does not Granger cause
the vector y; of macro observables. Intuitively, if the shock is invertible, then lags of the
macro observables ¥, capture all the forecasting power of lags of the shock €;,; hence, lags
of the IV z; (a noisy measure of £1;) do not contribute anything to forecasting. We can test

the null hypothesis of no Granger causality in the following standard way:

e Reject the null hypothesis of invertibility of €, ; at the chosen significance level if
the n, xp VAR coefficients on all lags of z; in all the y, equations are jointly statistically
significant (for example using a Wald test, cf. Kilian & Liitkepohl, 2017, ch. 2.5).

12Because our analysis relies heavily on the spectral density matrix of the data, it is not straight-forward to
extend our procedures to work directly with non-stationary data (without prior transformation/detrending).
We leave this important topic to future research.
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Non-rejection should not be interpreted as strong evidence in favor of invertibility: Any valid
test of invertibility necessarily has trivial power against some non-invertible alternatives,

since it is possible for z; not to Granger cause y; even if the shock ey is non-invertible.?

4.3 Estimating the identification bounds

We now describe how to estimate our identification bounds for the Forecast Variance Ratio
(FVR) and the degrees of invertibility and recoverability. Bounds on Variance Decomposi-
tions (VDs) and Forecast Variance Decompositions (FVDs) are provided in Appendix B.1.

The bounds all depend on the two scalar quantities
&” = Var(E(% | {yr}-socred)), 4% = Var(z),

which are lower and upper bounds for o, cf. Proposition 1 and the discussion surrounding
(15). An explicit formula for the somewhat non-standard projection variance &> — as well as

other, similar projection variances mentioned below — is given in Appendix A.1.

e The estimated bounds for the Forecast Variance Ratio F'VR,, of variable y;; at
horizon ¢ are given by
-1 A ~ -1 A -
1 % Zmzo COV(yz‘,ta zt—m)2 i % Em:() Cov(yi,ta Zt—m)2 7 (20)

=5 X == y 79
a? var(yi,t+€ ’ {y7}700<7'§t) o Val"(yi,tw ’ {y7}700<7'§t)

cf. equation (16). The interval is always non-empty and never collapses to a point.
The true FVR is contained in this interval with high probability asymptotically, but
the analysis does not allow us to say where in the interval the parameter lies without
making further assumptions. The lower bound — which upon inspection corresponds
to pretending that the residualized IV Z; is a perfect measure of €1, — is closer to the
true FVR when the IV is stronger (i.e., there is less measurement error), cf. equation
(14). The upper bound instead does not depend on the amount of measurement error,
and is closer to the true FVR when the macro variables y; are more informative about

the hidden shock £1; (in the sense that the degree of recoverability RZ is larger).

13Stock & Watson (2018) develop an invertibility test which directs power against alternatives with impulse
response functions that differ substantially from the invertible null. It is not immediately clear whether their
test has power against all falsifiable non-invertible alternatives, as our proposed test does.
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e The estimated bounds for the degree of invertibility R? are given by

1 = ST
=5 X Var(B(z [ {yr}-cocrt)) s =5 X Var(B (& [ {yrf-cocr<t)) | 5

|Qli>| —

cf. equation (17). The data are consistent with substantial non-invertibility of the
shock €, if the above interval contains values substantially below 1. By the definition
of &, this is the case if future values of the macro observables help to predict the

residualized IV Z;.

e The estimated bounds for the degree of recoverability R% are given by

)
[%—, 1},
(12

cf. (17). The data are consistent with substantial non-recoverability of the shock of
interest ¢y, if the interval contains values substantially below 1. The reason why the
upper bound above equals the trivial bound of 1 is that we do not exploit the sharp
upper bound, which is difficult to estimate in realistic sample sizes, as discussed at the

end of Section 3.2. The theoretical sharp upper bound was derived in Proposition 1.

POINT IDENTIFICATION /ESTIMATION UNDER RECOVERABILITY. Finally, our analysis in
Section 3.4 showed that it is possible to point-identify many of the parameters of interest
if the researcher is willing to impose additional a prior: assumptions. In particular, if we
are willing to assume that the shock is recoverable — i.e., R = 1 — then the upper bound
for FVR;, in (20) is a consistent estimator of the true FVR, as argued in Section 3.4. As
discussed in Sections 2.2 and 6, recoverability is a mathematically and economically weaker

assumption than the invertibility assumption required by conventional SVAR-IV analysis.

4.4 Confidence intervals

In Appendix B.8 we prove that the above-mentioned bounds are jointly asymptotically nor-
mal under weak nonparametric regularity conditions on the data generating process (DGP).
We assume neither that the true DGP is a finite-order VAR, nor that the shocks are Gaus-
sian. This argument requires the VAR lag length p = pr used for estimation to diverge with
the sample size T" at an appropriate rate.

Since the bounds are asymptotically normal, we can use standard arguments to construct

23



confidence sets (Imbens & Manski, 2004). Consider any one of the partially identified pa-
rameters discussed above and denote the estimates of its bounds by the generic notation
[Q, é] We then use a conventional bootstrap for VAR models (Kilian & Liitkepohl, 2017, ch.
12.2) to generate bootstrap samples of the bound estimates f and é, and let ¢ 5 and ¢z denote
the bootstrap [f-quantiles of the lower and upper bounds, respectively. Then the interval
[q 827 Qs /2] is a valid 1 — § confidence interval for the identified set of the parameter in
question.'* That is, the probability that the confidence interval contains the entire identi-
fied set is greater than or equal to 1 — 3 asymptotically; in particular, this confidence interval
is therefore also a valid confidence set for the parameter itself.'> Under the additional point-
identifying assumption that the shock is recoverable, the FVR is consistently estimated by
the upper bound é, so we can construct a 1 — 3 confidence interval as [55/2, él_ﬁ/z].
Because VAR inference is subject to well-known small-sample biases (Kilian & Liitkepohl,
2017), we recommend that the following alternative formulas be used. Let Q* and 6* denote
the average bootstrap draws of  and f. Then we report the bias-corrected point estimate
[2@—@, 25—5*} of the bounds, as well as Hall’s percentile confidence interval [QQ_QI—B/Q’ 20—

s /2]. Similar corrections can be applied in the case of point identification via recoverability.

5 Application to monetary policy shocks

To illustrate our method, we revisit an old question: the importance of monetary shocks for
U.S. macro fluctuations. Our main result is that monetary shocks are of limited importance
for post-1990 aggregate dynamics, especially for inflation. The application illustrates that
our upper bound on variance decompositions can yield surprisingly sharp inference, despite

the weakness of our identifying assumptions.

BACKGROUND. Gertler & Karadi (2015) construct an external instrument for monetary
shocks from high-frequency changes in asset prices in very short time windows around FOMC
announcements, following earlier work by Kuttner (2001), Cochrane & Piazzesi (2002), and
Giirkaynak et al. (2005). While Gertler & Karadi (2015) focus on estimation of relative

14The validity requires that the VAR bootstrap procedure is consistent. For example, the bootstrap must
take into account the conditional heteroskedasticity of the data. See Kilian & Liitkepohl (2017, ch. 12.2) for
a menu of procedures, formal results, and regularity conditions.

15Tn principle one could construct narrower confidence intervals that only guarantee coverage of the pa-
rameter itself (not the identified set), as in Imbens & Manski (2004) and Stoye (2009), and we do this in our
Matlab code suite. However, the decrease in length appears to be minimal in realistic applications.

24



IRF's, we will seek to quantify shock importance, taking the validity of their instrument as
given.'® This setting is ideal for illustrating the appeal of our method, for two reasons.
First, measurement error is likely to be substantial. Intuitively, while short time windows
around FOMC meetings may be a clean way of isolating some monetary shocks, all shocks
occurring outside of that window are necessarily missed. Moreover, financial data are subject
to noise due to market microstructure effects and uninformed traders. Treating the IV as the
shock — as in the method of Gorodnichenko & Lee (2020), which is equivalent to our lower
bound — will then understate the importance of monetary shocks due to attenuation bias.'”
Second, non-invertibility is a threat to SVAR-IV analysis. For example, Ramey (2016),
citing the increasing prevalence of forward guidance in the conduct of U.S. monetary policy,
cautions against the conventional SVAR-IV approach. In contrast, our partial identification

approach does not require the shock to be invertible (or even recoverable).

MODEL. Our specification largely follows Gertler & Karadi (2015), except that we do not
impose a SVAR structure. We consider four endogenous macro variables y;: output growth
(log growth rate of industrial production), inflation (log growth rate of CPI inflation), the
Federal Funds Rate (FFR), and the Excess Bond Premium of Gilchrist & Zakrajsek (2012)
as a measure of the non-default-related corporate bond spread. For robustness, we also
try replacing the FFR with the 1-year Treasury rate, as in Gertler & Karadi (2015). The
external IV z; is constructed from changes in 3-month-ahead futures prices written on the
FFR, where the changes are measured over short time windows around Federal Open Market
Committee monetary policy announcement times.'® Data are monthly from January 1990
to June 2012. The AIC selects p = 6 lags in the reduced-form VAR. We use 1,000 bootstrap

draws from a homoskedastic recursive residual VAR bootstrap.

6Caldara & Herbst (2019) compute FVDs for a similar specification, assuming an SVAR model. Their
estimates of the importance of monetary shocks for inflation are somewhat larger than our upper bounds.

1TFormally, let the total monetary shock consist of two independent components, €14 = E14+E€1,4, where &1 ¢
captures those shocks that occur inside FOMC announcement windows. Assume {&; ¢, &1, } are independent
of {eay,...,en.1}. If 2, = &1, + Uy, where the noise 7, is independent of {&1,4,14,€2,4,...,En. ¢}, then
the IV moment conditions (2) are satisfied. For the case 7; = 0, our results in Section 3 imply that the
Gorodnichenko & Lee (2020) FVR estimator will be biased downward by a factor of Var(é1 ) € [0,1].

18See Gertler & Karadi (2015) for details on the construction of the IV and a discussion of the exclusion
restriction. Nakamura & Steinsson (2018a) argue that the monetary shock identified using this IV partially
captures revelation of the Federal Reserve’s superior information about economic fundamentals. This is
related to the idea in Campbell et al. (2012) that monetary policy communication can be both “Delphic”
and “Odyssean”. Appendix B.3 shows that our FVR bounds can generally be interpreted as bounding the
importance of the particular linear combination of shocks that tend to hit during FOMC announcements,
e.g., a weighted sum of “Delphic” and “Odyssean” shocks.
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REsuLTs. The data are consistent with substantial non-invertibility. Table 1 shows point
estimates and 90% confidence intervals for the identified sets of the degree of invertibility
and the degree of recoverability, either using the FFR or the 1-year rate as the interest
rate variable. When we use the FFR, we can reject invertibility at the 10% level, since the
confidence set for the degree of invertibility excludes 1. When we use the 1-year rate, we
cannot outright reject invertibility, but the confidence set is still consistent with very low
degrees of invertibility.'” Since the data cannot rule out a low degree of invertibility in either
case, we proceed with our invertibility-robust SVMA-IV analysis. The data are similarly
consistent with a wide range of values for the degree of recoverability.

Figure 1 shows partial identification robust confidence intervals for the forecast variance
ratio of the four endogenous macro variables with respect to the monetary shock. We report
point estimates and confidence intervals for the identified sets at each horizon separately. We
focus here on the specification with the FFR instead of the 1-year rate, since our quantitative
conclusions are if anything even starker with the latter observable. At all forecast horizons,
the 90% confidence intervals rule out FVRs above 31% for output growth and 8% for inflation.
At forecast horizons up to 6 months, we can rule out that the monetary shock accounts
for more than 19% of the forecast variance of the Excess Bond Premium. However, we
cannot rule out that the monetary shock is an important contributor to medium- or long-
run forecasts of the bond premium. On the other hand, we cannot rule out that the monetary
shock is completely unimportant either.

Our analysis reveals that the weak assumptions of the SVMA-IV model suffice to ob-
tain tight upper bounds on the forecast variance contribution of monetary shocks for several
variables, especially inflation. This is despite the finding by Stock & Watson (2018) that
standard errors for impulse response functions are large in this application. Many commen-
tators have documented a recent divorce between inflation and output dynamics (Hall, 2011);
our results document a similar divorce in dynamics conditional on monetary policy shocks
in post-1990 data. Although this finding echoes previous SVAR work (Christiano et al.,
1999; Ramey, 2016), our identifying assumptions are weaker — we merely impose validity of
the IV.2 We conclude that, if inflation is a monetary phenomenon, it is so because of the

systematic component of monetary policy, not because of erratic policy shocks.

9The p-values for the Granger causality pre-test of invertibility in Section 4 are 0.0001 (FFR) and 0.390 (1-
year rate). Note that Stock & Watson (2018) fail to reject invertibility in a somewhat different specification.

20 Appendix B.6 reports variance decompositions obtained from a conventional SVAR-IV procedure. These
results confirm the limited importance of the monetary shock, though under stronger identifying assumptions.
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EMPIRICAL APPLICATION: DEGREE OF INVERTIBILITY/RECOVERABILITY

FFR 1-year rate

R? | Bound estimates | [0.196,0.684] | [0.118,0.922]
90% conf. interval | [0.097,0.877] | [0.029,1.000]

R% | Bound estimates | [0.282,1.000] | [0.119, 1.000]
90% conf. interval | [0.190,1.000] | [0.028,1.000]

Table 1: Bounds on the degree of invertibility R% and the degree of recoverability R2 . Interest
rate variable is either Federal Funds Rate (left) or 1-year Treasury rate (right). All numbers are
bootstrap bias corrected.

EMPIRICAL APPLICATION: FORECAST VARIANCE RATIOS

FVR of Federal Funds Rate FVR of Industrial Production Growth
1r 1r
——Estimate of identif. set
0.8 ~—--90% conf. interval for identif. set 08l
0.6
0.4r
02
ol ! i : ‘ N B : i ‘ ‘ ‘ ‘
6 9 12 15 18 21 24 3 6 9 12 15 18 21 24
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FVR of CPI Growth FVR of Excess Bond Premium
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3 6 9 12 15 18 21 24 3 6 9 12 15 18 21 24
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Figure 1: Point estimates and 90% confidence intervals for the identified sets of forecast variance
ratios, across different variables and forecast horizons. For visual clarity, we force bias-corrected
estimates/bounds to lie in [0, 1]. The interest rate variable is the Federal Funds Rate.
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OTHER APPLICATION: OIL NEWS SHOCKS. In Appendix B.7 we show that our method
also yields highly informative upper bounds on the importance of international oil supply
news shocks for the U.S. and global business cycles. We use an IV constructed by Kanzig
(2021) from OPEC announcements.?! We find the oil news shock to be highly non-invertible,

causing conventional SVAR-IV analysis to reach several spurious conclusions.

6 Analytical illustrations

In this section we consider three simple analytical examples that illustrate how our identifica-
tion bounds depend on the characteristics of the data. Section 3.2 argued that the tightness
of our lower bound on variance decompositions depends solely on the strength of the IV.
We here show that, under stylized but empirically motivated assumptions, the upper bound
can be expected to be highly informative, in the sense that it at worst mildly overstates the
instrumented shock’s contribution to macroeconomic fluctuations.

Throughout this section we assume the availability of a single IV z = ae1; + oy,
and then consider different illustrative toy models for the y, variables, as specified below.
In Appendix B.5 we extend the analytical intuition below to the much richer quantitative
DSGE model developed by Smets & Wouters (2007).

6.1 Information content of several observables

As our first example, consider the static model
Yr = Oty

with n, = 2 observables: inflation (y;,) and the monetary policy interest rate (y2:). We
think of €, as a conventional monetary policy shock. If we only observed inflation y;; in
addition to an IV, we would not be able to rule out that the monetary shock drives all the
variation in this single variable, as explained in Section 3.1. How can adding the interest
rate to the data set help tighten the identified set for the FVR of inflation?

To gain economic intuition, let the reduced-form moments of the data be given by

Var(y,) = (fl)f) , and  Cov(y;,z) = (,1() ,

210ur empirical specification otherwise differs somewhat from his because we work with stationarity-
transformed variables and restrict the sample to the period where the IV is available.
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where ¢ > 0. We see that, even with the amount of measurement error unknown, the IV
z; reveals the signs and the relative magnitudes of the co-movement in observables induced
by monetary shocks: The shock €;; moves inflation and interest rates in opposite directions
(Uhlig, 2005), while the unconditional correlation of interest rates and inflation is p.

We consider three instructive special cases. For the first two, we set ( = 1; applying our

identification analysis, we then get the bounds
1 .
FVR;p < é(l—p), i =1,2.

Now suppose first that p = —1; that is, interest rates and inflation are not just perfectly
negatively correlated conditional on monetary shocks, but also unconditionally. In that case
the upper bound for the FVR of both variables equals 1: The data cannot rule out that
the correlation of the IV with macro observables is imperfect purely because of measurement
error. Second, suppose that p = 1; that is, interest rates and inflation are perfectly positively
correlated in the data. Then our upper bound for the FVR suddenly equals zero: The
monetary shock induces co-movement patterns that we never see in the data, so it cannot
possibly explain any observed macro fluctuations. Third, if instead p = 0, then our upper
bounds are, for any ¢ > 0,

FVR, o < L, FVRyo < i

; 1+ 2 ; 1+ 2

Suppose that nominal rates respond much more to the monetary shock than inflation does,
i.e., ¢ > 1. Then the upper bound on the inflation variance decomposition FVR, is very
small; intuitively, since the IV reveals that the monetary shock moves interest rates by much
more than inflation, but both have the same unconditional variance, the monetary shock
cannot possibly be an important driver of inflation. This third example rationalizes the
findings in our application to monetary shocks in Section 5: The IV z; correlates much more
with interest rates than with prices, yet prices are not commensurately less volatile than
interest rates, so monetary shocks cannot account for much of the volatility in prices.

This example shows that our upper bound on the FVR is close to the true value if
either the shock is very prominent (so that the bound of one is not far from the truth) or if
the shock induces somehow atypical co-movements of the various observed macro aggregates.
This second condition is equivalent to the shock being prominent for some linear combination
of the macro observables y;, which is equivalent to the shock being nearly invertible in this

static model. Thus, the preceding arguments agree with the analysis in Section 3.1.
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6.2 Dynamic information content

Whereas the previous example illustrated how the availability of several macro time series
sharpens identification in a static context, we now show how the dynamics of individual time

series can do the same. Consider the univariate but dynamic model

Ne

Y = Z Z P?gj,tfe

j=1 ¢=0

with n, = 1. That is, we observe a single variable y; driven by n. independent AR(1)

processes. To fix ideas, we think of €1, as a technology shock and y, as aggregate output.
Now assume that long-run fluctuations in output y; are exclusively driven by the tech-

nology shock e1,; that is, consider the limit p; — 1, while fixing |p;| < 1 for all j > 2. In

2

this case, the sharp lower bound on o? converges to the truth:??

lim a? ; = lim 27 sup s;(w) = lim 2ms;(0) = o’

p1—1 =1 el p1—1
Intuitively, at spectral frequency zero, all fluctuations in g, are driven by the technology
shock. Loosely speaking, applying a low-pass filter to y; therefore isolates the fluctuations
caused by the technology shock. Leads and lags of this low-pass filtered series are thus highly
correlated with the IV, putting a lower bound on the signal-to-noise ratio in the IV. This is
why the sharp upper bound for the FVR converges to the true value.

The example reveals that cross-restrictions over time can be highly informative even if
the shock of interest is neither invertible nor recoverable. Intuitively, for the sharp upper
bound on the FVR to bind, our method only needs the shock to dominate at some frequency;
the across-frequency restrictions then do the rest, exactly like the cross-variable restrictions

in the static example above.?

%Note that s,z(0) = =Y 2 pl = & x ﬁ and s,(0) = i(zyil Yoo p§)2 = %(2?21 1%%_)2.
Footnote 8 then implies 2ms:: (0) = $,z(0)2/5,4(0) = ((1 — p1)sy2(0))2/((1 — p1)sy4(0)) = a2 as p; — 1.

23As mentioned in Section 3.2, for finite-sample statistical reasons, we recommend the use of a weaker
lower bound a? on o in place of the sharp bound aZ 5. This weaker lower bound does not converge to
a? as p1 — 1, unless €1+ is recoverable. However, as discussed in Footnote 10, researchers may leverage
a strong prior belief about the low-frequency importance of shocks by computing the integral in (15) for a
pre-specified range of (low) frequencies.

30



6.3 Non-invertibility and news shocks

In the third example, we show how our method deals with non-invertible news shocks. First
discussed in Pigou (1927), news shocks have recently received much attention as drivers
of macroeconomic fluctuations (Beaudry & Portier, 2006, 2014; Jaimovich & Rebelo, 2009;
Schmitt-Grohé & Uribe, 2012). Unfortunately, foresight of economic agents complicates con-
ventional SVAR-based analysis since it induces equilibria with non-invertible MA represen-
tations (Leeper et al., 2013). In contrast, our methods are valid irrespective of invertibility.

To illustrate, consider a moving average model of order 1 with n, =n, = 2:
Yt = (1 + CL)@()&},

where ¢ > 1. As is well known, this assumption implies that the moving average represen-
tation is non-invertible. We think of ¢;; as a monetary forward guidance shock: The shock
moves inflation and nominal interest rates by more tomorrow (when the shock directly hits
the monetary policy rule) than today (when the news is revealed).

The conventional SVAR-IV approach mis-measures the FVR because of non-invertibility.
By standard arguments (e.g., Leeper et al., 2013) the reduced-form VAR residuals equal

o0

up = yp — E(yr [ {yr}—cocr<t) = Ooer + ( 1/32 Z @Ogtféu (21)

(=1

where the degree of invertibility equals
=(2

Since SVAR procedures assume that the structural shocks e¢; can be obtained as linear
functions of the reduced-form residuals wu;, equation (21) shows that any SVAR analysis will
conflate the explanatory power of the shock €, with that of its lags. As a consequence,
Appendix B.4 shows that the SVAR-IV estimand of the FVR overstates the contribution of

the shock to one-step-ahead forecasts:

1
FVRIFARY = = 55 X FVR1o > FVRy.
0

Clearly, the population bias of the SVAR-IV estimand worsens as the degree of invertibil-

ity R2 decreases to 0 (see also Forni et al., 2019). In the oil news shock application in
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Appendix B.7 we demonstrate that the SVAR-IV bias can be large in practice.

In contrast, our identification bounds are valid irrespective of invertibility, since we do not
assume that €, can be recovered as a function of only the contemporaneous VAR residuals
u;. In fact, in this model with as many observables as shocks, both shocks e, = (£14,€2,)’
are recoverable.?* Hence, if we exploit this knowledge, we can even point-identify the shock
as €14 X zg = E(z | {yr}—ococr<oo). The key is that our method can use the future values
of nominal rates and inflation, y,, 7 > ¢, to recover the forward guidance shock €, at time
t. In so doing, it effectively realigns the information sets of the economic agents and of the

econometrician, sidestepping the invertibility problem.

7 Simulation study

We finish by showing that our inference procedures have good finite-sample performance
in simulations. Our methods continue to work well in non-invertible models, unlike the

conventional SVAR-IV procedure.

DGP. We adopt a variant of the DGP in Kilian & Kim (2011) and assume that the macro
aggregates y; follow a structural VARMA (p,1) model:

e =D y_1 Zee—e + Ooler + Cero).

We consider n, = 2 macro variables, p = 1 autoregressive lag (with one exception discussed
below), and set =; = (6’}’5 095). For the MA part, we consider n. = 2 shocks (which are
thus both recoverable) and set © = chol (s %®), where “chol” denotes the lower triangular
Cholesky decomposition. As in Section 6.3, ( is a scalar parameter that governs the degree
of invertibility, with ¢ > 1 implying non-invertibility. We add an external instrument z; for

the shock of interest € :

2= P22i-1 + Pay(Y1—1 + You—1) + €14 + o1

Notice that we have normalized o = 1. Finally, the measurement error and structural shocks
are i.i.d. Gaussian and orthogonal as in Assumption 3.

We run Monte Carlo experiments for nine different parameterizations of the above DGP.

21n particular, &, = —R305 ', — (1 — R2) 3205, (—0)7* ) Mue.
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Specifically, we consider various deviations from a baseline parametrization. In our bench-
mark, we set p, = 0.5, p, = p.y = 0, ( = 0, 0, = 1, and sample size T' = 250. We then
consider variations with more autoregressive persistence (either p, = 0.9, or p, = 0.8 and
pzy = 0.3), an invertible MA component ({ = 0.5), a non-invertible MA component (¢ = 2),
a weaker instrument (o, = 2), and different sample sizes (T' = 100, 7" = 500). Finally, we

allow for richer dynamics, with p =4 and E; = j%El for 5 = 2,3, 4.

RESULTS. Our parameters of interest are the degree of invertibility R3 and the FVR for
variable ys; at horizons 1 and 4. We conduct 5,000 Monte Carlo repetitions per DGP, and
construct confidence intervals at the 90% level using 1,000 bootstrap draws per simulation.
We use a homoskedastic recursive residual bootstrap. The reduced-form VAR lag length is
selected using AIC, and we use Hall’s percentile bootstrap confidence interval, cf. Section 4.

Table 2 shows that the partial identification robust SVMA-IV confidence sets defined in
Section 4 achieve coverage rates close to or exceeding the desired level of 90% throughout.
We report coverage rates for both the population identified sets (columns “Set”) and for the
underlying parameters (columns “Param”). The coverage rate for the parameter is never
below 86.8% in any case. The coverage rate for the identified set is mostly close to 90% and at
worst 82.9% in our experiments. We also report the coverage rates of conventional SVAR-IV
bootstrap confidence intervals for the FVR (columns “SVAR”). The coverage distortions of
our SVMA-IV procedures are almost always smaller than those of the SVAR-IV procedure.
Most notably, our procedures have acceptable coverage even in the non-invertible case ({ =
2), whereas the SVAR-IV procedure under-covers severely in this case.?®

We make the following additional remarks. First, coverage deteriorates slightly with
noisier/weaker instruments (o, = 2), as expected. Our inference methods are not robust to
arbitrarily weak instruments (o, — 00); we leave this issue to future work. Second, we face
some well-known parameter-at-the-boundary issues. For most experiments, RZ = 1. This
explains the over-coverage of confidence intervals for this parameter and, less so, for the
overall identified set. Similar problems would arise if the true FVR were close to 0. Third,
for more persistent DGPs, the AIC tends to select an insufficient number of lags, resulting
in moderate under-coverage, in particular for the FVRs at horizon 4. For example, in the

experiment with p = 4 autoregressive lags, the AIC selects an average lag length of 2.2.

25We acknowledge, however, that in DGPs with only mild non-invertibility, SVAR-IV procedures may
be preferable to our more robust SVMA-IV procedure, since the former procedure has fewer parameters to
estimate and will be only mildly biased (cf. Appendix B.4).
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8 Conclusion

Applied macroeconomists have recently turned to external sources of exogenous variation to
identify dynamic causal effects. Though such external instruments or proxies are frequently
used to estimate impulse responses, existing methods did not allow researchers to quantify
the contribution of individual shocks to business-cycle fluctuations — a question of first-order
interest in traditional business-cycle analysis. We fill this gap by providing identification
results and inference techniques for variance decompositions, historical decompositions, and
the degree of invertibility. Our methods require neither the absence of measurement error in
the external instrument, nor the often dubious assumption that the instrumented shock is
invertible (as assumed in conventional SVAR analysis). We prove that the importance of the
instrumented shock is generally interval-identified. Point identification can be achieved if the
shock is known to be recoverable — a substantively weaker assumption than invertibility. We
provide a software package that implements all steps of our inference procedures. Applying
our method to U.S. data, we are able to establish a tight upper bound on the importance of

monetary shocks for recent inflation dynamics, despite our weak identifying assumptions.
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A Appendix

A.1 Formulas for estimation and inference

Here we provide the remaining formulas needed for the inference procedures in Section 4.
Let Ay, ..., A, denote the (n, + 1) x (n, + 1) coefficient matrix estimates for the VAR in

W, = (v}, ). Let ¥ denote the residual sample variance-covariance matrix. Let 3/2 denote

any square matrix such that $1/251/2 = 53 e.g., the Cholesky factor. Compute the moving

A

average coefficients B(L) = (I, 41 — b, A, L*)~'3Y/? using the familiar recursion
Bo= 2, By = S0 4B, B> 1.
Denote the top n, rows of Bh by Ey,h and the bottom row by BSZJL. Then

B.oB., ifh>0,

—_ A Ay - o
Var(z) = B.oB.y,  Cov(Z, yiyn) = _
O1xn, otherwise,

6(;,(:%57 yt—h) = ZZ.ZO By»e‘é;,f-i-h for h Z 0.

In practice, we truncate the infinite sum above at a large value of /.

Define now the projection variances®®

~

Var(E(gt | {yT}—OO<T<OO)) = ngyv(MvM)E;%M M)Z,27y7(M7M)7
Var(yi e | {Wr} cocrst) = Var(yit) — (Cov(¥itre Ye), - - - » Cov(¥iere, yt—M))Zy_jM’o)
X (Cov(yi,t-i-f) yt)v SR 7COV(yi,t+€7 yt—M))lv

Var(E(% | {r}-socr<t) = (Cov(Z, 42), 0nsny 1) %y (1.0 (CoV (e, 1), Otcmr),

where 3, () is the estimated covariance vector of Z and (Yi, ar, - Yhs -+ - Yipr) Ob-
tained by stacking the estimates 6()\\/(2t, Yi+n) defined above, XA{%( M) s similarly the esti-

’ and f]y7(M70) is the estimated

mated variance-covariance matrix of (Y, as, .-, Y- > Yi_ar)
variance-covariance matrix of (¥}, ¥, _1,---,¥i_a)
In these formulas, the integer M is a numerical truncation parameter. For example, we

estimate Var(E(Z; | {yr}-oco<r<co)) using an estimate of the truncated conditional variance

26These could alternatively be computed using the Kalman filter, but there appears to be little difference
in numerical accuracy or speed relative to the formulas stated here.
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Var(E(Z | {yr}t—m<r<t+nmr)). M should exceed at least 50 to yield an accurate approxima-
tion. We recommend checking that the numerical results do not change much when M is
increased, since the effects of truncation will depend on the persistence of the data.

A.2 Proofs of main results

A.2.1 Auxiliary lemma

Lemma 1. Let B be an n x n Hermitian positive definite complex-valued matriz and b

an n-dimensional complex-valued column vector. Let x be a nonnegative real scalar. Then
B — x7'bb* is positive (semi)definite if and only if x > (>)b*B~1b.

Please find the proof in Appendix B.9.1.

A.2.2 Proof of Proposition 1

Let o and the spectrum s, (w) be given. Define the n,-dimensional vectors
@o,l,ﬁ - 0571 COV(ym étff)a 14 2 07

and the corresponding vector lag polynomial

@.71 (L) - Z @.,LKLK.
=0

Since o < o5, we may define 7, = y/Var(z;) — a?. Since o? > o2 5, Lemma 1 implies that
27T * I~ —iw\ D) — W\ *
(6) — T8y ()3,5(0)" = 8,(0) — SBa (e )Bun(e™)

is positive definite for every w € [0, 27]. Hence, the Wold decomposition theorem (Hannan,
1970, Thm. 2", p. 158) implies that there exists an n, x n, matrix lag polynomial O(L) =
S0, ©¢L! such that?”

5 (@) = =B (€ ¥)B0s ()" = %é(ei‘”)é(eiw)*, w € [0, 27].

2"We can rule out a deterministic term in the Wold decomposition because a continuous and positive
definite spectral density satisfies the full-rank condition of Hannan (1970, p. 162).
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Thus, the following model for w; = (y;, Z;)" generates the desired spectrum s,,(w):

Y = @.,1(L)§1,t + é(L)gt,
2 = Q€1 + Oyt

— s idd.
(81@52»%)”}\“ N(Ovlny-‘rQ)‘
Note that the construction requires only n. = n, + 1 shocks, ;; € R and &, € R™. O

A.2.3 Proof of Proposition 2

IDENTIFIED SET FOR R3. If the identified set contains 1, then there must exist an @ €
larp, ayp] and iid., independent standard Gaussian processes €;; and ¥; such that (i)
Zy = a X €14+ Ty, (ii) Ty is uncorrelated with y, at all leads and lags, and (iii) & ; lies in the
closed linear span of {y,}_co<r<;. This immediately implies the “only if” statement.

For the “if” part, assume Z; does not Granger cause y;. By the equivalence of Sims and
Granger causality, z = E(Z | {yr}—socreoo) = E(Zt | {yr}—cocr<i). Note that the latter

best linear predictor is white noise since, for any ¢ > 1,

Cov (E<§t ‘ {y‘r}foo<7'§t)7ytf€) = Cov(Z, yi—¢) — Cov (575 — E(Z [ {yr}—ococr<t), ZJH)
=0-0,

using the fact that z; is a projection residual. In conclusion, the best linear predictor Z'j of
Z given {Y;}—socr<oo depends only on {y,}_oo<r<;: and it has a constant spectrum. From
the expression for o2 5, we get that a2 5 = Var(E(Z | {ys} _co<r<t)). Hence, expression (17)

implies that the upper bound of the identified set for R? equals 1.

IDENTIFIED SET FOR R%. The upper bound of the identified set for R% equals 1 if and

only if 27 sup,,e(o - 821 (w) = Var(E(Z | {¥r}—co<r<oo))- The right-hand side of this equation

equals Var(z)) = fozﬂ sz1(w) dw. But sup,,eo - sz1(w) = = 027r 83t (w) dw if and only if sz (w)
is constant in w almost everywhere, i.e., étT is white noise. O

38



References

Andrews, D. W. & Shi, X. (2013). Inference Based on Conditional Moment Inequalities.
Econometrica, 81(2), 609-666.

Andrews, D. W. & Shi, X. (2017). Inference based on many conditional moment inequalities.
Journal of Econometrics, 196(2), 275-287.

Beaudry, P. & Portier, F. (2006). Stock Prices, News, and Economic Fluctuations. American
Economic Review, 96(4), 1293-1307.

Beaudry, P. & Portier, F. (2014). News-Driven Business Cycles: Insights and Challenges.
Journal of Economic Literature, 52(4), 993-1074.

Blanchard, O. J., L’Huillier, J. P., & Lorenzoni, G. (2013). News, Noise, and Fluctuations:
An Empirical Exploration. American Economic Review, 103(7), 3045-3070.

Brockwell, P. J. & Davis, R. A. (1991). Time Series: Theory and Methods (2nd ed.). Springer

Series in Statistics. Springer.

Caldara, D. & Herbst, E. (2019). Monetary policy, real activity, and credit spreads: Evidence

from bayesian proxy svars. American Economic Journal: Macroeconomics, 11(1), 157-92.

Campbell, J. R., Evans, C. L., Fisher, J. D. M., & Justiniano, A. (2012). Macroeconomic
Effects of Federal Reserve Forward Guidance. Brookings Papers on Economic Activity,
2012 (Spring), 1-80.

Chahrour, R. & Jurado, K. (2021). Recoverability and Expectations-Driven Fluctuations.

Review of Economic Studies. Forthcoming.

Chernozhukov, V., Lee, S., & Rosen, A. M. (2013). Intersection Bounds: Estimation and
Inference. Fconometrica, 81(2), 667-737.

Christiano, L., Eichenbaum, M., & Evans, C. (1999). Monetary Policy Shocks: What Have
We Learned and to What End? In J. B. Taylor & M. Woodford (Eds.), Handbook of
Macroeconomics, Volume 1A chapter 2, (pp. 65-148). Elsevier.

Cochrane, J. H. & Piazzesi, M. (2002). The Fed and Interest Rates—A High-Frequency

Identification. American Economic Review, 92(2), 90-95.

39



Forni, M. & Gambetti, L. (2014). Sufficient information in structural VARs. Journal of
Monetary Economics, 66(Supplement C), 124-136.

Forni, M., Gambetti, L., Lippi, M., & Sala, L. (2017a). Noise Bubbles. Economic Journal,
127(604), 1940-1976.

Forni, M., Gambetti, L., Lippi, M., & Sala, L. (2017b). Noisy News in Business Cycles.

American Economic Journal: Macroeconomics, 9(4), 122-152.

Forni, M., Gambetti, L., & Sala, L. (2019). Structural VARs and noninvertible macroeco-
nomic models. Journal of Applied Econometrics, 34(2), 221-246.

Gafarov, B., Meier, M., & Montiel Olea, J. L. (2018). Delta-Method Inference for a Class of
Set-Identified SVARs. Journal of Econometrics, 203(2), 316-327.

Gertler, M. & Karadi, P. (2015). Monetary Policy Surprises, Credit Costs, and Economic

Activity. American Economic Journal: Macroeconomics, 7(1), 44-76.

Giannone, D. & Reichlin, L. (2006). Does Information Help Recovering Structural Shocks
from Past Observations? Journal of the European Economic Association, 4(2/3), 455-465.

Gilchrist, S. & Zakrajsek, E. (2012). Credit Spreads and Business Cycle Fluctuations. Amer-
ican Economic Review, 102(4), 1692-1720.

Gorodnichenko, Y. & Lee, B. (2020). Forecast Error Variance Decompositions with Local
Projections. Journal of Business € Economic Statistics, 38(4), 921-933.

Giirkaynak, R. S., Sack, B. P., & Swanson, E. T. (2005). Do Actions Speak Louder Than
Words? The Response of Asset Prices to Monetary Policy Actions and Statements. The
International Journal of Central Banking, 1(1), 55-93.

Hall, R. E. (2011). The Long Slump. American Economic Review, 101(2), 431-469.

Hannan, E. (1970). Multiple Time Series. Wiley Series in Probability and Statistics. John
Wiley & Sons.

Imbens, G. W. & Manski, C. F. (2004). Confidence Intervals for Partially Identified Param-
eters. Econometrica, 72(6), 1845-1857.

Jaimovich, N. & Rebelo, S. (2009). Can News about the Future Drive the Business Cycle?
American Economic Review, 99(4), 1097-1118.

40



Jorda, O. (2005). Estimation and Inference of Impulse Responses by Local Projections.
American Economic Review, 95(1), 161-182.

Kénzig, D. R. (2021). The Macroeconomic Effects of Oil Supply News: Evidence from OPEC

Announcements. American Economic Review, 111(4), 1092-1125.

Kilian, L. & Kim, Y. J. (2011). How Reliable Are Local Projection Estimators of Impulse
Responses? Review of Economics and Statistics, 93(4), 1460-1466.

Kilian, L. & Liitkepohl, H. (2017). Structural Vector Autoregressive Analysis. Cambridge

University Press.

Klepper, S. & Leamer, E. E. (1984). Consistent Sets of Estimates for Regressions with Errors
in All Variables. Econometrica, 52(1), 163-183.

Kuttner, K. (2001). Monetary Policy Surprises and Interest Rates: Evidence from the Fed
Funds Futures Market. Journal of Monetary Economics, 47(3), 523-544.

Leeper, E. M., Walker, T. B., & Yang, S.-C. S. (2013). Fiscal Foresight and Information
Flows. Econometrica, 81(3), 1115-1145.

Lippi, M. & Reichlin, L. (1994). VAR analysis, nonfundamental representations, Blaschke
matrices. Journal of Econometrics, 63(1), 307-325.

Mertens, K. (2015). Advances in Empirical Macroeconomics, Lecture 2. Lecture slides, Bonn

Summer School.

Mertens, K. & Ravn, M. O. (2010). Measuring the Impact of Fiscal Policy in the Face of
Anticipation: A Structural VAR Approach. Economic Journal, 120(544), 393—413.

Mertens, K. & Ravn, M. O. (2013). The Dynamic Effects of Personal and Corporate Income
Tax Changes in the United States. American Economic Review, 103(4), 1212-1247.

Nakamura, E. & Steinsson, J. (2018a). High Frequency Identification of Monetary Non-
Neutrality: The Information Effect. Quarterly Journal of Economics, 133(3), 1283-1330.

Nakamura, E. & Steinsson, J. (2018b). Identification in Macroeconomics. Journal of Eco-
nomic Perspectives, 32(3), 59-86.

Pigou, A. C. (1927). Industrial Fluctuations (2 ed.). London: Macmillan.

41



Plagborg-Mgller, M. (2019). Bayesian inference on structural impulse response functions.
Quantitative Economics, 10(1), 145-184.

Plagborg-Mgller, M. & Wolf, C. K. (2021). Local Projections and VARs Estimate the Same
Impulse Responses. Econometrica, 89(2), 955-980.

Ramey, V. A. (2016). Macroeconomic Shocks and Their Propagation. In J. B. Taylor &
H. Uhlig (Eds.), Handbook of Macroeconomics, volume 2 chapter 2, (pp. 71-162). Elsevier.

Schmitt-Grohé, S. & Uribe, M. (2012). What’s News in Business Cycles. FEconometrica,
80(6), 2733-2764.

Sims, C. A. & Zha, T. (2006). Does Monetary Policy Generate Recessions? Macroeconomic
Dynamics, 10(02), 231-272.

Smets, F. & Wouters, R. (2007). Shocks and Frictions in US Business Cycles: A Bayesian
DSGE Approach. American Economic Review, 97(3), 586—606.

Stock, J. H. (2008). What’s New in Econometrics: Time Series, Lecture 7. Lecture slides,
NBER Summer Institute.

Stock, J. H. & Watson, M. W. (2018). Identification and Estimation of Dynamic Causal
Effects in Macroeconomics Using External Instruments. Economic Journal, 28(610), 917—

948.

Stoye, J. (2009). More on Confidence Intervals for Partially Identified Parameters. Econo-
metrica, 77(4), 1299-1315.

Uhlig, H. (2005). What are the effects of monetary policy on output? Results from an
agnostic identification procedure. Journal of Monetary Economics, 52(2), 381-419.

Wolf, C. K. (2020). SVAR (Mis)identification and the Real Effects of Monetary Policy

Shocks. American Economic Journal: Macroeconomics, 12(4), 1-32.

42



	Introduction
	Econometric framework
	Model
	Parameters of interest
	Identification problem

	Identification results
	Static model
	Dynamic model: shock scale
	Dynamic model: parameters of interest
	Dynamic model: point identification
	Extension: multiple instruments

	Practical implementation
	Preliminaries: approximating the autocovariance function
	Pre-test for invertibility
	Estimating the identification bounds
	Confidence intervals

	Application to monetary policy shocks
	Analytical illustrations
	Information content of several observables
	Dynamic information content
	Non-invertibility and news shocks

	Simulation study
	Conclusion
	Appendix
	Formulas for estimation and inference
	Proofs of main results
	Auxiliary lemma
	Proof of Proposition 1
	Proof of Proposition 2


	References

