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Abstract

We construct an Euler system associated to regular algebraic, essentially conjugate
self-dual cuspidal automorphic representations of GL3 over imaginary quadratic fields,
using the cohomology of Shimura varieties for GU(2, 1).

1 Introduction
1.1 Overview of the results

Euler systems — families of global cohomology classes satisfying norm-compatibility
relations — are among the most powerful tools available for studying the arithmetic of
global Galois representations. In particular, most of the known cases of the Bloch—Kato
conjecture, and of the Iwasawa main conjecture, use Euler systems as a fundamental
ingredient in their proofs. However, Euler systems are correspondingly difficult to
construct; in almost all known cases, the construction uses automorphic tools, relying
on the motivic cohomology of Shimura varieties.
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Euler systems come in two flavours: full Euler systems, in which we have classes
over almost all of the ray class fields E[m], where E is some fixed number field; or
anticyclotomic Euler systems, where E is a CM field, and we restrict to ring class
fields (the anticyclotomic parts of ray class fields). Full Euler systems are the most
powerful for applications, but correspondingly hardest to construct.

In this paper, we’ll construct a new example of a full Euler system, associated
to Shimura varieties for the group G = GU(2, 1) (Picard modular surfaces). This
construction has some novel features compared with previous constructions, such as
the GSp, case treated in [16]. Firstly, the field E (which is the reflex field of the
Shimura datum for G) is not Q, but an imaginary quadratic field, and so an Euler
system in this setting consists of classes over all of the abelian extensions of E (most of
which are not abelian over Q). Secondly, we introduce here a new strategy for proving
norm-compatibility relations, based on cyclicity results for local Hecke algebras; this
allows us to show that our classes are norm-compatible in the strongest possible sense,
1.e. as classes in motivic cohomology (whereas in [16] we only proved norm relations
for the images of Euler system classes in the étale realisation, after projecting to an
appropriate Hecke eigenspace). Such cyclicity results for Hecke algebras are closely
bound up with the theory of spherical varieties, and we believe that this connection
with spherical varieties should be a fruitful tool for studying Euler systems in many
other contexts.

Theorem A Let G = GU(2, 1), Kg an open compact subgroup of G (Ag), and ¥ (K¢)
the set of primes which ramify in E or divide the level of K. Let ¢ > 1 be an integer
coprime to 6X (K ), and let R be the set of squarefree products m of primes w of E
coprime to cX(K ) with the following property: if £ = ww is a split prime, then at
most one of w and w divides m. Let 0 <r < a,0 < s < b be integers.

Then there exists a family of motivic cohomology classes

~la,b,r,
(glabrsl ¢ g3 (YG(KG) x g E[m], 2%(r, s}(2))

for all m € R, where E[m] is the ray class field modulo wm, with the following prop-
erties:

(1) If m,n € Rwithm | n, then

En] ( mlabrsly _ re -1 mla.b,r,s]
nOrInE[m] (C“mot,m ) - < l_[ Pw(aw )) ¢~mot,m >

w|1
m

where P, (X) is a polynomial over the spherical Hecke algebra (which acts on
each eigenspace as an Euler factor atw), and o, € Gal(E[m]/E) is the arithmetic
Frobenius at w.

(2) Forany prime p of E not dividing ¥.(K ) Nm(m), the image of the class . EI[TaK’f”;{s]
under the p-adic étale realisation map is integral (i.e. lies in the étale cohomology
with OF p-coefficients).
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An Euler system for GU(2, 1) 1093

We refer the reader to §8 for the definition of the Shimura variety Y5 (K¢), and
the relative Chow motive Qa'b{r, s} over it. In the case (a, b, r, s) = (0, 0, 0, 0), this
motive is simply the trivial motive E(0), and our classes coincide with those consid-
ered in [23]; in particular, the main result of op.cit. shows that the images of these
classes under the Deligne—Beilinson regulator map, paired with suitable real-analytic
differential forms on Y (K )(C), are related to the values L' (s, 0) for cuspidal auto-
morphic representations 7 of G(A). This shows that our motivic cohomology classes
are non-zero in this trivial-coefficient case. (We expect that a complex regulator for-
mula similar to [23] should also hold for more general coefficient systems, but we
shall not treat this problem here.)

After passing to a Shimura variety with Iwahori level structure at p, we can also
obtain families of classes over all the fields E[mp’] for ¢ > 1, satisfying a norm-
compatibility in both m and #; see Theorem 10.2.2 for the precise statement. Applying
the étale regulator map and projecting to a cuspidal Hecke eigenspace, we obtain Euler
systems in the conventional sense — as families of elements in Galois cohomology —
associated to cohomological automorphic representations of G (A). Combining this
with known theorems relating automorphic representations of G and of GL3 /E, we
obtain the following:

Theorem B Let T be a RAECSDC' automorphic representation of GL3 / E which is
unramified and ordinary at the primes p | p. Let Vog(I1) be its associated Galois
representation, and suppose this representation is irreducible. Then there exists a
lattice Tyg(T1)* C Vg (IT)*, and a collection of classes

el € Hpy, (E[mp™], Tp(1D)*)

for allm € R coprime to pc, such that for all m | n we have

norm, (c) = ( 1_[ Py (T, Gujl))cg,

where Py,(T1, X) = det(1 — X Frob,,! : Vs (IT)(1)).

See Theorem 12.3.1 for a precise statement, and for some additional properties of
the classes cg. As well as constructing these Euler systems, we also prove interpolation
results showing that their p-adic étale realisations are compatible with twisting by p-
adic families of algebraic Grossencharacters, and with variation in Hida families of
automorphic representations.

In future work, we will prove an explicit reciprocity law for this Euler system,
relating it to values of an appropriate p-adic L-function, and thus prove the Bloch—

I See Definition 2.6.2
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1094 D. Loeffler et al.

Kato conjecture in analytic rank O for automorphic Galois representations arising from
G. However, in the present paper we shall focus solely on the construction of the Euler
system classes.

1.2 Outline of the paper

After some preliminary material presented in Sect. 2, Sects. 3—6 of this paper are
devoted to proving a certain purely local, representation-theoretic statement which
we call an “abstract norm relation” (Theorem 5.2.4). This states that, if 3 is any map
from a certain space of local test data to a representation of G(Qy), satisfying an
appropriate equivariance property, then the values of 3 on two particular choices of
the test data are related by a certain specific Hecke operator P. We prove this in
two stages. Firstly, in §4, we prove that such a Hecke operator P must exist (with-
out identifying the operator), using a cyclicity result for Hecke modules inspired by
work of Sakellaridis. Secondly, in §5 and §6 we use local zeta integrals to define a
directly computable, purely local example of a morphism 3 with the correct equivari-
ance property, which allows us to identify the relevant Hecke operator P explicitly.
We have developed this theory in some detail, since we expect that the strategy devel-
oped here will be applicable to many other Euler system constructions, and it might
also serve to clarify some possibly confusing details in earlier works of ours such as
[16].

In the second part of the paper, Sects. 7-9, we construct a second, much more
sophisticated example of a morphism to which the above theory applies: the “unitary
Eisenstein map” UE la.b.r.s] of Definition 9.2.3, taking values in the motivic coho-
mology of the GU(2, 1) Shimura variety. Applying the “abstract norm relation” to
this specific choice of morphism, we obtain a family of motivic classes satisfying
norm-compatibility relations, whose denominators are uniformly bounded in the étale
realisation. This is our Euler system.

In the final sections of the paper, we prove that these classes satisfy norm-
compatibility relations in a suitable tower of levels at p, and that their étale realisations
are compatible with certain p-adic moment maps arising from this tower. This can
be interpreted as stating that the étale Euler-system classes vary analytically in Hida
families for G; this is an important input for studying explicit reciprocity laws for the
Euler system, which will be the subject of a forthcoming paper. Finally, we briefly
discuss the Euler system for an individual automorphic Galois representation obtained
by projecting our classes to a cuspidal Hecke eigenspace.

2 The groups Gand H
2.1 Fields
Let E be an imaginary quadratic field, of discriminant —D, and let x — X be the

nontrivial automorphism. Let O be the ring of integers of E. We fix an identification
of E ® R with C such that § = «/— D has positive imaginary part.
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An Euler system for GU(2, 1) 1095

2.2 Thegroup G

Let J € GL3(FE) be the Hermitian matrix
871
J:< ol )EGL3(E), 8§ =+—-D.
—5

Definition 2.2.1 Let G be the group scheme over Z such for that a Z-algebra R

G(R)={(g.v) eGL3(O®R) x R* :"g-J - g=vJ}.

We identify Zg with Resp,z(Gp), via z — ((Z zz) ,22). We write u : G —

det g -
£, 50 it = v.

The real group G(R) is the unitary similitude group GU(2, 1); see e.g. [23, §2.2].
Note that G is reductive over Z, for all £ { D (even if £ = 2).

Reso,z(Gy,) for the character (g, v) —

Lemma 2.2.2 Let Bg C G be the upper-triangular subgroup. Then Bg = Tg X Ng,
with

T6(R) = {((xxx> (Zzzl),xiz2> 1X,Z € ((9®R)X]

the diagonal torus and
18st4ess

Ng(R) = 1 S , 1] : s€eOQ®R,t R
1

Here € = # if D is odd, and € = % otherwise. Given s, t as above, we will write
t(x,z2) € Tg(R) andn(s,t) € Ng(R) for the corresponding elements. We abbreviate
t(1, z) as t(z). Note that

t(z) -n(s,t) - t(z)f1 = n(zs, zzt).

We write B and Ng for the lower-triangular Borel and its unipotent radical.

Lemma 2.2.3 IfR isan O[1/D]-algebra, themapi : OR®z R — R givenby xQy >
xy gives an isomorphism of group schemes

G xz R = (GL3 xGp)/R,  (g,v) = (i(g), V).
2.3 The group Gy

We define Go = ker(v) C G, so Gy is the group of unitary isometries (as opposed to
unitary similitudes) of J. Since ﬁg) € Goforall g € G, we have

Go(R)ZG(R) = G(R) (23.a)
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1096 D. Loeffler et al.

for all Z-algebras R.

2.4 ThegroupH
Let H be the group scheme over Z such that for a Z-algebra R
H(R) ={(g,2) € GL2(R) x (O®@ R)™ : det(g) = zz}.

This can be identified with a subgroup of G:
ab a b _
L H— G, (%), (( zd>,zz).
c

In particular we can regard w as a character of H, by composition with ¢, and we have
simply u((g,2)) = z.

Note 2.4.1 If ¢ is a prime split in E, and we fix a prime w | £ of E as above, then w
gives an embedding O[1/D] < Z;. So Lemma 2.2.3 gives an identification G (Q,) =
GL3(Q¢) x Q;'. We also have an isomorphism H(Q¢) = GL2(Qy) x Q/, given by
(v,2) — (y,i(z)). Via these identifications, ¢t : H < G corresponds to the map
GL, xG;, — GL3 xGy, given by

2.5 Open orbits

The following relationship between G and H is crucial for our arguments:

Lemma 2.5.1 Let R be a Z[1/D]-algebra, and let Q% be the subgroup {(g,z) € H :
g = (6 ’f)} Then there exists an element u € Ng(R) such that the map

0% x B — G, (h.b) — hub

is an open immersion of R-schemes.

Proof We shall show that u = n(1, 0) has this property.

Clearly (h,b) +— hub is an open immersion if and only if the translated map
v (h, b) — u~lhub is an open immersion. Since Q?q is contained in H N Bg, this
map v factors through the “big Bruhat cell” Ng x Tg x Ng, which is well-known to
be open in G. So it suffices to show that i is an open immersion into the big Bruhat
cell, or, equivalently, that the composite

h—>u~!

h
QY —— B — Bg/Tc = Ng
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An Euler system for GU(2, 1) 1097

is an open immersion. After a mildly tedious matrix manipulation one sees that this
map is given by

((%Z¥)vz)'—>n(z—1,y+(2—1)s+(z—1)5).

This clearly identifies Q% with the open subscheme of Ng consisting of the n(s, )
with s # —1. O

Remark 2.5.2 The openness of the image amounts to the claim that Bg x Q%, or
equivalently Bg X By, has an open orbit on the homogenous (G x H)-variety 2 =
H\(G x H) (where H is embedded diagonally in G x H). In other words, 2 is a
spherical variety. This fact will play a crucial role in the norm-compatibility relations
for our Euler system, both in the “tame direction” (see Theorem 4.2.1) and the “p-
direction” (Theorem 10.2.5).

2.6 Base change and L-factors
We now relate representations of G withrepresentations of the group Res g /g (GL3 x GL1).
Local case

For each prime £ split in E£/Q, and each prime w | £ of E, the prime w determines an
isomorphism of G(Q) with GL3(Qy) X QeX , as above.

Definition 2.6.1 If 77, is an irreducible smooth representation of G (Qy), we let bey, (77¢)
denote the representation of GL3(Q,) X QZ obtained from 77, via this isomorphism.

If 7, Xy, = bey, (7r¢), then we write BC,, (574 ) for the representation 7, ® (1, odet)
of GL3(Qy), and L, (7t¢, s) for the L-factor L(BC,, (7¢), ).

If v is a place which does not split (including the infinite place), and w the place
above v in E, then there is also a base-change map bc,, taking rempered representations
of G(Q,) to tempered representations of (GL3 x GL|)(E); this is a consequence of
the local Langlands correspondence for unitary groups due to Mok [20, Theorem
2.5.1]. (See [23, Definition 3.5] for explicit formulae when £ { D and 7, is spherical.)
As in the split case, if bcy (m,) = 1 X ¥y, we use the notation L, (i, s) for
L(ty ® Yw, 5).

In either case we write L (7, ) = ]_[w‘v L., (my, s), whichis the L-factor associated
to m, and the natural 6-dimensional representation of the L-group of G.

Global case

(The definitions in this section will not be used until §12.) We recall the following
definition (see e.g. [2, §1]):

Definition 2.6.2 A “RAECSDC” (regular algebraic, essentially conjugate self-dual,
cuspidal) automorphic representation of GL3 / E is a pair (I, w), where IT is a cuspidal
automorphic representation of GL3 /E and w is a character of A*/Q*, such that:
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1098 D. Loeffler et al.

e [l is regular algebraic (or, equivalently, cohomological)
e I1° =11V ® (w o Ng/qQ), where N /q is the norm map, and IT¢ the composite of
IT and the involution x > x on GL3(AE).

We say IT is RAECSDC if there exists some w such that (IT, w) is RAECSDC.

Theorem 2.6.3 (Mok) Let (I1, w) be a RAECSDC automorphic representation of
GL3 /E. Then there exists a unique globally generic, cuspidal automorphic repre-
sentation w of G such that BC,,(mw,) = Iy, for every prime w of E, where v is the
place of Q below w, and 7 has central character x5 /(w o Ng,q). Moreover, 7 is
essentially tempered for all places v, and oo is cohomological for G(R); and w has
multiplicity one in the discrete spectrum of G.

Proof We briefly indicate how to deduce this from the results of [20] (which are
formulated for Gq rather than G). Let v be the character xr/(w o Ng/q@). Then
the representation ¢ = I1 ® ! is regular algebraic and conjugate self-dual; so by
Example 2.5.8 of op.cit. itdescends to a generic L-packet for G, all of whose members
have multiplicity one in the discrete spectrum of Gy. In particular, this L-packet has
a unique generic member mp. From the compatibility with local base-change, one
computes that the central character of 7 has to be the restriction of ¢ to Z,. Hence,
by (2.3.a), the representation m( extends uniquely to a representation 7 of G with
central character /¢, whose base-change is 7 X y/; and 7 has multiplicity one in the
discrete spectrum of G by the argument of [3, §1.1]. O

Remark 2.6.4 Our definitions are chosen in such a way that twisting 7= by « o u, for
o a character of Ay, /E*, corresponds to twisting IT by « o det (and replacing w with
oo Aa). This is the motivation for the apparently rather arbitrary definition of the

character .

Definition 2.6.5 We say that a cohomological automorphic representation 7w of G(A)
is non-endoscopic if it arises from the above construction for some RAECSDC rep-
resentation (I, w) (or, equivalently, if 7 is globally generic and BC(rr) is cuspidal).

Remark 2.6.6 Note that not all regular algebraic cuspidal representations of G arise
from this construction: there are other “endoscopic” representations, arising by func-
toriality from U(1,1) x U(1) or U (1)3, which are cuspidal but have non-cuspidal
base-change to GL3. However, these representations are not interesting from the per-
spective of constructing Euler systems, since they correspond to globally reducible
Galois representations.

3 Formalism of equivariant maps
3.1 Definitions

Let S be a nonempty set of (rational) primes and let Qg denote the restricted direct
product of the Q, for £ € S. We let Gs = G(Qys) and similarly Hy.
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An Euler system for GU(2, 1) 1099

Let L be any field of characteristic 0, and write S(Gg, L) for the space2 of
compactly-supported, locally-constant L-valued functions on G g. We write S(Q%, L)
for the space of Schwartz functions on Q%.

Definition 3.1.1 Let V be a smooth L-linear (left) representation of G s. We shall say
an L-linear map

3:S0) (Q§ L) ®LS(Gs, L)y —>V

is G s x Hg-equivariant if it is equivariant for the following (left) actions of G g x Hg:
e Gy acts on the left-hand side by g- (¢ ® &) = ¢ ® £((—)g), and on the right-hand
side by its given action on V;
e Hg acts on the left-hand sideby - (¢ ® &) = ¢ ((—)h) ® g(h~1(—-)), and trivially
on the right-hand side.
Equivalently, these are the G s-equivariant maps Z(Gs, L) — V, where Z(Gg, L) is
the Hg-coinvariants of S (Q%, L) ®. S (G, L).

We can make similar definitions with S replaced with the space So(Q%, L) of
Schwartz functions vanishing at (0, 0); we write Zo(Gg, L) for the Hg-coinvariants
of Sy (QZ, L) ®r S (Gs, L). In order to avoid unnecessary repetition, we adopt the
following notational shortcut:

Notation We write So) (Q%. L) to denote a statement which is valid for either S or
So, and correspondingly Zq).
Asin[16, §3.9], once a Haar measure on G g is chosen, one can identify Z(0y(Gs, L)

with the compact induction cIndgg (S0 (QZ, L)). It then follows from Frobenius reci-
procity that G g-equivariant maps Z(0)(Gs, L) — V biject with H-invariant bilinear
forms S (Q3.L) ® V¥ — L, where V" is the smooth dual of V as a Gg-
representation. (However, this bijection is not entirely canonical, since it depends
on a choice of Haar measure on Gg.)

Definition3.1.2 Let U be an open compact subgroup of Ggs. We shall write
Z0)(Gs/U, Q) for the image in Z()(Gs, Q) of the U-invariants S(g) (Q%, L) ®
S(Gs/U, L).

3.2 Integrality

Let us fix a Haar measure volg s on Hg, which we suppose to be Q-valued.
Definition 3.2.1 We shall say an element of Z(0)(Gs/U, Q) is primitive integral at
level U if it can be written in the form ¢ ® ch(gU) for some ¢ € S() and g € Gy,
and the function ¢ takes values in the fractional ideal CZ, where we define
_ 1
voly s (gUg™! Nstabpy (¢))”

2 This is the “Hecke algebra” of G g, but the algebra structure depends on a choice of Haar measure on G,
and we shall avoid making a choice for the moment and thus not use the algebra structure yet.
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1100 D. Loeffler et al.

Anelement of Z(gy(Gs/U, Q) is said to be integral at level U if it is a sum of primitive
integral elements at level U; and we write the set of such elements as Z(9)(Gs/U, Z).

Clearly, any element of Z«)(Gs/U, Q) can be scaled into Z()(Gs/U, Z). More
generally, we can replace Q with a number field L, and Z with O [1/X] for any set
of primes ¥ of L.

Remark 3.2.2 This definition may seem bizarre at first sight; its motivation is the
following. Later in this paper, we shall construct Gs x Hg-equivariant maps into the
motivic and étale cohomology of Shimura varieties for G, analogous to the “Lemma-—
Eisenstein map” considered in [16] for the GSp, case. However, the definition of these
maps involves various volume factors, so it is far from obvious a priori which input
data give rise to classes in the integral étale cohomology. The above notion of “integral
elements” is designed for exactly this purpose.

Note that the definition of integrality depends on the level U, but we have the
following compatibilities. For any U’ C U open compacts, we have an inclu-
sion S(G/U,Q) — S(G/U’,Q), and a trace map S(G/U’, Q) — S(G/U, Q)
mapping & to ZyeU/U,S((—)y). Tensoring with the identity of S(g) (Q%) gives
maps Z)(Gs/U,Q) — Z(Gs/U’, Q) (“pullback™ and Z0)(G/U', Q) —
Z)(G/U, Q) (“pushforward”), whose composite is multiplication by [U : U’] on
Z)(Gs/U, Q).

Proposition 3.2.3 The above maps restricttomaps Z0)(Gs /U, Z) — Z)(Gs/U', Z)
and T(0)(G/U’, L) — T0)(G/U, Z) respectively.

Proof Evidently, it suffices to check either statement on primitive integral elements.
For the trace map this is selfevident, as the trace sends a coset ch(gU’) to ch(gU), and
the corresponding normalising factors C’ and C satisfy C’ | C, so primitive integral
elements map to primitive integral elements. The reverse-direction map is a little more
intricate, and follows by considering the orbits of the group V = gUg ™! Nstab Hg (P)
on the U’-cosets contained in a given U-coset. O

Remark 3.2.4 One can interpret the system of abelian groups Z)(Gs/U, Z), for vary-
ing U, as a “Cartesian cohomology functor” in the sense of [14].

4 Spherical Hecke algebras and cyclicity
4.1 Where we are going
Let £ be an odd prime unramified in E, and set Gy = G(Q) and H, similarly. We

normalise the Haar measures by vol HK(HKO) = 1, where H, p— (Zy), and similarly
for G. For w | £ a prime of E, we define

Glwl = {g € GY: u(g) = 1 mod w}.
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An Euler system for GU(2, 1) 1101

We would like to prove the following statement (an “abstract norm relation”): if
S = ch(Z%) ® ch(G?) is the natural spherical vector of Z(Gy/ G, 7), then there
exists an element

SweZ(Gg/Gg[w],Z) such that norm "L (80) = PL(1) - 8o,

where P, (to be defined below) is a certain polynomial over the spherical Hecke
algebra, related to local Euler factors. What we shall actually prove, as Theorem 5.2.4
below, is something a little weaker than this, but still sufficient for applications Sw

is only integral up to powers of £, and if € is inert, the equality norm ((Sw)

P.,(1) - 8o only holds up to inverting a certain element in the centre of the Hecke
algebra.

We shall prove this statement in two stages. Firstly, we shall show that for any open
UC Gg and any § € 7 (G¢/U, Z), there exists an element Ps lying in (a localisation
of) the spherical Hecke algebra of G, such that normg0 (8) = Ps - 6. This relies

crucially on a cyclicity result for Hecke algebras due to Sakellaridis (Theorem 4.2.1).
Secondly, we shall write down a candidate for §,, and verify thatitis integral atlevel

Z[ V6w is

the image of §p under some Hecke operator Ps,, . Via alengthy but routine computatlon
with local zeta integrals, we show that this Hecke operator must be equal to P/, (1).
This completes the proof.

G0 [w] up to powers of £. The aforementioned results then show that norm .

4.2 Preliminaries

As in the previous section, let £ { D be a prime. From here until the end of Section 4,
all Schwartz spaces and Hecke algebras are over C and we omit this from the notation.

4.2.1 Hecke algebras

Let Hg ¢ denote the Hecke algebra, whose underlying vector space is S(G¢) and
whose algebra structure is given by convolution with respect to some choice of Haar
measure dx:

(§1x&2)(x) :f E1(9)E2(g 7 x) dg :/ £1(xg” HEa(g) dg.
8€Gy

8€Gy

Any smooth left representation of G, can be regarded as a left H ¢-module, via
the action

Exv = £(g) (g-v)dg.
Gy

In particular, if &€ = ch(gK) for some subgroup K, and g is K -invariant, then £xv =
vol(K)g - v. Similar constructions apply to right modules; and these constructions are
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1102 D. Loeffler et al.

compatible with the (H¢g ¢, Hg ¢)-bimodule structure of Hg ¢ itself, if we define
_ -1 -1
81 -§~g2—§(g1 ()& )

The same constructions apply likewise with H, in place of G,. Since a smooth
G ¢-representation is in particular a smooth H,-representation by restriction, we can
regard such representations as modules over either Hg ¢ or Hy ¢, and if necessary we
write g or g to distinguish between the two convolution operations.

If £ € Hg.¢, we write & for its pullback via the involution g g ! of Gy, and
similarly for Hp .
4.2.2 Spherical Hecke algebras
Let G(l? = G(Zy) and H, ? = H(Z,). These are hyperspecial maximal compacts of G,

and Hy, respectively. We suppose that the Haar measures on G¢, H, are chosen such
that Gg and H, L? have volume 1. The associated spherical Hecke algebras

HE.o = CA(GNG/GY, MYy, = Ce (HI\H/HY).

are commutative rings, and can be described (via the Satake isomorphism) as Weyl-
group invariant polynomials in the Satake parameters.

4.2.3 Equivariant maps
We write [—] for the quotient map from S (Q%) ® Hg,¢ toits Hp-coinvariants Z(Gy),

with the actions as given in Definition 3.1.1. An easy unravelling of definitions shows
that

(¢ ® (E1%652)] = &yx6l9 ® &1]
forall ¢ € S(Q?), &1, & € Hg e, and

[(x*n¢) ® E1=[¢ ® (x'*u8)]
forall ¢ € S(Q?), & € Hgeo x € Hu -
4.2.4 Cyclicity
We can consider the space

H = S(H{\Ge/GY),

of smooth, compactly supported functions Gy — C that are left Heo-invariant and

right Gg—invariant. This is evidently a (Hg_[ o H% ¢)-bimodule, via the convolution
operations xg and g.
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Theorem 4.2.1 H is cyclic as an (H% o 'H%’[)-bimodule, generated by the charac-

teristic function &y = ch(Gg) of G?. That is, every & € H can be written as a finite
sumy_; ajxg Bi, for o € Hg—t ,and B € H% -

If ¢ is split, this can be deduced from Corollary 8.0.4 of [27], applied to the group
¥ = G x H, acting by right-translation on the quotient 2" = H\(G x H), where
H embeds into G x H via (¢, id). It follows easily from Lemma 2.5.1 that 2" is
spherical as a ¢¥-variety, i.e. the Borel subgroup By = Bg x Bpy has an open orbit
on Z . Sakellaridis’ result shows that for any split reductive group ¢ over Z, and
spherical ¢-variety 2 satisfying a certain list of conditions, the space of ¥ (Zy)-
invariant Schwartz functions on 2 (Qy) is cyclic as a module over the unramified
Hecke algebra of ¢, generated by the characteristic function of .2 (Z,); applying this
to our ¢4 and 2 gives the theorem.

However, since the hypotheses of Sakellaridis’ general result are not entirely
straightforward to verify in our setting, and Sakellaridis’ argument does not cover
the non-split case, we shall give a direct proof in an appendix; see Theorem A.1.1.

Remark 4.2.2 This theorem implies, in particular, that if 7, and oy are irre-
ducible unramified representations of G; and Hy respectively, then any element of
Homy, (r¢ ® o¢, C) is uniquely determined by its value on the spherical vectors, so
the Hom-space has dimension < 1. This relates our present approach to that of [16],
where a “multiplicity < 1” statement of this kind was taken as a starting-point for
proving norm relations.

4.3 Hecke action on Schwartz functions

Definition 4.3.1 Let us write A for the torus H N~ 1(Zg), and z4 : G, 5 A the
map sending x +—> ((" x) ,X).

The spherical Hecke algebra Hg’ ¢» with respect to the (unique) maximal compact
AY = A(Zy) = Z}, is isomorphic to C[X, X '], where X = ch(z4(¢)A?).

Definition 4.3.2 We let Ag and Ay be the maps ’H% e H% ¢ and ’H% e H%_(
mapping z4 (£)A(Zy) to z4(£)G(Zy) and z4(£") H (Zy) respectively.

These maps are both injective, and their images are central subalgebras of H% ¢
and H%’ , respectively.

Lemma4.3.3 Let ¢y = ch(Z?). There exists a unique homomorphism
é‘[—] : H(I)‘I,Z e HOA’Z
such that
E-¢do=(Agoitu)é) o
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forall & € H(}M, where we let Hy act on the space S(Q%) via the natural projection
Hp — GL2(Qp).

~

Proof We first define a map ¢ : HOGLZ’ ¢ = H%’ ¢~ It is well known that H%LZ’ ¢ =
C[ Ty, SEH] where 7y and S; are the double cosets of (§9) and (§9). We define ¢ by

¢(T) = X + ¢, g(Se) = X,

where X = ch(za (E)Ag) as above. Now we extend this map to Hy, by compos-
ing with the natural map H(I)_M — H%LM which sends a coset ch(Hg(y, z)HL?) to
ch(GL2(Z¢)y GL2(Zy)). |

Proposition 4.3.4 Let 5(Q%) denote the Hgp-submodule of S (Q%) generated by the
spherical vector ¢g. If £ is split in E, then we have E(Q%) = S(Q%)A(g. If £ is inert,
then the quotient S(Qg)f‘? /5(Q?) is annihilated by Ap (za(£) + 0).

Proof We show first that S (Q%)A(Z) is cyclic as a C[GL;(Q¢)]-module. This is surely
well-known, but we give a sketch proof for completeness. It suffices to show that
the C[GL;(Q¢)]-span of ¢y contains SO(Q%). We can decompose Q% —{0,0} as
a disjoint union of countably many GL;(Z,)-invariant compact subsets X,, where
X, = {(x,y) : min(vp(x), vp(y)) = n}. Since (}?) gives a (continuous) bijection
between X, and X, |, we are reduced to showing that S(XO)AS = S(PY(Zy)) is
contained in the GL,(Qy)-span of ¢o. However, for any ¢ > 1 this span contains the
vector

g =ch(p'Z, x 2 = ((7"0) = (%) 1)) ¢ (4.3.2)

and these are the characteristic functions of a basis of neighbourhoods of (0 : 1)
in P (Zy). As GLy(Zy) acts transitively on P!(Z,), the translates of the ¢, span
SP'(Zy)).

Since Hy surjects onto GL, (Qy) for £ split, this shows thats(Q%) =S (Q%)A(t? in this
case. In the inert case, if we write GL2(Q¢) = GL2(Q¢)* | | GL2(Q¢)~ according
to the parity of the valuation of det g, then the image of H, is GL,(Q¢)™. By the
preceding paragraph, we can write any ¢ € S (Q%)A(iJ in the form (E T+ _) *Q,
where £7 is supported on GL; (Q¢)”; and since Ay (z4(£) + €) — T, annihilates ¢,
we have

AH@EAWE) + O = (ETx AR (A (0) + ) + E*Ty) *o,

and both £ TxA g (z4(£) + £) and £~ T are supported on GL,(Qg) ™ and hence in the
image of Hp ¢. O

Remark 4.3.5 Thisresultisessentially best possible, since the quotient S (Q%)Ag/ (zaO)+
£) is isomorphic to the induced representation 7(| - |~1/2, | - |~1/2). This is irreducible
as a GL;(Qyg)-representation, but splits into two direct summands as a representation
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of GL,(Qg)™, and the spherical vector is contained in one of the summands. So 5(Q%)
consists precisely of the vectors whose projection to the non-spherical summand of
(172 73y s 0.

Theorem 4.3.6 Ler [§p] = [¢po ® &] € I(Gg/Gg). If £ is split, then we have
I(G@/G?) = H%,Z*[&)]. If £ is inert, the quotient I(G@/Gg)/ (’H%’[*[Bo]) is anni-
hilated by Ag(za(£) + £).

Proof Let§ = ¢ ®& be a general element of Z(G/ G(g)). If ¢ is split, then Proposition
4.3.4 shows that we can find some 6 € H(Hg/Hlp) such that ¢ = 6%y ¢o. Hence in
I(Gg/G?) we have

[¢ ® £1 = [(Oxrdo) ® £] = [po ® (0'xn§)].
Let 0 = 0'xy&. Since 6 is invariant under right-translation by H?, and & under
right-translation by G¥, we conclude that o € H. By Theorem 4.2.1, we can express

o (possibly non-uniquely) as a finite sum Zi ajxg Bi fora; € H(,),’e and g; € H%’@.
We can then write

[60 ® @'*n&)] = Z [P0 ® (ctivpz Bi)]
— Z [(j*t0) ® Bil]
= Z (A E)*rdo) @ Bil
=2 [0 ® (Au) sup)]
— Z [¢0 ® (AG (&) *6Bi)]

where we write {; = ¢y (a;) € H%y ¢- (The last equality follows since the actions of

H% . on H% ¢ Via Ag and A g are the same: both are just the natural translation action
of Ay on Gy.)
So,if weset A =), Ag(&i) *gBi € H%’e, then we have

[p ®E]=[po ® Al = Axgldo ® &l

If £ is inert, then we can still find 6 such that Oxgpg = Ap(za(€) + £)¢g, and the
same argument as above produces a A such that

AG(za(l) + Oxcl¢ @ &1 = N'xgldo ® &),

showing that A (z4 (£)+£) annihilates the class of p @& in I(Gg/Gg)/ (H%,e*[‘SO])'
O
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Corollary 4.3.7 (Abstract norm relation, version 1) Let U C Gg be an open subgroup,
and § € Z(G/U). If £ is split, there exists an element Ps € 'H% ¢ With the following
property:

For any smooth G ¢-representation V and G ¢ X Hy-equivariantmap 3 : S (Q%) ®
H (G¢) — V, we have

Psx3(80) = norm gy (3(3)) .

If £ is inert, then we can find an element Py € ’H% ¢ [ ] having the same

1
Ag(za(O)+0)
property for every V such that Ag(za(£) + £) is invertible on VG(K).

Proof Replacing 8 with the sum of its translates by U/GY, we may assume U = GY,
and the result is now obvious from the preceding theorem. O

4.4 Characterising Ps

Let mr; be an irreducible spherical representation of G¢. Then the Hecke algebra acts
on the 1-dimensional space (Tl’g)G? via a ring homomorphism ®, : H% ,—~ C

If € is inert in E, we suppose that the central character x,, satisfies ){ne (za(0)) #
—¢7!, so that Ag(za(f) + €)' acts invertibly on my; hence ©, extends to

0 1
Ha.e I:AG(ZA(Z)HZ)]'

Proposition 4.4.1 Let 3 € Homgy, (S(Q%) ® 1y, C); and let U, 8, and Ps be as in
Corollary 4.3.7. Write § = )", ¢; ® ch(g;U); and let g be a spherical vector of my.
Then we have

> 38 ® 8igo) = O, (P§) - 3(d0 ® 90).

Proof As usual, we may assume U = G?. The homomorphism 3 determines a linear
map Z : S(Q%) ® H(G¢) — C sending ¢ ® & to 3(¢p, Exgeo). This map clearly
factors through Z(G,/ G?), and it is H%’ ,-€quivariant if we let & € H%, ¢, acton C by

O, (§).

If ¢ is split, then we have [6] = Ps*xgloo ® &y] as elements of Z(G@/Gg);
so we must have Z(8) = O, (P§)Z(80), which is exactly the formula claimed
in the proposition. If £ is inert, then we replace Z(G¢/ G(g) with its localisation

Z(Ge/G [1/(za(©) + O] O

5 Choice of the data

Let £ 1 D be prime, and w a prime of E above £. Let ¢ :== Nm(w) = £ or 2.
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5.1 The operator P,

If 74 is an irreducible unramified representation of G, we write ©, for the associated
character of the Hecke algebra H((); ¢» as in §4.4 above.

Lemma 5.1.1 There is a cubic polynomial P,, € H%,l [ X1 such that for any irreducible
unramified representation 1y of Gy, we have O, (Py)(q ™) = Ly, (e, s)~ L.

Proof This is immediate from the Satake isomorphism, since the coefficients of the
L-factor are Weyl-group-invariant polynomials in the Satake parameters. O

Remark 5.1.2 One can check that P, (X) has the form 1 — 5 ch (G () GY) X +
higher order terms, where @, is a uniformizer at w; however, for our arguments it is
actually not necessary to write down P, explicitly.

5.2 The element
Definition 5.2.1 For r > 1, define ¢; ; € S(Q%, 7Z) as the function
$10=ch(U'Z¢ x (1 +€'Zy)).
Note that ¢, ; is fixed by the action of the group
Kra () = 1{(y.2) € HZy) : y = (1) mod €'Zy}.

Definition 5.2.2 We define an element &, € H(Ge/G(g[w]), and an integer ny,, as
follows:

(i) Suppose £ = ww is split in E. Then we take &, = ch(Gg[w]) —
ch(n(a, O)G?[w]), where ¢ € E ® Qg has valuation —1 at w and > 1 at w;
and we set

Ny = 06+ 1)(€ — 1)2.

(i) For £inertin E, we take & = ch(G(g)[w]) —ch(n(a, O)Gg[w]) wherea € EQQy
has valuation —1; and we take

ny = (€2 — 1)°.
With these notations, in both cases we define
8w =nw - P12 ®&w € T(G¢/Gw], Q).

Proposition 5.2.3 We have 8,, € 7 (G¢/G2[w], Z[1/¢]).
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Proof A tedious explicit computation shows that the subgroup V = stabg, (¢1,2) N
stabg, (&) is given by {h € KHN(EZ) : u(h) = 1 mod w} if € is split, and {h €
Kp,1(€%) : u(h) = 1 mod €Z; + €>Of ¢} if € is inert. So [H(Zy) : V] = €>(¢ —
1)2(¢ 4+ 1) = €ny, in the former case, and €3 (£2 — 1) = £3n,, in the latter case. Thus

Ny € %Z’ resp. E%Z’ where C = VoltV) = [H(Zy) : V]is asin Definition 3.2.1. 0O

Theorem 5.2.4 (Abstract norm relation, version 2) Let §,, € I(G[/G(g[w], 7[1/¢])
be the element defined in Definition 5.2.2. Let V be a smooth G -representation and
3: S(Q%) ® Hg.e — V a Hy x Gg-invariant homomorphism. If £ is inert, suppose

also that A (z4(£) + £) acts bijectively on VG(Z). Then we have
Gowl
norm 5" (3(8w)) = Py, (1)*3(50).
4

Outline of proof. We need to show that if § = §,,, then the operator Ps of Corollary
4.3.7 is P;,(1). We will do this using Proposition 4.4.1 to compare the images of
Pw(1) and P§ under O, , for a sufficiently dense set of unramified representations
1¢. More precisely, for all unramified representations 7, which are generic (admit a
Whittaker model), we shall construct below a non-zero, H (Q)-equivariant bilinear
form 3 € Homp, (m¢ ® S(Q3?), C) using zeta integrals, and show that for this 3 we
have

mu3(#12® (1= 1@, 0)p0 ) = Lu(e, 07360 ® 9o) and 3(bo @ go) # 0.
(5.2.a)

The left-hand side of this equality is Z(§,,) in the notation of Proposition 4.4.1, so we
must have O, (P(gw) = Ly (e, 0)~1. Thus Péw = P, (1) modulo the kernel of O,.
Since the characters ®, for which this construction applies are dense in the spectrum
of the Hecke algebra, we must in fact have Péw = Py (1) as required. It remains only
to construct the homomorphism 3 and prove Eq. 5.2.a; this will be carried out in the
next section.

6 Zeta-integral computations
6.1 The zeta integral

Let £ be a rational prime (for now we do not need to assume £ 1 D). If e is an additive
character E® Q; — C*, we can extend it to a character of N (Qy) vian(s, t) — e(s).
We fix a choice of e whose restriction to Ey, is non-trivial for all w | £, and denote the
resulting character of N(Qg) by ey.

Definition 6.1.1 An irreducible representation 7y of Gy is said to be generic if it is
isomorphic to a space of functions on G, transforming by ey under left-translation
by N(Qg). If such a subspace exists, it is unique, and we call it the Whittaker model
W(JT@).
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Definition 6.1.2 Let 77, be a generic representation of G,. For every W € W (), and
s € C, define

Z(W,s) 1=/ W (1(2)) INm(2) ! d*,
(E®Qu)*

where ¢(z) = (diag(zz, z, 1), zZ) as above.

Proposition 6.1.3 (1) The integral converges for R(s) > 0, and has analytic contin-
uation as a rational function of g°.

(2) The functions Z(W,s) for varying W form a non-zero fractional ideal of
Clq®, q—*] containing the constant functions.

(3) Let h € By (Qy), and write h = ((“Z) , 2). Then we have

Z(WW,s) = x@I§1° 1 Z(W,s),
where X = Xx, |Qz<. In particular this is independent of z.

Proof Parts (1) and (2) are standard facts. Part (3) is a simple explicit computation. O

Definition 6.1.4 [Godement-Siegel sections]Let¢ € S (Q%, C). We write f?(—, x, s)
for the function GL,(Q;) — C(£%, £~%) defined by

£ =1detst || 000 0 x@lal a'a
4

This is a meromorphic section of the family of principal-series representations
IGL, (l . |‘Y_%, x - |%_‘Y), regular away from the poles of L(x, 2s). See also [15,
§8.1].

Definition 6.1.5 For ¢ € S(Q7, C), we define

W, ¢,5) = / Z@)W,5)f?(h, x,s)dh € C(q°, q~°).
(Bu\H)(Q¢)

where the integral is well-defined by (3) above.

Remark 6.1.6 The zeta-integral 3(...) is denoted Iy(...) in [23, §3.3] (taking the
characters (v, v2) loc.cit. tobe (1, x ~1)). Itis a variant of the zeta-integral for U(2, 1)
considered in [4, §3.6].

We expect that for any generic ¢, the “common denominator” of the 3(W, ¢, s)
should coincide with the L-factor L(my, s) defined using the local base-change lift-
ing as in §2.6. However, in the present work we only need this when ¢ and m, are
unramified. Some ramified cases are established in [23, §3.6 & §8.3].
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6.2 Explicit formulae in the unramified case

We suppose henceforth that £ 1 2D, that 7y is an irreducible unramified principal
series, and that the additive character e has conductor 1. Then 7wy is generic, and its
Whittaker model W(sr¢) has a unique spherical vector Wy, ¢ such that Wy, o(1) = 1.

Proposition 6.2.1 We have Z(Wy, 0, s) = f&“zz)), where x = Xﬂ(|Q;< as above, and

L(my, s) is as in Section 2.6.

Proof The values of Wy, o along the torus T are given by an explicit formula in terms
of the Satake parameters; see [28] for £ split, and [4, §4.7] for ¢ inert. The result
follows from these formulae by an explicit computation. O

Corollary 6.2.2 If ¢g = ch(Z%), then we have 3(Wx, 0, ¢o, s) = L(mg, s).
Proof We note that f¢°(—, X, §) is a spherical vector with f¢’°(1, X,8) = L(x,2s),
and H (Z,) surjects onto (Bg\H)(Qy). O

6.3 Invariant bilinear forms

Theorem 6.3.1 ( [23, Theorem 7.11]) The limit

o 3(W.9,5)
3W. @)=l =S

exists forall W € W(my) andp € S (Q%), and defines a non-zero element of the space
Homy, (S(Q?) ® ¢, C) satisfying 3(Wr, 0, $o) = 1.

Remark 6.3.2 Note that this is much stronger than we need for the proof of Theorem

5.2.4; it would suffice to know that there is some non-zero rational function P (s) such

that limg_q 5(%%” is well-defined and not identically 0.

6.4 Unipotent twists

We want to evaluate the above integrals on certain ramified test data (still assuming
1y itself to be unramified).

Definition 6.4.1 Letw beaprimeabove £,andleta € EQQ, besuchthatvy (a) = —1,
with vy (a) > 1if £ is split. We define

19 = n(a, 0) € N(Qy).

Proposition 6.4.2 The value Z(nz(ff) W, .0, 8) is independent of the choice of a, and is
given by

Z(( =g W, 0,8) = Z5La(re, s).
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Proof In the split case, Z((1 — nga))Wmo, s) is given by

[ a-e@nmounnmerta= Y ( [ a —e(az))dxz>
(E®Qp)* w

1 aHn X
m,n>0 w0

X Wo(t(m" ey e~ mme=1,

The bracketed integral is zero if m > 1;if m = 0 itis ﬁ Since we have

> Wot@pne™ Y = Ly, 5),

n>0

the result follows. The argument in the inert case is similar, using the fact that f mOx (1-

e(az)) dzis 0if n > 1 and o if n = 0. o

Remark 6.4.3 By the same methods, one can show that for a split prime £ = ww we
have

a 2
Z((1 =)A= 1) Wa0.5) = -

Corollary 6.4.4 In the situation of Proposition 6.4.2, we have

3 (A= Wa 0. 912) = 3L Ly (e, 07,

where ny, is as in Definition 5.2.2.

Proof Asin [16, §3.10], for any W € W(zm,), the values £%~2(¢> — 1) - 3(W, 1.1, 5)

are independent of ¢ for ¢ > 0, and the limiting value is simply Z(W, s).

In our case, it suffices to take + = 2 since both Zniﬁl) and its inverse have

matrix entries in © ® Zg, so the principal congruence subgroup modulo ¢ fixes
(1-— ﬂz(f))an,o- Since n,, = qq;l . EZ(EZ — 1), the computation of the limiting value
is immediate from Proposition 6.4.2. O

This completes the proof of (5.2.a), and hence of Theorem 5.2.4. O

7 Algebraic representations and Lie theory
7.1 Representations of Gand H

Since G and H are split over E, their irreducible representations over E are
parametrised by highest-weight theory.
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Definition 7.1.1 We write x;, i

= 1...4, for the four characters of T,r mapping
diag (x, Z, ZXTZ) respectively to x, X,

1
Xz
X

=[5

)

Note 7.1.2 The characters x; and o are the highest weights (with respect to Bg) of
the natural 3-dimensional representation V of G and its conjugate V. The characters
x3 and x4 factor through the abelianisation of G: we have x3 = % =pand x4 = u,

where . = det/v as above. Moreover, x3x4 = V.

Definition 7.1.3 (1) For a;,ay > 0, denote by V%% the representation of G of
highest weight aj x1 + a2 x2.

(2) Forb; > 0,let WP denote the representation Symb (std) of H, where std denotes
the pullback to H of the defining representation of GL,.

(3) If V is any representation of G or H, we write V{a3, a4} for its twist by X;l 3 Xf“.

Thus every irreducible representation of G has the form V¢-2{a3, a4} for some
ai,...,as € Z with ay, ap > 0; and every irreducible representation of H has the
form W2 {b,, b3} for by, ..., b3 € Z with by > 0.

Note 7.1.4 We have
(Varayr = ya il g —ap, —ay — az}.

This representation will play an important role in the following, and we shall write it
as D492,

7.2 Branching laws

The restriction of G-representations to H is described by a branching law, which is
equivalent to the usual branching law for GL, C GL3 (see e.g. [5, Theorem 8.1.1]).
The statement we need is the following:

Proposition 7.2.1 The representation D“%2{by, by} has a non-zero Q%-invariant
vector if and only if 0 < b; < a;. In this case, there is a unique such vector up
to scaling, and it is the highest-weight vector of the unique H -subrepresentation iso-
morphic to W"{—n, —n}, where n = a1 + ay — by — by.

Remark 7.2.2 The representations W"{—n, —n} are important since they are the coef-
ficient systems for which we can construct motivic Eisenstein classes; see Sect. 9.2
below.

We fix normalisations for these Q%—invariant vectors using Lemma 2.5.1. Letu €
Ng(Z[1/D]) be a choice of element satisfying the conclusion of that lemma.

Proposition 7.2.3 Suppose 0 < r < a,0 < s < b are integers, and let dle! pe q
choice of highest-weight vector of D*®. Then there exists a unique vector

0

0
e )
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with the following property: the projection of u=' - brl®?751 1o the highest-weight
space of D“{r, s} is d1*P)r, s).

Proof Let A be the highest weight of DI-?1{r s}. We use the Borel-Weil presentation
of DI®bl{y s}: it is isomorphic to the space of polynomial functions on G which
transform via A under left-translation by B . This space has a canonical highest-weight
vector f hw ' whose restriction to the big Bruhat cell is given by f bW (Gin) = A@).

If £ denotes the polynomial corresponding to brl®?7-51 then f# must transform
via A under left-translation by Bg, and trivially under right-translation by Q%. Since
BGu_lQ(;, is open, we must have fH(u_l) # 0, so we can normalise such that
A h=1.

Since projection to the highest-weight subspace is proportional to evaluation at the
identity, and both u~! £ and f"™ take the value 1 at the identity, this shows that
u~!. fH has the same highest-weight projection as fv. O

For F an extension of E, we write D?;b{r, s} for the base-extension of DaF’b{r, s}
to F, which is an irreducible representation of G,. If F' = E,, for a prime w | D,
then G is a Chevalley group (a reductive group scheme) over Of ,,, so we have the
notion of admissible OF ,,-lattices in the E,,-vector space Dby sY®F E,; see [13]
for an overview. We are chiefly interested in the maximal admissible lattice, which we
shall denote by D?,)Z Arosh

Proposition 7.2.4 The vector brl@?"51 Jies in DglE’ w{r, s} for all primes w 1 D.

Proof Asshown in [13, §2.3], the maximal lattice can be constructed explicitly via the
Borel-Weil description of DI%?1{r s}: it is the intersection of Dl[g’ll;b]{r, s} C Ey[G]
with the integral coordinate ring Og, [G]. So we must show that the polynomial f H
in Proposition 7.2.3 lies in O, [G].

Let F,, be the residue field of E,,. Then f EAT regular on G/, ; and it is also
regular on a dense open subscheme of G f,,. So it is regular on a subset of G0, ,, of
codimension > 2. Since G JOFw is smooth, it is a normal scheme. It follows that f H
is regular everywhere on G ¢, , (see e.g. Stacks Project tag 031T). O

8 Shimura varieties
8.1 The Shimura varieties Yg and Yy
8.1.1 The Shimura variety Y5

Let S = Resc/r Gy, and consider the homomorphism

a

hiS—Gr @ =(rp (1)

b
Za)’azlw)’ z=a+ibeSR) =C*.
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We write X for the space of G(R)-conjugates of /; we can identify Xg as the
unbounded Hermitian symmetric domain

{(z,w) eCxC : J(z) —ww >0}, (g,v)-h+> (a/c,b/c) where g[l}]z[g]

Then (G, h, X) is a Shimura datum.

Remark 8.1.1 Our choice of Shimura datum is a little non-standard; it is more common
to use the alternative Shimura datum defined by 4’(z) = h(1/z), which is the image
of h under the automorphism of G given by (g, v) — (v™'g, v™!). However, using
h rather than k' gives simpler formulae for motivic Eisenstein classes. Compare [16,
Remark 5.1.2].

The reflex field of this Shimura datum is E (viewed as a subfield of C via our
chosen identification of E ® R with C). We let Y be the canonical model over E
of the Shimura variety associated with this datum. For any open compact subgroup
K C G(Ar) we let Yg(K) = Yg/K be the quotient by K; this is a quasi-projective
variety over E. If K is sufficiently small, it is smooth (it suffices to take K to be neat
in the sense of [22]; see [6, §2.3]). We recall that the C-points of Y (K) have a natural
description as

Y6 (K)(C) = GQ\[Xs x G(Ap)/K].
8.1.2 The Shimura variety Yy
The homomorphism 4 factors as t o h g, where hy : S — H/R is the Shimura datum
z=a+ib— (ﬁ(fbﬁ),i’ )
We let Xy be the H (R)-conjugacy class of hy. Then (H, h, Xy) is also a Shimura
datum, and its reflex field is also E. We let Yy be the canonical model over E of the
associated Shimura variety. For an open compact K’ C H (A¢), the C points of the
quasi-projective variety Yy (K’) are naturally described as
Yr(K')(C) = HQN\[Xy x H(Ar)/K'].

8.1.3 Functoriality
The inclusion ¢ : H < G induces an E-morphism Yy — Y. In particular, if
K C G(A¢) and K’ C H(Ay) are such that K’ C K N H(Ay), then there is a finite
morphism of E-varieties Yy (K') — Y5 (K) that on C-points is just the map
HQ\[Xy x H(AD/K'T— GQ\[Xg x GAN/KL, [h hele> [eol u(hp)].

We also have the projection map & : H — GL; (forgetting z). The composite 7 o h

is a Shimura datum for GL,, which coincides with the one used in [16, §5.1]; again,
this differs from the “standard” Shimura datum by an automorphism of GL,.
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8.2 The component groups of Y and Yy

The set 7mo(Yg) of connected components of Y can be described as follows. Let
n =det/v : G — Resg;Q(Gy), so that the composite 1 o & is given by z > 7L

Then the map

Y6 (K)(C) B3 EX\(E ® A /iu(K), mo([h, g¢1) = p(gy),

identifies the set of geometrically connected components (Y (K)) of Y (K) with
EX\(E ® Ar)*/u(K). So

7o(Yg) = E*\(E ® Ap)™.
The action of Gal(E /E) on my(Y) can be described by the reciprocity law: if
Artg 1 EX\(E* ® Ap)* > Gal(E/E)™

is the Artin reciprocity map of class field theory, normalized so that geometric Frobe-
nius elements are mapped to uniformizers, then the map wo(Yg) = E*\(E* ® Af)*
is Gal(E /E)-equivariant if we let o € Gal(E/E) act on EX\(E* ® A¢)* as multi-
plication by Artz (o)~ !. The same analysis applies also to Y in place of Y, since ¢
identifies H /[H, H] with G/[G, G].

We can regard G as a subgroup of G x Resg,q G, via the map (id, w). If K is
any open compact in G(A¢), and K[m] = {k € K : u(k) = 1 mod m} for an ideal m
of E, then this gives an open-and-closed embedding

Y (K[m]) = Yg(K) Xspec E Spec E[m]. (8.2.a)

Note that this intertwines the action of a Hecke operator [ K [m]g K [m]] on the left-hand
side with [KgK] x Artg(14(g))~" on the target.

8.3 Sheaves corresponding to algebraic representations

Let ¢ temporarily denote any of the three groups {GL,, H, G}, and let F be a number
field. As in [16, §6], we can define a category of ¥ (A¢)-equivariant relative Chow
motives on the infinite-level Shimura variety Y, with coefficients in F; an object of
this category isacollection 7" = (¥/)y of F-linear relative Chow motives over Yoz (U)
for all sufficiently small open compacts U C ¥ (Ay), satisfying compatibilities under
pullback and translation by ¢ (Ar). We denote this category by CHM F(Y)Y A0 If
¥ is an object of this category, its motivic cohomology

H;xkl()[(Yg7 ’7/) = ll)n H;]kl()t(Yg(U)a dVU)?
U

is naturally a smooth F-linear (left) representation of & (Ag).
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Theorem 8.3.1 ([1, Theorem 8.6]) There is an additive functor
Ancy : Rep (%) — CHMp (Y)Y A0

with the following properties:

(1) Ancg preserves tensor products and duals.
(1) if v denotes the multiplier map 4 — Gy,, then Ancy (v) is the Lefschetz motive
F(—1)[—1], where [—1] denotes that the 4 (A¢)-equivariant structure is twisted
by the character ||v| .
(iii) for any prime v of F and 94 -representation V, the v-adic realisation of Ancg (V)
is the equivariant étale sheaf associated to V Q@r F, regarded as a left G(Qp)-
representation where p is the prime below v.

We shall always take the coefficient field F to be E, and frequently drop it from
the notation.

Proposition 8.3.2 ( /29, Corollary 9.8]) There is a commutative diagram of functors

Rep(G) 229 CHM(Yg)GA)

‘| I

Rep(H) 224 CHM(v)H A0
where the left-hand * denotes restriction of representations, and the right-hand *
denotes pullback of relative motives.
9 Construction of the unitary Eisenstein classes
9.1 Pushforwards in motivic cohomology
LetO0 <r <a,0 <s < b be integers. We use script letters yab _@“’b{r, s} etc for
the images of the corresponding algebraic representations under Ancona’s functor. For

n > 0, we write 7" = Ancyg(W"{—n, —n}). Taking n = a + b — r — s, Proposition
8.3.2 gives us maps of equivariant relative Chow motives on Yy

" — * (_@[“’b]{r, s}) , (9.1.2)
where the latter map is normalised to send the highest-weight vector of W"{—n, —n}
to the vector brl®?7s1 ¢ D@b{r s} of Proposition 7.2.3. If we fix an open compact
subgroup U C G(Ar), and an element g € G(A¢)/U, then we have a finite map

lgU * YH(HﬂgUg_l) — Yo (U),

given by the composite of ¢ : Yy (H N gUg™ ') — Y5(gUg ™) and translation by g.
Since motivic cohomology is covariantly functorial (with a shift in degree) for finite
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morphisms of smooth varieties, we obtain from (9.1.a) a homomorphism
R A (YH(H NgUg™Y), %”(1)) —s H3, (YG(U), 29, s}(2))

for each U. Exactly as in [16, §8.2], we have:
Proposition 9.1.1 Let vol denote a choice of E-valued Haar measure on H (Ag). Then
there is a unique map

fabrst gl Yy, A7) @F H(G(Ar); E) — Hly, (Yg, @a’b{r,s}(Z))

characterised as follows: if U is an open compact in G, g € G(A¢), and x €
Hnl10t (Yy(V), 57" (1)) where V.= H N gUg ™\, then we have

b7 31 (x @ ch(gU) = vol(V) - 1871 (x).

O

Remark 9.1.2 The proof that this map is well-defined ultimately reduces to the compat-
ibility of pushforward and pullback in Cartesian diagrams; it therefore carries over to
the general setting of Cartesian cohomology functors for G and H, in the sense of [ 14].
For a careful proof of the well-definedness using this formalism, see [7, Proposition
5.9].

9.2 Eisenstein classes and the unitary Eisenstein map

Definition 9.2.1 (Siegel, Beilinson) For k € Zx, the motivic Eisenstein symbol of
weight k is the GL; (Ar)-equivariant map

S0)/A}, E) = Hby (Yor,, #* (1)) . ¢ Eisk

described in [16, Theorem 7.2.2]. Here Sy signifies S if k > 1 and Sy if k = 0.

Remark 9.2.2 This map can be characterised via its residue at co, or via its composite
with the de Rham realisation functor; see loc.cit. for explicit formulae. When k = 0
and ¢ is the characteristic function of (¢, 8) + 22, for o, B € Q/Z not both zero, we
have H! , (YoL,. 7% (1)) = Hpo (Yor,. E(1)) = O(YoL,)* ® E, and Eisﬁmt’(b is

the Siegel unit g, g in the notation of [9].

Composing the Eisenstein symbol with pullback along the projection Yy — YgL,
defines an H (Ar)-equivariant map S() (A%; E) — Hr%lot (Y u, Ak (l)) which we
denote by the same symbol.

Definition 9.2.3 We define the unitary Eisenstein map
UEWPTST 2 S0)(AF; E) @ HIG(AD: E) > Higy (Yo, 77, 5)2))
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by UEAL TS (p @ &) = (0] (Eis“+b_’_s ®§), where (1?71 is the map of

'mot, ¢
Proposition 9.1.1.

By construction, this map is G (Ar) x H (Af)-equivariant in the sense of Definition
3.1.1.

9.3 Choices of the local data

We shall now fix choices of the input data to the above map U E!4?+4-"1 in order to define
a collection of motivic cohomology classes satisfying appropriate norm relations (a
“motivic Euler system”). We shall work with arbitrary (but fixed) choices of local data
at the bad primes; it is the local data at good primes which we shall vary, depending
on a choice of a parameter m.

Definition 9.3.1 Let S be a finite set of (rational) primes, containing all primes dividing
2d. Let R denote the set of square-free ideals m of O, coprime to S, with the following
property: for each prime ¢ = ww split in E, at most one of {w, w} divides m.

We choose an arbitrary element §5 € S)(Qs, E) ® H(G(Qs), E), and an open
compact subgroup K, s C G(Qys) fixing 8. We use these to define a collection of ele-
ments (8[m])mer of Sy (A7, E) ® H(G(A¢), E), given by §[m] = 85 - Qygs Selm],
where:

e if £ ¢ S and (£, m) = 1, then §¢[m] is the unramified element ch(Z%) ® ch(Gg);
e if mis divisible by some prime w | £, then §,[m] is the element 6,, = ny,¢12 @&y
defined in Definition 5.2.2.

Thus &[m] is preserved under right-translation by the open compact subgroup
Kglm] = Kgs x {g € G(ZS) : u(g) = 1 modm} of G(Ar). Moreover, if
we suppose that 65 € Z(Gs/Kg.s,Z), then for all m € R we have §[m] €
Z(G(Ar)/Kglm], Z[1/Nm(m)]).

9.4 The “motivic Euler system”
Definition 9.4.1 We set

ot 16s) = UL (S[m]) € Hig, (Yolm], 20(r, 5}2))

Note that this depends (Hg x G g)-equivariantly on §g (for fixed m and (a, b, r, 5)).
We shall frequently omit §5 from the notation.

Remark 9.4.2 Note that Y [m] has a smooth integral model over O[S -1 Nm(m)_l],
which we denote by Vg [m]. One verifies easily that the relative motive ga-b {r,s}and

the cohomology class Zl[r‘f(;ﬁ ’;1"?](¢5, £s) both have natural extension to this smooth
model.
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Theorem 9.4.3 Let m,n € R with m | n. If pryy, denotes the natural map Yg[n] —
Yg[m], then we have

(o), (2lst) = (HP/ W) 2l
m

where P}, (1) is the Hecke operator appearing in Theorem 5.2.4.

Proof It clearly suffices to assume that n = mw for a prime w. The result is now
a direct consequence of Theorem 5.2.4, with £ the prime below w. Fixing the input
data away from the prime £, we can regard UE'“?"% as an Hy x G-invariant map
S (Q%) x Hg ¢ — V where V denotes the representation

V= lim Hy (YG(Kg)[m] x Ug),.@;;b{r,s}(z)).
UgCGz

We note that this V does satisfy the auxiliary hypothesis on the action of the torus A:
as arepresentation of A(Qy), V is a direct sum of eigenspaces associated to characters
of QZ of the form x +> |x|" x (x) with x of finite orderandn =a +b —r — s > 0.
Thus z4(€) + £ is bijective on V. The corollary now gives an equality between two
values of this H, x G¢-invariant map on different input data, and these are precisely

the local input data used to define Z}%>*) and the pushforward of 2% 7*]. O

We can give an alternative interpretation of these classes via Eq. 8 2.a. We denote
by EP71(8s) the pushforward of Z(...) to an element of HJo (Y6[11£m

2%b{r, s}(2)); again, we frequently omit 8.

Definition 9.4.4 For w { m a prime of E, let o, denote the arithmetic Frobenius at w,
as an element of Aut(E[m]/E).

One checks that (8.2.a) intertwines the action of 7/, (1) on the source with P/, (o, 1)
on the target, so we can write the norm-compatibility relation as

om0 (Slit!) = (np/ @h) Sl e

9.5 Etale realisation and integrality

It would be desirable to have an “integral” version of this theory, with coefficients in
O-modules, but this appears to be difficult for general coefficients (we do not know
if the functors Ancy(—) can be defined integrally). So we shall instead work with
the p-adic étale realisation, for a fixed prime p. In this section, we will fix values of
la, b, r, s] and omit them from the notation.

Let p be a (rational) prime, and p | p a prime of E. We define

Zam(s) = ret (Zmom 85)) € H (Yolml, 750 (r.5}2)
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where @g’b is the étale sheaf of E}-vector spaces corresponding to D’ @ E > and
similarly Eg,m(8s).

For simplicity, we assume here that p ¢ S (similar, but more complicated, state-
ments can be formulated if p € §). If ¢ is a prime, coprime to 6m and not in S, we
shall write (c) for the action of z4 (w.), where @, is a uniformizer of Q.. We extend
this multiplicatively to all integers ¢ > 1 coprime to 6 Nm(m)S. Then we define

Zeam(8s) == (2 —c7e)) - Zetm(8s),

cBe,m(8s) i= (¢* — c7"(c)or) - Ber,m (Bs),

where o, in the latter formula is the arithmetic Frobenius. (These definitions are
consistent with one another, since the map Yg[m] — Yg[1] x g E[m] intertwines (c)
on the source with (c)o. on the target.)

Definition 9.5.1 We write Daolz_ , for the maximal admissible O p-lattice in Db

Ey, and _@g)’z , for the corresponding étale sheaf.

Proposition 9.5.2 Suppose 65 € I(Gs/Kg,s, Ok, p)). Then, for every m € R
coprime to p and every ¢ > 1 coprime to 6ms, the classes . Z¢t m (8s) and B¢t m (8s)
lie in the image of the cohomology of the integral coefficient sheaf @gﬁ , {r,s}.

Proof Since the local terms 8¢[m] for primes £ | Nm(m) are integral away from ¢ by
construction, we can replace S with S U {£ : £ | Nm(m)}, and thus reduce to the case
m = 1. Let us abbreviate Kg[1] simply by K.

We may also suppose s = ¢s ® ch(gKg, s) is a primitive integral element in
the sense of Definition 3.2.1. Let Vg = staby(¢s) N gKG,Sg_l, and write V =
Vs - H(ZS). By assumption, the values of ¢ land in C - O (y), where C = ﬁ

We note that the Eisenstein class Eisfé’t’ ® (the étale realisation of Eis;'not’ ) has an

integral variant ¢ Eisg e taking values in the cohomology of Y (V) with values in the
minimal admissible lattice in .. The branching map brl%-?"5| maps this into the
pullback of the maximal admissible lattice in 2**{r, s} (compare [16, Proposition
4.3.5]).Since C g is Ok, (p)-valued, we conclude that the image ofC~1, Eisg‘m under
pushforward to Hé3t(YG (gKgg™h), 2%b(r, s}(2)) lifts (canonically) to the cohomol-
ogy of the integral coefficient sheaf. Since C~! = voly (V) is the normalising factor
in the definition of the unitary Eisenstein class, this shows that . Zs m (8s) lifts to the
integral cohomology, as required. O

10 Norm relations at p
We now consider norm-compatibility relations in the ““p-direction”. We let p and p
be as in the previous section, and we add the additional assumption that c is coprime

to p.
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10.1 Choice of local data

Definition 10.1.1 Let v = [diag(p?, p. 1), p?] € T5(Qp). For ¢ > 1, define

e Kg,(p')={g€GZy): t"gr™" € G(Zy) and g (mod p') € NG(Z/p")}.

e £, =ch (ur’ -Kg, (p’)), where u is an element of G(Z ) satisfying the condi-
tions of Lemma 2.5.1.

o ¢pi =ch((p?Z,) x (1 + p*Zy,))ift > 1,and ch(Z2) if t = 0.

o finally, n,, ; denotes the index in H (Z) of the subgroup

Vi = Kn,1(p™) Nut'Kg,(pHur) ™!,

given for t > 1 by

- piHp—D3(p+1) if psplit
P P4 (p — D)2(p + 1) if p inert.

We then set 8, = 1. 1¢ps ® &ps € Z(GY/Kg, (p). Z).

Remark 10.1.2 Explicitly, we have

axx\ a=c=f=1mod p’,
KGP(pt)z g v)eG@Zy :g=|bcx ,b=e=0mod p’,
de f] d=0mod p*.
(These conditions also entail v = 1 mod p’.) The subgroup V) ; consists of all

((9%).2) € HZ,) with ¢ = 0,d = 1 mod p*, z = 1 mod p', and b satisfy-
ing a certain somewhat messy congruence modulo p? (whose precise form depends
on the choice of u).

Now let us choose arbitrary 65 € Z(G/Kg,s, E) as before. Fort > 0,andm € R
coprime to p, we can define §[m, p'] =85 -8, ]_[MSU{[,} 8¢[m], so that £[m, p']is
fixed by the right action of the group Kg[m, p'] = K¢.s - Kg, (pH)-{g € G(Z5) :
u(g) = 1 mod m}.

Definition 10.1.3 With the above notations, we set

ZWPT 55) = pUEIUEL (slm, 1) € Hig (Yo (Kalm, p'D, 2, 5)(2))
Since this definition is a special case of Definition 9.4.1, these elements satisfy
the norm-compatibility in m of Theorem 9.4.3; and it also clearly depends (G (Qs) x
H (Qg))-equivariantly on the test data §s at the bad primes. For the rest of this section
we regard &g as fixed, and drop it from the notation.
Similarly, we can introduce p-level structure to the classes Emor,m as follows. Let
Y denote the Shimura variety of level K¢ s - Th,, - G(ZSUP)), where Th, = {g €
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G(Z,) : g mod p € Bg(F )} is the upper-triangular Iwahori® at p. Then we have a
natural map

Yo (Kglm, p'l) — Y x E[mp'].
We let

r-q[a b,r, .S]t c H <YIh > E[mp’], @a,b{r’ s}(2)>
E

“mot,m, p

[a,b,r,s]
be the image of Z_ ot m, p! under pushforward along this map.

10.2 Norm-compatibility in t

We now observe that these classes satisfy norm-compatibility in ¢.

Definition 10.2.1 Let Z/{I’, denote the Hecke operator acting on Y (Kg[m, p']), with
coefficients in 2**{r, s}, given by pU %) [K¢,(p")t ' K¢, (p")].

This operator preserves the integral étale cohomology, because p’ ™ bounds the
denominator of ! on the integral lattice D {r s}; this is also the reason for the

factor p ™9 in the definition of the element.

Theorem 10.2.2 (Wild norm relation) Fort > 1 we have

KG,,[m,le] ( [a,b,r,s] ) U/ abrs]

Kgplm,p'] mot, m, p'+1 motm pt

and similarly,

E[mp’“] ~la,b,r,s] | mla,b,r,s]

NOIM g ( motmpm) =o U, -E .

Note 10.2.3 Here o), is the image of ple(E®Q »)” under the global Artin map,
i.e. the unique element of Gal(E[mp’]/E[p']) mapping to the arithmetic Frobenius
at p in Gal(E[m]/E).

Proof This is a consequence of the general machinery developed in the paper [14],
which proves a general norm-compatibility statement for elements defined by means
of a “pushforward map of Cartesian cohomology functors” in the sense of §2.3 of
op.cit., which is a formalism designed specifically for applications to the cohomology
of Shimura varieties and other symmetric spaces.

More precisely, we take the groups G and H of op.cit. to be the Q,-points of the
groups G and H of the present paper; then the motivic cohomology groups of the
Shimura varieties for G and H, and the pushforward maps tgj’:f’r"y] between them,

3 We use the abbreviation “Ih” rather than “Iw” to avoid confusion with Iwasawa.
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described in §9.1 (for varying levels U), satisfy the axioms for a pushforward map of
the required type. (Compare the case of étale conomology treated in [14, §3.4]).

So we may apply the machinery of §4 of op.cit., with the parabolic subgroups Q¢
and Qp taken to be the Borel subgroups Bg and By, and open-orbit representative
u taken be the one denoted by the same letter in Lemma 2.5.1 above. Then the first
assertion of the theorem is exactly Proposition 4.5.2 of op.cit.; and the second assertion
of the theorem follows from the first using (8.2.a). O

Remark 10.2.4 Since the operator L{’ is invertible in the Hecke algebra of level Ih,

/ t H[a,b,r,x
this shows that the classes o, (Z/I )~ Enot.m, pt

Euler system” over all the abehan extensions E[mp’], form € R andr > 1. However,
these classes typically will not have bounded denominators with respect to ¢ in the
étale realisation, as will become clear from the analysis below.

for varying t and m form a “motivic

As noted above, these classes extend naturally to the canonical integral model
of Yg(Kg[m, p']) over O[S~!, Nm(m)~!], which we denote by Ypt. Their étale
realisations are also integral in another, separate sense: namely, they arise from an
integral lattice in the coefficient sheaf, as we now explain. We suppose g lies in
I(Gs/Kg,s, Ok p)); and we choose an integer ¢ > 1 coprime to 6pS.

Theorem 10.2.5 (Wild norm relation, integral étale form) There exists a collection of
elements

2ol e B (Vo 750 1. 5)@))

ét,m, p’

forallt > 0 and m € R coprime to c, such that:

(a) the image of z, after inverting p and restricting to the generic fibre is (c*
la,b,r,s]
e Zg

ét,m,p! *

U’ - z; (exactly, not just

(b) Fort > 1 we have the norm relation pr%ﬁ“ (zi41) = U,

modulo torsion).

Proof The integrality of these classes follows by the same argument as Proposition
9.5.2, with a slight modification: we now need to consider & = ch(gKg) where g is
not a unit at p, so the pushforward g, : Y6(gKgg~') — Y5 (Kg) may not respect
the integral lattice @82 o However, we are taking g, to be a unit multiple of 7/, and

the denominator of (t), (which corresponds to the action of =7 on D%b) is bounded
by p+9? which is exactly the normalising factor appearing in the definition of the
classes. The fact that these classes are norm-compatible again follows from the norm-
compatibility machine developed in [14], applied to the integral étale cohomology of
the two Shimura varieties, rather than motivic cohomology as in Theorem 10.2.2. O

Note that the groups H (3),, {r s}(2)) are finitely-generated over OF p
(this is an advantage of workmg w1th the integral model );). In particular, the operator
k!
/

e, = limy o0 (Z/l[’)) is defined on these spaces, and acts as an idempotent. So we
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can define a class

[a,b, [a,b,r,s] 3 a.b
(bl ((u/) ') Zh )lZl €, Hl (yoo, 9%3}){}’,5}(2)),
(10.2.2)

where the right-hand side is the “Iwasawa cohomology”
iy (Yoo 750 1, 5)@)) = lim H (31, 757 (r.5))).
t

~

Similarly, we have a version of this for the E classes (where we preserve only the
“abelian part” of the level tower at p): if R denotes the ring O[1/S, 1/ Nm(m)], and
Ry its integral closure in E[mp'], then we have a class

b, b
Elnrl e ey He (Vi xR Rmp 750 (.51D)

where YV, is the R-model of Ypy,.

Remark 10.2.6 (1) It is natural to ask how the classes ng(’)f’;’s;,
~la,b,r,s]

Iwahori level) are related to the classes &y, of the previous section (which
live at prlme to-p level). Using Corollary 4.3.7, it is clear that the pushforward of
“I[zof :nsp1 along Y, ® E[pm] — YG[1]® E[m] is given by Q, - "‘Er“lof 751 where
Q, is some (computable) Hecke operator. Similarly, one can compute Hecke

operators relating uigol: 7l gl f;sl{

much asin [11, §5.7].

(2) For p = pp split in E, we can similarly define a family of classes Cu‘[;lfirpsol
over the tower of ray class fields modulo mp®°, which only requires us to impose
ordinarity at p (rather than at p, which is a stronger condition). The same also
holds with p and p interchanged. These results can be obtained in the same way
as above, simply replacing the parabolic subgroup Bg C G with one of the two
non-minimal proper parabolics in G /q, and running the machinery of [14].

for t > 1 (living at

to the projections of E ,toU ,’,-eigenspaces,

m}

11 Moment maps and twist-compatibility

11.1 Moment maps for G

Fix an arbitrary subgroup K ; e G(A(p )) unramified outside X, and write K (p") =
K(Gp) x Kg, (p™). We assume that Kg(p') is sufficiently small for all # > 1. Let
a, b, r,s be integers with a, b > 0 (we do not need to assume 0 <r <a,0 <s <b
at this point).

Proposition 11.1.1 Letd*?{r, s} be the standard highest-weight vector in D?Q’Z , {r,s};

and let d,”’b{r, s} be its reduction modulo p'. Then the vector d,”’b {r, s} is stable under
Kg,(p").
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Proof This is clear since the image of K, (p") modulo p' is Ng(Z/p"), which acts
trivially on the highest-weight vector by definition. O

It follows that d"{r, s} defines a class in H)(Y;, Z"{r, s}), where 2" is the
mod p’ coefficient sheaf, and ), is the smooth model of Y (K¢ (p")) over O[1/X]

(where X some finite set of primes which is sufficiently large, but finite and independent
of t). Cup-product with d**{r, s} therefore defines a map

HE (V. Opp(2)) > HyOh, 2"1r. s}(2))

for each ¢ > 1, and hence a map
l’IlOIIl[Ga f g S] et Iw(yoo» OE p(z)) — ;(y;, @(Igzp {r, S}(Z)),

mapping an element (x7)7> to the element

(! 7 Udftr.sh) < lm HL O, 74, /@) = HAOA 753, 5},

Note that these maps are compatible with the action of the Hecke operator U/, since
7! acts trivially on the highest-weight vector 4.

11.2 Twist-compatibility for Z’s

Now letus suppose dg is some choice of local dataat S which liesinZ(Gs/Kg,s, OF, (p))»
as in Section 10.2.

Theorem 11.2.1 Let m € R be coprime to c. There exists an element

mpoo(aS) €H ét, Iw(ympc’oa OE,p(Z))

with the following interpolating property: for all integerst > 1, 0 < r < a and
0 <s <b, we have

[a,b,r,s] t la.b,r,s]
mom; (CZmPOO) u eord CZetmp :

Proof We shall define 2 p to be the class Zi?go ‘QJ of (10.2.a). So we need to
show that

[a,b,r,s] [0,0,0,0] t [a.b,r,s]
momGz (Zetmp ) Z/l eord cZetmp '

This is true by construction for (a, b, r, s) = (0, 0, 0, 0); our aim is to show that this
holds for all possible values of (a, b, r, ).

@ Springer



1126 D. Loeffler et al.

If we reduce the coefficients modulo pT on both sides, for some 7 > ¢, then the
equality to be proved is

prf (Z/{ Orch[OOOO]Ud”b{r s}) u, el 4  Zlabris]

etmp ét,m, p!

Since the classes on the right are norm-compatible in ¢ (integrally), we can reduce to
the case T = ¢, so it will suffice to prove that

Z[OOOO]Udab{r S} . abrs]modpz

ét,m, p! etmp’

as elements of H3 (Y, 7;" b, s12)).
Let us write ), for the Shimura variety of level " Kg[m, pllr—". Then pushforward
along t gives an isomorphism ), — )/, but the map of sheaves on )/},

75y = 7 (701 s)).

corresponds to the action of T~/ on &' ’b, which factors through projection to the
highest-weight vector.

Now, both Zi?g%o] U d*?{r, s} and, Z, [a, b " Y] are in the image of pushforward

along Vi — Vi they are the images, respectlvely, of

b b.q,
(U4 0 LU x) ( Eis{, plmp'] ) ud®{r,s} and u, (LZU!Z r ( BiS}y smp ])>
(11.2.a)

The Eisenstein series in the latter class, of weight n = a + b — r — s, is congruent
modulo p’ (indeed modulo p?) to the cup-product of . Eisgt Slmp'] with the highest-

weight vector of 7" mod p’. This highest-weight vector maps to brle-brs1 ¢ pab,
so the latter of our two classes on ); can be written as

(s 0 Lgy %) ( Elset Slmp! ]) U u, brla::rs]

Since the classes i, brl@?7-51 = y=1.prle-b.rs] gpd d,a’b{r, s} have the same image
in the highest-weight quotient by Proposition 7.2.3, they have the same image on ),
and the proof is complete. O

11.3 Twist-compatibility for =

Now let (a, b) be given integers > 0. The same construction as above gives maps
mom!"* : HJ (ylh Xk Runpoo, 75" (2)) H} 1 (ylh XR Rpt, 7501 s}(Z))
foranyr,s € Zandt > 1.
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Corollary 11.3.1 Under the same hypotheses as the previous theorem, for any integers
a,b > 0, there is a class

—~la,b b
Bl € HE 1y Oln X & Renpee, 757 (2)),
such that for all (r,s,t) withO <r <a,0 <s <b,t > 1, we have

rosl ( mlabl\ _ 17—t s gla.b.r.s]
mom, cBmps ) = Upup €ord " ¢ St m,p!

Proof Immediate from the previous theorem. O

11.4 Cohomological triviality

Lemma 11.4.1 We have

. 5 b
lim HO (R[mpt], Hé%t(YIh,G’ @(‘ZDE,,J (2))) =0.
t

Proof This follows from the fact that H;(Ylhﬁ, @82’ p(2)) is a finitely-generated
Og,p-module, and E[mp°]/E is a positive-dimensional p-adic Lie extension. O

It follows that there is a map
Hi, 1o (Yo x & RImp1, 257 () — Hy, (RImp™), B (Y0 750 2D)

and we may regard Cag}fjo as an element of Hyl, (R[mpoo], He’2t(YIh,6’ 982’ . (2)))

via this map. We can freely replace R[mp°] with E[mp®°], since any class in the

Iwasawa H' is automatically unramified outside the primes above p (see e.g. [26,
Corollary B.3.4]).

12 Mapping to Galois cohomology
We now show that the classes . ELZ’:O]C, projected to a specific Hecke eigenspace, form
an “Euler system” in the usual sense for the Galois representation associated to a
RAECSDC automorphic representation of GL3 /E. The arguments in this section are
very closely parallel to [16, §10.1-10.5] in the GSp, case.

Remark 12.0.1 In this section we won’t use the classes . Zy, poo. However, these classes

can be used to show that the constructions below are compatible with variation in Hida-
type families; this will be pursued further elsewhere.
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12.1 Automorphic Galois representations

We recall some results on automorphic Galois representations of GL3 /E, following
[2]. Let IT be a RAECSDC automorphic representation of GL3 / E; and for each prime
w of E such that IT,, is unramified, let P, (IT, X) € C[X] denote the polynomial such
that

P, (IT, Nm(w) %)~ = L(I,,, s).

Proposition 12.1.1 ( [2, Theorem 1.2]) The coefficients of the polynomials P, (I1, X)
lie in a finite extension Fr of E independent of w; and for each place P | p of Fr,
there is a 3-dimensional Frj s3-linear representation Vg (IT) of Gal(E/E), uniquely
determined up to semisimplification, with the property that if w is a prime not dividing
p for which T1,, is unramified, we have

det(1 — X Frob, : Vig(IT)) = Py, (T1, ¢ X).

m}

Remark 12.1.2 If we fix IT and let p vary, then [30, Theorem 2] shows that there is a
density 1 set of rational primes p such that Vi (IT) is irreducible for all ‘B | p (and
hence unique up to isomorphism).

Weights

Since IT is regular algebraic, it has a well-defined weight at each embedding 7 :
E < Fp, which is a triple of integers ar,1 > ar2 > ar3 (see [2, §1]). Since
[1¢ is a twist of 1Y, a;; + az 4—; is independent of i. Thus, up to twisting by an
algebraic Grossencharacter if necessary, we can (and do) assume that the weight of I1
is (a+b, b, 0) at the identity embedding, and (a+b, a, 0) for the conjugate embedding,
for some integers a, b > 0.

Proposition 12.1.3 The representation Ve (I1) is de Rham at the primes above p, and
has Hodge numbers* {0,1 + b,2 + a + b} at the identity embedding E —> Fay,
and {0, 1 4+ a, 2 4+ a + b} at the conjugate embedding. Moreover, the coefficients of
P, (I1, g X) are algebraic integers for all w.

Proof This follows from part (4) of [2, Theorem 1.2]. O

Ordinarity

Letp | p be a prime of E such that ITy, is unramified. Then Vs (IT) |Gal(Ep/Ep) is crys-

talline, and the eigenvalues of the linear map (p[EP’QP] on D (ng(l'[)|Gal(§p JEp)
are the reciprocal roots of Py (I, g X), by [2, Theorem 1.2(3)].

4 Negatives of Hodge—Tate weights, so the cyclotomic character has Hodge number —1.
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Definition 12.1.4 We say I1 is ordinary at the prime p | p (with respect to the prime
‘B | p of Frp) if the polynomial Py (IT, g X) has a factor (1 — ety X) with vgg(erp) = 0.

A standard argument using p-adic Hodge theory (see [2, Lemma 2.2]) shows that
ITis ordinary at p if and only if Vi (IT) has a 1-dimensional subspace invariant under
Gal (fp / Ey) with the Galois group acting on this subspace by an unramified character.
If this holds, then dually Vi (IT)* has a codimension 1 subspace .7-'; Vg (IT)*, such that
Vp(ID* /.7-"; is unramified, with arithmetic Frobenius Froby, acting on this quotient
by ay.

Remark 12.1.5 Since IT is conjugate self-dual up to a twist, one checks that Vi (IT) has
a 1-dimensional invariant subspace at p if and only if it has a 2-dimensional invariant
subspace at p. So if IT is ordinary at all the primes above p, then Vi (IT) and its dual
preserve a full flag of invariant subspaces at each prime above p. (We will not use this
fact directly in the present paper, but it may be relevant to future work relating the
Euler system constructed here to Selmer groups and p-adic L-functions.)

12.2 Realisation via Shimura varieties

We add the further assumption that Vi3 (IT) be irreducible. We now realise this repre-
sentation in the étale cohomology (with compact support) of the infinite-level Shimura
variety Yg = limK Y5 (K). Let r be the automorphic representation of G correspond-
ing to IT (and some choice of w such that (I1, w) is RAECSDC) as in Theorem 2.6.3.

Theorem 12.2.1 The module H? (YG,Q’ Vgp’b) ® Fay, considered as a representation

et,c

ofGal(F/E) ® G(Af), has a direct summand isomorphic to Vi (I1) @ 7s.

Proof The computation of the intersection cohomology IHé2t of the Baily—Borel com-
pactification of the Picard modular surface is the main result of the volume [12]; see in
particular §4.3 of [25] for an overview. This computation shows that the intersection
cohomology has a direct summand isomorphic to Vg (I1) ® 7¢. There is a natural
map from Hézt’ . of the open modular surface to IHézt of the compactification; and the
Hecke eigensystems appearing in the kernel and cokernel of this map are associated to
non-cuspidal automorphic representations of GL3 /E. So the map is an isomorphism
on the generalised eigenspace for the spherical Hecke algebra associated to 7y, which
gives the result. O

We can thus interpret any v € ¢ as a homomorphism of Galois representations

Vp(IT) — lim Hg . or dually as a homomorphism

P : Ha (V6.0 75 (2)) = Vep(TD),

which we can consider as a “modular parametrisation” of the Galois representation
Vs (IT)*. This homomorphism factors through projection to Y (K) for any level K
which fixes v.
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12.3 An Euler system for Vi ()

We now choose the following data:

e A finite S of primes, an open compact Kg s € G(Qs), and an element §s €
I(Gs/Kg.s, Z), as in Section 9.3;

e A non-zero vector v € 7y stable under the group K¢.s - Th,, - G(ZSYirh,

e An integer ¢ coprime to 6pS.

We suppose that IT is ordinary above p, and we let o), = ]_[p‘p ap where oy is as

in Definition 12.1.4. Then the generalised {/),-eigenspace of (7 ,,)Ihl’ with eigenvalue
ap is 1-dimensional, where U}, denotes the double-coset operator [Ih, 7 Ih,] acting
on the Ih-invariants (this is easily checked from the explicit formulae for Whittaker
functions in §6; compare [16, §3.5.5] in the GSp, case). We shall choose v to lie in this
eigenspace. Then the projection map prpy , factors through the Z/ll’) = a, eigenspace,
and hence through the ordinary idempotent e} of Sect. 10.2.

Theorem 12.3.1 (Theorem B) There exists a lattice Ty (IN* C Vg (ID*, and a col-
lection of classes

cll e H\, (E[mp™], Ty(ID)*)

for allm € R coprime to pc, with the following properties:

(i) For m | n we have

norm}, (cf) = ( l_[ Py (11, a;l))cg.

w| e

(ii) For any Grossencharacter 1 of conductor dividing mp™ and infinity-type
(s,r) [sic], with 0 < r < a and 0 < s < b, the image of c};[ in
H! (E[mpoo], Vp(ID* ® n_l) is the étale realisation of a motivic cohomology
class.

(iii) For all p | p, the projection of locy (c};[l) to the group HllW (Ep ®fr E[mp™>],
ng(l_[)*/}—;) is zero.

Proof The choice of 85, K5, and ¢ determines a collection of Iwasawa cohomology

classes . Et[ﬁfo]o, for all m € R coprime to pc, taking values in the e;,-ordinary part of

Hézt(YIh o Qg’pb (2)). Moreover, these classes all land in a lattice independent of m.
The modular parametrisation map prpy , sends this lattice in Hé2t(YIh o QZJ:’ 2))

to a lattice in Ve (IT)*, and we take Tz (IT)* to be this lattice. Then we may define

—~la,b
e =pr, (cBlepL) € Hi, (Elmp™], Tp(m)").

We now prove the properties (i)—(iii). Property (i) follows from the tame norm
relation Eq. 9.4.a, but the argument is a little delicate. Since v € m¢ is unramified
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outside S U {p}, the homomorphism prp; , factors through the eigenspace where the
Hecke-algebra-valued polynomial P}, (X) acts as Py, (IT, X) forall w { pS. So (9.4.a)
shows that the Iwasawa cohomology class

h = norm%, (c)) — ( 1_[ Py, (11, gujl)>c2

wl

projects to zero in the cohomology of Viz(IT)* at each finite level in the tower
E[mp®]. Hence its image in the cohomology of the integral lattice T (IT)* lies
in the torsion submodule. Since we are assuming Vi (TT)* to be irreducible, we have
HO(E[mp™], Ve (IT)*) = 0, and hence HO(E[mp], Tp(ID* ® Qp/Z),) is a finite
group. So the exponent of this finite group annihilates the torsion submodule of
H'(E[mp'], T (I)*) for all ¢, and passing to the inverse limit, we deduce that &
is annhilated by a finite power of p. Since the Iwasawa cohomology of an infinite
p-adic Lie extension is p-torsion-free, we must have 4 = 0, which proves part (i) of
the theorem.

The remaining properties are somewhat simpler. For property (ii), we use the com-
patibility with moment maps (Corollary 11.3.1), and we note that for any n of co-type
(s, r) and conductor dividing mp’, the twist Vg (IT)* ® n~! can be realised as a direct
summand of Indg[mp,] Hézt(YIh!G, 2%b(r, s}(2)), exactly as in the case of Heegner
points described in §3.4 of [8]. (The switch in ordering of » and s arises because the
character 1 : G — Resg,q GL1 corresponds to (4, not u3, in our parametrisation of
algebraic weights.)

Finally, the local Selmer condition (iii) at the primes above p follows from part (ii),
since any class in the image of motivic cohomology must lie in the Bloch—-Kato Hg1
subspace at primes above p; and this subspace projects to 0 in the cohomology of the
quotient (compare [16, Proposition 11.2.2]). ]

12.4 Concluding remarks

Remark 12.4.1 The Euler system of Theorem B depends on choices of local data at
the primes in S: the vector v € my defining the modular parametrisation, and the
element §s € Z(Gs/Kg,s, Z). It should be possible to check that the Euler systems
obtained for different choices of these data are proportional to each other, with the
proportionality factor being essentially the local zeta integral of Sect. 6; compare [19,
§6.6].

Remark 12.4.2 For part (ii) of Theorem B, we are identifying n with a Galois character
via the Artin map. Thus ! has Hodge—Tate weights (—s, —r); so the range of oo-
types considered in (ii) is precisely the range for which Viz(ID* ® n~! has one
Hodge—Tate weight < 0 and two Hodge—Tate weights > 1 at each of the embeddings
E < Fgp. In particular, Vq_;(l'[)* ® 77_1 is “lI-critical” in the sense of [18, §6],
and satisfies the “rank 1 Panchishkin condition” of [op.cit., Definition 7.2], with the
subspaces .7-'; being the Panchishkin submodules. So the above theorem is consistent
with the general conjectures formulated in op.cit..
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Itis interesting to note that Vi (IM*® n’l is also 1-criticalifa+1 <r <a+b+1
and s < —1 (or symmetricallyifr < —landb+1 <s <a+b+1). We do not know
how to construct interesting motivic cohomology classes for twists in this range.

Remark 12.4.3 If we assume in addition that p is split in E, then we can use the 2-
variable Perrin-Riou logarithm map constructed in [17] to define two “motivic p-adic
L-functions” associated to 7, as measures on the group Gal(E[p°°]/E) (which is
isomorphic to the product of Zf, and a finite group). More precisely, we have one

of these for each prime p; above p, interpolating the images of twists of locy, (c}_[)
under the Bloch—Kato logarithm and dual-exponential maps. Forthcoming works by
members of our research groups will explore the relation between these “motivic” p-
adic L-functions and two other kinds of p-adic L-function attached to r: “analytic” p-
adic L-functions interpolating critical values of complex L-functions, and “algebraic”
p-adic L-functions defined as characteristic ideals of appropriate Selmer groups. We
hope that it will be possible to formulate an Iwasawa main conjecture in this setting,
and prove one divisibility towards this conjecture, by methods similar to those of [19].

The case of inert p is more mysterious; in this case, E[p®] is a height 2 Lubin—
Tate extension at the primes above p, and our understanding of local Iwasawa
theory for such representations seems insufficient to construct motivic p-adic L-
functions as measures on Gal(E[p>]/E). However, it may be possible to construct
“signed” motivic p-adic L-functions as measures on the cyclotomic Galois group
Gal(E(up>~)/E), using the methods of [24] applied to the induction of 7 ® 7 to

GL¢ /Q.
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Appendix A. Cyclicity of Hecke modules
In this section we sketch an explicit proof of the cyclicity theorem 4.2.1; our argument

is inspired by the proofs of the uniqueness of Whittaker and Shintani functions in the
papers [10,21] of Murase, Sugano, and Kato.
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A. 1. Hecke algebras and the cyclicity theorem

Let £ 1 2D be a prime. Let K = G(Z¢) and U = H(Zy). These are hyperspecial
maximal compacts of G(Q,) and H(Qy), respectively. There are associated spherical
Hecke algebras:

He = C(K\G(Qu)/K), Hiy = C.(U\NHQu)/U).

The multiplication on these is, of course, just convolution with respect to fixed Haar
measures dg and dh on G(Q¢) and H (Qy), respectively (we can fix the choices by
requiring that K and U both have volume 1 under the corresponding measures, but
that is not needed below). Both H% and H% are commutative rings.

We also consider the space

H = Cc(U\G(Qe)/K)

of smooth, compactly supported functions f : G(Q¢) — C that are left U-invariant
and right K -variant. We endow H with the structure of a left H(}{ ® H((); -module as
follows: for x ® £ € HY, ® HY. and f € H,

(X ®&) % f(x) = / / X () f(hxg e (g)dh dg.
H(Qy) YG(Qp)

The main result of this appendix is:

Theorem A.1.1 Asan H(1)1 ® H%-module, ‘H is cyclic and generated by the character-
istic function fy = ch(K) of K.

There are two cases to consider: £ split in E and ¢ inert in E. We give details for
each case. Our proofs are disappointingly explicit.

A.2. The split case

Suppose that £ splits in E: £ = ww. Recall that there is a natural isomorphism
G(Qp) = GL3(Qy) x Q,éX under which K is identified with GL3(Z,) x ZZ. Similarly,
H(Qy) is identified with GL2(Qy) x Q, and U with H(Z;) x Z,. Hereon we will
conflate the algebraic groups H and G with their Q,-points. We let Gy = GL3(Qy)
and Ko = GL3(Zy).

Under the above identifications, the inclusion of H into G becomes

H =GL2(Q) x Q — GL3(Qy) x Q, =G

ab a0b (A2.2)
(48),x)— ((862),ad—bc).

Furthermore, these identifications induce ring isomorphisms H%. = ’H% 0 ® H%L] and
H(I){ = HOGLZ ® HgL, as well as a compatible isomorphism H = H' ® HOGLI with
H' = Cc(U\Go/Ko).
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A.2.1. A simple reduction

Consider H = GL2(Qy) x Q, as a subgroup of G via projection to the first factor
in the embedding (A.2.a). Under this embedding we can view H’ as an H(1)1 ® H%O_

module. To avoid ambiguities, we write x for the convolution action of H% ® H%O on
H'.

LemmaA.2.1 IfH isacyclic H(I)i ®H%O-m0dule generated by ch(Ky), then Theorem
4.2.1is true.

Proof Let f = fi1Q@ L eH ® H%Ll. Suppose there exist elements ¢; = (a;, x;) €
GL2(Q¢) x Q; and 1] € Go, i =1, ..., r, such that

fi =) _(ch(Ut;U) ® ch(Kot{ Ko))*ch(Kp).

1

Let x = >, ch(Ut;U) ® (ch(Kot/Ko) ® fo(det(a;)~' () € HY ® HE. Then it
easily follows that x * ch(Kp) = f1 ® f. O

So it suffices to prove the cyclicity hypothesis of this lemma. The rest of the proof
of Theorem 4.2.1 in the split case will therefore focus on proving:

Proposition A.2.2 H’ is a cyclic ’H% ® H%O -module generated by ch(Kj).

For the proof of this proposition it is more convenient to adjust the embedding of H
into G¢. Conjugating by an element of Ky we may view H more naturally as a block
diagonal subgroup of G via the embedding that maps (A, x) € GL2(Q) x Q, = H
to diag(A, x) € GL3(Q¢) = Go.

Our proof of Proposition A.2.2 begins with two key lemmas.

A.2.2. First key lemma
For m = (m1, my, m3) € Z3, let t(m) = diag(¢™, €2, £"3) € Gy. Let
A={(u.2) €L’ XL : 1 = g, 1 = Xy >0 = As).
Let
o
no = .
0 001

LemmaA.23 Go = U neaUt()not (L) K.

Remark A.2.4 This decomposition is a disjoint union, but we do not prove this as it is
not needed here.

Proof This essentially comes from [21].
The group H is identified with the Levi subroup of a standard parabolic P of
Go = GL3(Qy) (corresponding to the partition 3 = 2+ 1). Write P = HN with N =
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|
{(8 (1) ? )} the unipotent radical. By Iwasawa decomposition, Go = PKy = HNKj.

As H = Uy ez3 m,>m,Ut(m)U and U normalizes N, we have
Go =Ypezd m>mUt(m)NK.

In particular, every double coset UgK C Gy is represented by some element of the
form

10¢7™M
tm)l o1em |, ni,np >0, my >m—2.
00 1

We consider such a double coset and representative.
Suppose ny > ny. Then

gm0 0 107 "1407"2 1 ¢mi—m2 () 0 0 10¢™™ 1-10
( 0 ¢m 0 ) 01 " = (0 1 0)( 0 ¢m 0 ) 01¢ 2 (0 1 O)
0 0 ¢m 00 1 0 0 1 0 0 ¢ 00 1 001

also belongs to the same double coset. In particular, we can always choose the repre-
sentative with ny > np > 0.
Suppose m| —ny < my —na, put ny =ny; —mj +ms (sony < n5 < ny). Then

(z"ll 00 ) o em }(])8 00 10¢™ S 00
0 e 0 —ny g =< )(0@20) 01 ¢ (—/é 1‘210)
0 0 em/\J8t T 001/ \ 0 o em/\oo 1 0 01

also represents the double coset. So we may choose the representative such that m; —
ny = my—njp.
For such a representative with ny > ny and m; — n; > my — np we have

oo 0 10 €71 4¢772
0 "2 0 01 ¢ = t((m1 — ny, my — np, m3)npt(ny, nz, 0)
0 o3/ \ogo 1

with u = (m| — ny, my —np, m3) and A = (n1, na, 0) such that (u, A) € A. O

A.2.3. Second key lemma
The second key lemma is about the support of certain Hecke operators.

LemmaA.2.5 Let (u, A), (1, X)) € A with (u, X)) # (@', \) . Suppose
Ut(w) ™ Kot Ko N UH() 'ng 't ()" Ko # 0.

Then )| < Ay, and if M} = Ao then () — ph) + (A — A%) < (u1 — o) + (A1 — 12),
with equality holding only if (1) — p) < (u1 — wa).
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Proof Our proofis inspired by the proof of [10]. We proceed by considering the £-adic
valuations of values of various weight functions in Z[GL3(Qg)].
Let I, J C {1, 2, 3} be two sets of the same cardinality. Define

Ap,y(g) = det((gi,j)ier,jer),

and

m
f1,0(8) = H(gi,,j,), I={it,....imb, J =1, o0 Jmbh il <iz < - <im, j1 < jm.
r=1

Then it is easy to see that

Ary(xy2) =Y frr@Apr () fr@). (A.2.b)
r,J

The idea is to chose suitable 7, J and evaluate A = Ay j on t(,u/)’“nalt()»/)’l.

For the chosen I, J, the £-adic valuation of A(t(u/)_l’nglt(k’)_l) can be easily
expressed in terms of (1’, ”). On the other hand, by hypothesis

1) g 10N T = () k) Mk, (A2.)
for some u € U and ki, k» € K. We use (A.2.b) with x = u, y = r(u) "'kt (M)~ !,
and z = kp to obtain a lower bound on the £-adic valuation in terms of (u, A). This
yields various inequalities that must be satisfied by (u, A) and (¢, A’), from which

we deduce the lemma.
We apply this first with / = J = {1}. Then

orde(AG() ™ ng 1)) = =y + 4.
On the other hand, using (A.2.b) and (A.2.c), A(t (u/)_”nalt(ﬂ)_l) can be expressed
as a sum of terms of the form f; ;/(u)Ap y(t ()" kit (W)™ fr (ko). Let I’ = {i'}

and J' = {j'}. The £-adic valuation of such a term is at least —(mu;s +A /). Asu € U
and I = 1, f; p(u) # Oonlyifi’ € {1, 2}. It follows that

orde (A ()™M ng rGHTHY = min (= Guir + A0} = (1 + 2,

Hence,
Wi+ A <+ A (A2.d)
Taking I = {3} and J = {1}, a similar analysis yields
Wi+ A < p3+Ag. (A2.e)
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Taking I = J = {1, 2} yields
T e A N A I S T R Sy P (A.2.1)
Taking I = {1, 3} and J = {l, 2} yields
My 0y A+ < s+ A+ R (A2.9)
And taking I = J = {1, 2, 3} (that is, comparing determinants) yields
Wi+ w4 py 4+ A Ay = w4 po 4 u3 + A+ Ao (A.2.h)
Comparing (A.2.f) and (A.2.h) shows that
Wy = . (A2.0)
And comparing this with (A.2.e) yields
Ap <Apandthat M) = A = ul = pus. (A.2.j)

Suppose A} = 1. Then u5 = u3 by (A.2.j). Combining this with (A.2.d) and
(A.2.h) yields

(W) — uh) 4+ (M) = 25) < (w1 — p2) + (A1 — A2),  with equality iff p} = 1.
(A2K)

Supposing further that (1] — it5) + (&) —15) < (1 —p2) + (k1 —22),50 ) = g
by (A.2.k). It then follows from (A.2.g) that

Xy < A,
while it then follows from (A.2.h) that u, — o = A2 — A — Aj. In particular, if
X, = Az, then o = pf andso (1, A') = (i, 1). So it must be that A, < 2, and hence
that ) > 2. The last equality then implies that ] — u) = g — phy < up — po.
This completes the proof of the lemma. O

A.2.4. Proof of Proposition A.2.2

Let H' = (H} ® MY )xch(Ko). Let nj = 'ng'. By Lemma A23, Gy =
U(M)A)EAUI(M)_lnlt(A)_lKo. So it suffices to show that for each (i, 1) € A,

ch(Ut(w) 'nit(0)"'Ko) € H”. (A.2.)
Let (u,A) € A. We define ft = (u1 — o) and A = (A — A2). Our proof is by

induction on the set S of ordered triples s(u, A) = (A, & + A, i) of non-negative
integers. The set S is well-ordered under the lexicographic ordering.
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The base case of the induction is the inclusion (A.2.1) for all (u, A) with s(u, A) =
(0,0, 0). For such a (i, A), A = (0, 0, 0) and so

ch(Ur(w) 'nir(0) " Ko) = ch(Ut ()~ Ko) = ch(Ut(n)U)xch(Ko) € H'.
This proves the base case of the induction.

Suppose (14, ) € A. Let x = ch(Ut(w)U) € HY, and & = ch(Kot(\)~'Ko) €
H%O. The support of xx& = (x ® £)xch(Ko) € H” is exactly Ut ()~ Kot (A) "' Ko.
Let A(u, A) C A be the set of (1, A) such that

Ut(w) 'Kt 'K N Ut 'nit )~ Ko # 9.
It follows from Lemma A.2.3 that xx£ can be expressed as a sum over the (i, A') €
A(u, 1) of scalar multiples of the functions ch(Ut ()~ 'n1r(A) "' Kyp). So to show
that the particular class ch(Ut(u)~'n1(1)~"'Kp) is in H”, it suffices to show that

ch(Ut(w) 'nit(W) 1K) € H” for all (1, ))) € A, 1) with (', ) # (i, A).
But for such a (A’, u’), Lemma A.2.5 implies that

s )y =0+ 1) < G i+ A ) =s(w,h) (A2m)

in the lexicographic ordering. The induction step follows easily.

A.3.The inert case
Suppose that £ is inert in E. Our proof of Theorem A.1.1 in this case follows the same

lines as in the split case and is even slightly simpler. As in the split case, we begin by
proving two key lemmas, the analogs of Lemmas A.2.3 and A.2.5.

A.3.1. First key lemma
For m = (my1, my) € Z? we let t(m) = diag(¢™!, €2, %™~ € T. We let
A={(n.2)eZ?xZ* : 1 > pa h = 0=}

Using the parametrisation of Ng(Qy) as {n(x,y) : x € O Q Zy,y € Z;} given in
Lemma 2.2.2, for s € Z we set

ng =n(*,0) € Ng(Qp).

LemmaA.3.1 G = U nenUt()not (MK.

Proof Let Ny = Ng(Zy), and for r > 1 let N, be the kernel of reduction mod £" on
Ng(Zy). Let

0
w=(}

o—=O
(=il
S~———"
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This represents the longest element (in this case, the non-trivial) Weyl element. Let
N, = wN,w™ L. Let Ty = T (Z¢). Then the Iwahori subgrg)up (with_respect to the
upper-triangular Borel B) is just the group Kp = ToNoN; = ToNiNop, and the
Iwahori decomposition of K is just

K = Kg U KgwNy = TyN1No U Ty Now No.
From this we deduce that

K = Kw = TowN; Ny U TyNoNy. (A.3.2)

Let T+ = {t(m) : m € Z*, m| > m»}. By Iwasawa decomposition, G = KT+ K,
so by (A.3.a)

G = TowN | NoTtK U ToNoNoT K.

As N,T*K = T*K and Ty, Tow C U, it follows that
G =UNyTK. (A.3.b)
The elements n(x, 0), for x € O ® Z,, give coset representatives for (U N Ng)\ No.
Since may rescale x by elements of (O ® Z;)* using the commutation relation in the
Lemma2.2.2, it follows from (A.3.b) that every double coset U g K has arepresentative
of the form nst(m) with s > 0 and m| > ma. As ngt(m) = t(M)Ng_p +m,, it
follows that t (m)ny, s’ = min{0, s — m; + m,} also represents the double coset. But

tm)ng = t(uw)not(A), n = (my +s',my), . = (=s’,0). That (u, A) € A follows
from s > 0 and the definition of s’. O

A.3.2. Second key lemma

LemmaA.3.2 Let (u, A), (u', X)) € A with (i, L) # (', )) . Suppose
(Ut(,u)_th(k)_lK) n (Ut(,/)—l ng’! t(,v)—lK) £ 0.

Then )| < A1, and if My = Ay then py — ph < py — po.

Proof The proof is much the same as before, exploiting the functions A; ;. Taking
I = J = {1} yields

Wy A<+ A (A.3.0)
Taking I = 2, J = {1} yields
Wy 4+ A < 2+ Aq. (A.3.d)
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Comparing similitude factors gives

wh = ua. (A.3.e)
From (A.3.d) and (A.3.e) we conclude that

M <. (A.3.0)

If A} = A1, then (A.3.c) implies that ;) < w1, from which it follows that u| — u, =
Wy — 2 <y — po with equality only if u} = w1 (in which case (1, ') = (u, 1)).
O

A.4. Proof of Theorem A.1.1

The theorem follows easily from induction on the ordered pairs (A1, w1 — pp) of
non-negative integers, in exact analogy with the proof of Proposition A.2.2.
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