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1  |  INTRODUC TION

Throughout the last century, climate change has altered the geo-
graphic distributions of many species. Insects, in particular, are 
rapidly expanding poleward as warming enables them to colonize 
previously inhospitable areas (Hickling et al., 2006). Such range 
shifts are best documented in lepidopterans, having been recorded 
in Europe (Parmesan et al., 1999), Korea (Adhikari et al., 2020), 

southeast Asia (Au & Bonebrake, 2019), and North America (Wilson 
et al., 2021), making butterflies and moths the characteristic exam-
ple of poleward mobility. However, evidence of poleward shifts of 
other insect species is relatively sparse, documented for a handful 
of dragonflies, lacewings, spiders, and grasshoppers (Hickling et al., 
2006), and for a few economically important agricultural pests, such 
as the Colorado potato beetle (Wang et al., 2017) or mountain pine 
beetle (de la Giroday et al., 2012). The data that do exist suggest that 
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Abstract
Throughout the last century, climate change has altered the geographic distributions 
of many species. Insects, in particular, vary in their ability to track changing climates, 
and it is likely that phenology is an important determinant of how well insects can 
either expand or shift their geographic distributions in response to climate change. 
Grasshoppers are an ideal group to test the hypothesis that phenology correlates 
with range expansion, given that co-occurring confamilial, and even congeneric, spe-
cies can differ in phenology. Here, I tested the hypothesis that early- and late-season 
species should possess different range expansion potentials, as estimated by habitat 
suitability from ecological niche models. I used nine different modeling techniques 
to estimate habitat suitability of six grasshopper species of varying phenology under 
two climate scenarios for the year 2050. My results suggest that, of the six species 
examined here, early-season species were more sensitive to climate change than late-
season species. The three early-season species examined here might shift northward 
during the spring, while the modeled geographic distributions of the three late-season 
species were generally constant under climate change, likely because they were pre-
adapted to hot and dry conditions. Phenology might therefore be a good predictor of 
how insect distributions might change in the future, but this hypothesis remains to be 
tested at a broader scale.
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latitudinal shifts are quite variable among species (Beckmann et al., 
2015; Chen et al., 2011). There is, as yet, no consistent pattern that 
explains which insect species exhibit range shifts and which do not.

Life history strategy is often invoked as a determinant of potential 
for range shifts (Estrada et al., 2015), but there are few phylogenet-
ically controlled studies that contrast different life history strate-
gies within a single clade. Orthopterans (grasshoppers, crickets, and 
katydids) provide an opportunity to compare sensitivity to climate 
change among life history strategies, given that co-occurring grass-
hopper species possess a remarkable functional diversity (Deraison 
et al., 2015; Deraison et al., 2015; McClenaghan et al., 2015). In the 
United Kingdom, for example, warm-adapted, generalist grasshop-
pers with high dispersal ability are the only species to have under-
gone range expansion (Beckmann et al., 2015). In the Great Plains of 
North America, grasshoppers can be broadly partitioned into two 
life history groups. Early-emerging species, such as Arphia conspersa, 
Eritettix simplex, and Xanthippus corallipes, overwinter as nymphs and 
emerge as adults in the spring (Capinera & Sechrist, 1982). These 
three species reach peak abundance in April or May, several months 
before most other grasshopper species (Buckley et al., 2021). Late-
emerging species, such as Arphia pseudonietana, Opeia obscura, and 
Phoetaliotes nebrascensis, overwinter as eggs, hatch in early summer, 
and reach the adult stage by mid-to-late summer in July or August 
(Branson, 2016; Capinera & Sechrist, 1982). Given their different cli-
matological niches, that is, cold wet spring vs. dry hot summer, and 
the fact that two of these species are congeners, these six species 
provide a phylogenetically controlled experiment for how life history 
might impact how species respond to climate change.

It is possible to compare how species of different life history 
strategies might respond to climate change using ecological niche 
models (ENMs). ENMs correlate occurrence records with climate 
and are often used to predict range expansions. For example, ENMs 
can identify areas at risk of invasion under future climates (Gong 
et al., 2020; Kistner-Thomas, 2019) or identify high-priority conser-
vation targets (Garzon et al., 2021), which is critically important as 
the ranges of many threatened species might collapse in the near 
future (Lemoine, 2015). One shortcoming is that ENMs rarely ac-
count for phenology (Ingenloff & Peterson, 2021); many simply use 
mean annual temperature or precipitation (Booth et al., 2014; Title & 
Bemmels, 2018). The use of models that incorporate annual trends 
might miss spatiotemporal shifts in distribution because habitat suit-
ability can change within a given year (Martinez-Meyer et al., 2004). 
For example, an annual model predicted that suitable habitat for 
the mosquito Aedes aegypti should cover most of Mexico, while a 
temporally explicit model revealed distinct seasonal shifts in habitat 
suitability of A. aegypti (Peterson et al., 2005). This is also true for 
insects in seasonal temperate environments. The shortgrass steppe 
of Colorado, on average, is 8.7°C and receives 395 mm of rainfall per 
year. Yet early-season grasshoppers that emerge in May experience 
an environment that is 22°C and receives 61 mm of rain. Late-season 
grasshoppers, in contrast, emerge into an arid environment of 29°C 
and 40 mm of rainfall. Thus, accurate predictions in ENMs require 
that climatological data match life history data as closely as possible 

(Ingenloff & Peterson, 2021). Using mean annual temperature or 
precipitation might over- or underestimate the sensitivity of species 
to climate change by mischaracterizing their environmental niches.

Here, I modeled how climate change might affect intra-annual 
spatiotemporal patterns of habitat suitability for six North American 
grasshoppers that differ in life history strategy. Specifically, I pre-
dicted that three early-emerging species, A.  conspersa, E.  simplex, 
and X.  corallippes, would favor cool, wetter temperatures. Thus, 
both the southern and northern boundaries of suitable habitat con-
ditions for these three species should move northward (i.e., total 
range shift) and occur earlier in the year, which would predict an 
advancing phenology. In contrast, A. pseudonietana, O. obscura, and 
P. nebrascensis all emerge as adults in July and August, and therefore 
should have suitable habitat expand northward while maintaining 
the current southern boundary (i.e., range expansion), and suitable 
habitat should extend later into the year. To test these hypotheses, 
I constructed ENMs using nine separate machine learning classifi-
cation techniques and predicted suitable habitat into the future for 
two different climate scenarios, with four general circulation models 
for each climate scenario used to produce an ensemble prediction.

2  |  METHODS

2.1  |  Environmental data

To construct climatic niches for each species, I downloaded 
WorldClim2 climate data (Fick & Hijmans, 2017), which is an inter-
polated climate dataset covering the years 1970–2000. As I was 
specifically examining phenological patterns, I used monthly data at 
a 5  arc-minute resolution. The use of monthly data restricted the 
environmental variables to average monthly precipitation, average 
monthly temperature, minimum monthly temperature, and maxi-
mum monthly temperature, as other WorldClim2 variables are either 
seasonal aggregates or unavailable at monthly time steps. Given the 
extremely high correlation among temperature variables (r > .90 for 
all temperature combinations, Table S1), I used only mean monthly 
precipitation (mPPT) and mean minimum monthly temperature 
(mTmin) for all subsequent analyses.

2.2  |  Species occurrence records

I constructed ENMs for six grasshopper species: A.  conspersa, 
A. pseudonietana, E.  simplex, O. obscura, P. nebrascensis, and X. cor-
allipes. These species are all common throughout North American 
grasslands and cluster into early (A. conspersa, E. simplex, and X. cor-
allipes) and late (A.  pseudoneitana, O.  obscura, and P.  nebrascensis) 
phenological life histories (Capinera & Sechrist, 1982). Furthermore, 
these six species possessed suitable numbers of occurrence records; 
records for most other North American grasshopper species were 
too limited to accurately construct ENMs. I downloaded species oc-
currence records from the Global Biodiversity Information Facility 
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(GBIF) in April, 2018. In total, there were 9091 georeferenced lo-
cations [A.  conspersa: 2117 (https://doi.org/10.15468/​dl.yiryb8); 
A.  pseudonietana: 788 (https://doi.org/10.15468/​dl.gekxzl); E.  sim-
plex: 2441 (https://doi.org/10.15468/​dl.clvt05); O.  obscura: 659 
(https://doi.org/10.15468/​dl.46qhao); P. nebrascensis: 634 (https://
doi.org/10.15468/​dl.tazqk5); and X.  corallipes: 2452 (https://doi.
org/10.15468/​dl.woyqdj)]. Date ranges for the six species are as 
follows: A.  conspersa: 1899–2013; A.  pseudonietana: 1885–2013; 
E. simplex: 1912–2017; O. obscura: 1905–2012; P. nebrascensis: 1889–
2013; and X. corallipes: 1903–2017. Accession data are available on 
figshare (10.6084/m9.figshare.14411048), and distribution maps of 
the raw data are available in Figure S1.

2.3  |  Data cleaning, filtering, and pseudoabsences

I cleaned GBIF records following a standard pipeline (Feng et al., 
2019; Zurell et al., 2020). First, I dropped any records with null val-
ues for latitude, longitude, month, or year. Next, I removed records 
with a “0” for latitude or longitude. I then dropped any observa-
tions that had coordinates identical to those of a US state capital 
city to within 0.01 decimal degrees, and also dropped any duplicate 
geographic coordinates except for those observations in different 
months and years. Once this pre-screening was complete, I visually 
checked distribution maps and removed any erroneous observa-
tions. During visual checks, I removed two observations of E. simplex 
in the southeastern United States, as well as any observations falling 
below 20°N, which were outside the range of environmental layers. 
These data cleaning steps reduced the number of records to A. con-
spersa: 1255, A. pseudonietana: 309, E. simplex: 1830, O. obscura: 315, 
P. nebrascensis: 372, and X. corallipes: 1746.

I then filtered data to remove pseudoreplicates in environmental 
space. Although many studies advocate spatial filtering, I instead fil-
tered observations on the basis of environmental similarity. Such en-
vironmental filtering has shown to be more robust, less biased, and 
more accurate than spatial filtering (Varela et al., 2014). For the en-
vironmental filter, I created 50 evenly spaced bins along both mPPT 
and mTmin, and dropped any duplicate observations within a grid cell 
(Figure S2). By removing environmental pseudoreplicates, filtering 
further reduced the number of observations to A.  conspersa: 124, 
A. pseudonietana: 66, E. simplex: 85, O. obscura: 36, P. nebrascensis: 
41, and X. corallipes: 75. The geographic distributions of these sam-
ples are identical to the raw data, albeit with no duplicates within 
a given set of coordinates (Figure S3). The final dataset included 
observations from year 1885 to 2017; however, >50% of the ob-
servations were more recent than 1970 and over a third of the ob-
servations were from the year 2000 or later.

Due to the temporal aspect of the hypotheses tested here, I used 
a phenological approach to generating pseudoabsences (Ingenloff 
& Peterson, 2021). Briefly, for each species, I calculated the num-
ber of observations falling within each month. I then generated the 
same number of pseudoabsences from the mPPT and mTmin for that 
month. The end product was the same number of observations and 

pseudoabsences for each species within each month. I chose to use 
equal numbers of pseudoabsences because a 1:1 ratio of observa-
tions:pseudoabsences performs the best for many classification 
models (Barbet-Massin et al., 2012). I used a simple random pattern, 
rather than a gridded or weighted approach, because multiple stud-
ies demonstrated that simple random pseudoabsences perform at 
least as well as weighted or stratified pseudoabsences, especially for 
some of the classification methods used here (Barbet-Massin et al., 
2012; Hanberry et al., 2012).

2.4  |  Ecological niche models

ENMs use correlative approaches to summarize the climatic niche 
of a species. There is a large degree of uncertainty in ENMs, includ-
ing uncertainty due to presence-only sampling, spatial biases, and in 
climate models. Perhaps the largest source of uncertainty is among 
modeling techniques (Araújo et al., 2005). Different methods make 
different assumptions, and these assumptions often result in varia-
ble ENM projections (Aguirre-Gutiérrez et al., 2013). Here, I account 
for methodological uncertainty by using nine different machine 
learning approaches to construct ENMs:

1.	 Logistic regression (GLM): Logistic regression is a standard tech-
nique in many ENM studies. GLM proceeds by regressing the 
binary response variable (presence/pseudoabsence) against the 
environmental predictions mPPT and mTmin. Here, I used an 
additive model structure:

which did not include an interaction between mPPT and mTmin. 
In this model, y is presence/pseudoabsence (1/0) and z is the log 
odds of occurrence (i.e., logit transformation).

2.	 K-Neighbors Classifier (KNC): A KNC uses a simple “vote-counting” 
method to assign a point to a class. Essentially, an unknown 
point (test data) is mapped into environmental space with 
training data. The algorithm counts the n nearest neighbors 
and assigns the test point to the class with the majority or 
plurality of neighbors. The output can be converted into a 
probability by counting the fraction of n points belonging to a 
given class. For the model here, I used n  =  5  equally weighted 
neighboring points, and the distances between training points 
and the test points in environmental space were determined 
via Euclidean distance.

3.	 Gaussian Process Classifier (GPC): Gaussian process models treat 
data as arriving from a multivariate distribution, generated by an 
unknown function:

y ∼ logit−1 (z)

z = �0 + �1mPPT + �2mTmin

f (x) ∼ GP
(
m (x) ,K

(
x, x�

))

https://doi.org/10.15468/dl.yiryb8
https://doi.org/10.15468/dl.gekxzl
https://doi.org/10.15468/dl.clvt05
https://doi.org/10.15468/dl.46qhao
https://doi.org/10.15468/dl.tazqk5
https://doi.org/10.15468/dl.tazqk5
https://doi.org/10.15468/dl.woyqdj
https://doi.org/10.15468/dl.woyqdj
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where f(x) is the function describing the variability of x in space, 
m(x) is the mean function, and K(x, x′) is the kernel/covariance 
function. Because the kernels allow for covariance among obser-
vations that varies with the distance of observations, continuous 
Gaussian process models are popular for time series and spatial 
modeling, where they are known as “kriging” (Brahim-Belhouari 
& Bermak, 2004; Roberts et al., 2013). GPCs extend Gaussian 
process models to a binomial response using latent variables, 
much like logistic regression:

where z(x) is a latent variable achieved by the logistic transforma-
tion of pseudoabsence (0) and presence (1) data. In practice, we 
often assume a constant mean:

such that the kernel choice dictates the shape of the function. 
Researchers have advocated GPCs for ENMs because they are 
often more accurate than other classification methods, such 
as boosted regression trees, generalized additive models, and 
generalized linear models (Golding & Purse, 2016). Here, I con-
structed ENMs from GPCs using the radial basis function:

where α is a scaling parameter determining the magnitude of 
process noise and l is a length parameter that determines the 
smoothness of the function.

4.	 Decision Tree Classifier (DTC): DTCs are nonparametric, supervised 
machine learning techniques that construct decision trees using 
if/then rules from training data in order to infer the class of 
the test points. Essentially, decision trees split the data into 
groups then conduct logistic regressions to classify the training 
data. The split with the highest predictive ability is taken as 
the first decision criteria to generate two new groupings within 
the next level of the tree. The procedure proceeds iteratively 
within each grouping until a maximum tree depth is achieved. 
These models are simple, fast, and nonlinear, but can be prone 
to overfitting, particularly if a tree is too deep. For the model 
here, I used the Gini criteria to evaluate the quality of a given 
split, with a maximum tree depth of five levels. I required 
each group to have a minimum of two samples.

5.	 Random Forest Classifier (RFC): An RFC is a “meta”-classifier that 
constructs a number of DTCs from random subsamples of the 
training data and averages the outputs. For the RFC here, I gener-
ated 100 random DTCs using the same Gini criteria.

6.	 Artificial Neural Network (ANN): ANNs with multilevel percep-
trons approximate the way human brains process information by 

allowing computing nodes, called neurons, to process and share 
information to inform an output. ANNs consist of three layers 
of nodes: input nodes, hidden process nodes, and output nodes. 
The input layer contains nodes for each feature (i.e., explanatory 
variable), hidden process nodes combine features with a weighted 
linear function, and an output function uses a nonlinear function 
to transform the hidden process nodes into a binary or continuous 
response. Several authors have advocated using ANNs for ENMs 
(Maravelias et al., 2003), in particular because they outperform 
many other methods for constructing ENMs, such as classification 
trees, generalized linear models, generalized additive models, and 
spatial interpolators (Segurado & Araújo, 2004). I trained the lin-
ear weights using a stochastic gradient optimizer, and the nodes 
were translated into a real output using the rectified linear unit 
function max(0, x). The ANN here had one hidden layer with 100 
nodes, and a regularization parameter α = 1.

7.	 Ada Boost Classifier (ABC): The ABC is similar to RFC, in that it 
relies on multiple DTCs. However, whereas RFCs generate 100 
random DTCs and then average the outputs, ABCs proceed it-
eratively, repeatedly fitting the same DTC on the training data 
but with the weights of incorrect cases adjusted so the classifier 
focuses on more difficult cases. I used the SAMME.R algorithm, 
stopping at a maximum of 50 iterations. The SAMME.R algorithm 
is an updating algorithm that uses the probabilities of belonging 
to each class for each point as weights in an exponential loss func-
tion used to assess model fit (Pedregosa et al., 2011).

8.	 Naïve Bayesian Classifier (NBC): NBCs are simple classifiers based 
on Bayes' rule. Bayes' rule can calculate the probability that a 
given map pixel should belong to a class k (i.e., present/absent) as:

where x is the environmental variable, p(k|x) is the probability 
that a pixel of a given environment x belongs to class k, p(k) is the 
prior probability of belonging to class k, and p(x) is the probability 
of the environmental variable occurring in the model. For exam-
ple, imagine classifying whether a pixel should be suitable hab-
itat for a bird (k = present), depending on whether it is forested 
or not. In this case, p(x|k) is the probability that a pixel is forest 
given that a bird is present, or the proportion of times a bird was 
observed in forests, p(k) is the proportion of sightings of the bird 
throughout the entire dataset, and p(x) is the proportion of pix-
els that are forested. This example has a discrete predictor, but 
Gaussian NBCs extend classification to continuous predictors, 
such as temperature, by using the Gaussian density distribution 
to calculate the likelihood of a given temperature given an obser-
vation of present or absent:

In this case, the probability of a bird being present at a given 
temperature is

f (x) = logit−1 (z (x))

z (x) ∼ GP
(
m (x) ,K

(
x, x�

))

z (x) ∼ GP
(
0,K

(
x, x�

))

K
(
x, x�

)
= �2exp

(
− 0.5l−2

(
x−x�

)2 )

p (k|x) = p (x|k) p (k) ∕p (x)

p (x|k) =
(
1∕sqrt

(
2pi�2

k

))
e
[
− 0.5

(
x−�k

)2
∕�2

k

]
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This method can be extended to multiple predictors by:

Gaussian NBCs, along with the other methods here, can be used 
as a classification algorithm to model species niches (Guo & Liu, 
2010). A drawback of this method is that it assumes indepen-
dence of the features, but it has been shown to be an accurate 
method for constructing ENMs (Guo & Liu, 2010).

9.	 Quadratic Discriminant Analysis (QDA): QDA is a generalization 
of linear discriminant analysis, and also of NBCs. As with NBCs, 
QDA uses Bayes' rule to maximize the posterior probability 
p(k|x). There are two big differences between NBCs and QDAs. 
The first difference is that NBCs assume the predictors are 
conditionally independent, while QDA allows for the predictors 
to be correlated:

where d is the number of features and Σ is the covariance matrix 
of the features. When the classes are assumed to have the same 
Σ, and also that Σ is diagonal (i.e., features are independent), this 
formula reduces to an NBC. If the k classes have the same Σ, 
but Σ is not diagonal, this formula reduces to linear discriminant 
analysis, as in the previous equation. If the classes are allowed to 
have separate covariances Σk:

then the formula is QDA. QDA is attractive because discriminant 
analyses typically perform well and require no hyperparameters 
to tune. Parameters are fit to training data, and then the resulting 
model is used to estimate the test data.

Prior to analyses, both mPPT and mTmin were standardized to N(0, 1) 
distributions to improve model fitting. Data were then split into train-
ing and test groups containing 66% and 33% of the data, respectively. 
Data were split in a stratified manner to ensure equal proportions of 
presences/pseudoabsences in both the training and test data. Models 
were fit to the training data, and then tested for goodness of fit on the 
test data using the area under receiver operating characteristic curves 
(AUC-ROC). AUC-ROC scores for each of the nine models were then 
averaged to produce an “ensemble AUC-ROC” (Araújo et al., 2005).

For every species, I projected the current distribution through-
out every month of the year based on WorldClim2 monthly data for 
mPPT and mTmin at 5 arc-minute resolution (Fick & Hijmans, 2017). 
Model outputs were clipped to North American grasslands based on 
the US EPA Ecoregions Level 1 (Ecoregion 9.0 – Great Plains). After 
clipping, predictions from each of the nine modeling techniques 
were averaged (unweighted) to generate a single ensemble predic-
tion for each species/month combination (Araújo et al., 2005). To 

simplify visualization, I chose to display the months of March, April, 
and May for early-season species, and July, August, and September 
for the late-season species. Graphs for all other months are available 
on Figshare (see Data Accessibility).

2.5  |  Climate change projections

I accounted for uncertainty in climate projections in two ways. First, 
I projected ecological niches into 2050 for intermediate and uncon-
strained representative concentration pathways (RCPs). The inter-
mediate scenario was RCP 4.5, which assumes that CO2 emissions 
peak in 2040 and then decline, CH4 emissions stop increasing by 
2050, and SO2 concentrations steadily decline from the present day 
(IPCC, 2014). As a result, average global temperatures increase by 
2.5°C by 2100. The severe pathway was RCP 8.5, which assumes 
continuous increases in emissions throughout the 21st century, 
resulting in a 5°C increase in global average temperatures by 2100 
(IPCC, 2014). The RCP 8.5 scenario is generally considered unrealis-
tic, as it does not account for either biological or political feedbacks 
to mitigate emissions (Peters & Hausfather, 2020). However, the 
RCP 8.5 scenario is still useful as a “worst-case” baseline.

The final source of uncertainty is in general circulation model 
(GCM) projections themselves; each GCM uses different forcings 
and parameters, leading to considerable variability among model 
outputs. To account for model uncertainty, I projected ENMs into 
future climates using four different GCMs: BCC-CCSM-1-1 (Wu 
et al., 2014), CCSM4 (Meehl et al., 2012), IPSL-CM5A-LR (Dufresne 
et al., 2013), and MIROC5 (Watanabe et al., 2010). For each GCM, 
I estimated habitat suitability of each species, in every month, for 
each of the nine modeling techniques. I averaged the outputs from 
each of the nine modeling techniques to produce a single, ensemble 
estimate for each species/month/GCM combination. I then aver-
aged the four GCM ensemble projections (i.e., four stacked models) 
into a single ensemble prediction of future habitat suitability in each 
month for each species. As above, RCP projections were trimmed 
to North American Grasslands using EPA EcoRegions Level 1 – 9.0 
– Great Plains. GCMs are available for download from the Livermore 
National Lab.

3  |  RESULTS

Co-occurring grasshopper species possessed different climatological 
niches, depending on phenology. Early-season species (A. conspersa, 
E.  simplex, and X.  corallipes) occurred in wetter, cooler conditions 
common in March through May, while late-season species (A. pseu-
donietana, O.  obscura, and P.  nebrascensis) occupied warmer, drier 
climate niches prevalent in July, August, and September (Figure 1). 
When reconstructing these climate niches, modeling algorithms 
varied in their performance, although models performed similarly 
within a species (Table 1). That is, models within a species produced 
similar AUC-ROC scores (SD < 0.05), with the exception of O. ob-
scura, where GPCs, NBCs, and QDAs performed exceptionally well 

p (k|x) ∝ p (x|k) p (k)

p
(
k|x1, x2,…, xn

)
∝ p

(
x1|k

)
p
(
x2|k

)
…p

(
xn|k

)
p (k)

p (x|k) =
{
1∕

[
(2pi)d∕2 Σ0.5

]}
e
[
− 0.5 (x−�)� Σ−1 (x − �)

]

p (x|k) =
{
1∕

[
(2pi)d∕2 Σ0.5

k

]}
e
[
− 0.5 (x−�)� Σ−1 (x − �)

]
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(Table 1). These models only performed well for O.  obscura, how-
ever, and no modeling technique consistently outperformed or un-
derperformed all others across every species. For example, despite 
the excellent fit of NBCs and QDAs for O. obscura, these two meth-
ods provided among the poorest fits for P.  nebrascensis (Table 1). 
Unweighted model averaging eliminated much of this variability and 
resulted in ensemble model fits that were consistent (AUC-ROC 
scores between 0.7 and 0.8) across all species, thereby eliminating 
the vagaries of any single classifier.

The ensemble ENMs successfully replicated the expected pat-
terns of species' phenologies in current climate conditions. The 
three early-season grasshoppers were prevalent throughout the 
southern and eastern Great Plains in March (Figures 2–4), although 
X.  corallipes appeared more constrained to New Mexico, western 
Texas, and southeastern Colorado than either A. conspersa or E. sim-
plex (Figure 4). By April, all three species were predicted to occur 
throughout the Great Plains, except for Canada and the eastern 

portion encompassing Iowa and eastern Kansas (Figures 2–4). By 
May, grasslands south of Montana and North Dakota became un-
suitable, except for a north–south band along the Rocky Mountains 
(Figures 2–4). Likewise, phenological ENMs of the three late-species 
grasshoppers examined here also generally followed my hypothe-
ses, but with more interspecific variability than demonstrated by the 
three early-season species. The red-winged grasshopper, A. pseud-
onietana, was confined to Montana, Alberta, and Wyoming in July 
(Figure 5), whereas suitable habitat for O. obscura extended through-
out the Great Plains, except for Kansas, most of Oklahoma, and Iowa 
(Figure 6). ENMs predicted that P.  nebrascensis should be found 
throughout the entire Great Plains in July and August (Figure 7). By 
September, the southern range limit of A. conspersa had extended 
to New Mexico and the Texas panhandle (Figure 5). The range of 
O.  obscura in September was generally the same as in July and 
August (Figure 6), and the geographic distribution of P. nebrascensis 
in September excluded Iowa, eastern Nebraska and South Dakota, 

F I G U R E  1  Early-season grasshopper species were characterized by wetter, cooler conditions than late-season species. This graph shows 
mPPT and mTmin for each observation of the cleaned, environmentally filtered data. Each point is a unique observation

TA B L E  1  AUC-ROC estimates for each model type for each of the six species

Early species Late species

Arphia conspersa Eritettix simplex
Xanthippus 
corallipes

Arphia 
pseudonietana Opeia obscura

Phoetaliotes 
nebrascensis

GLM 0.76 0.68 0.62 0.78 0.79 0.74

KNC 0.80 0.81 0.75 0.66 0.86 0.74

GPC 0.83 0.71 0.68 0.81 0.92 0.60

DTC 0.77 0.70 0.62 0.77 0.64 0.74

RFC 0.83 0.77 0.71 0.79 0.81 0.78

ANN 0.85 0.74 0.68 0.84 0.82 0.65

ABC 0.76 0.72 0.66 0.71 0.72 0.65

NBC 0.82 0.71 0.69 0.85 0.97 0.64

QDA 0.82 0.75 0.68 0.85 0.99 0.66

Ensemble 0.81 ± 0.03 0.73 ± 0.04 0.68 ± 0.04 0.78 ± 0.07 0.84 ± 0.11 0.69 ± 0.06

Note: Ensemble shows the average ±1 SD of the nine models.
Abbreviations: ABC, Ada boost classifier; ANN, Artificial neural network; DTC, Decision tree classifier; GLM, logistic regression; GPC, Gaussian 
process classifier; KNC, K-nearest neighbors; NBC, Naive Bayesian classifier; QDA, Quadratic discriminant analysis; RFC, Random forest classifier.
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most of North Dakota, and the northern edge of the Great Plains in 
Alberta (Figure 7).

I expected that climate change would cause suitable habit to ex-
pand northward in March, April, and May for the three early-season 
grasshoppers. This is equivalent to both a northern range expansion 
but also to advanced phenology in those northern locations that be-
come suitable earlier in the year. As predicted, all three early-season 
grasshoppers generally showed northern range expansions in the 
summer months. For A. conspersa, the northern range limit in March 
moved from Iowa and Nebraska to North Dakota and Montana 
under both RCP 4.5 and RCP 8.5 (Figure 2). By April and May, 

however, the range of A. conspersa was generally unaffected by cli-
mate change, as this species already extends to the northern edge 
of North American grasslands (Figure 2). A similar trend was pre-
dicted for X. corallipes (Figure 4), while the range of E. simplex was 
unchanged for either RCP 4.5 or RCP 8.5 (Figure 3). Contrary to my 
predictions, ENMs did not predict a southern range contraction for 
any of the early-season species, meaning that these species might 
see an expansion of suitable habitat area, rather than a range shift 
of both northern and southern boundaries, under climate change.

In contrast to the three early-season grasshoppers, the geo-
graphic distributions of all three late-season species were relatively 

F I G U R E  2  Predicted, current distribution of the early-season species Arphia conspersa in March, April, and May throughout the Great 
Plains of North America under current conditions, RCP 4.5, and RCP 8.5. Predictions are the ensemble/stacked averages from the nine 
different classifiers. The color palette was chosen so that regions where absence is more likely than presence (probability of occurrence 
<0.5) are shaded in blue, while regions where presence is more likely than absence (probability of occurrence >0.5) are shaded in reds. 
Regions where presence and absence are equiprobable (probability of occurrence ~0.5) are shaded in whites/greys. Panels for RCP 4.5 and 
RCP 8.5 show the change in habitat suitability across each month, with orange regions denoting an increase in habitat suitability, and purple 
regions denoting a decrease in habitat suitability. Raw probabilities for each climate scenario are given in the supplemental figures
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stable under both RCP 4.5 and RCP 8.5 climate scenarios, refut-
ing my hypothesis that these species should demonstrate range 
expansions. For example, the geographic distribution of A. pseud-
onietana, across all months, in both RCP 4.5 and RCP 8.5 was al-
most identical to the distribution of current climates (Figure 5). 
Similarly, climate change had little effect on the modeled distri-
bution of O. obscura, except for a slight northward and eastward 
expansion of suitable habitat in July and August (Figure 6). Only 
P. nebrascensis conformed to my hypothesis with northward range 
expansions in all months under climate change (Figure 7). However, 
as P.  nebrascensis covers most of the Great Plains under current 

conditions, the northward expansion was relatively minor and ex-
tended into small regions in central Alberta (Figure 7). Otherwise, 
suitable habitat for P. nebrascensis expanded into the eastern por-
tions of the Great Plains (Figure 7).

Examining range expansions as an increase in suitable habitat area 
highlighted the difference between the early- and late-season grass-
hopper species examined here. Early-season species, A. conspersa, 
E.  simplex, and X.  corallipes, generally showed a 20–80% increase 
in suitable habitat area during the spring months (Figure 8), much 
of which was driven by northern range expansions. The three late-
season species demonstrated a lesser degree of range expansion; 

F I G U R E  3  Predicted, current distribution of the early-season species Eritettix simplex in March, April, and May throughout the Great 
Plains of North America under current conditions, RCP 4.5, and RCP 8.5. Predictions are the ensemble/stacked averages from the nine 
different classifiers. The color palette was chosen so that regions where absence is more likely than presence (probability of occurrence 
<0.5) are shaded in blue, while regions where presence is more likely than absence (probability of occurrence >0.5) are shaded in reds. 
Regions where presence and absence are equiprobable (probability of occurrence ~0.5) are shaded in whites/greys. Panels for RCP 4.5 and 
RCP 8.5 show the change in habitat suitability across each month, with orange regions denoting an increase in habitat suitability, and purple 
regions denoting a decrease in habitat suitability. Raw probabilities for each climate scenario are given in the supplemental figures
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suitable habitat for O. obscura and P. nebrascensis increased by <20% 
in most months, while A. pseudonietana showed evidence for range 
collapse under RCP 4.5 (Figure 8). As described above, much of the 
increase in suitable habitat for P. nebrascensis was a longitudinal ex-
pansion, rather than a latitudinal shift (Figure 7).

4  |  DISCUSSION

As climate change alters the fundamental abiotic template of most 
ecosystems, many species are tracking favorable climates northward 

or to higher elevations. Yet, species vary in their ability to follow 
suitable climates (Beckmann et al., 2015; Chen et al., 2011). While 
life history characteristics like dispersal undoubtedly play a role in 
the capacity for range expansion (Beckmann et al., 2015), I hypothe-
sized that the three early-season species examined here would shift 
poleward while late-season species would have relatively stable 
geographic distributions due to shifts in habitat suitability in future 
climates. In testing these hypotheses, I was able to partially confirm 
my hypotheses. The three early-season species exhibited range ex-
pansions via a poleward shift of the northern range limit while main-
taining southern range limits, while the three late-season species 

F I G U R E  4  Predicted, current distribution of the early-season species Xanthippus corallipes in March, April, and May throughout the Great 
Plains of North America under current conditions, RCP 4.5, and RCP 8.5. Predictions are the ensemble/stacked averages from the nine 
different classifiers. The color palette was chosen so that regions where absence is more likely than presence (probability of occurrence 
<0.5) are shaded in blue, while regions where presence is more likely than absence (probability of occurrence >0.5) are shaded in reds. 
Regions where presence and absence are equiprobable (probability of occurrence ~0.5) are shaded in whites/greys. Panels for RCP 4.5 and 
RCP 8.5 show the change in habitat suitability across each month, with orange regions denoting an increase in habitat suitability, and purple 
regions denoting a decrease in habitat suitability. Raw probabilities for each climate scenario are given in the supplemental figures
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appeared largely unaffected by climate change. Thus, it appears 
that spatially co-occurring species might exhibit different responses 
to climate change based on phenology, and my work highlights the 
need to account for emergence phenology in species distribution 
modeling.

Phenological shifts are common responses to climate change for 
both plants and insects. In plants, warming often advances emer-
gence and flowering dates (Price & Waser, 1998; Wolkovich et al., 
2012). However, not all plant species advance their phenology with 
warming; the phenological response to warming appears to largely 
depend on plant life history. Spring species that flower early often 

advance their phenology, sometimes by several weeks, while species 
that flower in fall can delay their phenology (Sherry et al., 2007). 
Like plants, insects also advance their emergence dates (Ellwood 
et al., 2012). Yet, few studies have tested whether phenology (i.e., 
overwintering state) influences how insects alter geographic distri-
butions in response to climate change (but see Poyry et al., 2009). 
Grasshoppers are an ideal system to test for such possibilities be-
cause co-occurring species, indeed even co-occurring congeners as 
in the case of Arphia, possess early and late phenologies (Capinera & 
Sechrist, 1982), providing the opportunity for phylogenetically con-
trolled tests of range expansion.

F I G U R E  5  Predicted, current distribution of the early-season species Arphia pseudonietana in March, April, and May throughout the 
Great Plains of North America under current conditions, RCP 4.5, and RCP 8.5. Predictions are the ensemble/stacked averages from the 
nine different classifiers. The color palette was chosen so that regions where absence is more likely than presence (probability of occurrence 
<0.5) are shaded in blue, while regions where presence is more likely than absence (probability of occurrence >0.5) are shaded in reds. 
Regions where presence and absence are equiprobable (probability of occurrence ~0.5) are shaded in whites/greys. Panels for RCP 4.5 and 
RCP 8.5 show the change in habitat suitability across each month, with orange regions denoting an increase in habitat suitability, and purple 
regions denoting a decrease in habitat suitability. Raw probabilities for each climate scenario are given in the supplemental figures
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My study suggests that, as with plants, insect emergence phe-
nology might be an important predictor of how insects respond to 
climate change. In this study, three early-season grasshopper spe-
cies did not advance their phenology across their entire range, but 
only in the northernmost regions of the Great Plains. Viewed spa-
tially, this pattern amounts to a northern range expansion in early 
spring, and viewed temporally, it amounts to an advanced phenol-
ogy in northern areas. However, late-season species that share the 
same geographic distribution as early-season species might shift 
their distributions less in response to climate change. This is likely 
because climate change will make much of North America both 

warmer and drier (Greve et al., 2014; Sheffield & Wood, 2008), 
an environment to which late-season grasshoppers are already 
adapted. Importantly, no species here showed a range collapse; 
all grasshopper species examined here are predicted to maintain, 
if not expand, their current range size. This matches predictions 
of many other insects (Au & Bonebrake, 2019; de la Giroday et al., 
2012; Wilson et al., 2021), and suggests that climate change might 
not directly precipitate the decline in insect abundances.

It is also likely that grasshopper populations vary in their sensi-
tivity to climate change depending on latitude. Latitudinal tempera-
ture variation plays a strong role in grasshopper life history, with 

F I G U R E  6  Predicted, current distribution of the early-season species Opeia obscura in March, April, and May throughout the Great Plains 
of North America under current conditions, RCP 4.5, and RCP 8.5. Predictions are the ensemble/stacked averages from the nine different 
classifiers. The color palette was chosen so that regions where absence is more likely than presence (probability of occurrence <0.5) are 
shaded in blue, while regions where presence is more likely than absence (probability of occurrence >0.5) are shaded in reds. Regions where 
presence and absence are equiprobable (probability of occurrence ~0.5) are shaded in whites/greys. Panels for RCP 4.5 and RCP 8.5 show 
the change in habitat suitability across each month, with orange regions denoting an increase in habitat suitability, and purple regions 
denoting a decrease in habitat suitability. Raw probabilities for each climate scenario are given in the supplemental figures
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northern populations being often being smaller, developing slower, 
and having lower egg viability than warmer, southern populations 
(Telfer & Hassall, 1999). There is little information on how grass-
hopper phenology varies with latitude, but numerous studies have 
documented delayed eclosion/emergence dates for grasshoppers 
in cold, high-elevation populations (Buckley et al., 2021; Nufio & 
Buckley, 2019). Northern populations might therefore have delayed 
phenologies due to a slower accumulation of growing degree days, 
and these populations might be primed to advance their phenologies 
more strongly than southern populations where climate warming 
will be weaker and growing degree days already accumulate rapidly 

(Diffenbaugh & Giorgi, 2012). Indeed, this pattern is already pre-
dicted by the ENMs here, which showed phenological advances only 
in the most northerly populations.

One important caveat is that the ENMs reported here account 
for only climate and do not include biotic interactions. Although 
ENMs here predicted range expansions, grasshoppers could expe-
rience a large decline in range size with continued disappearance of 
grasslands, caused by either climate or land use change. A recent 
study from Germany found that land use change and habitat loss 
were major factors responsible for a decades-long collapse of insect 
populations (Hallmann et al., 2017). In ENMs, habitat availability can 

F I G U R E  7  Predicted, current distribution of the early-season species Phoetaliotes nebrascensis in March, April, and May throughout the 
Great Plains of North America under current conditions, RCP 4.5, and RCP 8.5. Predictions are the ensemble/stacked averages from the 
nine different classifiers. The color palette was chosen so that regions where absence is more likely than presence (probability of occurrence 
<0.5) are shaded in blue, while regions where presence is more likely than absence (probability of occurrence >0.5) are shaded in reds. 
Regions where presence and absence are equiprobable (probability of occurrence ~0.5) are shaded in whites/greys. Panels for RCP 4.5 and 
RCP 8.5 show the change in habitat suitability across each month, with orange regions denoting an increase in habitat suitability, and purple 
regions denoting a decrease in habitat suitability. Raw probabilities for each climate scenario are given in the supplemental figures



    |  18587LEMOINE

be the strongest determinant of insect distributions in both current 
and future climates (Lemoine, 2015). Thus, although the ENMs pre-
sented here suggest that grasshopper ranges should remain stable, 
if not increase, in the future, grasshoppers might become geograph-
ically restricted with the continued loss of grasslands. Some grasses, 
like Andropogon gerardii, are predicted to decline in abundance and 
extent in the future (Smith et al., 2017), and grasslands are under 
constant threat of development or agricultural use. Although the 
abiotic environment might remain favorable to grasshoppers per se 
in the future, there are a number of other factors that will ultimately 
determine the geographic distribution of North American grasslands 
in the future.

A second caveat is that ENMs are correlative, and constructed 
using only two climatic variables. Overwintering temperatures, for 
example, can set strong constraints on insect distributions (Marshall 
et al., 2020). However, insect species vary considerably in their 
dependency on winter temperatures, both among and within life 
history strategies (i.e., egg vs. nymphal overwintering). For egg win-
tering species, winter temperature can have a large influence on egg 
survival and hatching success. The eggs of many species possess low 
supercooling points, enabling eggs to survive temperatures as low 
as −25°C (Hao & Kang, 2004), whereas other species can survive 
cold temperatures only in the presence of an insulating snowpack 
(Riegart, 1967). Still other species require eggs to be cold stratified 
for hatching success (Fisher et al., 1996). For nymphal wintering spe-
cies, the termination of diapause can be trigger by either photoperiod 

(Ingrisch, 1984) or accumulation of growing degree days (Fisher et al., 
1996). Thus, the large variation in how grasshopper species will re-
spond to changes in winter temperature cannot be captured by a 
general, correlative model. The only means for an ENM to capture 
such variation is to include winter temperature; however, winter 
temperatures are highly correlated with spring temperatures (r > .90, 
see Table S2). Thus, winter temperatures are redundant with spring 
temperatures and add relatively little new information to the model.

Projecting species distributions in future climates remains an 
important avenue of research. Doing so can inform us of habitat 
potentially at risk from species invasions (Gong et al., 2020; Kistner-
Thomas, 2019), identify species at risk of collapse (Lemoine, 2015), 
and pinpoint regions of high priority for conservation (Garzon et al., 
2021). In doing so, researchers must carefully account for source 
of uncertainty. In this study, I accounted for model uncertainty by 
using nine different ENM estimation techniques, for projection un-
certainty by using four separate GCMs, and for scenario uncertainty 
by using RCP 4.5 and 8.5. My results suggest that phenology might 
be a good predictor of how insect distributions might change in the 
future. For North American grasshoppers, early-season species from 
cool environments might expand their northern range extent, while 
late-season species that are already adapted to hot and dry condi-
tions could experience only modest changes in geographic distribu-
tion. My results provide tantalizing evidence that phenology could 
explain a considerable amount of variation in insect species' ability to 
respond to climate change.

F I G U R E  8  Percent change in suitable habitat area for each species under two climate scenarios. Suitable habitat area was calculated as 
the number of grid cells where the probability of occurrence was greater than 50%
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