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EDGE DELETION ALGORITHMS FOR MINIMIZING SPREAD IN
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Abstract. This paper studies algorithmic strategies to effectively reduce the number of infections
in susceptible-infected-recovered (SIR) epidemic models. We consider a Markov chain SIR model
and its two instantiations in the deterministic SIR (D-SIR) model and the independent cascade SIR
(IC-SIR) model. We investigate the problem of minimizing the number of infections by restricting
contacts under realistic constraints. Under moderate assumptions on the reproduction number,
we prove that the infection numbers are bounded by supermodular functions in the D-SIR model
and the IC-SIR model for large classes of random networks. We propose efficient algorithms with
approximation guarantees to minimize infections. The theoretical results are illustrated by numerical
simulations.
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1. Introduction. Epidemic spreading processes can significantly disrupt the
functioning of society and pose risks to the health of individuals. Therefore, the
study of epidemic spread has a long history. One of the most fundamental models is
the susceptible-infected-recovered (SIR) model, where each individual can be in one
of three states: susceptible, infected, or recovered. Variations of the SIR model have
been proposed, including population models and networked models [32]. An overview
of SIR models is provided in [48]. The behaviors of the SIR spread dynamics are
extensively studied [23, 1, 14, 10].

The problem of efficiently controlling epidemic spread has received increasing
attention. One line of work has focused on minimizing the spectral norm of the
transition matrix to suppress the process [45, 46, 44, 7, 39, 28]. Resource allocation [39]
and network modifying [45, 37, 34] strategies have also been studied. Optimal control
problems have been studied to minimize the cost over a given horizon [24]. Since the
total number of infections is an important criterion, problems of minimizing infections
have been proposed [37, 33].

In this paper, we consider optimization problems that minimize infections in a
networked SIR Markov chain model. We provide efficient strategies of modifying the
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structure of the contact network to minimize the number of infections. We show
the effectiveness of the proposed algorithms through theoretical characterizations and
numerical evaluations.

1.1. Related work. Following from the Markov chain susceptible-infected-sus-
ceptible (SIS) model [43], continuous and discrete Markov chain SIR models have been
proposed in [48] and [40]. Deterministic models based on mean-field approximations
in the Markov chain models have also been studied in these papers. The independent
cascade SIR (IC-SIR) model can be viewed as a networked extension to the Reed--
Frost model [14], which is one of the earliest SIR models studied in depth [1]. The
IC-SIR model was proposed in [18] and popularized in [22], and it has a rich volume
of follow-up studies on efficient algorithms for influence maximization [9], network
design [47], and inferring network structure [31].

Some researchers have focused on problems of minimizing the spectral norm of
a parameter matrix by removing nodes or edges. These problems have been proven
to be NP-complete and NP-hard, respectively [44]. Several heuristic algorithms are
proposed based on betweenness centrality [20, 41] or convex relaxation of the original
problem [7]. The continuous version of the problem has been discussed in [38, 39, 28,
35, 21].

As for minimizing the number of infections, a graph partitioning problem has been
investigated in [15], without considering any dynamics or random initial conditions in
the network. A budget-constraint resource allocation problem has been studied in [33].
The problem is formulated as a continuous optimization by modifying the infection
rates and recovery rates for nodes under the assumption that the system is stable. To
the best of our knowledge, no algorithm with provable approximation guarantee has
been proposed for the node and edge removal problems to minimize infections.

1.2. Contributions. We start by proposing a general Markov chain SIR (G-
SIR) model. Two common SIR models are simplifications of the G-SIR model, the
deterministic SIR (D-SIR) model and the IC-SIR model.

Our main results focus on the problems of minimizing the number of infections
by removing edges in the contact network from a given candidate set. The candidate
set models the reality that only limited types of contacts can be removed. We prove
that the considered problems are NP-hard. In contrast, with moderate restrictions
on the reproduction number, we show that the problems can be efficiently solved by
using greedy algorithms.

For the D-SIR model, we propose an upper bound for the number of infections as a
surrogate objective function. We prove that when the system is exponentially stable,
the surrogate function is a monotone supermodular function of the set of deleted
edges, although in a relaxed problem the same function is not convex with respect to
the edge weights. Then it is shown that the number of infections can be reduced by
efficiently minimizing the upper bound.

For the IC-SIR model, we study the expected number of infections. In this model,
the epidemic spreads over a contagion network randomly sampled from a given con-
tact network. We consider contact networks generated from Erd\H os--R\'enyi (ER) graphs
and the stochastic block model (SBM). The statistics of the contagion network encode
many properties of the spread process. For example, the expected average degree of
the contagion network can be interpreted as the reproduction number. When the
average degree of the contagion network is less than one, and the number of initial in-
fections is no larger than O(n

1
3 - c), where n is the population size and c is any positive

number, we design efficient mitigation algorithms. For a contact network generated
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from an ER graph, we prove that with high probability, the expected number of infec-
tions is well approximated by a monotone supermodular function. We obtain similar
results for SBMs, with the additional assumption that the number of blocks is no
larger than O(log n).

Our theoretical results are supported by numerical simulations. We show the
effectiveness of the proposed algorithms by running simulations on both synthesized
random networks and a real contact network. We compare the results given by the
algorithms using the D-SIR model and the IC-SIR model and corresponding results
for the G-SIR model. We find that both algorithms effectively reduce the number of
infections also in the G-SIR model under the proposed conditions.

1.3. Outline. The remainder of the paper is organized as follows. In section 2
we introduce notation and review some basic concepts. In section 3 we describe the
considered models. In section 4 we provide the general framework of the algorithm
and present the hardness results. In section 5 we present a supermodular upper
bound for the infections in the D-SIR model when the system is stable. We provide
conditions such that, with high probability, the number of infections approximates a
supermodular function, addressing the cases where, in sections 6 and 7, the contact
network is sampled from an ER graph and a SBM, respectively. Section 9 provides
some numerical experiments and simulations to show the effectiveness of the proposed
algorithms in all the considered models, followed by the conclusion.

2. Preliminaries. Let G = (V,E) be a graph with vertex (node) set V and edge
set E. G can be either directed or undirected unless noted specifically. For a digraph,
an edge from node j to node i is denoted as an ordered pair (j, i); for an undirected
graph the edge is denoted as an unordered pair \{ j, i\} . We define the size of a graph
or connected component as the number of vertices (nodes) in it. We further denote
by [n] the set \{ 1, 2, . . . , n\} .

Let \scrG (n, p) denote the ER graph with n vertices where each edge occurs with
probability p. We define the SBM \scrS \scrB \scrM (n, \kappa ,\bfitQ ) as follows: Let \{ V1, V2, \cdot \cdot \cdot , V\kappa \} be
\kappa communities with n vertices. For each pair of vertices u \in Vi and v \in Vj , the edge
(u, v) is sampled with probability Qij independently.

In this paper we use bold font for matrices and vectors. We denote \bfite i, i \in [n],
the ith canonical basis of Rn. We use 1 and 0 to denote all one and all zero vectors.
Further, we recall the definition and several properties of M-matrices. An M-matrix
is a square matrix whose off-diagonal entries are nonpositive and eigenvalues have
nonnegative real parts. It has the following property.

Lemma 2.1 ([36, Theorem 1]). A nonsingular M-matrix is inverse-positive,
which means the entries of the inverse are all nonnegative.

We adopt the standard asymptotic notation. Given two nonnegative functions f
and g of the variable n, we denote f = O(g) if there exists an n0 and a constant c > 0,
such that for all n \geq n0, f \leq c \cdot g. Further, we denote f = o(g) if f/g tends to zero
when n tends to infinity. The term with high probability is used when the probability
is 1 - o(1).

The following definitions are frequently used.

Definition 2.2 (plus and minus operation for graphs). Given two graphs G1 =

(V1, E1), G2 = (V2, E2), G\prime = (V \prime , E\prime )
def
= G1 + G2 is a new graph with vertex set

V \prime = V1 \cup V2 and edge set E\prime = E1 \cup E2, and G\prime \prime = (V \prime \prime , E\prime \prime )
def
= G1  - G2 is a graph

with V \prime \prime = V1 \cup V2 and E\prime \prime = E1\setminus E2.
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Definition 2.3 (monotonicity). A set function f : 2\Omega \mapsto \rightarrow R is monotonically
nonincreasing if f(P1) \geq f(P2) holds for all P1 \subseteq P2 \subseteq \Omega .

Definition 2.4 (supermodularity). A set function f : 2\Omega \mapsto \rightarrow R is supermodular
if f(P1) - f(P1 \cup \{ e\} ) \geq f(P2) - f(P2 \cup \{ e\} ) for all P1 \subseteq P2 \subseteq E and all e \in (E\setminus P2).

A function f(P ) is submodular if g(P )
def
=  - f(P ) is supermodular. A function

f(P ) is modular if it is both submodular and supermodular.

Definition 2.5 ((1\pm \epsilon )-approximation). Given two real numbers a, b \geq 0 and an
approximation error \epsilon \geq 0, if a and b satisfy

(1 - \epsilon )b \leq a \leq (1 + \epsilon )b ,

then b is an (1\pm \epsilon )-approximation of a, denoted a \approx \epsilon b.

We note that a \approx o(1) b if and only if b \approx o(1) a.

3. Model description. In networked SIR models, each node, at a given time,
is exclusively in one of three states: susceptible (S), infected (I), or removed (R). For
node i, we define the \{ 0, 1\} indicator variables for the states at time step t as Si(t),
Ii(t), and Ri(t). The variables take value 1 if the node is in that state, and otherwise
take value 0. We note that Si(t)+ Ii(t)+Ri(t) = 1. Motivated by [2, 40], we propose
the G-SIR model using a 3n-state Markov chain. The recursive relations between the
states are defined as

Ii(t+ 1) = Ii(t)(1 - \delta i(t)) + Si(t)

\left(  1 - 
n\prod 

j=1

(1 - \beta ij(t)Ij(t))

\right)  ,(3.1)

Ri(t+ 1) = Ri(t) + \delta i(t)Ii(t) ,(3.2)

where \beta ij(t) is the random indicator variable for the event that node i is infected
from its infected neighbor j; \delta i(t) is the random indicator variable for recovering. We
assume that \beta ij(t) for any i, j are mutually independent. In addition, we assume that
for a fixed i, j pair, \beta ij(t) are i.i.d with respect to k, and for a fixed i, \delta i(t) are i.i.d.
with respect to t.

We simplify the G-SIR model by using mean-field approximation in a similar
manner as [42, 13]. We take expectation for both sides of (3.1) and arrive at

E [Ii(t+ 1)] = E [Ii(t)]E [1 - \delta i(t)] + E [Si(t)] - E [Si(t)]
n\prod 

j=1

E [1 - \beta ij(t)Ij(t)] ,

by assuming that the states of all nodes are mutually independent for any given t. Let
xi(t) \in [0, 1] and ri(t) \in [0, 1] be the probabilities of node i being infected and being
removed at time step t, respectively. Then, by using the approximation 1 - x \approx e - x for
small x, the mean-field approximation of the corresponding discrete-time SIR model
can be written as

xi(t+ 1) = xi(t) + (1 - xi(t) - ri(t))
n\sum 

j=1

Bijxj(t) - Dixi(t),

ri(t+ 1) = ri(t) +Dixi(t),

where Bij
def
= E [\beta ij(t)] and Di

def
= E [\delta i(t)]. Bij is the infection rate for edge (j, i) and

Di is the healing rate for node i. In some variants of this model, Bij is interpreted as
the product of the infection rate and the edge weight [2, 21].
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We define the vectors \bfitx (t), \bfitr (t) with entries xi(t) and ri(t) for all nodes i. Then
the discrete-time SIR model can be expressed in matrix form as follows:

\bfitx (t+ 1) = \bfitx (t) + (\bfitI  - \bfitX (t) - \bfitR (t))\bfitB \bfitx (t) - \bfitD \bfitx (t),(3.3)

\bfitr (t+ 1) = \bfitr (t) +\bfitD \bfitx (t),(3.4)

where the entries of \bfitB are Bij ; \bfitD is a diagonal matrix with diagonal entry Di; and
\bfitX (t) and \bfitR (t) are the diagonal matrices diag (\bfitx (t)) and diag (\bfitr (t)), respectively.

In this paper we study the cumulative number of infections, defined as \bfitm (t)
def
=

\bfitx (t)+ \bfitr (t). We denote \bfitm \ast with entries m\ast 
i

def
= supt(mi(t)). Then \| \bfitm \ast  - \bfitm (0)\| 1 can

be interpreted as the number of increased infections in the network. This vector \bfitm (t)
is known to be inside [0, 1]n under the assumption that Di < 1,

\sum n
j=1 Bij < 1 for all

i \in [n] [21]. Therefore, we can treat mi(t) as the probability that node i is in I or R at
time t. We refer to the model given by (3.3) and (3.4) as the D-SIR model. It is well
known that the mean-field approximation gives an upper bound for the probabilities
of infections in the G-SIR model [13].

We consider the IC-SIR model [18, 22, 31] as another simplification to the G-SIR
model, where \delta i(t) = 1 for all i and t. In this model, we use random indicator variable
vectors \~\bfitx (t) \in \{ 0, 1\} n and \~\bfitr (t) \in \{ 0, 1\} n to denote whether the nodes are in states
I and R, respectively. The nonzero entries in \~\bfitx (0) are the initial infected nodes,

which are referred to as seeds. Let s
def
= \| \~\bfitx (0)\| 1 be the number of initial infections.

We also define a matrix \widetilde \bfitB (t), where the entries are random variables \beta ij(t) which

are i.i.d. with respect to t. The success probability for each entry \beta ij(t) in \widetilde \bfitB (t) is

pij
def
= E [\beta ij(t)]. Thus, the IC-SIR model can be expressed as follows:

\~\bfitx (t+ 1) = sat
\Bigl( \widetilde \bfitB (t)\~\bfitx (t) + \~\bfitx (t) + \~\bfitr (t)

\Bigr) 
 - \~\bfitx (t) - \~\bfitr (t),(3.5)

\~\bfitr (t+ 1) = \~\bfitr (t) + \~\bfitx (t),(3.6)

where the saturation function sat (\cdot ) : Rn \mapsto \rightarrow Rn is defined as sat (\bfita )i = 1 if ai \geq 1,
and sat (\bfita )i = ai if ai \leq 1. In an IC-SIR model, the reproduction number R0 is
defined as the expected average degree (1/n)

\sum n
i,j=1 pij .

For each edge in the network, it can induce a new infection only when one of its
incident nodes is infected and the other one is susceptible. Since any infected node
recovers in one time step, each edge (j, i) can change the number of infections at the

time that j is infected. Therefore, the random transition matrix \widetilde \bfitB (t) can be sampled

once beforehand, denoted as \widetilde \bfitB . This matrix \widetilde \bfitB can be viewed as a \{ 0, 1\} adjacency
matrix of a sampled network where the actual spreading happens. This network is
called the contagion network. At the end of a spread process, nodes are either in
the removed state or the susceptible state. Further, we use \~\bfitr \ast to denote the nodes

eventually in state R: \~r\ast i
def
= supt(\~ri(t)) for each node i. Then \| \~\bfitr \ast  - \~\bfitx (0) - \~\bfitr (0)\| 1 is

the number of increased infections.
Then we provide two propositions to relate the expected number of infections in

G-SIR models to the expected number of infections in IC-SIR models. The proofs of
Propositions 3.1 and 3.2 are given in Appendix A.

Proposition 3.1 shows that the G-SIR model has the same expected number of
infections as an IC-SIR model with modified probability.

Proposition 3.1. Given an instance of a G-SIR model, the expected number of
infections of the model is equal to the expected number of infections in an IC-SIR
model with the same edge set and pij = (1 - (1 - Dj)(1 - Bij))

 - 1Bij for all edges.
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We also consider the symmetric G-SIR model, which has the infection rates Bij =
Bji for each edge (i, j) and the recover rates Di are same for all nodes i \in [n]. We
call the IC-SIR model symmetric if pij = pji for all i, j pairs. Proposition 3.2 shows
that the symmetric G-SIR model has the same expected number of infections as an
undirected IC-SIR model with modified activation probabilities for each edge.

Proposition 3.2. Given an instance of a symmetric G-SIR model, the expected
number of infections of the model is equal to the expected number of infections in an
undirected IC-SIR model by letting pij = (1 - (1 - Dj)(1 - Bij))

 - 1Bij for all undirected
edges in the IC-SIR model.

4. Problem formulation. We consider the problems of minimizing the number
of infections for the D-SIR model and the IC-SIR model.

Problem 4.1. Given a digraph G = (V,E), the infection rate Bij for each edge
(j, i) inG and healing rateDi for every node i \in V , an initial state vector \bfitx (0) \in [0, 1]n

and \bfitr (0) such that \bfitx (0)+\bfitr (0) \in [0, 1]n, a candidate edge deletion set Q \subseteq E, | Q| = q,
and an integer 0 < k \leq q, find a set of edges P \ast \subseteq Q, where | P \ast | \leq k, such that

P \ast \in argmin
P\subseteq Q,| P | =k

\sigma (P ) ,(4.1)

where \sigma (P )
def
= \| \bfitm \ast  - \bfitm (0)\| 1 is the number of increased infections after deleting P .

Problem 4.2. Given an undirected graph G = (V,E), the activation probability

of each edge P
pij

def
=
[ \widetilde Bij(t) = 1], an initial state vector \~\bfitx (0) \in \{ 0, 1\} n with s nonzero

entries, a candidate edge deletion set Q \subseteq E, where | Q| = q, and an integer 0 < k \leq q,
find a set of edges P \ast \subseteq Q, where | P \ast | \leq k, such that

P \ast \in argmin
P\subseteq Q,| P | =k

E [\~\sigma (P )] ,(4.2)

where \~\sigma (P )
def
= \| \~\bfitr \ast  - \~\bfitx (0)\| 1 is the expected number of increased infections after

deleting P .

We note that \sigma (P ) and \~\sigma (P ) are defined to measure the number of new infections.

Remark 4.3. An extension of Problem 4.2 is to consider \~\bfitx (0) \in \{ 0, 1\} n, where
each \~xi(0) is a Bernoulli random variable with mean \mu i. Let s =

\sum n
i=1 \mu i be the

expected number of initial infections. By the Chernoff bound, the number of initial
infections in \~\bfitx (0) is at most s+ 3

\surd 
s log n with high probability.

Before we introduce our algorithmic results, we show a computational hardness re-
sult to justify the investigation of approximation algorithms or well-motivated heuris-
tics.

Theorem 4.4. Given an instance of Problem 4.1 or Problem 4.2, it is NP-hard
to find an optimal solution P \ast .

The proof and detailed discussion of Theorem 4.4 are given in Appendix B. We
note that our proof also shows that the deterministic partitioning problem studied
in [15] is NP-hard. In addition, the hard instances can be constructed for any given
R0 > 0 for an IC-SIR model.

In this paper we find conditions for the D-SIR model and the IC-SIR model such
that the objectives of Problems 4.1 and 4.2 are bounded by monotone supermodular
functions of the edge deletion set. For Problem 4.1, when the dynamics of the D-SIR
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Algorithm 1: Greedy algorithm

Input: a function f \in \{ \^\sigma ,E [\~\sigma \prime ]\} , a contact network G, initial states of
nodes, a candidate edge set Q, an integer k;

Output: a set of k edges P \subseteq Q;
Initialize the set P = ∅;
for round i from 1 to k do

Compute the corresponding function f(P \cup \{ e\} ) for any e \in Q \setminus P ;
Set e\ast = argmaxe\in Q\setminus P f(P ) - f(P \cup \{ e\} );
Update P = P \cup \{ e\ast \} ;

end
Return P ;

Table 1
Algorithmic results given in this paper with their corresponding assumptions, where \dagger : directed

or undirected; \ast : (1 - 1/e)-approximation for a surrogate upper bound function; section: (1 - 1/e - \epsilon )-
approximation with high probability. Numbers given for algorithmic results are approximation ratios.
The assumptions on the number of initial infections are omitted for Problem 4.2.

Problem Algorithm Regime Graph Result Section

4.1 Greedy: f = \^\sigma exponential stable \dagger \ast 5

4.2 Greedy: f = E [\~\sigma \prime ]
R0 < 1 \scrG (n, p) \S 6

R0 < 1; \kappa = O(logn) \scrS \scrB \scrM (n, \kappa ,\bfitQ ) 7

model are exponentially stable, we find a monotone supermodular upper bound \^\sigma of
the objective function. Therefore, we use the upper bound as a surrogate to minimize.
According to a well-known result of supermodular minimization [30, section 4], we
obtain a greedy algorithm which gives a (1  - 1/e) approximation for the optimum
decrease of the surrogate.

For Problem 4.2, when the contact network is sampled from an ER graph or
a SBM, the expected number of infections E [\~\sigma ] is a (1 \pm o(1))-approximation to a
monotone supermodular function E [\~\sigma \prime ] with high probability. In this case we optimize
the original objective function E [\~\sigma ] and treat the differences as errors. A greedy
algorithm gives a (1 - 1/e - o(1) - \epsilon )-approximation [22] for the optimal decrease in
the expected number of infections. We describe the greedy algorithm with a given set
function f(P ) in Algorithm 1. We note that f is defined as f = \^\sigma for Problem 4.1
and f = E [\~\sigma \prime ] for Problem 4.2.

Table 1 summarizes the algorithmic results given in this paper.

5. Supermodularity for the D-SIR model. In this section, we consider the
problem of deleting edges from the current network to mitigate epidemic spread in
the D-SIR model. First, we show that the cumulative number of infections is upper
bounded by a supermodular function of all the edges in the graph.

Let\bfitM  - P
def
= \bfitI  - \bfitD +(\bfitI  - \bfitX (0) - \bfitR (0))\bfitB  - P denote the transition matrix between

\bfitx (1) and \bfitx (0), where \bfitB  - P is the matrix obtained from \bfitB by setting entries Bij = 0
for all edges (j, i) \in P .

Theorem 5.1. Suppose the D-SIR model satisfies \| \bfitM  - P \| < 1 for all P \subseteq Q,
where Q is the candidate edge deletion set. The number of infections is then at most

(5.1) \sigma (P ) \leq \^\sigma (P )
def
= 1\top (\bfitM  - P +\bfitD  - \bfitI )(\bfitI  - \bfitM  - P )

 - 1\bfitx (0),

where \^\sigma (P ) is a monotone supermodular function of the edge deletion set P .
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Theorem 5.1 shows the existence of a supermodular upper bound for \sigma (P ), which
motivates us to use it as a surrogate objective function. We employ this fact to design
a greedy algorithm, given in Algorithm 1. The algorithm takes as input the function
\^\sigma (P ), the contact graph G, initial states of nodes, a candidate set Q, and an integer
k. The algorithm returns a set P such that \^\sigma (∅) - \^\sigma (P ) \geq (1 - 1/e) (\^\sigma (∅) - \^\sigma (P \ast )) ,
where P \ast is the optimal solution for \sigma (P ). We note that the performance guarantee
is given for \^\sigma , instead of \sigma .

We show that the upper bound function \^\sigma (P ) is monotone supermodular.

Lemma 5.2. The function \^\sigma (P ) is monotone supermodular with respect to the
edge deletion set P \subseteq Q when \| \bfitM  - P \| < 1 for all sets P \subseteq Q.

The proof can be found in Appendix C. Then, we prove Theorem 5.1.

Proof of Theorem 5.1. By (3.3) in the D-SIR model, the infected state for any
time step t is

\bfitx (t+ 1) = \bfitx (t) - (\bfitD + (\bfitX (0) +\bfitR (0))\bfitB  - P  - \bfitB  - P )\bfitx (t)

 - (\bfitX (t) +\bfitR (t) - (\bfitX (0) +\bfitR (0)))(\bfitB  - P )\bfitx (t)

\leq \bfitx (t) - (\bfitD + (\bfitX (0) +\bfitR (0))\bfitB  - P  - \bfitB  - P )\bfitx (t)

= (\bfitI  - \bfitD + (\bfitI  - \bfitX (0) - \bfitR (0))\bfitB  - P )\bfitx (t) ,

where the inequality holds because the entries of (\bfitX + \bfitR ) are monotonically non-
decreasing as a function of time t. By applying this inequality recursively, we have
for any time step t

\bfitx (t) \leq (\bfitM  - P )
t
\bfitx (0) .(5.2)

Thus, the cumulative number of infections at any time step t is

\| \bfitm (t) - \bfitm (0)\| 1 \leq 1\top (\bfitI  - \bfitX (0) - \bfitR (0))(\bfitB  - P )
t - 1\sum 
t\prime =0

\bfitx (t\prime )

\leq 1\top (\bfitM  - P +\bfitD  - \bfitI )(\bfitI  - \bfitM  - P )
 - 1\bfitx (0) ,

where the last inequality is due to the geometric series of matrices.

Now we provide a sufficient condition for \| \bfitM  - P \| < 1 for all P \subseteq Q, which also
ensures exponential stability of the healthy state starting from the initial state \bfitx (0)
and \bfitr (0). A similar condition for the SIS model has been given in [19, Theorem 4].

Theorem 5.3 (sufficient condition for exponentially stable). If there exists a
positive number \epsilon such that for any i \in [n], (1  - xi(0)  - ri(0))

\sum n
j=1 Bij \leq Di  - \epsilon ,

then the spectral norm \| \bfitM  - P \| \leq 1 - \epsilon . Moreover, under this condition, \^\bfitx = 0 is the
unique equilibrium and the system is exponentially stable.

Proof. For simplicity of notation, we use \bfitM to denote the matrix \bfitM  - P for any
edge deletion set P . For any i \in [n], we have that the entries of \bfitM satisfy

Mii = 1 - Di,
\sum 
j \not =i

| Mij | \leq (1 - xi(0) - ri(0))
n\sum 

j=1

Bij .

By the Gershgorin circle theorem, the spectral norm of \bfitM is bounded by 1 - \epsilon . Thus,
this transition matrix is a contraction mapping. Since we have \bfitx (t + 1) \leq \bfitM \bfitx (t)
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and \bfitx (t) \geq 0 for any t, we obtain \| \bfitx (t+ 1)\| \leq (1  - \epsilon ) \| \bfitx (t)\| for any t. Therefore,
by (5.2), \| \bfitx (t)\| \leq (1  - \epsilon )t \| \bfitx (0)\| \leq e - t\epsilon \| \bfitx (0)\| , which means the state \bfitx converges
to the origin with a rate of at least \epsilon . Then we conclude that \^\bfitx = 0 is the unique
equilibrium and the considered system is exponentially stable.

Remark 5.4. Alternative conditions can be given for Theorem 5.1. Given that
\| \bfitM  - ∅\| < 1 and \bfitM  - ∅ is irreducible, the system is exponentially stable for any
deletion edge set P \subseteq Q, following from \| \bfitM  - P \| < 1. The reasoning is given as
follows: According to the Perron--Frobenius theorem [26], the spectral norm of \bfitM  - ∅
is its Perron root \lambda max. Due to Wielandt's theorem [26], the spectral norm, upon
deleting edges, is less than or equal to \lambda max.

Convex relaxation is widely used as an approach to design heuristic algorithms
or approximation algorithms by using a proper rounding. In addition, the supermod-
ularity of a problem sometimes coincides with the convexity of a relaxed problem; for
example, see [27]. However, we show that a direct relaxation of \^\sigma is not a convex
function with respect to the edge weights.

Example 5.5. We consider two undirected (bidirectional) graphs G1 and G2 which
have two copies of the same vertex set V = \{ 1, 2, 3\} . G1 has edges \{ \{ 1, 2\} , \{ 1, 3\} \} 
and G2 has edges \{ \{ 1, 2\} , \{ 2, 3\} \} . Let the infection rate be Bij = 1/12 for each
edge (j, i) and the healing rate be Di = 1/4 for each node i. Let \bfitB (1) and \bfitB (2)

be the transition matrices of G1 and G2, respectively. We let \bfitx (0) = [1, 0, 0]\top ,
\bfitr (0) = [0, 0, 0]\top . Then we have \bfitM (i) = \bfitI  - \bfitD +(\bfitI  - \bfitX (0) - \bfitR (0))\bfitB (i) for i \in \{ 1, 2\} 
and define \^\sigma (\bfitM ) = 1\top (\bfitM +\bfitD  - \bfitI )(\bfitI  - \bfitM ) - 1\bfitx (0). Thus, we obtain \^\sigma (\bfitM (1)) = 2/3,

\^\sigma (\bfitM (2)) = 1/2, and \^\sigma (
\bfitM (1)+\bfitM (2)

2 ) = 3/5. Thus,
\^\sigma (\bfitM (1))+\^\sigma (\bfitM (2))

2 < \^\sigma (
\bfitM (1)+\bfitM (2)

2 )
yields the nonconvexity result.

6. Supermodularity for the IC-SIR model in random graphs. In the IC-
SIR model, the spreading process only uses the activated edges. The activated edges
are sampled from the contact network G, which is given as the input of any algorithm.
The contagion network \widetilde G, composed of the activated edges, is randomly generated
from G. We assume the set of seeds is first fixed before the contact network and the
contagion network are generated. We also assume the initial removed state \bfitr (0) = 0
without loss of generality.

In subsection 6.1 we consider the case where the contact network is a com-
plete graph. Then, the contagion network \widetilde G is sampled from an ER random graph
\scrG (n, p), where p is the connection probability. In subsection 6.2 we consider the
case where the contact network G is generated from an ER random graph \scrG (n, p1),
and the contagion network \widetilde G is sampled from G with probability p for each edge
in G.

6.1. Expected number of infections for a complete contact network.
Next we consider the expected number of infections E [\~\sigma (P )], which is the objective
in Problem 4.2. The expectation is taken over the contagion network sampled from
\scrG (n, p), where the probability p = d/n for some constant d < 1. We prove that
E [\~\sigma (P )] is a (1\pm o(1))-approximation of a supermodular function.

We use \tau 1 to denote the event that the contagion network includes connected
components with size greater than L = 9(1  - d) - 2 lnn. Let \tau 2 be the event that
there is at least one component with more than one seed. The complements of these
events are denoted as \=\tau 1 and \=\tau 2, respectively. Let \rho (P ) denote the number of infected
vertices in connected components that are trees with at least one seed.
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Theorem 6.1. If the number of seeds s = O(n
1
3 - c) for any constant c > 0, then

for all P \subseteq Q,

E \widetilde G [\~\sigma (P )] \approx o(1) E \widetilde G [\~\sigma \prime (P )] ,

where E \widetilde G [\~\sigma \prime (P )]
def
= E \widetilde G [\rho (P ) | \=\tau 1, \=\tau 2] is a monotone supermodular function.

Theorem 6.1 shows that we can directly optimize the objective function as an
approximation to a monotone supermodular function. We employ this fact to design
a greedy algorithm, given in Algorithm 1. In particular, Algorithm 1 takes as inputs
the function E \widetilde G [\~\sigma \prime (P )], initial states of nodes, a candidate set Q, and an integer k.
Assuming E \widetilde G [\~\sigma (∅)] - E \widetilde G [\~\sigma (P \ast )] is at least 1, the algorithm returns a set P such that

E \widetilde G [\~\sigma (∅)] - E \widetilde G [\~\sigma (P )] \geq (1 - 1/e - o(1) - \epsilon )
\bigl( 
E \widetilde G [\~\sigma (∅)] - E \widetilde G [\~\sigma (P \ast )]

\bigr) 
,

where P \ast is the optimum solution for E \widetilde G [\~\sigma (P )], and the error term \epsilon is from a
(1 \pm \epsilon )-approximation of E \widetilde G [\~\sigma \prime (P )] and its marginal gains. We will discuss the effi-
cient computation of E \widetilde G [\~\sigma \prime (P )] in section 8.1.

For the sake of analysis, we consider a modified process, which first generates the
random graph and then chooses seeds randomly. As long as the information of the
graph \widetilde G is not revealed, this process is equivalent to the one where seeds are first
chosen and then the random graph is generated.

To prove Theorem 6.1, we provide Lemmas 6.2, 6.3, and 6.4. The proofs of these
lemmas can be found in Appendix D.

First, we show that the event \tau 1 happens with a small probability.

Lemma 6.2. The probability that the random graph (with p < 1/n) contains a
connected component with size greater than L = 9(1 - d) - 2 lnn is at most

P [\tau 1] \leq n - 2.

We also want to bound the probability of the seeds collision, i.e., the event that
two seeds are sampled from the same component. This can be seen as a balls into bins
problem.

Lemma 6.3. The probability that there is at least one component with more than
one seed conditioned on event \=\tau 1 is

P [\tau 2 | \=\tau 1] \leq 
2s2L

n
,

where s is the number of seeds as defined in Problem 4.2.

We use y(P ) = \~\sigma (P ) - \rho (P ) to denote the number of vertices in connected com-
ponents that contain at least one seed and one cycle. The following lemma follows in
a similar manner to [8, Theorem 8.9].

Lemma 6.4. Given that the events \=\tau 1, \=\tau 2 happen, the expected number of vertices
in connected components that contain at least one seed and one cycle satisfies

E [y(P ) | \=\tau 1, \=\tau 2] \leq 
sL2d3

2n(1 - d)
\cdot 1

P [\=\tau 1, \=\tau 2]
.

Now we prove the main theorem.
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Proof of Theorem 6.1. First, we show that E \widetilde G [\rho (P ) | \=\tau 1, \=\tau 2] is a good approxi-
mation of the expected number of infections E \widetilde G [\~\sigma (P )].

By using the law of total expectation, the expected number of infections \~\sigma (P )
can be divided into three parts as follows,

E \widetilde G [\~\sigma (P )] = E \widetilde G [\~\sigma | \tau 1]P [\tau 1] + E \widetilde G [\~\sigma | \=\tau 1, \tau 2]P [\=\tau 1, \tau 2] + E \widetilde G [\~\sigma | \=\tau 1, \=\tau 2]P [\=\tau 1, \=\tau 2] .

Then, we give upper bounds of these three terms individually. Note that the first
term corresponds to the event that large components exist. By Lemma 6.2, we have

E \widetilde G [\~\sigma (P ) | \tau 1]P [\tau 1] \leq n \cdot 1

n2
=

1

n
.

When the largest component in \widetilde G has size at most L, the number of infections is at
most sL. By Lemma 6.3, the second term for the seeds collision case is

E \widetilde G [\~\sigma (P ) | \=\tau 1, \tau 2]P [\=\tau 1, \tau 2] \leq sL \cdot P [\=\tau 1, \tau 2] \leq 
2s3L2

n
.

For the third term, we separate the infections in connected components with cycles
from the infections in those without cycles, \~\sigma (P ) = \rho (P ) + y(P ). By Lemma 6.4, we
derive

E \widetilde G [\~\sigma (P ) | \=\tau 1, \=\tau 2]P [\=\tau 1, \=\tau 2] \leq E \widetilde G [\rho (P ) | \=\tau 1, \=\tau 2]P [\=\tau 1, \=\tau 2] +
sL2d3

2n(1 - d)
.

Thus, the expected number of infections \~\sigma (P ) is at most

E \widetilde G [\~\sigma (P )] \leq E \widetilde G [\rho (P ) | \=\tau 1, \=\tau 2] +
sL2d3

2n(1 - d)
+

2s3L2

n
+

1

n
.

By Lemmas 6.2 and 6.3, the expected number of infections can be lower bounded
by

E \widetilde G [\~\sigma (P )] \geq E [\~\sigma (P ) | \=\tau 1, \=\tau 2]P [\=\tau 1, \=\tau 2] \geq 
\biggl( 
1 - 1

n2

\biggr) \biggl( 
1 - 2s2L

n

\biggr) 
E [\rho (P ) | \=\tau 1, \=\tau 2] .

If the number of seeds s = O(n
1
3 - c) for any constant c > 0, then we have

E \widetilde G [\~\sigma (P )] \approx o(1) E \widetilde G [\rho (P ) | \=\tau 1, \=\tau 2] .

Given that events \=\tau 1, \=\tau 2 happen, the connected components considered in \rho (P )
are all trees with exactly one seed. For such connected components, it is easy to
check that the number of infected vertices \rho (P ) is a monotone supermodular function
with respect to the deletion edges. Since the momotonicity and supermodularity of
\rho (P ) holds for all instances conditioned on \=\tau 1 and \=\tau 2, it also holds for the expectation
E [\rho (P ) | \=\tau 1, \=\tau 2].

6.2. Expected number of infections for a random contact network. In
this section, we assume the contact network G is generated from a random graph
\scrG (n, p1), and the contagion network \widetilde G is again sampled from G with probability p for
each edge. Further, the set of seeds is fixed before the contact network is generated.
Combining these two random processes, the contagion network \widetilde G can be seen as being
generated from a random graph \scrG (n, p1p). If the probability p1p < 1, we have already
shown that E [\~\sigma ] \approx o(1) E [\rho | \=\tau 1, \=\tau 2].

Suppose that the contact network G is realized and given as the problem input.
We prove that the conditional expectation of infections given the contact network G
satisfies E \widetilde G [\~\sigma | G] \approx o(1) E \widetilde G [\rho | G, \=\tau 1, \=\tau 2] with high probability.
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Theorem 6.5. Suppose the contact network G is generated from a random graph
model \scrG (n, p1). If the number of seeds s = O(n

1
3 - c) for any constant c, then with

high probability, the expected number of infections satisfies that for all P \subseteq Q

E \widetilde G [\~\sigma (P ) | G] \approx o(1) E \widetilde G [\~\sigma \prime (P ) | G] ,

where E \widetilde G [\~\sigma \prime (P ) | G]
def
= E \widetilde G [\rho (P ) | G, \=\tau 1, \=\tau 2] is a monotone supermodular function.

Theorem 6.5 shows that E \widetilde G [\sigma (P ) | G] can be effectively minimized by a greedy
algorithm. In this case, Algorithm 1 takes as inputs the function E \widetilde G [\~\sigma \prime (P ) | G], a
candidate set Q, initial states of nodes, and an integer k. It returns a set P such that
E \widetilde G [\~\sigma (∅) | G] - E \widetilde G [\~\sigma (P ) | G] \geq (1 - 1/e - o(1) - \epsilon )

\bigl( 
E \widetilde G [\~\sigma (∅) | G] - E \widetilde G [\~\sigma (P \ast ) | G]

\bigr) 
holds with high probability, where P \ast is the optimum solution of E \widetilde G [\~\sigma (P ) | G]. Again,
the computation of E \widetilde G [\~\sigma \prime (P ) | G] is discussed in section 8.1.

Proof. In Theorem 6.1, we show that

E [\~\sigma ] - E [\rho ] \leq E [\~\sigma ] - E [\rho | \=\tau 1, \=\tau 2]P [\=\tau 1, \=\tau 2] \leq 
sL2d3

2n(1 - d)
+

2s3L2

n
+

1

n
.(6.1)

By the law of total expectation, we know that

E [\~\sigma ] - E [\rho ] = EG

\bigl[ 
E \widetilde G [\~\sigma | G] - E \widetilde G [\rho | G]

\bigr] 
(6.2)

= EG

\bigl[ 
E \widetilde G [\~\sigma | G] - E \widetilde G [\rho | G, \=\tau 1, \=\tau 2]P \widetilde G [\=\tau 1, \=\tau 2 | G]

\bigr] 
 - E [\rho | \=\tau 1, \tau 2]P [\tau 2, \=\tau 1] - E [\rho | \tau 1] \cdot P [\tau 1]

\geq EG

\bigl[ 
E \widetilde G [\~\sigma | G] - E \widetilde G [\rho | G, \=\tau 1, \=\tau 2]P \widetilde G [\=\tau 1, \=\tau 2 | G]

\bigr] 
 - 1

n
 - 2s3L2

n
,

where the last inequality is due to Lemmas 6.2 and 6.3.
Let the random variable Z be E \widetilde G [\~\sigma | G]  - E \widetilde G [\rho | G, \=\tau 1, \=\tau 2]P \widetilde G [\=\tau 1, \=\tau 2 | G]. By

combining two inequalities (6.1) and (6.2), we have

EG [Z] \leq E [\~\sigma ] - E [\rho ] +
1

n
+

2s3L2

n
\leq sL2d3

2n(1 - d)
+ 2

\biggl( 
2s3L2

n
+

1

n

\biggr) 
.

Setting \lambda 0 = s3/n1 - c for any constant c > 0, by Markov's inequality, we have

P [Z \geq \lambda 0] \leq 
EG [Z]

\lambda 0
\leq L2d3

2nc(1 - d)s2
+

6L2

nc
,

which implies, with high probability, that

0 \leq E \widetilde G [\~\sigma | G] - E \widetilde G [\rho | G, \=\tau 1, \=\tau 2]P \widetilde G [\=\tau 1, \=\tau 2 | G] \leq \lambda 0.

To show the approximation result, we need to show that P \widetilde G [\=\tau 1, \=\tau 2 | G] is close to
1 with high probability. By Lemmas 6.2 and 6.3, we have

EG

\bigl[ 
1 - P \widetilde G [\=\tau 1, \=\tau 2 | G]

\bigr] 
= 1 - P [\=\tau 1, \=\tau 2] = P [\tau 1] + P [\tau 2, \=\tau 1] \leq 

1

n2
+

2s2L

n
.
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By using Markov's inequality, we have

P
\bigl[ 
1 - P \widetilde G [\=\tau 1, \=\tau 2 | G] \geq \lambda 0

\bigr] 
\leq 

EG

\bigl[ 
1 - P \widetilde G [\=\tau 1, \=\tau 2 | G]

\bigr] 
\lambda 0

\leq 3L

snc
,

which implies that P \widetilde G [\=\tau 1, \=\tau 2 | G] \geq 1 - \lambda 0 with high probability.
Therefore, by using the union bound, we conclude, with probability at least

1 - O(L2/nc), that

E \widetilde G [\~\sigma (P ) | G] \approx \lambda 0
E \widetilde G [\rho (P ) | G, \=\tau 1, \=\tau 2] ,

where \lambda 0 = s3/n1 - c for any constant c > 0. Note that E \widetilde G [\rho (P ) | G, \=\tau 1, \=\tau 2] is a
supermodular function of the set of removed edges P .

7. Supermodularity for the IC-SIR model in SBMs. In this section, we
consider the IC-SIR model on the network generated from SBMs. We assume there
are \kappa = O(lnn) communities with n nodes. The set of seeds is still fixed before the
contact network and the contagion network are generated.

In section 7.1 we investigate the expected number of infections in the IC-SIR
model where the contact network is complete and the contagion network \widetilde G is sam-
pled from \scrS \scrB \scrM (n, \kappa ,\bfitQ ). In section 7.2 we investigate the case where the contact

network G is generated from \scrS \scrB \scrM (n, \kappa ,\bfitQ ) and the contagion network \widetilde G is again
sampled from G with probability p for each edge.

7.1. Expected number of infections in SBMs. Given a complete contact
network, we consider the contagion network \widetilde G generated from \scrS \scrB \scrM (n, \kappa ,\bfitQ ), where
\kappa = O(lnn), matrix \bfitQ is symmetric, and \bfitQ 1 is entrywise less than 1

n1. In this case,

we prove that the expected number of infections \~\sigma (P ) over the contagion network \widetilde G
is a (1 \pm o(1)) approximation of a supermodular function. For simplicity, we define
dij = nQij as the expected degree between block i and block j. We further let dinit
be the maximum intrablock expected degree, defined as dinit = n \cdot max (diag (\bfitQ )),
and dend be the maximum expected degree, defined as dend = n \cdot max (\bfitQ 1).

Similar to the analysis of ER random graphs, we define \tau 1 as the event that the
graph includes connected components with size greater than L\ast = 9(1 - dend)

2 ln(n\kappa ).
Let \tau 2 be the event that there is at least one component with more than one seed.
Let events \=\tau 1 and \=\tau 2 be their complements, respectively. Since the set of seeds is fixed
before the generation of the contagion network, the seeds in each community can be
seen as sampled from each community uniformly at random afterward.

Theorem 7.1. If the number of blocks \kappa = O(lnn), the number of seeds s =

O(n
1
3 - c), and dend < 1 - c for any absolute constant c > 0, then for all P \subseteq Q,

E \widetilde G [\~\sigma (P )] \approx o(1) E \widetilde G [\~\sigma \prime (P )] ,

where E \widetilde G [\~\sigma \prime (P )]
def
= E \widetilde G [\rho (P ) | \=\tau 1, \=\tau 2] is a monotone supermodular function of the

edge deletion set P .

Theorem 7.1 shows that E \widetilde G [\~\sigma (P )] is a close approximation to a monotone super-
modular function. Therefore, similar to the result in section 6.1, a greedy algorithm
returns a set P which gives a (1  - 1/e  - o(1)  - \epsilon )-approximation of the optimum
decrease of the expected number of infections.

We start by proving that \tau 1 happens with a small probability.
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Lemma 7.2. The probability that the contagion network \widetilde G has a connected com-
ponent with size greater than L\ast is bounded by

P [\tau 1] \leq n - 2 .

Proof. The proof is the same as the proof of Lemma 6.2 except that the number
of new leaves Zt is the sum of n\kappa independent Bernoulli random variables with var-
ious probabilities of success, instead of i.i.d. Bernoulli random variables. The result
follows from the Chernoff bound by using dend to upper bound the expected degree
of each node.

We also obtain the following lemma, which is almost the same as Lemma 6.3.

Lemma 7.3. The probability that there is at least one component with more than
one seed conditioned on event \=\tau 1 is

P [\tau 2 | \=\tau 1] \leq 
2s2L\ast 

n
,

where s is the number of seeds.

Proof. We omit the proof since the approach is identical to that of Lemma
6.3.

The key to the proof of Theorem 7.1 is an upper bound for the expected number
of nodes in connected components with cycles, which is given by the following lemma.

Lemma 7.4. Given that the events \=\tau 1 and \=\tau 2 happen, the expected number of ver-
tices in connected components which contain at least one seed and one cycle satisfies

E [y(P ) | \=\tau 1, \=\tau 2]P [\=\tau 1, \=\tau 2] = O

\biggl( 
s(lnn)4mbin

n

\biggr) 
,

where mbin
def
= 4

\bigl\lceil 
(1 - dinit)

2/(1 - dend)
2
\bigr\rceil 
.

The proof of Lemma 7.4 is in Appendix E.

Proof of Theorem 7.1. Similar to the proof of Theorem 6.1, we use the bounds
given by Lemmas 7.2, 6.3, and 7.4 to prove that E \widetilde G [\~\sigma (P )] \approx o(1) E \widetilde G [\rho (P ) | \=\tau 1, \=\tau 2].
The monotonicity and supermodularity of E \widetilde G [\rho (P ) | \=\tau 1, \=\tau 2] again follows from the

fact that for all instances of \widetilde G where \=\tau 1 and \=\tau 2 happen, the set function \rho (P ) is
monotone supermodular.

7.2. Expected number of infections for a random contact network in
SBMs. In this section, we assume the contact network G is generated from \scrS \scrB \scrM (n, \kappa ,

\bfitQ ), and the contagion network \widetilde G is again sampled from G with probability p for each

edge. Thus, the contagion network \widetilde G can be seen as generated from \scrS \scrB \scrM (n, \kappa , p\bfitQ ).
We assume that the probability matrix \bfitQ satisfies that p\bfitQ 1 is entrywise less than
1
n1. In this case, the maximum expected degree dend = n \cdot max (p\bfitQ 1) is less than 1.

We obtain a result similar to Theorem 6.5 for a given contact network generated
from \scrS \scrB \scrM (n, \kappa ,\bfitQ ).

Theorem 7.5. Suppose the contact network G is generated from a stochastic block
model \scrS \scrB \scrM (n, \kappa ,\bfitQ ). If the number of blocks \kappa = O(lnn), the number of seeds

s = O(n
1
3 - c), and dend < 1  - c for any absolute constant c > 0, then with high

probability, the expected number of infections satisfies that for all P \subseteq Q,

E \widetilde G [\~\sigma (P ) | G] \approx o(1) E \widetilde G [\~\sigma \prime (P ) | G] ,
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where E \widetilde G [\~\sigma \prime (P ) | G]
def
= E \widetilde G [\rho (P ) | G, \=\tau 1, \=\tau 2] is a monotone supermodular function of

the edge deletion set P .

Proof. The proof is omitted due to the similarity to the proof of Theorem 6.5.

Similar to section 6.2, we conclude that a greedy algorithm can be used to effec-
tively minimize E \widetilde G [\~\sigma (P ) | G] with high probability.

8. Discussion. In this section, we discuss the efficiency and the robustness of
the proposed algorithm for the IC-SIR model and some issues related to real-world
networks. In section 8.1, we present an algorithm to efficiently approximate the ex-
pected number of infections in the IC-SIR model. In section 8.2, we consider the
performance of our algorithm for the case where adversarial nodes are present in the
contact network. In section 8.3 we discuss the heterogeneity and temporal nature of
the real-world networks that should be considered when applying the algorithms to
real scenarios.

8.1. Approximating the expected number of infections in the IC-SIR
model. In the IC-SIR model, we need to approximate the expected number of infec-
tions E [\~\sigma (P )] and its (1 \pm o(1))-approximation E [\~\sigma \prime (P )] on a contact network. We
do so by sampling contagion networks, similar to the approach used in [9, 6]. For a
given set of seeds and a contact network, we repeatedly execute the sampling process
defined as follows:

We start by sampling a contagion network and a uniformly sampled terminal
node. This process is defined as a success if this terminal node is reachable from the
set of seeds. Among R rounds of this process, let Rs be the number of total successes.
Then, we use Rsn/R as the estimator of the expected number of infections E [\~\sigma ].

Proposition 8.1. For R = O(\epsilon  - 2n lnn) rounds of the sampling processes, we
can approximate the expected number of infections E [\~\sigma (P )] for all sets P and its
marginal gains upon edge deletion in the IC-SIR model within a factor of (1\pm \epsilon ) with
high probability.

Proof. For R = O(\epsilon  - 2n lnn) rounds, by the Chernoff bound, the estimator Rsn/R
is a (1\pm \epsilon )-approximation to the expected number of infections with high probability.
Then we consider updating the expected number of infections upon deleting a set P of
edges from the contact network. Since all terminals and contagion networks are mutu-
ally independent, we can use the same pairs of terminal node and contagion network
with different P . We check the reachability of a node in the corresponding contagion
network without using edges in P . For a greedy algorithm it suffices to know whether
the current edge e \in Q\setminus P is a bridge that separates the terminal and the seeds in the
contagion graph to compute the marginal gains E [\~\sigma (P )]  - E [\~\sigma (P \cup \{ e\} )]. Then we
use the number of successes without using edges in P and P \cup \{ e\} to estimate E [\~\sigma (P )]
and the marginal gains for all remaining candidate edges. Due to the Chernoff bound,
the resulting expectations and the marginal gains are well approximated with high
probability. The overall high probability guarantee follows by a union bound.

Remark 8.2. We can approximate the function E [\~\sigma \prime (P )] = E [\rho (P ) | \=\tau 1, \=\tau 2] for all
sets P and its marginal gains by modifying the sampling process as follows. If the
sampled contagion network has large connected components or seeds collision corre-
sponding to events \tau 1, \tau 2, respectively, then we resample the contagion network. If the
terminal node is contained in a connected component with cycles, then this process
is seen as a failure.
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8.2. Robustness of the algorithm for the IC-SIR model. We discuss the
robustness of the algorithm in the IC-SIR model, in the presence of O(lnn) oblivious
adversarial nodes, which add incident edges to the graph without information about
the seeds and the graph except for its direct neighbors. To this end, we consider a
contact network generated from an ER graph or a SBM with adversarial perturbation.
After the generation of the contact network, the adversarial nodes randomly augment
their connections to other nodes. In the following, we give an example of such an
adversarial model.

Example 8.3. Consider a contact network constructed as follows: let G0 = (V,E0)
be a random graph generated from \scrG (n, p1), where p1 = (lnn)/n. Then, we choose
O(lnn) adversarial nodes and add \nu nonexisting edges to each of them uniformly
at random. Let E1 be the set of edges added. Thus, the contact network is G =
(V,E0\cup E1). The contagion network \widetilde G is sampled from G with probability p < 1/ lnn.
Then, we consider the following two cases.

If the number of edges added to each adversarial node \nu \geq 4 lnn, then by the
Chernoff bound, the degree of a node in a random graph is at most 4 ln n with prob-
ability at least 1  - (1/n)4/5. Thus, we can identify these adversarial nodes easily in
this case by checking the degree of each node in the contact network. In this case
we need to reduce the degree of these nodes to at most 4 ln n, which will reduce the
network to the following situation.

If the number of edges added to each adversarial node \nu < 4 lnn, then these
adversarial nodes could potentially connect several connected components in \widetilde G. We
note that the degree for any adversarial nodes after the edge addition is at most 8 ln n
with high probability. Given that \widetilde G - (V,E1) has only connected components of sizes
O(lnn), these adversarial nodes can add a connected component with size at most

O(ln3 n). Since the number of seeds is n
1
3 - c for any c > 0, the probability that the

aforementioned connected component has at least one seed is O(n - 2
3 - c \cdot ln3 n). There-

fore, in the worst case, it will induce an O(n - 2
3 - c \cdot ln6 n) = o(1) expected difference

between \~\sigma and \rho .

8.3. Real-world networks. Real-world networks exhibit certain properties that
can potentially affect the effectiveness of the algorithm.

Many real-world networks have a skewed degree distribution. Such networks are
often well connected through a few hub nodes, which are harmful to the mitigation.
In such a case we need to preprocess the network to decrease the maximum degree of
the network. An example is given in section 9. By decreasing the maximum degree
we can reduce the heterogeneity of the network and eliminate dense clusters.

Real-world contacts can be better characterized by time varying networks, also
known as temporal networks. We recall that in our G-SIR model, the indicator random
variables \beta ij(t) can be viewed as the product of two independent random variables
\^\beta ij(t) and \widetilde \beta ij(t), where \^\beta ij(t) determines the contact work and \widetilde \beta ij(t) determines the
infection in the contact network. Under such a view, the contact network, determined
by indicator variables \^\beta ij(t) for all edges, are time-varying. Specifically, these variables
are defined to be probabilistic and i.i.d. with respect to time. For general temporal
networks we can only take the union of all edges and run the algorithm on the union
graph. For the IC-SIR model in temporal networks, we can sample each edge which
has a timestamp independently. Each edge is activated when one of its neighbors is
infected at the same time. However, for the G-SIR model, such an approach certainly
affects the effectiveness of the algorithm. We also note that this approach requires tem-
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poral information of all edges beforehand, while in real life such information is likely
to be streaming. Further study should be given for temporal networks in future work.

9. Numerical results. In this section we run experiments to show the effec-
tiveness of the proposed algorithms in all considered models. We first study the
effectiveness of our greedy algorithms in the D-SIR and IC-SIR models by comparing
it to two baseline algorithms, Random [12] and Max-Degree [3].

\bullet Greedy: choose an edge greedily at each round with respect to the objective
function, as shown in Algorithm 1.

\bullet Max-Degree: remove an edge incident to the node with the maximum degree
at each round.

\bullet Random: remove edges chosen uniformly at random from the network.

9.1. D-SIR simulations. For the D-SIR model, we run experiments on an ER
random graph with 500 nodes and the connection probability 0.0249. The edges in
the network are always bidirectional, with possibly different infection rates for the
two directions. For a generated graph G(V,E) with 3142 edges, we uniformly at
random pick the recovery rate Di \in [0.28, 0.35] for each i and the infection rate
Bij \in [0.011, 0.034] for each i, j pair. Then, we uniformly at random sample five
nodes from the network as the set of seeds \scrS , whose initial infection probabilities,
xu(0) for all u \in \scrS , are uniformly at random chosen from [0.8, 0.9]. For any other
node u /\in \scrS , its infection probability is xu(0) = 0. Each node v \in V has an initial
removed probability rv(0) uniformly at random chosen from [0, 0.05]. The candidate
set Q has 1571 edges which are randomly and uniformly chosen from the edge set E.
Further, we run three algorithms to choose the edge deletion set P \subseteq Q satisfying
| P | \leq k for k = 523. We show the results of the three algorithms for both the number
of infections \sigma and the proposed upper bound of the number of infections \^\sigma in Figure 1.
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Fig. 1. In the D-SIR model, the number of infections \sigma and the proposed upper bound of
infections \^\sigma for the edge deletion sets given by Greedy, Max-Degree, and Random algorithms on the
ER network and the preprocessed Haslemere contact network. The title of the horizontal axis k is
the number of removed edges.
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Next we simulate the dynamics over a real contact network collected in Haslemere,
England using mobile technologies [25, 17]. In this example, the contact network has
469 nodes and 1262 edges, with the maximum degree equal to 37. For this contact
network, the condition for the exponential stable in Theorem 5.3 can only be guaran-
teed with small infection rates and large recovery rates. To address a more realistic
setting, we preprocess the contact network by greedily removing some edges from the
high degree nodes as the Max-Degree algorithm does. This constraint on the max
degree of nodes can be implemented in reality by posing restrictions on gathering [29]
or shelter-in-place orders [16]. The preprocessed network has 877 edges, with the
maximum degree equal to 8. Then we set Di = 0.5 for each i and Bij \in [0.056, 0.063]
for each i, j pair. We choose the candidate set Q with 518 edges uniformly at random
from the edge set. The results of three algorithms with k = 219 on the preprocessed
network are shown in Figure 1.

The results clearly show that our algorithm outperforms the two heuristic al-
gorithms in minimizing the number of infections on both the ER network and the
Haslemere contact network. We can also observe that the results for the upper bound
\^\sigma and the expected number of infections \sigma behave consistently in these examples.

9.2. IC-SIR simulations. For the IC-SIR model, we implement three algo-
rithms on three different networks, the ER network, the SBM network, and the
Haslemere network with preprocessing. The approximations of the expected num-
ber of infections after deleting k edges returned by three algorithms are shown in
Figure 3.

We first run experiments on an ER network G(V,E) with 1251 edges sampled
from \scrG (n, p1), where n = 500 and p1 = 0.01. The activation probability p for each
edge in E is 0.16. The candidate set with 625 edges is chosen from the contact network
uniformly at random. We randomly and uniformly choose 5 nodes in V as seeds.

Second, we consider a SBM network sampled from \scrS \scrB \scrM (n, \kappa ,\bfitQ ), where n = 100,
\kappa = 5, and the entries Qij for i, j \in [\kappa ] are set as Qij = 0.023 for i = j and
Qij \in [0.0036, 0.0046], chosen uniformly at random. The generated contact network
has 995 edges. The candidate set with 497 edges is chosen from the contact network
uniformly at random. The activation probability p is set as 0.21. The set of seeds
with 5 nodes is chosen from the network uniformly at random.

Third, we run experiments on the Haslemere network with preprocessing, intro-
duced in section 9.1. For this network, we let the connection probability be 0.179 and
uniformly sample half of the edges in the contact networks as the candidate sets.

The results show that our algorithm outperforms the two considered heuristics
in minimizing the expected number of infections in all three networks. Since we have
proved that the expected number of infections E [\~\sigma ] is a (1 \pm o(1))-approximation of
E [\~\sigma \prime ], we also apply Algorithm 1 with the input E [\~\sigma ] to the preprocessed Haslemere
network. In Figure 2, we compare the results returned by Algorithm 1 with the in-
put E [\~\sigma \prime ] (Greedy) and E [\~\sigma ] (Greedy-2), respectively. The results show that the
performance of Greedy and Greedy-2 are almost identical.

Then we show the performance of Greedy-2 on the Haslemere network with and
without preprocessing in Figure 3. In the Haslemere network without preprocess-
ing, the Greedy-2 algorithm is marginally better than the two heuristics. Similar
degeneration of the effectiveness of the greedy algorithm is observed in networks with
power-law degree distributions. These examples highlight that our algorithm does
not perform well on networks with relatively high max degree, as expected from the
discussion in section 8.2.
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Fig. 2. In the IC-SIR model, the expected number of infections E [\~\sigma ] for the edge deletion
sets given by Greedy, Max-Degree, and Random algorithms on the ER network, the contact network
generated from the SBM model, the Haslemere contact network with preprocessing. The bottom-right
figure compares the results of Algorithm 1 with the input E [\~\sigma \prime ] (Greedy) and E [\~\sigma ] (Greedy-2). The
title of the horizontal axis k is the number of removed edges.
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Fig. 3. In the IC-SIR model, the expected number of infections E [\~\sigma ] for the edge deletion sets
given by Greedy-2, Max-Degree, and Random algorithms on the Haslemere contact network with and
without preprocessing. The title of the horizontal axis k is the number of removed edges.

9.3. Comparison of two proposed algorithms. Here we compare the per-
formance of the greedy algorithm in Algorithm 1 when using objectives \^\sigma from the
D-SIR model versus E [\~\sigma ] from the IC-SIR model. We implement the results of the
algorithms on the G-SIR model to evaluate their effectiveness, while also considering
computation costs.

For both models we run the greedy algorithm on an ER network with 50 nodes and
connection probability p = 0.08. The generated network has 98 edges. We choose 5
fixed nodes as the set of seeds. We run the G-SIR simulations 15000 times. According
to the Hoeffding's bound, we have a probability of at least 0.9 to obtain an error less
than or equal to 0.25. For the D-SIR model, Figure 4 shows the expected number of
infections in the G-SIR model, the upper bound \^\sigma , and the number of infections \sigma in
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Fig. 4. The expected number of infections for the edge deletion sets returned by the greedy
algorithm in Algorithm 1 using objectives \^\sigma in the D-SIR model and E [\~\sigma \prime ] in the IC-SIR model
on the ER network. We compare the results of the algorithm by implementing them on the G-SIR
model with the approximations \^\sigma (Upper), \sigma (D-SIR), and the estimated E [\~\sigma ] (IC-SIR).

the D-SIR model. In the IC-SIR model, the activation probability of an edge (j, i) is
set to be the cumulative infection rate from node j to i, which is (1  - (1  - Dj)(1  - 
Bij))

 - 1Bij . The figure shows the expected number of infections estimated in the
G-SIR model and the corresponding IC-SIR model. We show that the two algorithms
perform similarly in minimizing the number of infections. The IC-SIR model gives a
better estimation for the G-SIR model in terms of the expected number of infections.

In our implementations, the running time of the algorithm for the D-SIR model is
O(n3 + k(n2 + qn)); the running time of the algorithm for the IC-SIR model with the
input E [\~\sigma \prime ] or E [\~\sigma ] is O(kqn2 lnn/\epsilon 2). Since we let q = O(n) and k = O(q) in all the
experiments, the algorithm for the D-SIR model runs much faster than the algorithm
for the IC-SIR model. We note that the running time of the latter algorithm can
be improved by designing data structures to efficiently maintain the connectivity of
the generated contagion networks upon edge deletion. Discussion about this topic is
beyond the scope of this paper.

10. Conclusion. In this paper we studied the expected number of infections
in a Markov chain SIR model and its two instantiations: the D-SIR model and the
IC-SIR model. We focused on the problem of minimizing the number of infections
by deleting edges from a given candidate edge deletion set in these models. We pro-
posed a greedy algorithm for each model and provided guarantees for the performance
of these algorithms under certain conditions. For the D-SIR model, we proposed a
monotone supermodular upper bound for the number of infections when the system
is exponentially stable. For the IC-SIR model we proved that the expected number of
infections is a close approximation to a monotone supermodular function with high
probability when (1) the contact network is sampled from an ER graph or a SBM with
a small number of blocks; (2) the number of initial infections are relatively small; and
(3) the average degree in the contagion network is less than 1. We validated the ac-
curacy of the two models and the effectiveness of the proposed algorithms by running
experiments on several synthesized networks and a real contact network. The results
showed that the two models approximate the Markov chain SIR model well. The
simulations show that the proposed algorithms can be used to minimize the number
of infections effectively when the network does not contain highly connected nodes.
Therefore, from this we learn that in order to enable effective targeted mitigation
strategies based on contact tracing, the maximum degree in the network needs to be
contained by implementing general measures.
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Future work can consider the edge removing problem in a time-varying contact
network. The problem can be formulated as an offline or an online problem. In addi-
tion, the contact network is assumed to be known without uncertainty in this paper.
Designing adaptive algorithms to update the edge deletion set using new observations
of the network or the process is another interesting future direction.

Appendix A. Proofs from section 3.

Proof of Proposition 3.1. Consider any directed edge from node j to node i in
the G-SIR model. If the node j is infected, then this edge will be activated with
probability pij =

\sum \infty 
t=0((1 - Dj)

t(1 - Bij)
tBij) = (1 - (1 - Dj)(1 - Bij))

 - 1Bij . We
note that this activation probability is fixed regardless of the time or ordering of the
infections. Thus, we can first sample each edge with probability pij independently.
Then, the expected number of infected nodes in the sampled subgraph is exactly the
same as the expected number of infected nodes in the G-SIR model. This second
process is equivalent to an IC-SIR model with infected rates pij for all edges.

Proof of Proposition 3.2. From Proposition 3.1 we know that a symmetric di-
rected IC-SIR with pij = (1 - (1 - Dj)(1 - Bij))

 - 1Bij has the same expected number
of infections as the symmetric G-SIR model. It remains to be shown that an undi-
rected IC-SIR with pij for the undirected edge \{ i, j\} has the same number as the
symmetric IC-SIR.

Given an undirected IC-SIR model, we consider an edge \{ i, j\} . Since any infected
node recovers in one time step, each edge can change the number of infections at the
first time that any of its incident nodes are infected. If i and j are infected at the
same time, then the activation probability of \{ i, j\} does not matter and can be set to
pij . Otherwise only one of (i, j) and (j, i) in the symmetric IC-SIR model matters,
with activation probability pij . Therefore, by setting pij as described in Proposi-
tion 3.2, the undirected IC-SIR model has the same expected number of infections as
the symmetric directed IC-SIR model.

Appendix B. Proof from section 4.
For the D-SIR model, we consider the case where

Di = 0 \forall i \in V ; Bij > 0 \forall (j, i) \in E; Q = E.(B.1)

For the IC-SIR model, we consider the case where

Bij = 1 \forall (j, i) \in E; Q = E,(B.2)

such that the contagion network is equivalent to the contact network. With these
parameters, both Problems 4.1 and 4.2 become equivalent to the graph partitioning
problem formulated in [15].

In particular, we study the following decision problem.

Problem B.1. Given a graph G = (V,E) with n nodes, a vector \bfits \in \{ 0, 1\} n which
defines the set of seeds \scrS = supp(\bfits ), a candidate edge deletion set Q \subseteq E with
| Q| = q, and two integers 0 < k \leq q and 0 \leq z \leq n, decide whether or not there
exists an edge set P , with | P | = k, such that after removing edges in P , the number
of nodes that are reachable from the seeds is less or equal to z.

The hardness of Problem B.1 follows from the NP-completeness of the minimum
bisection of 3-regular graphs.
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Lemma B.2 ([11, Theorem 2.12]). The problem of deciding whether or not a
d-regular graph has a bisection of size b or less is NP-complete, whenever d \geq 3 and
b = n\epsilon for any fixed \epsilon \in (0, 1).

Proof of Theorem 4.4. We consider Problem 4.1 under the condition (B.1) or
Problem 4.2 under the condition (B.2).

We construct an instance as follows. For a 3-regular graph \widehat G = (V,E) with n
nodes, where n is a even number, we add 3 copies of a star graph G\ast to it, denoted
G\ast 

(1) = (V1, E1), G
\ast 
(2) = (V2, E2), and G\ast 

(3) = (V3, E3). Each one of the (n + 1)-node
star graphs has n leaves supported on V . The central nodes of the 3 stars are denoted
as v(1), v(2), and v(3), respectively.

Then we construct the graph G\prime = \widehat G+G\ast 
(1)+G\ast 

(2)+G\ast 
(3). We consider an instance

of Problem B.1 with the input G = G\prime , \scrS = \{ v(1), v(2), v(3)\} , Q = E \cup E1 \cup E2 \cup E3,

k = b+ 3n
2 , and z = 3 + n

2 .
We provide an interactive proof.
Completeness: If there is a bisection of \widehat G with size b, then by definition there is

a partition of nodes S and \=S
def
= V \setminus S, such that the number of edges in between is

b = | C(S, \=S)| , and | S| = | \=S| = n/2. By cutting b edges between S and \=S, and all the
edges (u, v(i)), for all u \in S and i \in \{ 1, 2, 3\} , we separate n/2 nodes from the rest of
the graph. Therefore, the number of nodes reachable from the seeds is equal to 3+ n

2 .

Soundness: It suffices to prove that if there is no bisection of size b or less for \widehat G,
then there is no such set P , with | P | = b + 3n

2 , such that by removing edges in P ,
n
2 nodes are no longer reachable from the seeds. We prove it by contradiction. We

assume the bisection of size b for \widehat G does not exist. If there exists such a set P for
the constructed instance of Problem B.1, then P contains a cut C(S, \=S) of graph G\prime 

with at most b+ 3n
2 edges, with | S| \geq n/2 and S \cap \scrS = ∅. If | S| = n/2, then P \cap E

contains a bisection of \widehat G of size less than or equal to b. Therefore, we have constructed
a contradiction. If | S| > n/2, one can always find an vertex u \in S, such that
| C(S\setminus \{ u\} , \=S\cup \{ u\} )| \leq b+ 3n

2 , since u has at most three neighbors in S and at least three

neighbors in \=S. By repeating this process we arrive at a new cut C \prime def
= C(S\prime , \=S\prime ) of G\prime 

such that | C(S\prime , \=S\prime )| \leq b+ 3n
2 , | S| = n/2, and S \cap \scrS = ∅. Then C \prime \cap E is a bisection

of \widehat G with size b or less. Again, we obtain a contradiction, concluding the proof.

Remark B.3. In the proof of Theorem 4.4 we constructed hard instances with
R0 = 6n/(n + 3). We note that similar hard instances can be constructed when \widehat G
is a d-regular graph. In addition, we can attach new nodes to each node u in \widehat G by
adding probabilistic edges (which are not in Q). By applying these two techniques,
we can construct hard instances for any given R0 > 0 in an IC-SIR model.

Appendix C. Proof from section 5.

Proof of Lemma 5.2. Since \| \bfitM  - P \| < 1 for any set P \subseteq Q, the inverse of matrix
(\bfitI  - \bfitM  - P ) always exists. We note that (\bfitI  - \bfitM  - P ) is an M-matrix for any edge
deletion set P , which implies that its inverse (\bfitI  - \bfitM  - P )

 - 1 is entrywise nonnegative
by Lemma 2.1.

Consider adding an edge (j, i) to the deletion set P . By the Sherman--Morrison
formula [5], we have

(\bfitI  - \bfitM  - P + (1 - xi(0) - ri(0))Bij\bfite i\bfite 
\top 
j )

 - 1

=(\bfitI  - \bfitM  - P )
 - 1  - c \cdot 

(\bfitI  - \bfitM  - P )
 - 1\bfite i\bfite 

\top 
j (\bfitI  - \bfitM  - P )

 - 1

1 + c\bfite \top 
j (\bfitI  - \bfitM  - P ) - 1\bfite i

,
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in which c = (1  - xi(0)  - ri(0))Bij is a nonnegative number. Let H(P )
def
= (\bfitI  - 

\bfitM  - P )
 - 1. Thus, we have that H(P ) is monotonically nonincreasing as a function of

adding edges to the deletion set.
For an edge deletion set P and any edge e = (j, i) \in Q \setminus P , we derive

H(P ) - H(P \cup (j, i)) =

\int 1

0

c \cdot (\bfitI  - \bfitM  - P )
 - 1\bfite i\bfite 

\top 
j (\bfitI  - \bfitM  - P )

 - 1t dt .

Considering any set P2 satisfying P1 \subseteq P2 and e /\in P2, we have the same result
except that \bfitM  - P is replaced by \bfitM  - P2

. Since we proved that the function H(S) is
monotonically nonincreasing, we have that

H(P1) - H(P1 \cup (j, i)) \geq H(P2) - H(P2 \cup (j, i)) .

Therefore, we proved that function H(P ) is entrywise nonnegative, and entrywise
monotone supermodular with respect to the set of deletion edges.

In addition, we observe that (\bfitM  - P + \bfitD  - \bfitI ) is an entrywise nonnegative
nonincreasing modular function of P . Therefore, the product of (\bfitM  - P + \bfitD  - \bfitI )
and H(P ) is entrywise monotone supermodular. Since the entries of 1 and \bfitx (0) are
all nonnegative, the function \^\sigma (P ) is monotone supermodular.

Appendix D. Proofs from section 6.

Proof of Lemma 6.2. We couple the random graph model with the branching
process [4, section 11.3], which starts from a root and samples n i.i.d. Bernoulli ran-
dom variables with probability p for an active leaf to generate its children at each
time step. Let Yt be the number of active leaves at time step t. If Yt - 1 > 0, then
let Zt be the number of new leaves generated at time t. Thus, each random variable
Zt is the sum of n i.i.d. Bernoulli random variables with probability p. Then, we
consider the recursion Y0 = 1 and Yt = Yt - 1 + Zt  - 1 for all t \geq 1. The number of
vertices generated by this process is an upper bound of the size of the corresponding
connected component in the random graph model.

Let T be the stopping time of this branching process, which is also the number of
vertices generated in this process. Then, we have that the probability of generating
more than t vertices is

P [T > t] \leq P [Yt > 0] = P

\Biggl[ 
t\sum 

i=1

Zt > t

\Biggr] 
.

Since \{ Zi\} ti=1 are independent and each Zi are the sum of n i.i.d. Bernoulli random
variables, by the Chernoff bound, we have

P

\Biggl[ 
t\sum 

i=1

Zt > t

\Biggr] 
\leq exp

\biggl( 
 - (1 - d)2t

3

\biggr) 
.

By setting t = L, we get P [T > L] \leq n - 3. Using the union bound, we get the
probability of any node in a connected component greater than L is at most n - 2.

Proof of Lemma 6.3. Given that the event \=\tau 1 happens, we can put all connected
components in bins with the same capacity L. Let m be the number of bins we used.
All connected components can be placed into less than \lceil 2n

L \rceil bins because we can place
the connected components in a way that each bin is at least half full, with possibly
one extra bin.
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For any fixed bin, the probability that a seed is sampled from any components
from this bin is at most L/n. By using the union bound, the probability of having at
least one bin with more than one seed is

P [\tau 2 | \=\tau 1] \leq 
\biggl( 
s

2

\biggr) 
m

\biggl( 
L

n

\biggr) 2

\leq 2s2L

n
.

Proof of Lemma 6.4. Since deleting edges might remove some cycles in the net-
work, we can upper bound y(P ) by y(∅). We first estimate the number of cycles x in
the random graph \scrG (n, p). According to the analysis in [8, Theorem 8.9], the number

of possible length-z cycles is
\bigl( 
n
z

\bigr) (z - 1)!
2 . The probability that such a length-z cycle

appears in the random graph is pz. Therefore, the expected number of cycles in the
random graph is at most

E \widetilde G [x] \leq 
n\sum 

z=3

\biggl( 
n

z

\biggr) 
(z  - 1)!

2
pz \leq 1

2

n\sum 
z=3

dz \leq d3

2(1 - d)
,(D.1)

where the second inequality follows from the fact that p = d/n.
Suppose the event \=\tau 1 happens, then all connected components in the contagion

network have size at most L. Since all seeds are chosen uniformly at random, the
probability that each seed is sampled from a connected component with cycles is at
most xL/n. Thus, for any fixed random graph, the expected number of connected
components with at least one seed and one cycle is at most sxL/n, where s is the
number of seeds. Since the size of each component is at most L, the expectation of
y(P ) over the set of seeds \scrS is

E\scrS 

\Bigl[ 
y(P ) | \widetilde G, \=\tau 1

\Bigr] 
\leq L \cdot sxL

n
.

Therefore, we have

E [y(P ) | \=\tau 1, \=\tau 2]P [\=\tau 1, \=\tau 2] \leq E [y(P ) | \=\tau 1]P [\=\tau 1] \leq E \widetilde G
\biggl[ 
L \cdot sxL

n
| \=\tau 1

\biggr] 
P [\=\tau 1]

=
sL2

n
E \widetilde G [x | \=\tau 1]P [\=\tau 1] \leq 

sL2

n

d3

2(1 - d)
,

where the second inequality follows from taking the expectation over seeds and the
last inequality holds because E \widetilde G [x | \=\tau 1]P [\=\tau 1] \leq E \widetilde G [x] \leq d3/(2 - 2d).

Appendix E. Proof from section 7.

Proof of Lemma 7.4. An instance of the stochastic block model \scrS \scrB \scrM (n, \kappa ,\bfitQ )
can be viewed as a composition of \kappa random graphs and \kappa (\kappa  - 1)/2 random bipar-
tite graphs. First, we generate all the intrablock edges using probabilities given by
diag (\bfitQ ). By Lemma 6.2 we obtain that each block contains a connected component
of size greater than Linit = 9(1  - dinit)

 - 2 lnn with probability at most n - 2. By the
union bound, the probability that there exists a connected component greater than
Linit = 9(1 - dinit)

 - 2 lnn in the whole network is less or equal to \kappa n - 2.
Similar to the analysis of the ER random graphs, we place the connected compo-

nents into bins with the same capacity Linit, and we refer to these bins as small bins

D
ow

nl
oa

de
d 

07
/2

7/
22

 to
 1

28
.4

6.
74

.2
03

 . 
R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

S270 Y. YI, L. SHAN, P. E. PAR\'E, AND K. H. JOHANSSON

hereafter. In addition, according to (D.1), the expected number of cycles given that
\=\tau 1 happens satisfies

E [x | \=\tau 1] \leq \kappa \cdot (dinit)
3

2(1 - dinit)
\cdot 1

P [\=\tau 1]
.

We denote the current network by \widetilde G(\kappa ), indicating that \kappa random graphs have
been generated. Then we add the random bipartite graphs to the graph until we
obtain \widetilde G = \widetilde G(\kappa 2).

Suppose at some point we have constructed the graph \widetilde G(\kappa +\alpha  - 1), with \kappa ran-
dom graphs and \alpha  - 1 random bipartite graphs generated. We consider the expected
incremental number of cycles added to the graph when we add the \alpha th random bi-

partite graph \widetilde G(\alpha )
bip with connecting probability \bfitQ ij . The set of new cycles includes

cycles that only use edges in \widetilde G(\alpha )
bip and cycles formed by connecting existing connected

components in \widetilde G(\kappa +\alpha  - 1).

The number of cycles using only edges in \widetilde G(\alpha )
bip is given by

E
\Bigl[ 
xbip
(\alpha +1) | \=\tau 1

\Bigr] 
P [\=\tau 1] \leq 

\lceil L\ast /2\rceil \sum 
z=2

\biggl( 
n

z

\biggr) 2
(z!)2

2

\bigl( 
\bfitQ ij

\bigr) z \leq 1

2

\lceil L\ast /2\rceil \sum 
z=2

\bigl( 
n\bfitQ ij

\bigr) z \leq (dij)
2

2(1 - dij)
.

Then we consider the expected number of cycles formed by connecting exactly z dis-
tinct existing connected components. For any z connected components \{ Ci\} zi=1 with
sizes \{ \ell i\} zi=1, respectively, let \scrC (C1, C2, \cdot \cdot \cdot , Cz) be the event that they form a cycle.
Then, we have

P [\scrC (C1, C2, \cdot \cdot \cdot , Cz)] \leq (z  - 1)! \cdot \ell z\ell 1
n

z - 1\prod 
i=1

\ell i\ell i+1

n

\leq (z  - 1)!

nz

z\prod 
i=1

\ell 2i \leq (z  - 1)!

nz

\biggl( \sum z
i=1 \ell i
z

\biggr) 2z

\leq (z  - 1)!

nz

\biggl( 
L\ast 

z

\biggr) 2z

,

where the last inequality is due to the generalized mean inequality. Note that this up-
per bound does not depend on the sizes of components, which can be denoted by P [\scrC z].

For any fixed z, we use Nz to denote the number of choices for these z components.
Let mbin be the number of small bins needed to cover a large bin, which is at most

mbin \leq 
\biggl\lceil 

L\ast 

Linit/2

\biggr\rceil 
\leq 2

\Biggl\lceil \biggl( 
1 - dinit
1 - dend

\biggr) 2
ln(\kappa n)

lnn

\Biggr\rceil 
\leq 4

\Biggl\lceil \biggl( 
1 - dinit
1 - dend

\biggr) 2
\Biggr\rceil 
.

Then, we consider two cases regrading the number of components z.
If the number of components 1 \leq z \leq mbin, the number of choices Nz satisfies

Nz \leq 
\biggl( 
n\kappa 

z

\biggr) \biggl( 
L\ast 

z

\biggr) 
,

where the first factor upper bounds the number of choices of z small bins in the graph,
and the second factor upper bounds the number of choices of z connected components
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from the z bins, which are all in a new connected component whose size is at most
L\ast . Then the expected number of cycles for this case is

E
\Bigl[ 
x\prime 
(\alpha ) | \=\tau 1

\Bigr] 
P [\=\tau 1] \leq 

mbin\sum 
z=1

Nz \cdot P [\scrC z] \leq 
mbin\sum 
z=1

\biggl( 
n\kappa 

z

\biggr) \biggl( 
L\ast 

z

\biggr) 
\cdot P [\scrC z]

\leq 
mbin\sum 
z=1

(n\kappa )z

z!
\cdot (L

\ast )z

z!
\cdot (z  - 1)!

nz

\biggl( 
L\ast 

z

\biggr) 2z

=

mbin\sum 
z=1

(L\ast )3z \cdot \kappa z

z2z+1 \cdot z!
\leq 

mbin\sum 
z=1

(L\ast )3mbin \cdot \kappa mbin .

If the number of components z > mbin, then Nz satisfies

Nz \leq 
\biggl( 

n\kappa 

mbin

\biggr) \biggl( 
L\ast 

z

\biggr) 
.

The expected number of cycles in this case is

E
\Bigl[ 
x\prime \prime 
(\alpha ) | \=\tau 1

\Bigr] 
P [\=\tau 1] \leq 

L\ast \sum 
z=mbin+1

Nz \cdot P [\scrC z]

\leq 
L\ast \sum 

z=mbin+1

(n\kappa )mbin

mbin!
\cdot (L

\ast )z

z!
\cdot (z  - 1)!

nz

\biggl( 
L\ast 

z

\biggr) 2z

=
L\ast \sum 

z=mbin+1

(L\ast )3z \cdot \kappa mbin

nz - mbin \cdot z2z+1 \cdot mbin!
\leq 

L\ast \sum 
z=mbin+1

(L\ast )3mbin \cdot \kappa mbin .

Combining these two cases, we have that the expected number of new cycles
formed by connecting existing connected components is

E
\Bigl[ 
xcon
(\alpha ) | \=\tau 1

\Bigr] 
P [\=\tau 1] \leq E

\Bigl[ 
x\prime 
(\alpha ) + x\prime \prime 

(\alpha ) | \=\tau 1
\Bigr] 
P [\=\tau 1] \leq (L\ast )3mbin+1 \cdot \kappa mbin ,

and the total expected number of cycles that are created upon adding the random

bipartite graph \widetilde G(\alpha )
bip is

E
\bigl[ 
x(\alpha ) | \=\tau 1

\bigr] 
P [\=\tau 1] = E

\Bigl[ 
xbip
(\alpha ) + xcon

(\alpha ) | \=\tau 1
\Bigr] 
P [\=\tau 1] =

(dij)
2

2(1 - dij)
+ (L\ast )3mbin+1 \cdot \kappa mbin .

By adding all random bipartite graphs, we obtain that the expected number of cycles
in \widetilde G is

E [x | \=\tau 1]P [\=\tau 1] = \kappa \cdot (dinit)
3

2(1 - dinit)
+ \kappa (\kappa  - 1)(L\ast )3mbin+1 \cdot \kappa mbin +

\sum 
i,j\in [\kappa ]
i\not =j

(dij)
2

2(1 - dij)

\leq \kappa \cdot (dinit)
3

2(1 - dinit)
+ (L\ast )3mbin+1 \cdot \kappa mbin+2 + \kappa 2 (dend)

2

2(1 - dend)
.

For any \kappa = O(lnn), we obtain

E [y | \=\tau 1, \=\tau 2]P [\=\tau 1, \=\tau 2] \leq E [y | \=\tau 1]P [\=\tau 1]

\leq E
\biggl[ 
L\ast sxL

\ast 

\kappa n
| \=\tau 1

\biggr] 
P [\=\tau 1] = O

\biggl( 
s(lnn)4mbin

n

\biggr) 
.
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