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ABSTRACT

Mobility Shift Affinity Capillary Electrophoresis (msACE) presents a simple and powerful approach to determining the equilibrium and
kinetic parameters governing the interaction between a variety of analyte and ligand molecules. These determinations often rely
on measuring the elution peak profile for the analyte zone when migrated with a steady electric field. However, pressure-gradients applied
intentionally or generated due to unwanted differences in the hydrostatic heads at the capillary/channel ends and/or a variation in the
electroosmotic flow rate along the analysis column can significantly alter this peak profile introducing error in the estimated parameter val-
ues. To account for these alterations, this article describes a mathematical formulation for quantitating band broadening in msACE systems
due to a steady pressure-driven flow in the Taylor–Aris dispersion limit with fast analyte-ligand binding kinetics. The current analysis shows
that the additional zone dispersion under such conditions can be quantitated using four terms that scale with the square of the P�eclet number
calculated based on the pressure-driven flow velocity. While the first term among these quantitates the Taylor–Aris dispersion experienced
by a neutral tracer advected by the pressure-gradient, the other three terms are proportional to the square of the difference in the diffusion
coefficients for the analyte and analyte-ligand complex. Moreover, these latter terms also vary inversely with the Damk€ohler number com-
puted as the ratio of the rate of reaction over that of diffusive mass transfer with the coefficient for each of the four terms shown to be depen-
dent on the cross-sectional shape of the analysis column.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0062701

I. INTRODUCTION

Measurements of equilibrium and kinetic parameters govern-
ing affinity interactions are of paramount importance to under-
standing a wide range of chemical and biological systems.1,2 A
variety of techniques are used to make these measurements includ-
ing fluorescence spectroscopy, (cryo-) electron microscopy, iso-
thermal titration calorimetry, surface plasmon resonance, nuclear
magnetic resonance, and capillary electrophoresis (CE). Among
these approaches, CE offers the ability to conveniently measure
affinity interactions at the level of a few molecules, single cells,
between cells, and even individual organisms. These opportunities
primarily arise due to a lack of convective mixing between the
bound and unbound species in CE assays particularly when per-
formed in capillaries/channels with lateral dimensions on the order
of 100 lm or narrower.2 Additionally, the CE approach can allow
the extraction of more specific and accurate binding details such as
interaction sites, binding stoichiometry, binding constants, etc.,
which are helpful in better understanding the molecular mecha-
nisms of basic processes.3 Furthermore, CE determinations can be

performed under physiologically relevant conditions, which makes
them particularly suitable for studies of biomolecular interactions.

Mobility Shift Affinity Capillary Electrophoresis (msACE) is
among the most extensively used method for making affinity measure-
ments employing the CE approach.4 In this method, the analyte is
introduced into an analysis column filled with a background electro-
lyte containing different concentrations of the ligand. Fast on and off
kinetics are desired in these assays to allow chemical equilibration of
the analyte and ligand on a timescale that is significantly shorter than
that required by the analyze analyte zone to migrate through the col-
umn. This near equilibrium condition is typically realized using ligand
concentrations 1–2 orders of magnitude larger than that of the analyte.
A large excess of the ligand in the background electrolyte also ensures
that the spatial and temporal variations in its concentration across the
analyte zone are negligible irrespective of the extent of analyte-ligand
equilibration at any location. While this format for the msACE
method works well for reliable determination of interaction parame-
ters for a variety of analyte-ligand couples, it also has some important
limitations.5,6 For example, increasing the ligand concentration can
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produce a change in viscosity and ionic strength of the background
electrolyte that needs to be corrected to minimize errors in the esti-
mated interaction parameters. Also, high concentrations of the analyte
are desired in msACE analysis to help obtain sufficient signal but that
approach can introduce significant deviations from the equilibrium
condition and produce local variations in the ligand concentration.
Finally, adsorption of analyte and/or ligand onto the capillary/channel
wall can affect the peak migration and/or width/shape introducing
errors in the estimated parameter values. As a result, wall coatings are
often used to minimize such adsorption as well as improve the repro-
ducibility of the assay.

Some recent studies have shown that careful analysis of the peak
widths and shapes in conjunction with information on their elution
times in an msACE assay can allow reliable determination of several
equilibrium and kinetic parameters governing affinity interactions.7–11

For example, Miyabe and co-workers applied the method-of-moments
approach to estimate both equilibrium and rate constants using infor-
mation on the velocity and width of the analyte zone.11 Their work
relied on theoretical models that described peak migration and disper-
sion under the influence of a steady axial electric field but in the
absence of more complicated operating conditions and/or other non-
idealities, e.g., pressure-gradients, Joule heating, etc. In order to realize
the full potential of the msACE method however, theoretical models
capable of describing these systems under more realistic and complex
experimental situations are desirable enabling estimation of the inter-
action parameters with greater reliability than currently possible.

In an effort to accomplish that overall goal, the current article
expands on the method-of-moments approach12 to describe peak
migration and dispersion in msACE systems in the presence of a
steady pressure-driven flow. It must be noted that such flows can
originate from unwanted differences in the hydrostatic heads at the
capillary/channel ends and/or a variation in the electroosmotic flow
rate along the analysis column. Moreover, steady pressure-gradients
are also intentionally applied during affinity measurements in assays
that are variants of the msACE technique. For example, equilibrium
and kinetic parameters were recently estimated based on a chromato-
graphic capillary electrophoretic assay applying a pressure-driven
backflow to prevent the analyte-ligand complex from migrating
through the analysis column.13 The current analysis shows that while
the peak migration rate under these conditions is simply altered by the
area-averaged pressure-driven velocity, the peak dispersion exhibits a
more complex behavior. Although the additional band broadening
from a steady pressure-gradient in an msACE assay scales with the
square of the P�eclet number in the Taylor–Aris dispersion limit as in
most pressure-driven flow systems, the coefficient multiplying it
depends on the kinetic rate constants, molecular diffusivities, lateral
channel dimensions, and cross-sectional shape of the analysis column.

II. MATHEMATICAL FORMULATION

To examine the effect of a steady pressure-driven flow on the
peak velocity and width in an msACE assay, this article considers ana-
lyte transport between two parallel plates separated by a distance d
and through a cylindrical tube having the same diameter (see Fig. 1).
Advection in these analysis columns is driven by a combination of
electrokinetic and pressure-driven flows along the column axis
(z-coordinate) induced by an electric field (E) and pressure-drop (DP),
respectively. Representing lateral positions using the y-coordinate in the

system, the channel walls in the parallel plate and cylindrical tube
geometries are further assumed to be located at y ¼ 6d=2 and
y ¼ d=2, respectively, to produce liquid flow and analyte concentra-
tion profiles that are both symmetric about y ¼ 0.14 The binding of
the analyte (S) to the ligand (L) to form a complex (X) is represented

by the reaction Sþ L �
ka

kd
X in this work where ka and kd denote the

rate constants for the forward and reverse reactions, respectively.
Because the current analysis considers the ligand to be present in
the background electrolyte at a concentration L0 which significantly
exceeds that of the analyte, the pseudo first-order equilibrium
constant Keq ¼ kaL0=kd for the binding reaction is assumed to be

spatially and temporally uniform in the system. In this situation,
the advection-diffusion equations governing the concentration pro-
file for the analyte (CS) and analyte-ligand complex (CX) may be
written as15
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2
;

CS ¼ CX ¼ 0 elsewhere:

FIG. 1. Schematic of the (a) parallel-plate and (b) cylindrical tube device used for
performing msACE assays described in this article. Notice that the symbol w in
sub-figure (b) refers to the azimuth angle in the cylindrical coordinate system which
in this analysis does not influence any of the transport properties due to symmetry
about the z-axis.
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Here, Up denotes the pressure-driven flow velocity averaged over
the capillary/channel cross-sectional area, t represents the time
coordinate, and while DS and DX correspond to the molecular dif-
fusion coefficients for the analyte and analyte-ligand complex,
respectively. The spatially uniform electrokinetic (algebraic sum of
the electroosmotic and electrophoretic components) velocity for
the species S and X has been identified by the parameters US and
UX in these equations with n ¼ 0 and n ¼ 1 representing the
parallel-plate and cylindrical tube cases, respectively. The quantity
C0 here represents the concentration of S in the bulk sample.
Notice that the pressure-driven flow-field considered in this work
is one-dimensional in nature as it varies with only the y-coordinate
in the system. Upon normalizing all length scales with respect to d,
i.e., y�; z� ¼ y=d; z=d, the time coordinate with respect to the diffu-
sion timescale for S, i.e., t� ¼ DSt=d

2, and the concentrations by
the quantity C0, i.e., C�

S ; C
�
X ¼ CS=C0; CX=C0, Eq. (1) may be

rewritten as
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The quantities PeS¼USd=DS, PeX ¼UXd=DX ; and Pep¼Upd=DS

here refer to the different P�eclet numbers relevant to this analysis
with Da¼kdd

2=DS denoting the Damk€ohler number for the
system.16 It must be pointed out that while there is no preference
to normalizing the timescale with respect to DS or DX , the
former option was chosen for this analysis. The parameter a in
Eq. (2) denotes the ratio of the molecular diffusion coefficients
DX=DS and typically assumes values less than 1 due to a larger
molecular weight of X compared to that of S. Notice that the
current work considers laminar flow in the system and is therefore
valid for small Reynolds numbers. In this limit, fluid inertia does
not play a role in material transport but molecular diffusion
does. As a result, the P�eclet number becomes a key non-dimen-
sional input parameter in this analysis rather than Reynolds num-
ber. Now multiplying Eq. (2) with z�k followed by integrating it
along the z�-coordinate from �1 to 1, it is possible to show
that12
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(4)

where d ¼ b=d and the sample is assumed to be spread uniformly
over a zone of width b at t� ¼ 0. Notice thatmS

k andm
X
k in this formu-

lation represent the kth moment of C�
S and C�

X , respectively, along the
z�-coordinate after spatially averaging over the y� domain. In this situ-
ation,mS

1 þmX
1 quantifies the normalized z�-position for the center of

mass of the sample zone, and mS
2 þmX

2

� �

� mS
1 þmX

1

� �2
equals its

normalized spatial variance along the z-axis.17–19

Besides seeking analytical solutions for band broadening in
msACE systems with a steady pressure-driven flow, numerical simula-
tions using the COMSOL Multiphysics package were also performed
to validate these results as well as establish the timescale over which
the analytical predictions are applicable. These simulations involved
numerically solving Eq. (1) applying the relevant boundary and initial
conditions for a fully developed flow field. To simplify the analysis, a
parallel plate system separated by a unit distance and a cylindrical
tube with a unit diameter were chosen in the simulations with the
domain extending 2000 units along the direction of analyte flow
(0 � z� � 2000). Moreover, the spatial variance of the injected zone
of S was chosen to be at least 104 times smaller than its steady state
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value at the channel outlet as predicted by the analytical model to render
this contribution to band broadening negligible relative to other sources.
A zone of X in equilibrium with S was also introduced in these simula-
tions and its transport tracked based on Eq. (1). Furthermore, the spatial
extent of the separation chamber along the z-direction was chosen to be
at least 8 times larger than the product of the axial velocity of S, i.e.,
US þ Up, and the characteristic diffusion timescale d2=4DS

� �

in the sys-
tem to ensure that the zone width at the channel exit corresponded to
the result in the Taylor–Aris dispersion limit.

III. RESULTS AND DISCUSSION

The current analysis focuses on the mathematical solutions for
Eq. (4) when k ¼ 0; 1; and 2 to understand zone migration and
broadening in msACE systems with fast on and off binding kinetics,
i.e., Da; KeqDa� 1 in the Taylor–Aris dispersion limit,12,20 i.e.,
t� � 1. Under these conditions, it may be shown that

mS
0 ¼

1

1þKeq
; /S

0 ¼
4

p

� �n
1

1þKeq
and mX

0 ¼ Keq

1þKeq
;

/X
0 ¼ 4

p

� �n
Keq

1þKeq
:

(5)

The above expressions simply correspond to the steady state solutions
for Eqs. (3) and (4) when k ¼ 0 establishing that the amounts of S and
X to be temporally invariant in this time limit. Moreover, these solu-
tions show that the fraction of S present as analyte-ligand complex (X)
increases with Keq approaching a value of 1 when Keq ! 1 (see Fig. 2).
Additionally, /S

0 and /X
0 are found to be spatially uniform implying

that the amount of material present along any flow streamline to be the

same under these conditions. Further analysis reveals that the time
dependent component of these solutions decays as e�Da 1þKeqð Þt� imply-
ing that the temporal variation in mS

0 and mX
0 cannot be neglected for

t�� 1= Da 1þ Keqð Þ½ �.21 At these shorter time scales, the dependence of
/S
0 and /X

0 on the y�-coordinate can also be significant leading to a
more complicated description of analyte transport in the system. It
must be pointed out though that the solutions for mS

0 and mX
0 included

in Eq. (5) are identical for the parallel-plate n ¼ 0ð Þ and cylindrical
tube n ¼ 1ð Þ geometries as the total amount of sample introduced into
them was chosen to be the same in this analysis. The steady state solu-
tions for /S

0 and /X
0 ; however, are found to be dependent on the cross-

sectional area of the analysis column yielding the 4=p factor in Eq. (5).
This factor corresponds to the ratio of the cross-sectional area between
two parallel-plates of unit width separated by a distance d over that of a
cylindrical capillary of diameter d.

For k ¼ 1, Eq. (4) may be solved in the Taylor–Aris dispersion
limit to yield

mS
1 ¼

PeS þ aKeqPeX

1þKeqð Þ2
þ Pep

1þKeq

" #

t�þKeq Pes � aPeXð Þ
Da 1þKeqð Þ3

;

mX
1 ¼ Keq PeSþ aKeqPeXð Þ

1þKeqð Þ2
þ KeqPep

1þKeq

" #

t��Keq Pes � aPeXð Þ
Da 1þKeqð Þ3

;

mS
1þmX

1 ¼ PeSþ aKeqPeX

1þKeq
þPep

� �

t�;

(6)

which show that at this timescale the centers of mass for S and X migrate
with steady velocities uS ¼ dmS

1=dt
� and uX ¼ dmX

1 =dt
�, respectively,

such that uX ¼ KequS. As a result, uX is always greater uS when Keq > 1
and vice versa, irrespective of the magnitude of the molecular velocities
for these two species (US andUX). Themigration speed for the combined
sample zone under these conditions is given by d mS

1 þmX
1

� �

=dt� and
may be expressed as the weighted average of the electrokinetic transport
rate for S and X plus the pressure-driven flow speed averaged over the
cross-sectional area of the channel/capillary. Now because the electroki-
netic velocities for the analyte and analyte-ligand complex as well as the
pressure-driven flow speed were chosen to be identical for the parallel-
plate device and cylindrical capillary in Eqs. (3) and (4), the solutions
included in Eq. (6) turn out to be the same for n ¼ 0 and n ¼ 1. The
above results also show that while uS approaches a value of PeS þ Pep
when Keq ! 0, this quantity diminishes to zero in the limit of Keq ! 1
[see Fig. 3(a)]. The quantity uX on the other hand assumes a value of zero
when Keq ¼ 0 and asymptotes to aPeX þ Pep in the limit of Keq ! 1.
Interestingly however, although uS decreases monotonically for larger val-
ues of Keq in all the situations considered in this analysis, the variation of
uX with the pseudo first-order equilibrium constant is monotonic only
when Pep þ 2aPeX � PeS. Under conditions when PeS > Pep þ 2aPeX ,
the migration velocity of X rises steadily upon increasing Keq but then
exhibits a weak maximum at Keq ¼ PeS � Pep � 2aPeX before plateau-
ing to its asymptotic value corresponding to the limitKeq ! 1.

In the Taylor–Aris dispersion limit, Eq. (6) further indicates that
the centers of mass for S and X are projected to be offset from that of
the combined sample zone in opposite directions at the initial time.
The normalized value for this offset distance is simply the magnitude
of mS

1 at t� ¼ 0 given by Dz0 ¼ Keq Pes � aPeXð Þ= Da 1þ Keqð Þ3
	 


with the center of mass for S leading that of X when PeS > aPeX , and
vice versa. Note that the quantity Dz0 vanishes in the limit of Da and
Keq approaching infinity as it originates from the finite values of the

FIG. 2. Variation in the zeroth-order moment of concentration for S and X , i.e., mS
0

and mX
0 , with the pseudo first-order equilibrium constant (Keq) during an msACE

assay as considered in this work when performed in a parallel-plate (n ¼ 0) and a
cylindrical tube (n ¼ 1) device. Notice that the quantities /S

0 and /
X
0 equal mS

0 and
mX
0 , respectively, for a parallel-plate device but not for a cylindrical tube upon set-

ting mS
0 þ mX

0 ¼ 1 in both cases.
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rate constants in the system. In fact, this offset distance scales linearly
with PeS � aPeXð Þ=Da which is the separation gap produced by the
differential in the molecular velocities for S and X, i.e., PeS � aPeX ,
over the reaction timescale 1=Dað Þ. In Fig. 3(b), the variation in the
noted separation gap between the centers of mass for S and X, i.e.,
2Dz0, with Keq has been included which shows this quantity to decline
to zero both when Keq ! 0 or 1, and assume a maximum value of

8 PeS � aPeXð Þ= 27Dað Þ at Keq ¼ 1=2. In addition, this separation gap
is found to be independent of the channel/capillary cross-sectional
shape or its area yielding identical values for n ¼ 0 and n ¼ 1 under
conditions considered in this analysis.

In the Taylor–Aris dispersion limit, Eq. (3) may also be solved to
obtain analytical solutions for /S

1 and /X
1 yielding the result below for

a parallel-plate device
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(7)

where¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Da 1þ aKeqð Þ=a
p

. The corresponding solutions for a cylindrical capillary are

/S
1 ¼

4

p

PeS þ aPeX

1þ Keqð Þ2
þ Pep

1þ Keq

" #

t� � 32a 1� að ÞKeqPepI0 ky�ð Þ
kpI1 k=2ð ÞDa 1þ Keqð Þ 1þ aKeqð Þ2

þ 2Pepy
�4

p 1þ aKeqð Þ

þ 1

p

32a 1� að ÞKeqPep

Da 1þ Keqð Þ 1þ aKeqð Þ2
� Pep

1þ aKeqð Þ

" #

y�2 þ Pep

12p 1þ aKeqð Þ
þ 4Keq PeS � aPeXð Þ

pDa 1þ Keqð Þ3

� 4a 1� að ÞKeqPep

pDa 1þ Keqð Þ 1þ aKeqð Þ2
þ 128a2 1� að ÞKeqPep

pDa2 1þ Keqð Þ 1þ aKeqð Þ3
;

/X
1 ¼ 4

p

Keq PeS þ aPeXð Þ
1þ Keqð Þ2

þ KeqPep

1þ Keq

" #

t� þ 32 1� að ÞKeqPepI0 ky�ð Þ
kpI1 k=2ð ÞDa 1þ Keqð Þ 1þ aKeqð Þ2

þ 2KeqPepy
�4

p 1þ aKeqð Þ

� 1

p

32 1� að ÞKeqPep

Da 1þ Keqð Þ 1þ aKeqð Þ2
þ KeqPep

1þ aKeqð Þ

" #

y�2 þ KeqPep

12p 1þ aKeqð Þ
� 4Keq PeS � aPeXð Þ

pDa 1þ Keqð Þ3

þ 4 1� að ÞKeqPep

pDa 1þ Keqð Þ 1þ aKeqð Þ2
� 128a 1� að ÞKeqPep

pDa2 1þ Keqð Þ 1þ aKeqð Þ3
;

/S
1 þ /X

1 ¼ 4

p

PeS þ aPeX

1þ Keq
þ Pep

� �

t� þ 32 1� að Þ2KeqPepI0 ky�ð Þ
kpI1 k=2ð ÞDa 1þ Keqð Þ 1þ aKeqð Þ2

þ 2 1þ Keqð ÞPepy�4
p 1þ aKeqð Þ

� 1

p

32 1� að Þ2KeqPep

Da 1þ Keqð Þ 1þ aKeqð Þ2
þ 1þ Keqð ÞPep

1þ aKeqð Þ

" #

y�2 þ 1þ Keqð ÞPep
12p 1þ aKeqð Þ

þ 4 1� að Þ2KeqPep

pDa 1þ Keqð Þ 1þ aKeqð Þ2

� 128a 1� að Þ2KeqPep

pDa2 1þ Keqð Þ 1þ aKeqð Þ3
;

(8)
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where I0 and I1 refer to the zeroth and first order modified Bessel

functions, respectively. The solutions for /S
1 and /X

1 included in Eqs.

(7) and (8) show that these quantities have a spatial dependence on
the y�-coordinate which interestingly only appears in the terms that

are independent of t�. Moreover, these quantities are functions of both
the cross-sectional shape and area yielding somewhat different results
for the parallel-plate device and cylindrical capillary. The time-
dependent terms however are only influenced by the cross-sectional

FIG. 3. (a) Variation in the migration velocity for S and X , i.e., uS and uX , with the pseudo first-order equilibrium constant (Keq) under various operating conditions during an
msACE assay. (b) Variation in the migration velocity of the combined sample zone, i.e., uS þ uX , with the pseudo first-order equilibrium constant (Keq) under various operating
conditions during an msACE assay. The results included in both the sub-figures are identical for a parallel-plate device (n ¼ 0) and cylindrical tube (n ¼ 1) in this analysis.

FIG. 4. Spatial variation in /S
1 and /X

1 (solid line) across the y�-coordinate at t� ¼ 0 in a (a) parallel-plate device and (b) cylindrical capillary when PeS ¼ 10, PeX ¼ 8,
Pep ¼ 3, a ¼ 0:8, Da ¼ 3, and Keq ¼ 1. The dotted lines in the sub-figures refer to the spatial average value of the corresponding quantity under the same conditions.
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area of the column and hence have the factor 4=pmultiplying the cor-

responding contributions for a cylindrical capillary. The contribution

independent of t� on the other hand, not only includes similar factors

in Eq. (8) but also some mathematical functions, e.g., Bessel functions,

which are different from those that describe /S
1 and /X

1 in a parallel-

plate device. In Fig. 4, the variation in the time-independent

components of /S
1, /

X
1 and /S

1 þ /X
1 across the y�-coordinate in a

parallel-plate device and a cylindrical capillary has been presented by

simply plotting their values at t� ¼ 0. These quantities referred to as

/S
1jt�¼0, /

X
1 jt�¼0 and /S

1jt�¼0 þ /X
1 jt�¼0 in the figure are seen to

decrease monotonically when the channel/capillary walls are

approached moving from the center of the duct. This trend is simply a

consequence of the parabolic pressure-driven flow profile advecting S
and X faster along the center of the analysis column than around the

channel/capillary walls. As a result, all contributions to /S
1 and /X

1

independent of t� scale with Pep consistent with the Taylor–Aris zone-

dispersion theory for a pressure-driven flow system. Based on Eqs. (7)

and (8), the spatially averaged values for the functions /S
1jt�¼0,

/X
1 jt�¼0; and /S

1jt�¼0 þ /X
1 jt�¼0 may be further shown to be given by

/S
1 jt�¼0 ¼�/X

1 jt�¼0¼4nKeq Pes�aPeXð Þ= pnDa 1þKeqð Þ3
	 


yielding

/S
1 jt�¼0 þ/X

1 jt�¼0¼0 which have all been marked as dotted lines in

Fig. 4 for reference. As before, the cases n¼0 and n¼1 in the above

expressions for /S
1 jt�¼0 and /X

1 jt�¼0 correspond to the results for a

parallel-plate device and cylindrical capillary, respectively. In this situ-

ation, the quantity /S
1 jt�¼0>/X

1 jt�¼0 when PeS>PeX and vice versa

consistent with the physical description of the system noted above.
The spatial variance of the sample zone r2ð Þmay be finally evalu-

ated by solving Eq. (4) for k ¼ 2 to yield

r2

d2
¼ mS

2 þmX
2

mS
0 þmX

0

 !

� mS
1 þmX

1

mS
0 þmX

0

 !2

¼ 2
Deff

DS

� �

t� þ d2

12
;

Deff

DS

�

�

�

�

n¼0

¼ 1þ aKeq

1þ Keq
þ Keq PeS � aPeXð Þ2

Da 1þ Keqð Þ3
þ

1þ Keqð ÞPe2p
210 1þ aKeqð Þ

þ
1� að Þ2KeqPe

2
p

5Da 1þ Keqð Þ 1þ aKeqð Þ2
�

12a 1� að Þ2KeqPe
2
p

Da2 1þ Keqð Þ 1þ aKeqð Þ3

þ
72a2 1� að Þ2KeqPe

2
p

Da3 1þ Keqð Þ 1þ aKeqð Þ4
kcoth

k

2

� �

� 2

� �

; (9)

Deff

DS

�

�

�

�

n¼1

¼ 1þ aKeq

1þ Keq
þ Keq PeS � aPeXð Þ2

Da 1þ Keqð Þ3
þ

1þ Keqð ÞPe2p
192 1þ aKeqð Þ

þ
1� að Þ2KeqPe

2
p

3Da 1þ Keqð Þ 1þ aKeqð Þ2
�

32a 1� að Þ2KeqPe
2
p

Da2 1þ Keqð Þ 1þ aKeqð Þ3

�
256a2 1� að Þ2KeqPe

2
p

Da3 1þ Keqð Þ 1þ aKeqð Þ4
kI2 k=2ð Þ
I1 k=2ð Þ

� �

;

where Deff and d2=12 refer to the effective or Taylor–Aris dispersion
coefficient and sample variance at t� ¼ 0, respectively. The above
equation establishes that the presence of a steady pressure-driven flow
in an msACE system produces the typical linear increase in r2 with
time in the Taylor–Aris dispersion limit.12,20 Moreover, while the
mathematical expressions describing Deff in a parallel-plate device

(n ¼ 0) and cylindrical capillary (n ¼ 1) are quite similar, the differ-
ences in their cross-sectional shape and area show up in the different
numerical and functional coefficients multiplying some of the terms in
Eq. (9). The first term in both these cases originates from the axial dif-
fusion of S and X along the analysis column and only depends on the
molecular diffusion coefficients for these two species as well as their
relative amounts in the system under equilibrium. As may be seen
from Fig. 5(a), this contribution labeled by the number 1 asymptotes
to the values of 1 and a as Keq ! 0 and 1, respectively, varying
monotonically across these limits. In addition, the noted variation
does not depend on the cross-sectional geometry or area of the analy-
sis column yielding identical results for n ¼ 0 and 1. The second term
contributing to Deff arises due to a difference in the electrophoretic
velocity of S and X which causes the two species to separate as they
migrate through the analysis column. As a result, this contribution
increases with the noted velocity differential, i.e., US � UX propor-
tional to PeS � aPeX , as well as the reaction time scales in the system,
i.e., 1=ka and 1=kd proportional to 1=Keq and 1=Da, respectively. In
Fig. 5(a), the variation in this second term (labeled by the number 2)
as a function of Keq has been included which shows the noted quantity
to vanish when Keq ! 0 or 1. This trend arises as only one of the
reacting species can exist at these limits eliminating the separation
between S and X in the system. Moreover, the contribution of this sec-
ond term to Deff is identical for the cases n ¼ 0 and 1 implying it to be
independent of the cross-sectional shape and area of the analysis col-
umn. Furthermore, this quantity assumes a maximum value of
4 PeS � aPeXð Þ2= 27Dað Þ when Keq ¼ 1=2 and therefore dominates
the contribution arising from axial diffusion of S and X only
when PeS � aPeX � 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

aþ 2ð ÞDa
p

=2 for Da= PeS � aPeXð Þ 	 Keq

	 PeS � aPeXð Þ= aDað Þ.
While the first two terms contributing to Deff in Eq. (9) have

been previously investigated in the literature, the remaining ones are
unexplored, and capture the effect of a steady pressure-driven flow on
band broadening in an msACE system. Noticeably, this latter contri-
bution scales with the square of Pep in the Taylor–Aris dispersion limit
consistent with previous descriptions of zone dispersion in pressure-
driven systems.12,20 As may be noted, among the four additive terms
constituting this contribution, only one does not depend on the reac-
tion kinetics and arises solely due to limited transverse diffusion of S
and X across the flow streamlines moving with different velocities.
The noted term independent of Da closely matches that described by
Aris in his seminal work with a numerical coefficient determined by
the cross-sectional shape of the analysis column.12 The variation of
this term with Keq has been included in Fig. 5(a) (labeled by the num-
bers 3 and 4) which shows it to asymptote to Pe2p=210 and Pe

2
p=192 for

a parallel-plate device and cylindrical tube, respectively, for small val-
ues of the equilibrium constant. The noted term then varies monotoni-
cally with an increase in the magnitude of Keq before plateauing to the
values of Pe2p= 210að Þ and Pe2p= 192að Þ for n ¼ 0 and 1, respectively, as
Keq ! 1. In this situation, while this band broadening component
arising from pressure-drive flow and independent of Da remains simi-
lar in magnitude in the parallel-plate device (n ¼ 0) and cylindrical
tube (n ¼ 1) under all conditions, its significance relative to the com-
ponent originating from axial diffusion depends on the parameters a
and b where b ¼ Pep=

ffiffiffiffiffiffiffi

210
p

and Pep=
ffiffiffiffiffiffiffi

196
p

for n ¼ 0 and 1, respec-
tively. When b assumes a value between a and 1, the two contributions
equal each other [see Fig. 5(a)] at Keq ¼ b� 1ð Þ= a� bð Þ with the
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former dominating the latter when b � 1 for Keq 	 1 and b=a � 1
for Keq � 1. If b does not fall within the noted range, the two contri-
butions never equal each other with the former dominating the latter
when b, b=a � 1 and vice versa.

In order to understand the origin for the last three terms contribut-
ing to Deff in Eq. (9), the factors multiplying Pe2p from these contribu-
tions have been plotted for a parallel-plate device and cylindrical tube in
Fig. 5(b). As may be seen from the figure, these factors vanish both in
the limits of Keq ! 0 and 1 similar to the contribution arising from
the velocity differential between S and X, i.e., US � UX . This behavior
combined with the dependence on Pep indicates that the noted terms
originate from an interplay between the velocity differential US � UX

and the pressure-driven flow field in the system. Not surprisingly, these

interaction terms also vary inversely with Da, although to different
extents, and algebraically sum up to a value greater than zero under all
operating conditions. In the limit Keq ! 0 for example, their algebraic
sum may be expressed as 1� að Þ2KeqPe

2
ph=Da with h ¼ 1=5� 12=c2

þ 72 ccoth c=2ð Þ � 2½ �=c4 and h ¼ 1=3� 32=c2 þ 256 I2 c=2ð Þ=
c3I1 c=2ð Þ
	 


for the parallel-plate device and cylindrical capillary,
respectively, where c ¼

ffiffiffiffiffiffiffiffiffiffiffi

Da=a
p

. In this situation, the additional band
broadening due to the interaction terms decays linearly with Keq for
small values of the pseudo first-order equilibrium constant. Moreover,
the quantity h is found to be increasing monotonically with larger values
of c for both the parallel-plate device and cylindrical capillary as shown
in Fig. 5(c). While h vanishes as c approaches zero both when n ¼ 0
and 1, this quantity asymptotes to the values to 1=5 and 1=3 for the

FIG. 5. (a) Variation in the first three terms contributing to Deff in Eq. (9) with the first and second terms labeled by the numbers 1 and 2, respectively, when PeS ¼ 50 and
PeX ¼ 40. The curves labeled by the numbers 3 and 4 represent the third term for the situations when b assumes a value between a and 1 (choosing Pep ¼ 10) and when it

does not (choosing Pep ¼ 15), respectively. (b) Factors multiplying Pe2p for the interaction terms contributing to Deff in Eq. (9). (c) Variation in the quantities h and g with

c ¼
ffiffiffiffiffiffiffiffiffiffi

Da=a
p

and x ¼
ffiffiffiffiffiffiffiffiffiffiffi

KeqDa
p

, respectively, that describe the behavior of the algebraic sum of the interaction terms in the limits Keq ! 0 and1. Note that the dependence

of h on c and g on x are identical to each other, and are therefore described by the same curves. (d) Relative magnitudes of the pressure-driven flow contribution independent
of Da and the algebraic sum of the interaction terms when Pep ¼ 10. All sub-figures were plotted choosing a ¼ 0:3 and Da ¼ 3.
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parallel-plate device and cylindrical capillary, respectively, as c ! 1.
In the opposite limit when Keq ! 1, the algebraic sum of the interac-

tion terms may be written as 1� að Þ2Pe2pg= a2K2
eqDa

� �

with g ¼ 1=5

� 12=x2 þ 72 x coth x=2ð Þ � 2½ �=x4 and g ¼ 1=3� 32=x2

þ 256 I2 x=2ð Þ= x3I1 x=2ð Þ
	 


for the parallel-plate device and cylindri-

cal capillary, respectively, where x ¼
ffiffiffiffiffiffiffiffiffiffiffiffi

KeqDa
p

. Notice that although

the functional dependence of h and g on c andx are identical, the oper-
ating parameters Keq, a and Da relate to c and x differently. In fact, the

quantity k simply equals c andx when Keq ! 0 and1, respectively.

Finally, the relative magnitude of the pressure-driven flow contri-
bution independent of Da has been compared to the algebraic sum of
the interaction terms in Fig. 5(d) for a choice of Pep ¼ 10. As evident
from the figure, the latter is found to be significantly smaller compared
to the former for situations considered in this article, i.e., t� � 1,
Da� 1. Moreover, the difference between the two contributions
increases for larger values of Da as the interaction terms vary inversely
with the Damk€ohler number in the system. In this situation, the
pressure-driven flow contribution independent of Da can be expected
to dominate the additional band broadening in msACE systems aris-
ing from a pressure-gradient at least in the Taylor–Aris dispersion
limit with fast binding kinetics. In Fig. 6, we have included results
from numerical simulations performed using the COMSOL
Multiphysics package that validates some of the predictions of the ana-
lytical model. However, these results match the analytic predictions
within 2% only in the Taylor–Aris dispersion limit. At shorter time
scales, the dispersion coefficient Deffð Þ is seen to assume a value lower
than its steady-state limit [see Fig. 6(a)] at least for the initial condition
outlined in Eq. (1). For comparison purposes, the temporal evolution

of the Taylor–Aris dispersion coefficient as predicted by Gill and

Sankarasubramanian22 for simple pressure-driven flow through a tube

has been also included in Fig. 6(a) (dashed line). As may be noted, the

steady-state limit for this dispersivity is quite different in the two cases

in spite of the identical Pep value chosen for them. This mismatch

occurs due to the additional band broadening contributions arising

from the differential in the electrophoretic velocities of S and X as well

as the chemical interactions between them. Not surprising however,

the timescale over which Deff=DS attains steady-state in Gill and

Sankarasubramanian’s work is quite similar to that in the msACE sys-

tem considered here which assumes fast chemical kinetics relative to

diffusion, i.e., Da 1þ Keqð Þ � 1. Nevertheless, the dispersion dynam-

ics is somewhat slower in the latter case likely due to a complex inter-

play between molecular diffusion and the reaction process.
While the mathematical formulation described here has been

applied to evaluating the spatial variance of a sample zone in an
msACE system, it can be also extended to calculating the higher order
moments of the sample concentration profile, e.g., skewness, kurtosis,
etc.12 However, the present analysis is only valid for assays in which
the residence time for the analyte molecules in the analysis column is
much larger than their characteristic diffusion time across the channel
cross section, i.e., ‘= uS þ uXð Þ � d2=DS, where ‘ denotes the length
of the analysis column. Moreover, this mathematical model ignores
the effect of the channel sidewalls on the pressure-driven flow profile
and hence on the hydrodynamic dispersion component of the sample
zone.23 Furthermore, it does not account for any additional band
broadening introduced by other non-idealities, e.g., Joule heating,24,25

electromigration dispersion,26 wall adsorption,27 etc., in the system.
Nevertheless, the present analysis can be highly useful in estimating

FIG. 6. (a) Temporal variation in the Taylor–Aris dispersion coefficient as predicted by the COMSOL simulations for a cylindrical-tube when Keq ¼ 0:25. The dashed line corre-
sponds to the temporal evolution of the Taylor–Aris dispersivity as predicted by Gill and Sankarasubramanian22 for simple pressure-driven flow through a tube when
Pep ¼ 10. (b) Comparison of COMSOL simulation results with the predictions of the analytic theory. All results included in the sub-figures for the msACE system correspond
to the situation when PeS ¼ 50, PeX ¼ 40, Pep ¼ 10, a ¼ 0:8; and Da ¼ 3.
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band broadening in msACE systems with a pressure-gradient applied
intentionally or unintentionally along the analysis column.
Furthermore, it establishes a mathematical framework for analyzing
the influence of channel sidewalls and other non-idealities on analyte
transport in the Taylor–Aris dispersion limit.

IV. CONCLUSIONS

In conclusion, the present work outlines an analytical framework
that can accurately quantitate analyte migration and dispersion in
msACE systems with a steady pressure-gradient applied along the
analysis column. It predicts that while such pressure-gradients alter
the zone migration rate by the area-averaged pressure-driven flow
velocity in the system, its effect on zone dispersion is more compli-
cated and can be quantitated using four additive terms in the
Taylor–Aris dispersion limit. All of these terms are further determined
to scale with the square of the P�eclet number calculated based on the
area averaged pressure-driven flow velocity Upð Þ and start dominating
the overall zone dispersion in the system when Up exceeds about 25%
of the electrokinetic velocities of the analyte species. Moreover, the
analytical expressions establish that the first of these terms arises just
from the parabolic flow profile of the pressure-driven flow component
and is independent of the binding kinetics, whereas the other three
contributions, referred to as the interaction terms in this analysis, scale
inversely with the Damk€ohler number and vanish in the limit of both
large and small values of the equilibrium constant. These findings are
significant in understanding and better designing msACE assays with
a pressure-gradient applied intentionally or unintentionally along the
analysis column. Moreover, the mathematical framework outlined
here may be extended to quantitate the influence of other factors, e.g.,
Joule heating, electromigration dispersion, etc., relevant to the practical
implementation msACE assays and will be explored in future studies.
It must be noted that although sample transport under transient con-
ditions, i.e., t��1 is also a topic of high significance in msACE
assays,28 this work has been restricted to results obtained in the
Taylor–Aris dispersion limit to preserve its focus and simplicity. The
author plans to discuss sample transport in msACE systems under
transient conditions in a separate manuscript to be able to present a
comprehensive analysis of those results.

SUPPLEMENTARY MATERIAL

See the supplementary material for mathematical derivation of
the solutions to Eqs. (3) and (4) when k ¼ 0; 1; and 2.
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