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Abstract—Deploying small cell base stations (SBS) under the coverage area of a macro base station (MBS), and caching popular
contents at the SBSs in advance, are effective means to provide high-speed and low-latency services in next generation mobile
communication networks. In this paper, we investigate the problem of content caching (CC) and user association (UA) for edge
computing. A joint CC and UA optimization problem is formulated to minimize the content download latency. We prove that the joint CC
and UA optimization problem is NP-hard. Then, we propose a CC and UA algorithm (JCC-UA) to reduce the content download latency.
JCC-UA includes a smart content caching policy (SCCP) and dynamic user association (DUA). SCCP utilizes the exponential
smoothing method to predict content popularity and cache contents according to prediction results. DUA includes a rapid association
(RA) method and a delayed association (DA) method. Simulation results demonstrate that the proposed JCC-UA algorithm can
effectively reduce the latency of user content downloading and improve the hit rates of contents cached at the BSs as compared to

several baseline schemes.

Index Terms—Content caching, content download latency, heterogeneous networks, user association

1 INTRODUCTION

HE global mobile traffic has grown to more than three

times of the wireline network traffic, along with the
rapid increase of the number of mobile users and mobile
business [1]. The rapid growth of mobile business brings
about great challenges to the architecture of the existing and
emerging mobile communication networks [2]. In a densely
populated urban area, especially the residential areas with
complex buildings structures, the indoor signal coverage is
usually poor and the depth of signal coverage is also seri-
ously insufficient due to the propagation loss due to the
walls. The difficulty and high cost for building extension
base stations can bring a great budget burden on the net-
work operators [3].
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With simple structure and flexible deployment features,
small cell base stations (SBSs) can provide high data rate
and high quality of service (QoS) to mobile services. There-
fore, the “MBS + SBS” heterogeneous cellular network
(HetNet) is one of the most important architectures in the
next generation mobile communication systems. In this
architecture, SBSs commonly connect to a core network
through backhaul links with great transmission capacity [4],
and the mobile users associated with the SBSs download
contents from the content servers through the backhauls.
When the contents are popular, the same popular content
will be repeatedly transmitted through the backhaul links,
which sharply increases the traffic load on the backhaul
links and may lead to congestion in the backhaul links. Dis-
tributed content caching technique is an emerging and
effective means to solve this problem [5], [6], [7]. According
to a statistical study, distributed content caching can reduce
1/3 to 2/3 mobile data volume [8]. Furthermore, selectively
caching contents at SBSs can significantly reduce traffic load
on the backhaul links and decrease the content download
latency [9].

In recent years, there have been some interesting works
conducted on content caching in mobile cellular works [7],
[10], [11], [12]. Different content caching methods were pro-
posed for different purposes, such as reducing the content
download latency [18], alleviating the traffic load on back-
haul links [17], increasing the profits of service retailers or
providers [19], making better tradeoff between different net-
work performance [31], etc.

The prior works have demonstrated that content caching
in heterogeneous mobile networks can effectively improve
the QoS of mobile users. In HetNets, the content download
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latency not only depends on the content caching strategy,
but also hinges upon the user association strategy, espe-
cially in the scenario where the coverage areas of different
SBSs overlap with each other. However, most of the content
caching works cache contents according to the prediction
results of the content requirement probability. However,
the effect of mobile user association on the QoS of mobile
users, especially on the content download latency, has been
largely ignored. Although caching contents in SBSs can
decrease the content download latency, an inappropriate
user association will increase the content download latency.
Therefore, we should cache contents in the SBSs with which
more mobile user are associated with, to download these
contents, and associate mobile users to the SBSs through
which they can download contents with a smaller latency.
This means that content caching and user association affect
each other and jointly determine the content download
latency.

In view of the above issue, in this paper, we investigate
the optimization problem of content caching and user asso-
ciation. The main contributions of this paper are summa-
rized as follows.

1) Considering of caching contents distributedly in
cloud center and base stations (MBSs and SBSs), a
joint content caching and user association (JCC-UA)
optimization problem is formulated to minimize the
average content download latency. We also prove
that the JCC-UA problem is NP-hard.

2) In order to solve the JCC-UA problem, a smart con-
tent caching policy (SCCP) based on cubic exponen-
tial smoothing is proposed for content caching,
while a rapid association (RA) algorithm and a
delayed association (DA) algorithm are proposed for
user association.

3) The performance of the proposed JCC-UA scheme,
including the SCCP, RA, and DA algorithms, is com-
prehensively evaluated in our simulation study, in
terms of cache hit rate and content download
latency. The proposed scheme outperforms the sev-
eral baseline schemes with considerable margins in
our simulation study.

The rest of this paper are organized as follows. In
Section 3, the system model is presented and the JCC-UA
optimization problem is formulated. Section 4 proposes the
SCCP and user association algorithms. The performances of
the proposed algorithms are evaluated in Section 5. Section 6
concludes this paper.

2 RELATED WORK

The authors in [13] showed that caching popular data at
SBSs as far as possible can reduce the data transmission
delay and offload the redundant data streams from an MBS.
The authors in [14] developed a framework for jointly opti-
mizing resource allocation and content caching for HetNets.
In [15], a long short-term memory (LSTM) deep learning
model was proposed to cache the data that was most likely
requested by end users to reduce service latency. In [16]
and [17], a pre-fetching strategy was proposed to cache con-
tents on the edge of a mobile network to reduce the traffic
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load on the wireless link. The authors in [18] optimally
assigned contents to SBSs to minimize the content down-
load latency. In [19], a Stackelberg game was formulated to
optimally cache content in SBSs to maximize the profit of
video retailers and network service providers. Based on
demand history, the works in [20] and [21] optimized con-
tent placement to make the best use of the cache capacity of
SBSs. In [22], the authors improved the content caching
strategy by considering user mobility and the randomness
of contact duration.

Taking into account bandwidth limitations, the authors
in [23] proposed a content caching strategy to maximize the
number of content requests served by SBSs. Under the
capacity constraints of the backhaul link, the authors in [24]
exploited the caching capability of SBSs to improve the QoS
of mobile users. In [25], a collaborative filtering scheme was
proposed to improve the backhaul efficiency and increase
the cache hit ratio. Considering the wired backhaul and
wireless channel quality, the work in [26] studied the effect
of backhaul delay on averaging content downloaded latency
in HetNets. In [27], an optimal cooperative content caching
and delivering strategy was proposed for the femtocell and
device-to-device (D2D) communication architecture. The
authors in [28] analyzed the probability that mobile users
successfully downloaded contents from SBSs with distrib-
uted content caching. Considering that the paths to the
back-end server were either congestion-sensitive or conges-
tion-insensitive, the work in [29] investigated the joint con-
tent caching and routing problem to minimize the average
content access delay. Based on the partial caching scheme, a
joint subcarrier assignment and user association scheme
was proposed in [30] to minimize the average content deliv-
ery time.

In addition, the tradeoff between network utility and back-
haul saving was investigated in [31]. The tradeoff was mea-
sured by a utility function, and a jointly optimized cache
placement and user-BS association algorithm was proposed
to maximize the utility function. In [32], a Stackelberg game
based framework was formulated to model the competition
between video providers (VP) and mobile network operators
(MNO). A joint video pricing and cache placement algorithm
was developed to maximize the profits of the VP and the
MNO. In [33], the authors investigated the problem of cache
storage allocation among BSs, as well as multicast beamform-
ing transmission in a wireless network with multicast and BS
caching. The cache-channel coding scheme and cache size
allocation algorithm were proposed to improve the message
delivery efficiency. In [34], a framework for minimizing the
system delivery time of full-duplex enabled MEC was built
and two iterative optimization algorithms were proposed to
solve the problem with sub-optimal solution. The authors
in [35] also proposed a cache-channel coding scheme and a
cache allocation algorithm to maximize the BS expected file
downloading rate.

3 SyYSTEM MODEL AND PROBLEM FORMULATION

3.1 System Model

The two-tier content caching and service model of a hetero-
geneous network are shown in Fig. 1. The upper layer of the
content cache is in the cloud center connected to the core
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Fig. 1. Architecture of the two-tier heterogeneous network (HetNet).

network, while the lower layer content cache is located in
the cellular network including some MBSs and SBSs. In this
paper, we assume that all the SBSs are connected to the core
network through backhaul links, and there is no direct link
between SBSs, which is the common scenario in a real-world
network. For simplification, we show only one MBS in
Fig. 1. The set of the MBS and SBSs is denoted as F' =
{fo, f1,---.[n}, where [, represents the MBS and
fisfa,--., [ represent the N SBSs. Let U = {uq,ug,...,un}
denote the M mobile users in the cellular network.

We consider that the frequency sub-channels allocated to
different BSs are orthogonal, so the inter-cell interference is
not needed in this setting [27]. The available bandwidth at
BS f,is B,(n=0,1,...,N), which is divided into I,, sub-
channels. The bandwidth of each sub-channel of f,, is b, =
B, /I,. Each sub-channel serves one mobile user, which
means that the maximum number of mobile users served by
fn is I,. Due to overlapped coverage between SBSs and
MBS, a user in an overlapped coverage area can access the
cellular network by associating with the MBS or one of the
SBSs. SNRmnj is the signal-to-noise ratio (SNR) from BS f,
to mobile user u,, on sub-channel j, j € {1,2,...,1,}, and
SNR,,mj = P,Lj G,,,mj / 03\,, where P, n; is the transmission power
of f, in sub-channel j, G mn is the channel gain of the wire-
less link from f, to w,, on sub-channel j, and UN is the
Gaussian white noise power. The fading of the communica-
tion links is composed of Rayleigh fading and path loss [30],
and thus we have Gmn] K Tyn, * d;m], where Ton; and
dmn denote the fading factor on sub-channel j and the dis-
tance between u,, and f,, respectively; and « and ¢ denote
the pathloss constant and pathloss exponent, respectively.
Let T, denote the data rate of mobile user w,, for down-
loadmg content from f, through sub-channel j, which can
be calculated by the Shannon formula as

Py = b 1082 (1 -+ SN, ). (1)

Let C = {ci1,c¢,...,cx} denote the set of K contents in
the system. The size of ¢, is I, bits, for k=1,2,..., K. The
content can be distributedly stored in the cloud center or in
the BSs, including the MBS and SBSs. The caching capacity
of f, is denoted as S, (n =0,1,..., N) bits. If the content ¢
is cached at BS f,, and mobile user w,, is associated with f,,

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 21, NO. 6, JUNE 2022

then w,, can directly download the content from f,. Other-
wise, u,, will download the content from the cloud center
f,- As in [17], we assume the latency of the backhaul links
from the BSs to the core network equals to 7'c. Note that a
content will be cached at a BS only when this content has
been downloaded by mobile users through this BS. This
type of content caching can be termed as “passive content
caching.” Therefore, we do not consider the additional cost
for the BS to fetch contents.

In order to satisfy the QoS requirements of mobile users,
we assume that the minimum guaranteed data rate for a
mobile user u,, iS 7, min. A mobile user u,, may associate
with BS f, on sub-channel j, if and only if 7, ;i < T If
there are no BSs that can satisfy the minimum guaranteed
date rate, the user call will be rejected. In this case, the user
may initiate a new association request again at a later time.

3.2 Problem Formulation
In this section, we formulate the JCC-UA problem aiming to
minimize the average content download latency for mobile
users. The JCC-UA problem is defined as follows. There are
K contents that will be distributedly cached in the cloud
center and N + 1 BSs (including the MBS and N SBSs), and
M mobile users will download these contents through the
content center and the BSs. The JCC-UA problem is to make
decision on which BS each content should be cached and on
which BS each mobile user will be associated with.

According to the system model and symbol definitions,
for a mobile user u,, requesting content ¢; € C, the content
download latency is [}/ Trns if u,, is associated with an SBS
f, on sub-channel j and ¢, is cached in f,. Otherwise, the
content download latency will become Zk/rmn,] +Tc. We
define X = {z,;|f,, € F, ¢, € C} as the content caching deci-
sion matrix, where z,; € {0,1}; x,, = 1 means that content
¢r, is cached at BS f,, and x,; = 0 indicates that ¢, is not
cached at f,. We also define Y = {ymn lum €U, f, € Fj€
I,} as the user association decision matrix, where Y, €
{0,1}; Ymn; = 1 means that user w,, is associated with f, on
sub-channel j, and Youn; =0 indicates that u,, is not associ-
ated with f, on sub-channel j.

Then, the content download latency for a mobile user

requesting content ¢y, is
( + (1 — k) - Tc) : 2
77”1]

bk = Z Z ymnj
n=0 j=
Let ¢, € {1,0} denote whether a mobile user u,, requests
content ¢ or not; g,,;, = 1 means that u,, requests content ¢y,
and g,,;, = 0 otherwise. The total content download latency
for user u,,, to download all the contents is

K
tm = Z Amik * tmk- (3)
k=1

In this paper, we aim to minimize the average content
download latency, which is given by

1
t=—=> ty,. (@)
] 2
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Considering the system constraints, the JCC-UA optimi-
zation problem can be formulated as follows in (5), (6), (7),
(8), (10), and (11). In the formulated problem, inequality (6)
ensures that the sum of contents stored at a BS is not more
than the storage capacity of the BS. Constraint (7) guaran-
tees that the number of mobile users being served by a BS is
not greater than the maximum number of mobile users that
the BS can serve. Inequality (9) indicates that the data rate
of a mobile user u,, will be no less than the required mini-
mum data rate if user u,, is associated with a BS. Con-
straint (8) indicates that a mobile user can be associated
with at most one BS.

M

‘Zt 5)

{wnl. l/mnj} m=

K
s.t. Zl‘nk : lk, S Sm v .fn er (6)
k=1

ZZy <L, VfEeF ™

m=1 j=

N In
Z Zymn] <1, Vu,eU (®)
n=0 j=1
TT’L’!L] Z T'”l "LLIl7 \v/ y?VLTLJ’ = 1 (9)
2 € {0,1}, Vf, € F, Vep € C (10)
Yo, € 10,1}, ¥ fu € F, ¥y, € U 1)

Lemma 1. The JCC-UA problem formulated in (5), (6), (7), (8),
(10), and (11) is NP-Hard.

Proof. In order to prove Lemma 1, we consider a special
case of the JCC-UA problem as follows. Each BS can cache
all contents, that is z,, =1, for all f, € F, ¢, € C, and

2(:1 Iy <8, for all f, € F. Meanwhile, the minimum
guaranteed data rate for all mobile users is zero, that is
Tm.min = 0, for all u,,, € U. For this special case, the optimi-
zation problem given in (5), (6), (7), (8), (10), and (11) can
be simplified as follows.

min ¢
Ymn;

st. (7), (8), (11).

The optimization problem formulated in (12) is a clas-
sical assignment problem that has been proved to be NP-
hard [36]. This means that a special case of the JCC-UA
problem is NP-hard. Therefore, the JCC-UA problem for-
mulated in (5), (6), (7), (8), (10), and (11) NP-Hard. O

(12)

4 PoLicy FOR JOINT CONTENT CACHING AND
USER ASSOCIATION

In Section 3, we have formulated the JCC-UA problem and
proved that it is NP-Hard. In this section, we propose
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effective heuristic algorithms to solve the JCC-UA problem.
The heuristic algorithms include (i) a smart content caching
policy based on cubic exponential smoothing, and (ii) two
dynamic user association algorithms. The smart content
caching policy makes caching decision based on the history
of content requests, which is related to user association; and
dynamic user association algorithms associate users to SBSs
according to cached content. Compared with user associa-
tion, in most cases, content caching can be executed at a
more coarser time granularity. This way, we decouple con-
tent caching and user association in the proposed JCC-UA
algorithm.

4.1 Smart Content Caching Policy

The smart content caching policy (SCCP) is based on the
prediction to the download counts of contents. We use the
exponential smoothing method to predict the download
count of a content (DCC) that is downloaded by mobile
users through a BS. Due to the random behavior when a
mobile user downloads contents, the data series of DCC is
nonlinear. Therefore, the cubic exponential smoothing
method is more suitable for predicting the value of DCC
than the single exponential smoothing method [37].

In order to use exponential smoothing to predict the DCC
value, we divide the time into discrete time slots. Let z,(4)
denote the download count of ¢;, that is download by mobile
users through BS f,, in a time slot 4, then

71
zn/c § Z Umn7

m=1 j=

ka (13)

where y,,,,, (i) = 1 (or 0) means that a mobile user wu,, is asso-
ciated with (or not associated with) BS f, on the sub-chan-
nel j in time slot 4, and g,,,,(7) = 1 (or 0) means that a mobile
user u,, requests (or does not request) a content ¢;, through
BS f,, in time slot i.

The smoothed value of the download count of ¢ that is
downloaded by mobile users through BS f,, in time slot i is
denoted by F,;(i), and the predicted value of z,;,(i + 1) is
denoted by Zz,x(i + 1). F,(Li,)(i) denotes the ¢-th value of

F,;(i). We have

, (14)
}i)(l - 1)7

where « is the smoothing parameter. The larger the «, the
greater the weight of the new observed data. In cubic expo-
nential smoothing, Formula (14) is further used for the cal-
culation of the coefficients of prediction equations with
nonlinear trends. The mathematical model of cubic expo-
nential smoothing for predicting (i 4 1) is given in (15).

—a) F15

Za(i+ 1) = ap
aur(i) = 3F,;) (i) = 3E) (1) +
bur(i) = % | (6 - 5a>F££< )-
(10 = 8a) P} (i) + (4 - 3a) F} (0]
<o [FG) - 26060) + Y 6)].

vk (Z) + bnk(l) + Cnk Z)
E ()

(15)

an‘(i) = 201

701)
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The cubic exponential smoothing method is essentially
an iterative process, and the reasonable value of the smooth-
ing coefficient o has an important effect on the accuracy of
the prediction of the DCC value. When the long-term trend
of the observed data is relatively stable, the value of «
should be small; Otherwise, a large value of o can work bet-
ter to track the changes in DCC.

After the value of DCC is predicted by the cubic expo-
nential smoothing method as mentioned above, we cache
every content according to the following simple policy. At
time slot i when we want to cache contents, we cache the contents
at each BS according to the descending order of the predicted
DCC value (i.e., Zyi(i + 1)) until the caching capacity of the BS is
fully occupied.

4.2 Dynamic User Association Methods

In a heterogeneous cellular network with macrocells and
smell cells, a mobile user in the overlaid coverage area of
some BSs can select one BS to associate with. When a mobile
user wants to download a content, it is important for the
mobile user to select an appropriate BS to associate with to
reduce the content download latency. This means that a
mobile user associates with an appropriate sub-channel of
an appropriate BS. In this sub-section, we propose the
dynamic user association methods that include a rapid asso-
ciation method and a delayed association method.

In traditional user association strategies, mobile users
can be associated according to signal strength, transmission
rate, etc. In this paper, a mobile user is associated with a BS
according to whether a content is download with the mini-
mum latency. It is worth noting that the proposed scheme
does not change the association signaling process. There-
fore, our user association strategy can be smoothly inte-
grated into the association process of a real-world mobile
communications system, and it will not bring about an obvi-
ous additional cost.

4.2.1 The Rapid Association (RA) Method

Let u,, be a mobile user that requests content c;. The set of
sub-channels that can serve u, is denoted as CH =
{chy,cha,...,ch,}. From CH, the mobile user u,, first selects
the channels that can satisfy its required minimum data rate
(rm.min), and denotes these channels as CH'. Then, a channel
in CH' on which the mobile user u,, can download content
¢ with the minimum content download latency will be
associated with mobile user u,,. The detailed RA algorithm
is presented in Algorithm 1.

For the RA algorithm, the computation complexity is
determined by the two “for” loops, which are given in Lines
2 — 7 and Lines 10 - 21 of Algorithm 1. The complexities of
both loops are O(|CH,|), so the complexity of the RA algo-
rithm is O(|CH,|).

4.2.2 Delayed Association (DA) Method

In the RA method, a mobile user with content request will
be immediately associated with a BS if there is a BS that can
satisfy the minimum requested data rate of the mobile user.
The RA method can rapidly associate a mobile user with a
BS, and is efficient from the perspective of mobile users.
However, the RA method only associates one mobile user
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once making the association decision, which may cause
local optimization in terms of the overall average content
download latency of the entire network. In this sub-section,
we propose the delayed association (DA) method for a
more efficient user association.

Algorithm 1. The Rapid Association (RA) Algorithm

Input: u,, a mobile user that requests content c¢;; CH =

{chy,chy,...,ch,}, the set of sub-channels that can
serve u,, ;
Output: Ymn,s the sub-channel j of BS f,, with which w,, is asso-
ciated ;
1 CH' =0;

2 fori=1tovdo
Calculate the date rate on sub-channel ch;, denoted as r,,; ;
if Tmi 2 Tm min then
CH' = CH' U{ch;};
o =|CH'|;
bk = 00
fori=1tovdo
if ¢;. is cached at the BSs to which sub-channel ch; belongs
then
10 // ch; is the ith element of CH’
11 tmk,j - lk‘/rmi
12 else
13 t'mki = lk’/rmi + TC ;
14 if bk, < ik then
15 tmk = t,,,,];,i ’
16 ch* = ch; ;
17 Let ch* be the sub-channel j of BS f,;
18 Y, = 1;

O 00 N1 O\ U1 = W

In the DA method, the user association decision is made
in every time slice, which is called the delayed time window
(Ty). In every T, there may be more than one mobile users
waiting for their association decisions. We aim to associate
these mobile users to appropriate BSs to optimize the aver-
age content download latency of these mobile users. This
optimization can be modeled as an optimal matching prob-
lem in graph theory.

Let U, be the set of mobile users that requests contents in
time slice 7’5, and C} be the set of contents requested by mobile
users in U;. For a mobile user u; € U;, Ri(us) = ¢, (¢: € Cy),
which means that the content ¢, is requested by u;. We define
a weighted bipartite graph G, = (U;, CH, E;, W), where CH,
is the set of available channels of BSs and E; is the set of edges.
If a mobile user u; € U, can access a BS through a sub-channel
ch; € CH; of the BS, and the data rate from the BS to wu; is
larger than v;’s minimum required data rate, then there is an
edge e; between u; and chy, ie., e; € E. The weight of e,
denoted as w(e;), is the content download latency taken for u;
to download content R;(u;). W, is the set of weights of the
edges. According to the definition of G, the delayed user
association problem for minimizing the average content
download latency is transformed to finding out the perfect
matching of G, which can be solved by the Kuhn-Munkers
(KM) algorithm [38].

Before applying the KM algorithm to obtain the perfect
matching of G, we should transform G, to a regular bipartite
graph, by adding virtual vertex and virtual edges to G,. We
denote the regular bipartite graph as G} = (U;, CH; , E], W}).
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First, virtual channels or virtual mobile users are added to
make |U/| = |CH]|. If |U,| > |CH,|, then |U,| — |CH,| virtual
channels are added. Otherwise, |CH;| — |U;| virtual users are
added. Then a virtual edge with a weight of co is added to
connect the channel ch; € CH; and the mobile user u; € Uj, if
there is no edge connecting ch; and u; in GJ.

Algorithm 2. The Delayed Association (DA) Algorithm:
PartI

Input: U, = {w;1,u2,...,u .}, the set of mobile users that
request contents in time slice t; Cy =
{ci,co = Ri(ugm), um € Ui}, the set of contents that are
requested by mobile users in time slice t; CH; =
{chi1,chyz, ..., ch v}, the set of available sub-channels of
the BSs ;

Output: G} = (U;,CH;, E;,W]) ;

1  Step 1: Construct weighted bipartite graph G; =
(Ui, CHy, By, Wy), Wy =A{wpmye} , me{1,2,... .M}, ve
{1,2,...,V}, which is the set of weights of edges of
Graph G; ;

Calculate data rate 7y, ., as in (1), assuming that u,; is
associated with sub-channel ch; , ;
3 if ryen,, 2> Tonmin then

N

4 if Ry(wy,,) is cached in the BS that has available sub-channel
chy, then
5 Wt mp = Z(Rf (uttm))/'rm,chtv” ;
6 else
7 Wtmoy = Z(Rt (uzﬂm))/rm,chf'l, +Tc;
8 else
9 Wtmap = X0
10 Step 2: Transfer G; to a regular bipartite graph G} =

(U;,CH},E;,W]) by adding virtual nodes and virtual
edgesto G, ;
11 M = |U,|; V = |CH,|; H = max(M,V);
12 Let W) = {w},, ,|m,v € [1, H]} be the weight matrix of G} ;
13 if M > V then
4 U <U;

15 CH; « CH; + {chyvi1,chivia, ... chear}
16 form =1to M do

17 forv=V +1to M do

18 w?m.v =00,

19 if M < V then

20 CHj «— CH,;

21 U] — Up + {1, Ueprgas - Uy}

22 forv=1toV do

23 form=M-+1toV do

24 w:.m.v =00,

25 a = max(w},, |m,v € [1, H], w7 00);
26 form = 1to H do

27 forv=1to H do

r r .
28 Wimp Q= Wy s
29 if wj, , = —oo then
r
30 wt,m,v <0

As the KM algorithm is used to find out the maximum
matching of G}, but our algorithm is to obtain the optimal
user association to minimize the average content download
latency, we revise the edge weights in G} as follows. Define
W|U{|X|CH{| as the weight matrix. Let a be the element of

|7 |CHf| with the largest value besides co, we compute

Wior|xjea| = @ = Wior|«|cay| (16)
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where J is an identity matrix with order |G}|. We also set
the elements with a oo value in W|U,- <|cmy| to zero. After
t it
revising the edge weights in G}, we apply the KM algorithm
to obtain the perfect matching of W ur|< || which is
t i
denote as (I)| ur| || Finally, we delete the virtual nodes
t T
and virtual edges in <I>| vr|x|car| tO obtain the optimal user
t t

association of G7.

The detailed DA algorithm is presented in Algorithms 2
and 3, which includes the following four steps:

Algorithm 3. The Delayed Association (DA) Algorithm:

Part II

Input: G} = (U}, CH], E;,W}) ;

Output: yﬁnn,v ;

1 Use the KM algorithm [38] to process G to obtain the perfect
matching of G}, denoted by ‘I’|Ut"'|x\CH[| ;

2 Deleting the virtual nodes and virtual edges in @7 xjcmy|,
and the remaining matching of CD\U{\x\(,'H;\ denotes the opti-
mal user association ;

3 form =1to M do

4 if w,, is matched to chy, in the optimal user association and

chy, 1s the sub-channel j of BS f, then

5 y?;nnj = 1 ;

Step 1: Construct the weighted bipartite graph G, = (U,
CH,, E,,W)).

Step 2: Transfer G, to a regular bipartite graph
G; = (U7, CH, B}, Wy).

Step 3: Apply the KM algorithm to Gj to obtain the per-
fect matching of Gj.

Step 4: Delete the virtual nodes and virtual edges in
(IJ| vr|<|caz| tO obtain the matching with the minimum total
weights of G.

Denote the matching with the minimum total weights of
G, as <I>|Uf x|ca,| which is obtained in Step 4 above and pro-
vides the optimal user association.

The DA algorithm includes two parts, i.e., Part I and Part
II. Furthermore, the Part I algorithm consists of Step 1 and
Step 2, whose computation complexities are O(|U;| x |CH,|)
and O((max(|U;], |CHy|))?), respectively. For Part II of the
DA algorithm, the computation complexity is determined
by the KM algorithm, whose complexity is O((max(|U;|,
|CH,|))*). Therefore, the overall comyutation complexity of
DA algorithm is O((max(|U|, |CHy|))").

5 PERFORMANCE EVALUATION

5.1 Simulation Configuration

In this section, we evaluate the performance of the proposed
JCC-UA algorithm and compare it with several baseline
schemes. In the simulation study, a HetNet with one MBS
and ten randomly deployed SBSs is created. The coverage
radiuses of an SBS and the MBS are 70m and 350m, respec-
tively [39]. The MBS is located at the center of the HetNet.
There are M = 600 mobile users, which are randomly dis-
tributed in the network. The total system bandwidth is
20MHz. The transmit powers of the MBS and SBSs are
43dBm and 23dBm, respectively [27]. The backhaul latency
Tc is set to 1s [26]. There are K = 100 content items. The
length of each content is 10Mbits [40]. The cache capacities
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TABLE 1
System Parameters Used in the Simulation Study
Parameter Value
Coverage radius of MBS (Rps) 350 m
Coverage radius of SBS (Rsps) 70 m

Number of SBSs (V) 10

Number of mobile users (M) 600

Average arrive rate of requests (\) 20-100
Number of content items (K) 100
Transmission power of MBS (Pyps) 43 dBm
Transmission power of SBS (Psps) 23 dBm
Noise power (a%) -174 dBm/Hz
Pathloss constant (k) 102
Pathloss exponent (¢) 4

System bandwith (B) 20 MHz
Backhaul delay (7¢) 1s

Content size (1;,) 10 Mbits
Cache capacity of SBS (5,,,,¢) 0 — 500 Mbits
Cache capacity of MBS (S,,,,,¢) 1000 Mbits
Zipf parameter (6) 02-2
Smoothing parameter («) 0.1-0.9
Delayed time window (7) 0-05s

The length of a time slot 10-100

The residence time of a mobile user in a cell 1-10

of an SBS and the MBS are 0-500Mbits and 400Mbits, respec-
tively. A user requests a content item one at a time. The
probability that contents are requested by users is subject to
the Zipf distribution, and the distribution probability is
given by

0
Pr = ;/4]@. ) 17
Zj:l 1/5
with the shape parameter 6 is set to & = 0.8 [41]. The arrival
of content requests of mobile users obeys the Poisson pro-
cess model, and the average arrival rate is denoted by A.
The required minimum data rate of all mobile users is
Tm.min = 180Kbit/s. The detailed simulation parameters are
summarized in Table 1.

In the evaluation study, the performance metrics include
average content download latency and content hit rate. The
average content download latency is defined as the sum of
the download latency of all the contents divided by the
number of contents downloaded by the mobile users. The
content hit rate is the ratio of contents directly being down-
loaded through the BSs to the total number of downloaded
contents [27].

5.2 Impact of Desigh Parameters

The performance of the JCC-UA algorithm is mainly depen-
dent on two important design parameters, i.e., the smooth-
ing parameter («) and the delayed time window (7). In this
sub-section, we evaluate the impact of & and 7 on the per-
formance of the JCC-UA algorithm.

5.2.1 Impact of Smoothing Parameters

The average content download latency and content hit rate
for different values of the smoothing parameter, i.e., «, are
shown in Figs. 2a and 2b, respectively. Note that the RA
algorithm shown in Algorithm 1 is used for user association
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Fig. 2. Impact of the smoothing parameter « on the JCC-UA
performance.

in this simulation. The number of mobile users is M = 600,
and the average arrive rate of content requests is A = 20. As
shown in Fig. 2, the smoothing parameter affects in some
degree the average content download latency and content
hit rate. However, when the range of « is in [0.4, 0.7], the
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Fig. 3. Impact of the delayed time window 7, on average download
latency of JCC-UA.
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Fig. 4. Performance under different lengths of time slot i: 6 =0.8,
S, =200, and & = 0.5.

nSBS

average content download latency and content hit rate
exhibit no obvious change, while the average content down-
load latency achieves its mimimum values and the content
hit rate achieves its maximum values for o values in this
range. This means that we can accurately predict the content
requests of mobile users and reasonably cache the contents
in BSs with the proposed approach. Therefore, we set o =
0.5 in the following simulations.

5.2.2 Impact of the Delayed Time Window

The influence of the delayed time window, i.e., T, on the
average download latency of the JCC-UA algorithm is pre-
sented in Fig. 3, where the number of users is also set to 600.
When T, = 0, it means that the association method is RA
shown in Algorithm 1; Otherwise, the association method is
DA shown in Algorithms 2 and 3. As shown in Fig. 3, when
A is small, the average download latency increases with the
grow of T;. When A is large, i.e,, A =80 in Fig. 3, which
means that the load of content requests is heavy, the aver-
age download latency first decreases, then increases with
the grow of T;. When A is small, the content requests are
sparse and the traffic load is light. It is unnecessary to let a
mobile user wait for some time before being associated with

35 w \ \
—6— JCC-UA-RA
31| —¢— JCC-UA-DA
- * — JCC-UA-RA Optimal
- ¥ - JCC-UA-DA Optimal

HO

2.5

Average content download latency (s)
(3]

i i i i

05 i i i
20 30 40 50 60 70 80 90 100
Number of average arrive rate of content requests (A)

Fig. 5. Performance achieved by the optimal solution and JCC-UA: 6 =
0.8, Sy = 200, and a = 0.5.

SBS
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Fig. 6. Performance with the residence time of a mobile user in a cell:
A=100,T; =0.2,5, =200, and o = 0.5.

'SBS
a BS. Therefore, the RA association is a better choice than
the DA association. When A is large, there are a large num-
ber of mobile users with content requests in a 7,. We
can optimally associate these mobile users to BSs in one
short by the DA association method. Therefore, the DA

4.5 T
—6— SCCP
4| —*—GH : p
—v— LRU v

Average content download latency (s)

i

20 30 40 50 60 70 80 90 100
Average arrival rate of content requests (A)

0.5 L

(a) Average content download latency.
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(b) Cache hit rate.

Fig. 7. Performance of the content caching policies with different arrival

rates of content requests: 6 = 0.8, S,,;,. = 200, and & = 0.5.

Authorized licensed use limited to: Auburn University. Downloaded on July 27,2022 at 20:31:56 UTC from IEEE Xplore. Restrictions apply.



2138

4
3
—e— JCC-UA-RA (Ts=0)
@ 357 —4— JCGC-UA-DA (Ts=0.2)
3 —— MA
c
9]
5 3 ]
©
©
o
=
g 25t : ]
©
]
8
s 2r ]
o
(0]
(=]
©
S 5] ]
é .

1 i i i i i i i
20 30 40 50 60 70 80 90 100

(a) Average content download latency.

100

T T T
—o— JCC-UA-RA (Ts=0)
—%6— JCC-UA-DA (Ts=0.2)

—— MA
801 : 4

e o e

40t 1

Cache hit rate (%)

201 b

20 30 40 50 60 70 80 90 100
Average arrival rate of content requests (A)

(b) Cache hit rate.

Fig. 8. Performance of the content caching algorithms with different

arrival rates of content requests: 8 = 0.8, S, = 200, and « = 0.5.

association is a better choice than the RA association when
the A value is large.

5.2.3 Impact of Time Slot Length

The length of a time slot does influence the performance of
the proposed algorithms, as shown in Fig. 4. In the figure, the
length of a time slot is related to the average association inter-
nal of mobile users. On one hand, while increasing the length
of time slot, the content caching update may not be able to
catch up with the changing speed of content popularity,
which will increase the content download latency. On the
other hand, a too short time slot may cause frequent content
caching updates, which is also undesirable. Therefore, we
should select a rational region for the time slot length. From
this simulation, it is appropriate to set the length of a time
slot to 20-50 times of the average user association interval.

5.2.4 Comparison With the Optimal Solution

We compare the performance obtained by the proposed
algorithms with the optimal solution derived for a small
scenario, with N =10, M =100, «=0.5, 6 =0.8, and
Sneps = 200. The comparison results are presented in Fig. 5.
From the figure, it can be seen that the gap between the
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Fig. 9. The performance with different arrival rate of content requests:
0 =0.8, Spy,, = 200,and a = 0.5.
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optimal solution curve and the proposed algorithm curve is
generally small, and the gap decreases with the increased
arrival rate of content requests (i.e., \). For example, when A
is 70, the relative optimality gap is less than 6 percent.

5.2.5 Impact of User Mobility

In fact, user mobility will affect the residence time of a mobile
user in a cell, which in turn affects the user association deci-
sion. To evaluate the impact of user mobility on the perfor-
mance of the proposed algorithms, we simulate the content
download latency for different residence times of mobile
users. The simulation results are presented in Fig. 6, which
shows that the content download latency increases when the
residence time is decreased. This is because when the resi-
dence time is decreased (i.e., with higher user mobility), it is
more difficult to catch up with the mobility of mobile users
and make accurate content caching decisions. As a result,
more mobile users download contents from the cloud center,
which in turn increase the content download latency.

5.3 Comparison With Baseline Schemes
In this section, we compare the proposed algorithms with
several baseline schemes, including (i) the no caching (NC)

Authorized licensed use limited to: Auburn University. Downloaded on July 27,2022 at 20:31:56 UTC from IEEE Xplore. Restrictions apply.



LI ET AL.: OPTIMIZED CONTENT CACHING AND USER ASSOCIATION FOR EDGE COMPUTING IN DENSELY DEPLOYED...

2

—6e— JCC-UA-DA
—+— GH

—v— LRU

—a— NC

Average content download latency (s)

i i i i

6 i
02 04 06 038 1 12 14 16 18 20
Zipf parameter (0)

(a) Average content download latency.

100

Cache hit rate (%)

£ £ £
0.8 1 1.2

Zipf parameter (0)
(b) Cache hit rate.

Fig. 10. The performance with various Zipf parameters for the light con-
tent request scenario: A = 20, 75, = 0, S, =200, and @ = 0.5.

1SBS

algorithm that does not cache contents in the SBSs and MBS,
(ii) the least recently used (LRU) algorithm that discards the
least used contents and caches the more recently requested
contents [20], and (iii) the greedy helper (GH) algorithm that
caches contents in the BSs via an iteration manner according
to the popularity of contents [18]. We first evaluate the per-
formance of the proposed content caching policy and the
user association algorithms separately to demonstrate the
benefit of jointly considering both content caching and user
association in the proposed scheme. We then evaluate the
performance of JCC-UA algorithm under various practical
settings.

5.3.1 Evaluation of the Separate Content Caching and

the User Association Algorithms

We first compare the proposed content caching policy and
the user association algorithms separately with related
works by simulations. The simulation results for different
content caching policies are shown in Fig. 7, where the tradi-
tional maximum-rate association algorithm (MA) is used. In
MA, a mobile user is associated to the BS with which the
associated mobile user can obtain the maximum data rate. In

Y L L L L T L
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Average content download latency (s)
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g
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z
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§ 401
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—6— JCC-UA-DA
20 —+— GH I
g —%— LRU
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O & & & & & & & & £
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
Zipf parameter (0)

(b) Cache hit rate

Fig. 11. The performance with various Zipf parameters for the heavy

content request scenario, A = 100, T, = 0.2, S, = 200, and a = 0.5.

Fig. 7, both the average content download latency and the
cache hit rate of the proposed SCCP policy are better than
that of the compared GH and LRU policies. Fig. 8 shows the
performance of different user association algorithms, where
the random content caching policy is used with them. As the
proposed RA and DA algorithms associate mobile users
based the the content location and the data rate, RA and DA
outperform MA with considerable margins.

5.3.2 Performance Under Different Arrival Rates of
Content Requests

The average content download latency and the content hit
rate for different arrival rates of content requests, i.e., A, are
presented in Figs. 9a and 9b, respectively. As the bandwidth
of the BSs is limited, when the value of ) is increased, there
are more mobile users that cannot be associated to the BSs
that cache the request contents. Thus they have to download
the requested contents from the cloud center, which
increases the average content download latency. However,
it is also interesting to see that the cache hit rate only
changes lightly as the content request rate ) is increased.
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Fig. 12. The performance with various cache capacities at the BSs for
the light content request scenario: = 0.8 and « = 0.5.

Comparing to the NC, LRU, and GH algorithms, the JCC-
UA algorithm obviously reduces the average content down-
load latency and increases the content hit rate. This is
because the JCC-UA algorithm can smartly cache the con-
tents and associate mobile users to the BSs. In Fig. 9, it is
worth noting that when A is large, the DA algorithm (.e.,
when T, = 0.2) outperforms the RA algorithm (i.e., when
T, =0) as DA makes more globally optimal decision by
associating more mobile users in a time slice.

5.3.3 Performance With Different Zipf Parameters

In this simulation, we evaluate the performance of JCC-UA
under two scenarios, i.e., (i) a light content request scenario
(A =20) and (ii) a heavy content request scenario (A = 100).

Figs. 10 and 11 present the average content download
latency and content hit rate for different values of the Zipf
parameter 6. Figs. 10a and 10b are for the light content
request scenario (A = 20), where the RA association method
is applied. Figs. 11a and 11b are for the heavy content
request scenario (A = 100), where DA association method is
used. When the value of 6 is increased, the users’ requests
are more concentrated to some contents, which means that
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Fig. 13. The performance with various cache capacities at the BSs for
the heavy content request scenario: A = 100, 7y = 0.2, and « = 0.5.

most mobile users request the small set of popular contents.
Therefore, we can only cache these popular contents in the
BSs to satisfy the requirements of many mobile users. This
reduces the average content download latency and increase
the content hit rate. Figs. 10 and 11 also demonstrate that
the JCC-UA algorithm outperforms all the three baseline
schemes with considerable margins in all the cases exam-
ined in this simulation.

5.3.4 Performance With Different Cache Capacities

Figs. 12 and 13 present the average content download
latency and content hit rate for different values of the cache
capacity S, at the SBSs. Similar to the previous sub-section,
we consider the light content request scenario (A = 20) and
the heavy content request scenario (A = 100). The RA asso-
ciation and the DA association are respectively used for
these two scenarios. Figs. 12 and 13 plot the simulation
results. When §S,, is increased, more contents can be stored
at the BSs, and in turn more mobile users can directly down-
load the requested contents from the SBSs. Thus the average
content download latency decreases and the content hit rate
increases. In Figs. 12 and 13, the performance of the NC
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algorithm is irrelevant to S,, as the NC algorithm does not
cache contents at the SBSs. These two figures also demon-
strate that the JCC-UA algorithm outperforms the all the
three baseline schemes with considerable margins in all the
cases examined in this simulation.

6 CONCLUSION

This paper investigated the content caching and user associ-
ation problem in the context of edge computing in HetNets.
The joint optimization problem was formulated and proved
to be NP-hard. Then a content caching algorithm based on
the cubic exponential smoothing was proposed to smartly
cache contents in BSs, and two user association algorithms,
i.e., the RA algorithm and the DA algorithm, were proposed
to dynamically associate mobile users to different BSs to
minimize the average content download latency. The com-
prehensive evaluation study showed our proposed algo-
rithm could achieve the lowest average content download
latency and the highest cache hit rate compared to the three
baseline schemes. For future work, it would be interesting
to jointly consider user mobility, content caching, and user
association to reduce the content download latency. It
would also be interesting to derive performance bounds for
the proposed algorithms.
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