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Abstract—The daily activities performed by a disabled or
elderly person can be monitored by a smart environment, and
the acquired data can be used to learn a predictive model of user
behavior. To speed up the learning, several researchers designed
collaborative learning systems that use data from multiple users.
However, disclosing the daily activities of an elderly or disabled
user raises privacy concerns.

In this paper, we use state-of-the-art deep neural network-
based techniques to learn predictive human activity models in
the local, centralized, and federated learning settings. A novel
aspect of our work is that we carefully track the temporal
evolution of the data available to the learner and the data shared
by the user. In contrast to previous work where users shared
all their data with the centralized learner, we consider users
that aim to preserve their privacy. Thus, they choose between
approaches in order to achieve their goals of predictive accuracy
while minimizing the shared data. To help users make decisions
before disclosing any data, we use machine learning to predict the
degree to which a user would benefit from collaborative learning.
We validate our approaches on real-world data.

I. INTRODUCTION

In the last two decades, a large number of research and
commercial projects developed assistive technologies that aim
to improve the quality of life for elderly or disabled indi-
viduals. These systems are denoted by terms such as smart
environments or smart homes for the elderly, ambient assistive
living systems [1], [2] or internet-of-things (IoT) assistive
technologies. To choose the appropriate assistive actions, smart
environments monitor and log the user’s activities of daily
living. One way to use this data is to learn a predictive model
of the human activities [3] M(a1...at, E) → p(at+1) which
predicts the probability of the next action at+1 given the
actions performed by the user up to this point in the day and
the parameters of the environment E that includes the time of
the day, day of the week, the weather and other information. A
predictive model allows the system to anticipate the needs of
the user and, furthermore, allows the system to detect short
and long term changes in the user behavior. For instance,
the environment might prompt the user to take his or her
medication [4] if he/she forgot to do so. Long term changes
in the patterns of daily living might indicate a change in the
underlying health condition, which need to be brought to the
attention of caregivers [5], [6].

How does the smart environment learn the predictive model?
Machine learning, in particular deep learning models, made

significant progress in the last decade. However, many deep
learning algorithms work best under big data regimes, where
the number of data samples are counted from the tens of thou-
sands (e.g. the MNIST dataset) to 500 billion (the Common
Crawl dataset used to train the GPT-3 model). The activity
logs of assistive environments, in contrast, are an example of
small data: the number of individual activities performed by a
user each day is counted in dozens, and we expect the model
to yield actionable predictions in a matter of weeks after the
system deployment.

A possible solution to this dilemma is the use of collabo-
rative learning which, by building a common model Mshared

from the data of a pool of users, operate closer to the big data
regimes favored by deep learning algorithms. The simplest
choice of collaborative learning is centralized learning: the
environments transfer their logs to a cloud-based central
authority, which combines these logs into a common training
set. A different variant of collaborative learning, federated
learning [7], also relies on a cloud-based central authority
but requires the environments to perform learning locally and
transfer only parameters of the learned model to the central
system. Having access, directly or indirectly, to more data,
collaborative learning promises faster convergence.

An assumption of the collaborative learning approach is that
the logs used for training are independently and identically dis-
tributed (iid). The daily routines of different users have clearly
much in common due to biological and cultural factors as well
as medical recommendations. On the other hand, every user
has his/her own preferences, and the nature of the environment,
the home and surroundings might also affect the schedule.
For instance, a morning walk that is feasible in California
in January might not be feasible in Minnesota. The fact that
the iid assumption is only approximately satisfied bounds
the performance achievable with collaborative learning. Local
learning, which uses only the data collected from the given
user is not subject to this limitation, as we can assume that
these data is iid (at least over timespans that does not include
significant lifestyle changes).

A very important aspect of learning in smart environments
is the consideration of privacy. The elderly and disabled are
a vulnerable population, frequently targeted by hackers and
scammers. Furthermore, the benefits of a smart environment
are contingent on the trust of the user, which is strongly



correlated with privacy. One of the fundamental principles of
privacy is that of data minimization. In the context of machine
learning this principle means that the minimum amount of
training data must be collected from users in order to acquire
the specific benefits of the application. This principle was
stated, among others, in the consumer privacy report of the
US White House in 2012 [8], by the UK Information Com-
misioner’s office [9] and it is also embedded in the European
Union’s General Data Protection Regulation (GDPR) [10].

The principle of data minimization, applied to a smart
environment means that the environment should not disclose
information unless it provides a quantifiable benefit. When this
is not feasible, and everything else being equal, the system
should prefer techniques such as federated learning, which
can be used in ways to achieve differential privacy [11] to
techniques such as centralized learning where privacy depends
on assumptions about the central authority. However, the
choice is not clear cut: attacks against federated learning
systems had been recently demonstrated [12], and even in
the absence of an attack information can still leak through,
sometimes simply by the participation of a home in a given
federated learning pool. Finally, we expect centralized learning
to build a shared model better/faster than federated learning
(as all the information available the the federated model is also
available to the centralized one, but not the other way around).
Whether the gap between these models is significant can only
be evaluated through experiments with real world data.

We compare and track in time the evolution of the perfor-
mance of the different approaches on a user-by-user basis. The
main contributions of the paper are as follows:

• In this paper, we train state-of-the-art deep learning
based activity predictors using local, centralized and
federated learning, using real world data from the CASAS
dataset [13].

• In contrast to previous approaches, we consider privacy
conscious users/environments that are not sharing data
if no benefit accrues from it. With this assumption, we
carefully track the data available to different training
approaches at specific points in time and measure the
impact of the variation of training data on the prediction
performance for different users.

• We outline a machine learning technique through which a
user can predict if it will benefit from the participation in
a collaborative learning model before it shared any data.

II. RELATED WORK

The contributions of this paper have two distinct intellectual
lineages. As an application area, our topic is part of the field of
human activity modeling and prediction. A significant subset
of this work had been done in the context of smart environ-
ments, which provide both training data and an opportunity to
use the models for the social good. From the perspective of
artificial intelligence and machine learning, our work has its
origin in collaborative learning techniques that aim to learn
models while preserving the privacy of the sources of data.

Federated learning is a recent and highly impactful technique
in the field.

Predicting future events in smart environments. Most of the
research in prediction in smart environments can be grouped
into two categories: predicting the activities of daily living and
predicting the location of events [3].

The development of machine learning based approaches for
such predictors require training data which is considerably
harder to obtain for a human-inhabited physical system such
as a smart-home compared to domains where training data
can be simply obtained by scraping the internet. The CASAS
dataset [14] is one of the most complete, maintained and
publicly available smarthome datasets; it had been the catalyst
of many subsequent research efforts.

Minor, Doppa and Cook [15] used the CASAS dataset to
learn activity predictors. In contrast to our predictor which
predicts the probability of the next event (essentially, a
probabilistic classification problem), this work predicts the
individual time delays when the next event of a given class
would take place (a regression problem). To this end, the
authors trained separate regression models with model trees
of each class. Another work that focused on a current activity
recognition task based on the sensory data inputs in CASAS
datasets is by Liciotti et al. [16].

Mshali et al. [17] developed an e-health monitoring frame-
work to detect abnormal and risky daily activities and predict
the health conditions of the residents using a Grey prediction
model (GM) [18]. Choi et al. [19] proposed two deep learning
algorithms based on deep belief networks [20] and restricted
Boltzman machines [21] to predict the behaviors of residents
using MIT home dataset [22].

Federated learning. Federated learning had initially been pro-
posed as a technique to improve communication efficiency in
distributed learning [7]. However, it had been pointed out that
the technique also allows the learning system to ensure differ-
ential privacy [11]. One of the early, high profile applications
was Google’s Gboard [23] which used federated averaging
(FedAvg) [24] to improve next word prediction. In recent
years, several research projects improved the performance and
privacy characteristics of federated learning. Zhao et al. [25]
suggested a data sharing approach to improve the performance
of the FedAvg algorithm in case the training data is non-IID.
Wang et al. [26] aims to optimize learning of a gradient-
descent based federated learning algorithm at the edge. In
federated learning algorithms, local training happens at the
edge and global aggregation is performed on a central place.
They proposed a control algorithm that determines the best
frequency of global aggregation with which computation and
communication resources at the edge can be used efficiently
in federated learning. Zhang et al. [27] proposed building
trustworthy federated learning systems using trusted execution
environments (TEEs). Their main focus was to assure that the
local training on clients side is being done correctly.

Yu et al. [28] suggested a framework to automatically learn
contextual access control policies for IoT devices in smart



homes in order to detect if an access to an IoT device should
be allowed or blocked. To learn an accurate model for this,
sufficient and diverse data required which cannot be provided
by a single home. On the other hand, collecting data from
all smart homes will bring privacy concerns to the users.
To address these issues, they leveraged federated multi-task
learning (FMTL) approach. Nishio and Yonetani [29] focused
on client selection in federated training (FedCS). In their
suggested protocol, the central mobile edge computing (MEC)
operator sends a resource information request to the random
clients. Based on their information such as computational
capacity, wireless channel status and size of data, the MEC
can decide which client will be able to participate in training
and deliver the updates for global aggregation in time. For our
client selection, however, we simulate the deployment time of
smart homes and select the participants in training by that
information.

III. TRAINING DATA FOR COLLABORATIVE LEARNING IN
SMART ENVIRONMENTS

The performance of machine learning models depends on
the data used for training. Everything else being equal, more
data is better, and highly expressive models, such as deep neu-
ral networks, require more training data to avoid overfitting.
Many recent achievements of deep learning took place in a
”big data” regime; Google, Facebook and Amazon rely on
a steady stream of data from the users interacting with their
services. For instance, a success story in federated learning is
predicting the next word on a mobile device’s keyboard [23],
relying on a very large number of users receiving the collab-
orative learning client simultaneously.

However, in the case of a smart environment participating in
a collaborative learning scheme, this model cannot be taken for
granted. A privacy conscious user (or the environment acting
on her behalf) would not share any data unless there is a
strong likelihood that it would benefit from the transaction.
At the same time, the user will stop sharing when no further
benefit is likely. As we have seen in the introduction, this
data minimization behavior approach had been recommended
by government directives in the US, UK and EU. As the
problem of privacy is particularly acute for the vulnerable
elderly and disabled population, the regulatory pressure is
likely to increase.

We need to emphasize that the data minimization principle
does not preclude the use of collaborative learning and other
cloud based techniques. It means however, that some of the
simplifying assumptions are not applicable: we need a better
understanding of the temporal aspect of data sharing: what
training data is available, to whom and when.

The first simplifying assumption we need to discard is the
synchronized start of data collection. The deployment of a
smart environment for the disabled or elderly is not instanta-
neous. It requires physical installation of hardware, software
configuration, user training and possibly legal and medical
approval. Thus, the smart environment will be deployed for
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Fig. 1. The data available for collaborative training for a group of users. The
deployment time of the system is modeled through a Poisson arrival starting
from January 1st. The users stop sharing data when further data sharing is
not justified by the advantage of collaborative learning. The red part of the
bars illustrates the data available for collaborative training on January 16th.

some users earlier than for others. As the deployment times
are random but independent from each other, they follow a
Poisson arrival process. Furthermore, the number of smart
environments contributing to a single collaborative domain
is significantly smaller than the countrywide domains used
by web services. Under these conditions, modeling the de-
ployment time is necessary, because it affects the amount of
training data available to the predictor.

Let us discuss the problem of the data available for learning
in a group of smart environments. We will consider a set of
smart homes H1 . . . HM that started to operate at times tstart

i

distributed according to a Poisson process with an arrival rate
λ. We take the perspective of the target smart home Htg that
had started to operate on day tstart

tg . Figure 1 illustrates an
example with M = 30, λ = 0.5, starting time January 1st,
and we are considering Htg = H14 with tstart

tg = January 6.
Local learning involves the training of a model based on

data collected from the same home. This approach has the
highest level of privacy, as no personal information needs to
leave the premises. The weakness of the local training model
is the paucity of the data, especially early in the deployment.
On day tstart

tg , the system has no training data whatsoever, on
day tstart

tg + 1 it will only have one day of training data and
so on. Thus we expect the accuracy to start from a very low
level, but increase in time as training data accumulates. The
red part of Home 14 data in Figure 1 shows the data available
to this home on January 16 in the local training regime (ten
days of recordings from January 6 to January 15).

Let us now consider the case of centralized learning. As
the smart environment was deployed at different homes at
different times, on the day the target home had started, a



number of other homes are already operating and providing
data. If home Hi started at time tstart

tg , the total amount of
training data available at that point will be:

Dcentralized
tg =

⋃
i;tstart

i <tstart
tg

Di[t
start
i : tstart

tg ] (1)

For our example, the data available for training is the data
from all homes where the system was deployed before January
16 - these are all the parts of bars shown in red in Figure 1.

Another simplifying assumption that is not applicable for
privacy-aware users is that once a user joined a collaborative
learning setup, it will provide data indefinitely into the future.
To do this might be in the interest of the central authority,
but it is not compatible with the privacy principle of data
minimization. A rational user will stop providing data to the
central system as soon as the local learning yields better results
than the predictive models received from the center. As shown
by the termination of the bars in Figure 1, this cross-over point
might happen sooner or later in time and it triggers the end of
sharing data tshendi . We note that this time point only shows
the end of data sharing; the smart environment will continue
to operate and the local learning will continue to receive data
past this time. Thus the data available for centralized learning
will be:

Dcentralized
tg =

⋃
i;tstart

i <tstart
tg

Di[t
start
i : min(tshend

i , tstart
tg )] (2)

Federated learning operates on the same amount of data,
with the difference that the data is never put together to a
shared database.

IV. LEARNING THE ACTIVITY PREDICTION MODEL

In this section we describe the architecture and training
process of a human activity predictor for a smart environment
that predicts the future activities of the residents based on the
history of activities and current environment. We represent
the input as a sequence of tuples (h, d, a) containing one-hot
encoded hour of the day h, day of the week d and activity label
a. Our predictor f takes a sequence of l tuples and outputs
the probability of occurrence of next activity:

f((ht, dt, at), ..., (ht+l−1, dt+l−1, at+l−1)) −→ p(at+l) (3)

Our goal is to find the “best” predictor. One way to
formalize this is by assuming that the function f is part of
a parameterized family of sufficiently expressive functions
f(·) = F (·, θ). In our case, this family will be a particular
type of deep neural network, and θ will map to the network
weights - but many other choices exist. Thus finding the best
function is mapped to finding the optimal θ = θ∗.

Naturally, we cannot exactly predict every activity due to the
inherent randomness of the human behavior. We will define the
accuracy of predictor in the form of a loss function expressed
as the cross-entropy between the predicted probabilities and
the actually occurring activity. The optimal θ∗ will be the value
that minimizes this loss over the available training data. In
the remainder of this section, our focus will be on finding
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Fig. 2. Architecture of LSTM based prediction model. Each circle in the input
layer shows a single feature. A set of features is considered as the inputs in
each time step. Gray circles in the output of the model correspond to the
activities. h is the hidden state and c is the cell state.

the appropriate form for the function F and the optimization
process for finding θ∗.

A. A Long-Short Term Memory Based Activity Predictor

In recent years, time series predictors based on a specific
type of recurrent neural networks, Long-Short Term Memory
(LSTM) [30] had been successfully applied to problems rang-
ing from natural language processing [31], [32] to robotics,
computer vision and taxi demand prediction [33]–[35] and
predictive caching [36]. Compared to other machine learn-
ing approaches where feature engineering is essential, deep
neural networks, trained end-to-end using stochastic gradient
descent, learn their own latent feature encoding. Within the
field of deep neural networks, LSTMs have the advantage of
having a learned memory state. This allows a prediction to be
conditioned on events that happened many time steps in the
past, while still handling one event at a time.

Fig. 2 shows the architecture of a deep neural network
designed to learn the prediction function Eq 3. The input layer
of shape l × n encodes the l tuples of history. The second
layer is an LSTM of size 256 unrolled l times. The hidden
state h and the cell state c (memory) in the previous time
step alongside the input in the current time step is given to
the current LSTM cell. This procedure runs repeatedly until
all data in the given sequence is processed. At that point,
the output of the LSTM cell o will become the input of the
next layer, which is a dense layer with a ReLU activation
function. This layer is followed by a dropout layer [37] with
a dropout rate of 0.5 to improve the generalization of the
model. Finally, we have another dense layer with a softmax
activation function that outputs a probability for each activity.
For training purposes, we are using a cross-entropy loss
between the output of the softmax and the actual next activity.
When deployed and used as a predictor, the smart environment
can take the activity with the highest probability to be the
predicted activity for the next time step.
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Fig. 3. Activity prediction approaches 1. local (in-home) training (top), 2.
centralized training (middle), and 3. federated training (bottom). We used 70%
of each home’s data for training and 30% for testing.

In the following, we describe three possible scenarios for
training activity predictors for the smart environments: local
training and two collaborative training scenarios - centralized
and federated. As we predict activities in real-time since after
training, we only need to do a feed forward pass to compute
the predictions. Following the practice of deep learning litera-
ture, to make fair comparisons for all the training models we
are using exactly the same predictor architecture from Fig. 2.

B. Local Training

For the case of local training, the smart environment uses
only the data collected from the user to train a predictor
specific for the environment. Overall the number of trained
predictors is the number of deployed environments. The ad-
vantage of this model is that the predictor is tailored to the
home. The disadvantage is that the network is training with
less data for instance, for the first day there is only one day of
training data. The training process will be repeated overnight
using the full set of data available for the node. The local
training process is outlined in Fig 3-Top.

The accuracy of the prediction is measured on the home’s
own data. In general, we expect the paucity of the training
data to result in an initially weak predictor which, however,
will improve in time as more training data becomes available.

C. Centralized Training

In the case of the centralized training model we assume a
cloud-based central authority. The participating homes upload
their daily logs to the central authority as training data. The
central authority runs the learning algorithm daily, creating a
single predictor which is transferred to the homes. The training
data available to the centralized learning is described by Eq.2.
This learning model is shown in Fig 3-Middle.

The accuracy of this predictor is then evaluated on the local
home’s test data. Thus, the same predictor will have different
accuracy results in different homes. A positive aspect of the
centralized predictions is that the learning happens with much
more data especially compared to the local learning for smart
environments recently deployed. A weakness of the model is
that the centralized learner learns a shared model, and will not
adapt to the preferences and idiosyncrasies of the individual
users. Users that joined the centralized learning pool will
provide more data and they had more opportunities to shape
the predictors to their own routines. We thus expect that for
each node the centralized learning model will start with a
better accuracy for a newly joined node, but it will improve
comparatively slower from there.

D. Federated Training

Federated training is a variant of collaborative learning
which does not require the participating nodes to share their
data. Each node implements a learner that has access to
the locally generated data. As in the centralized training
approach, there is a cloud based central authority that learns
and distributes a shared model. However, in contrast to the
centralized approach, the central authority does not receive
training data from the environments, but parameters from the
locally updated models.

There are several techniques through which the federated
learner can update the shared model. The approach we use
is the federated averaging model introduced by McMahan et
al. [24], due to its robustness to imbalanced datasets like the
ones found in smart environments with different deployment
dates blue (see Fig 5), where some homes provide significantly
more data as they started earlier. The updated model is then
transmitted to the nodes. Fig 3-Bottom shows the organization
of the federated training approach.

There are many similarities between the federated and
centralized models. The total amount of data to which the
system as a distributed learner has access is the same, as shown
in Eq.2. The difference, however, is that the centralized model
has access to this data directly, while the federated model only
through the mediation of the parameters of the local learners.

The same considerations apply to the expected accuracy
of the shared model. Everything else being equal, we expect
the centralized approach to show a better accuracy than the
federated one, because it has a better access to the training
data. A way to illustrate this is that we can always emulate
federated learning in a centralized fashion, but not the other
way around. Naturally, due to the randomness inherent in
human behavior, it is possible that for a given day the federated



model to be better for a particular home than the centralized
one.

The expected weaker performance of the federated learning
model is compensated by the better privacy properties. As the
federated learning only shares parameters on the local model,
it is expected that less information is disclosed compared to
the centralized learning approach.

The choice between federated and centralized learning for
a privacy-aware agent boils down to the performance gap
between them. If the performance gap is major, the smart
environment is better off using a centralized approach (and,
possibly, cutting off the data sharing when the local model
catched up). If the centralized-federated performance gap is
minor, the system is better off using federated learning.

E. Predicting If Smart Environments Benefit from Federated
Training

Let us now summarize the expected accuracy profiles and
the three learning approaches we consider:

• Local training: will start with a low accuracy due to lack
of training data, the performance will increase in time,
and in principle is limited only by natural variability of
activities and by model capacity. Privacy is guaranteed as
no data leaves the premises.

• Centralized training: will start with a higher accuracy due
to existing training data from nodes that were deployed
earlier. The accuracy will increase relatively slowly and,
in addition, will be limited by the non-iid distribution of
the training data between different environments. Signif-
icant privacy concerns due to data sharing.

• Federated training: accuracy profile expected to be sim-
ilar to centralized training. Privacy concerns lower, but
information leakage still possible.

Note that we are expecting that eventually the local training
will overtake the collaborative learning approaches. At this
point, a rationally behaving privacy aware smart environment
will stop participating in the collaborative learning model, stop
sharing data and continue improving its activity predictor using
local learning.

One additional insight we must consider is that simply
participating in the collaborative learning and sharing a single
day’s activities might be the largest privacy loss, as it might
disclose the user’s age, medical needs and disability condi-
tion. Disclosing further day’s data of the same daily routine
will disclose relatively few additional information. Thus, the
smart environment must consider carefully whether it should
participate in the collaborative learning even for a short time.

We are going to define a number of measurable quantities
that would allow the environment to make these decisions.
One such quantity is the crossover point: the day in the future
from which the model acquired through local training will
consistently overtake the one received from the collaborative
learning (centralized or federated). Intuitively, the closer the
crossover point is, the less justified is for the user to join the
collaborative learning pool.

The second quantity of interest is the area between the
local and collaborative learning models accuracy in time up to
the crossover point. Using a term borrowed from the field of
reinforcement learning, we will call this quantity regret - this
is the overall accuracy performance lost if the user does not
join the collaborative learning pool. The smaller the regret, the
less justified is to join the collaborative learning pool.

Naturally, both the crossover point and the regret can be
measured only after the fact. In this paper, we propose the
hypothesis that while these values are difficult to predict, we
can train a classifier for a good surrogate measure that can be
used as a decision aid. We will create a classifier that, based on
the histogram of the first k days of the node and the average
over all nodes will predict whether the crossover point will
happen before specific day d or not.

As a note: training such a classifier requires the collabo-
ration of the central authority, and might result in the node
not joining the collaborative learning pool. Thus, it would
not be in interest of the centralized authority to provide this
classifier if the authority has a business model that relies
on data sharing. However, it would be in the interest of the
authority to help make this decision if the privacy interests of
the central authority and the nodes are aligned.

V. EXPERIMENTAL STUDY

In the previous section we made certain conjectures about
the accuracy profiles of the activity predictors. Qualitatively,
these predictions are supported by objective facts: we know
that local training has less training data than collaborative
ones, and we know that centralized training can emulate fed-
erated learning but not the vice-versa. However, any practical
application would need to rely on the quantitative results.
For instance, if the crossover point would take years to
reach, collaborative learning would be the only reasonable
alternative for a smart environment. If the difference between
the centralized and federated learning results is large, the
system will need to choose centralized learning even if privacy
vulnerabilities exist.

These quantitative factors strongly depend on the actual
data. We could be right about the overall patterns, but wrong
about the scales at which these patterns happen. Performing
experiments using real world data is the only way in which
we can understand the decisions faced by smart environments.

A. Datasets and Pre-processing

For our experiments we used the datasets collected by the
CASAS project [13] 1. This collection contains 30 datasets
collected in homes with volunteer residents performing their
daily routines. There is a significant diversity in the datasets
and the routines: some of the residents were younger adults,
some were healthy older adults, some were older adults with
dementia, and some were having pets.

In order to make the datasets suitable for our experiments,
we performed several pre-processing steps.

1https://archive.ics.uci.edu/ml/datasets/
Human+Activity+Recognition+from+Continuous+Ambient+Sensor+Data
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Fig. 4. Accuracy on test data for a selection of 12 out of the 30 homes in our dataset with local training (magenta) vs centralized training (blue) and federated
training (orange). The cross-point shows the first time that the local accuracy reaches the federated accuracy. Regret is the area between local accuracy and
federated accuracy when local accuracy is lower. than federated accuracy.

Mapping the activity labels into a common ontology.
The original activity labels are closely related, but not fully
identical across the various datasets. Labels at various levels
of granularity exist, such as work, work at table, work on
computer and work at desk. The use of different labels would
make any form of collaborative learning impossible, and local
learning difficult to compare between datasets. We solved this
problem by mapping the activity labels to a higher level,
courser granularity categories, creating 10 new category labels
without overlap between them. The mapping of the original
activity labels to the new common ontology is shown in
Table I.

Converting to an event-based time series. The CASAS
dataset uses a variable sampling rate from a resolution ranging
from several seconds to sometimes hours. When the sampling
rate is fast, it usually results in many repeated entries with the
same activity label.

We have several choices to convert these entries into a
format that is more suitable to machine learning. We could,
for instance, map the entries into a shared, uniform time grid
across all the datasets. However, this approach would create

TABLE I
MAPPING THE DATASET ACTIVITIES TO A HIGHER LEVEL CATEGORY

Original Activities Category
evening meds, morning meds, take medicine,
exercise, toilet, groom, dress, r2.dress, bathe,

personal hygiene, r2.personal hygiene

PERSONAL
HEALTH AND

HYGIENE
eat, eat breakfast, r2.eat breakfast, eat lunch,

eat dinner
EAT

drink DRINK
cook, r1.cook breakfast, cook lunch, cook
dinner, cook, cook breakfast, wash dishes,
wash breakfast dishes, wash lunch dishes,

wash dinner dishes, laundry

CHORES

nap, sleep, r1.sleep, sleep out of bed, go to
sleep / wake up (interval between them)

REST

relax, watch TV, read RELAX
phone, entertain guests SOCIAL

work, work at table, work on computer, work
at desk

WORK

leave home LEAVE HOME
enter home ENTER HOME

other activity, step out, bed toilet transition NOT TRACKED

very large datasets, with redundant information.
Instead, we chose to use an event-based representation of the

activity time series, by representing every contiguous activity



with a single entry. One side effect of this is that the dataset
for each day will be significantly shorter, but entries for the
individual days might have a varying length. This, however,
is naturally handled by the LSTM-based activity recognition
engine. Note that this approach does not encode the length of
an activity through the number of repeated entities. However,
the temporal information is still present by the encoding of
the time of the day as one of the features.

Feature representation We are using a representation where
every entry in the time series has three data fields: the hour
of the day (as an integer 0-23), the day of the week (as an
integer 0-6), and the activity label which is also encoded as an
integer in the range 0-9. Each value was individually encoded
with a one-hot representation, and the resulting values were
concatenated. Thus the input data was organized in the form
of 24+7+10=41 binary values. Correspondingly, the output is
encoded as an array of 10 values which, being the output of
a softmax layer, encode the probabilities of the next activity.

Modeling the deployment times. Our objective is to model
the data available for a collaborative / local model at various
moments in time. As we discussed in Section III, for the
collaborative learning models, this depends on the deployment
schedule. The CASAS datasets were collected over many
years, at time points separated by large intervals, sometimes
from successive inhabitants from the same home. To model
our scenario, we changed the starting times of the individual
datasets to represent different smart environments deployed
over the course of 2 months, with a Poisson arrival distribution.
This is a realistic model of a small scale deployment by a local
health care provider.

B. Training the Activity Predictor

Using the preprocessed datasets described in the previous
section, we trained the LSTM-based activity predictor from
Fig. 2. For the local training case, we trained 30 different
predictors on their local data, for every day of operation. For
the centralized predictor, we trained a single shared predictor
on the data available, described by Eq. 2. For the local and
centralized learning, we used the Keras library on top of
Tensorflow 2.1.0. For the federated learning, we have trained
local predictors with the appropriate local data and updated
the shared model using Tensorflow-Federated 0.13.1.

The training configurations for the different models
are shown in Table II. The code is also available on
https://github.com/sharare90/Privacy-Preserving-Learning

C. Results: Accuracy, Crossover Point and Regret

The approach we took in this paper is to focus on the indi-
vidual user of the specific smart environment. The centralized
and federated approaches are not a goal in themselves, they
are useful only inasmuch as they help the individual.

Thus, our performance evaluation is based on measuring
the accuracy of the learned predictor (one per home for the
local, a shared one for centralized and federated models) on

TABLE II
LOCAL, CENTRALIZED, AND FEDERATED TRAINING HYPERPARAMETERS.

Hyperparameters Local Centralized Federated
batch size 64 64 64

number of epochs 500 500 -
lstm use bias true true true

early stopping patience 50 50 -
early stopping minimum delta 0.01 0.01 -

number of rounds - - 20
client learning rate 0.001 - 0.001
server learning rate - 0.001 0.5

client optimizer Adam - Adam
server optimizer - Adam SGD

the individual user’s data. As a note, even when the predictor
is shared, it will give different results for the individual users.

We found that the temporal evolution of the accuracy curves
fall into several different patterns. Fig. 4 shows a selection
of 12 out of the 30 homes in our dataset, chosen to be
representative of the different patterns. Note that the starting
day on the x axis varies reflecting the deployment day of the
various smart environments.

We can make several observations:
Relatively good prediction results. In interpreting Fig. 4 we
need to keep in mind that the accuracy of random prediction
would be 0.1. Fully accurate prediction is not possible, as the
users behavior can vary randomly from day to day. The ability
to predict the next action with about 45% accuracy out of
10 possibilities is helpful for many applications for the smart
environments.

The gap between the federated and centralized training is
minor. As expected, we found that the centralized training
gives better accuracy results than the federated. However,
the differences are small and usually diminish in time. The
practical conclusion, for a deployment is that a privacy-
aware smart environment would participate in a federated
training based collaborative model, as the privacy benefits are
significant and the accuracy cost minor.

The crossover point is sometimes very early. The next question
we need to investigate is the relationship between the local
and the federated training models. Fig. 4 shows with a red
triangle the crossover point when the local training overtakes
the federated learning (if such a point exist in the time
interval considered), and with a filled with yellow fill the area
corresponding the regret - the accuracy lost if the environment
would choose not to participate at all in the federated learning
pool.

We found that the result validate our expectations about
the shapes of the accuracy curves: the local learning starts out
lower but eventually overtakes the federated learning in 10 out
of 12 cases in the figure. In Home 3 the local training starts
out better and stays as such, so the regret is zero. In Home
14, where the trends are as expected but the local learning did
not yet overtake the accuracy of the federated at the end of
the data collection.

Overall, the location of the crossover point varies. For
homes 3, 25, 27 and 29, the crossover happens so early, and the
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Fig. 5. Activity proportions for the same set of homes as shown in Fig 4.

regret area is so small that the deployment of the collaborative
learning does not appear to be justified. For other homes, such
as Home 2, the crossover happens almost a month after the
deployment and the regret is significant.

D. Predicting the Benefits of Federated Training

The different profiles found in Fig 4 raise an interesting
question: what factors make for certain homes local learning
techniques with very low amount of training data overtake
federated learning despite the much more data available to the
latter? The main variable here is the way in which the shared
model applies to the activities of the specific user. That is: it
is not that the local learning is particularly efficient for these
users, but that the shared model is not very good for them.
The limiting factor of learning the shared model is that the
user’s behavior is not independent and identically distributed
(iid).

Can we predict the future performance of the federated
learning for a given node without joining the pool at all? Our
hypothesis is that the proportion of the activities in the home
for the first two days contain sufficient information to predict
the performance of the predictor. Fig 5 shows the activity
proportions for the same set of users as shown in Fig 4. A
visual analysis shows that the users clearly spend different
fractions of their time at different activities.

To predict the relative performance of federated and local
training, we trained a classifier whose inputs are the values
from Fig 5 encoded as floating point values in the [0, 1] range,

TABLE III
COMPARISON OF CLASSIFIERS FOR PREDICTING THE BENEFIT OF

COLLABORATIVE LEARNING

Classifiers F1-score mean
Decision Tree 0.70

SVM 0.72
Nearest Neighbors (k=2) 0.77

Random Forest (# estimators=10) 0.72

the deployment day, and a day d ∈ {1, 2, . . . , 45}, and the
output is a single binary value that answers the question: “is
the crossover point happens on day d from the deployment”?
We chose the values of d to be between 1 and 45 since if
crossover point happens more than 45 days from deployment,
we assume that the home will benefit from collaborative
learning. As the number of training data points is small, this
problem is better suitable for the traditional machine learning
approaches. To find the best model, we trained four different
classifiers based on decision trees, support vector machines,
nearest neighbors and random forests.

The F1-score of the results are shown in Table III. All
models achieve a good predictive value, considering the very
small amount of training data. The best performing model was
the k-nearest neighbor with k = 2, possibly due to the fact
that the best predictor of high federated learning performance
is the similarity in profile to nodes already in the pool.

Overall, the performance of the classifier is sufficient to
serve as a decision making aid in helping the user join the
federated learning pool or not. One drawback of the approach
is that the training of the classifier requires information from
all nodes, and thus it can only be done by a centralized
authority.

VI. CONCLUSIONS

In this paper we considered techniques for learning a
human activity predictor for a smart environment in a realistic
scenario where the privacy of the users must be weighted
against the advantage offered by cloud based, collaborative
learning models. We designed an activity predictor using state-
of-the-art deep recurrent neural networks and trained it in three
separate training scenarios: local, centralized and federated. A
novel aspect of our work is that in contrast to previous studies
we carefully accounted for what training data is available
for the environments at every point in time. Our experiments
had shown that there is only a minor difference between the
centralized and federated approach, thus the greater privacy
of federated learning would make it the preferred cloud based
model. Furthermore, our experiments had also shown that the
local training model will overtake the accuracy of the federated
model for almost all the cases. In fact, for a significant subset
of the environments, this crossover points happens within a
couple of days of the deployment. To allow the user to predict
this and use it to maximize his privacy, we trained a classifier
that can predict the early crossover based on the first days’
data, with no disclosed information.
Acknowledgment: This work was supported by the National
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