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ABSTRACT
Because of its cost e�ectiveness and timeliness, package delivery
using unmanned aerial vehicles (UAVs), called drone delivery, is
drawing growing attention. Authentication is critical for ensuring
that a package is not picked up by an attacker’s drone or delivered
to an attacker. As delivery drones are costly and may carry sensitive
or expensive packages, a drone should not get very close to a person
unless she is authenticated; thus, conventional authentication ap-
proaches that require human-drone physical contact do not work.
Existing authentication methods for drone delivery su�er from
one or multiple of the following limitations: (1) requiring special
user-side hardware; (2) enforcing one-way authentication only; (3)
being vulnerable to relay attacks; (4) having compatibility issues.
We present the �rst system, named G��������A��� (G2A���, for
short), that supports mutual authentication between a user and a
drone, without these limitations. A user waves her hand holding a
smartphone to conduct the authentication. The evaluation shows
that it is secure, accurate, usable, and robust.

CCS CONCEPTS
• Security and privacy→ Authentication; • Networks→Mo-
bile and wireless security.
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1 INTRODUCTION
The emerging drone delivery service is drawing enormous atten-
tion due to its cost e�ectiveness and convenience. The market is
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Table 1: Comparison. 3: true, 7, false, ?: unclear.

Technique G1 G2 G3 G4
Face/gait/speaker recognition 3 7 7 3

Google (scanning QR code) [88] 3 7 7 3

Qualcomm (purchase code) [38] 3 7 7 3

Walmart (beacon) [67] 7 3 7 3

SoundUAV [71] 7 7 7 3

Distance bounding [10] 7 3 ? 7

G2A��� 3 3 3 3

projected to be $29 billion by 2027 [77]. Giant retailers, such as
Amazon [3] and Walmart [69], and courier service companies, like
UPS [96] and DHL [22], are actively deploying drone delivery. Re-
cently, Amazon obtained FAA approval for drone delivery [13],
bringing the technique one step closer to a large number of users.
A U.S. startup company, Zipline, has used drones for rapidly deliv-
ering life-saving medical supplies, such as blood, in areas with poor
infrastructure [1].

The incoming popularity makes drone delivery an attractive
attack target. Among many attacks, impersonation attacks are likely
against drone delivery [71]. In the case of drone-based courier
services, e.g., where a delivery drone collects a package from the
sender and delivers it to the designated receiver, attackers can
launch at least two kinds of impersonation attacks: (1) pickup-time
impersonation, where an attacker-controlled drone impersonates
the legitimate one in order to steal a package, and (2) delivery-time
impersonation, where an attacker impersonates the legitimate re-
ceiver. This is analogous to real-world impersonation attacks where
criminals claim themselves as delivery personnel or legitimate re-
ceivers [81]. (3) Moreover, without authentication, it is unclear
whether a package (e.g., containing medical supplies or foods) is
delivered by a legitimate drone or a malicious one. In order to defeat
such attacks, authentication of drones and users is critical.

Delivery drones are expensive and may carry important pack-
ages. To prevent an attacker from capturing a drone, it should keep
a distance from users until authentication is done, which imposes a
unique constraint on authentication. Many conventional authenti-
cation approaches that require human-drone physical contact, such
as scanning �ngerprints, are not secure options.

We aim at the following goals: (G1) no need of special user-
side hardware; (G2)mutual user-drone authentication; (G3)
being resilient to attacks, such as relay attacks discussed below;
and (G4) no compatibility issues between drones and user-side
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Figure 1: Relay attack. ⇡ ((): legitimate drone (smartphone);
⇡′ ((′): malicious drone (smartphone).

devices. We examine existing authentication approaches that do
not require human-drone contact, but none meet all the goals.

We summarize some of the most relevant techniques in Table 1.
Face, gait, or speaker recognition can be used for authentication,
without involving human-drone physical contact; but there are
many known attacks against face recognition [24, 83], gait recog-
nition [35, 36], and speaker recognition [50, 100] (G3: 7). Plus, it
cannot authenticate drones (G2: 7) and needs to pro�le how the user
looks/walks/speaks, which harms usability. A Google’s patent [88]
proposes to authenticate a user by having the drone scan a QR
code on the user’s smartphone. But it is vulnerable to vision relay
a�acks, identi�ed by this work: In Figure 1, a malicious drone
⇡′, which hovers in front of the legitimate user, can scan the code
on her phone ( and relay the content to the attacker’s phone (′;
the latter shows the code to the legitimate drone ⇡ . As a result, (
thinks ⇡′ hovering in front of it is ⇡ , and ⇡ thinks (′ is ( (G3: 7).
The insecurity of another variant using QR code for drone-delivery
authentication is detailed in Section 2.2. In Qualcomm [38]’s patent,
a user uses her smartphone to send a one-time purchase code or
digital token to the drone. It is vulnerable to radio relay attacks
(see Section 2.1) [33, 43, 97] (G3: 7). Neither of the two patents
considers authentication of drones (G2: 7).

Other approaches require special user-side infrastructure. For
example, a Walmart’s patent [67] needs the user-side dock/lockbox
to be installed (G1: 7). It uses a beacon transmitter and a reader to
facilitate authentication, and is vulnerable to radio relay attacks
(G3: 7). SoundUAV [71] exploits the fact that the motor noises
generated by each drone are unique. A user-side dock installed with
a microphone authenticates a drone based on its sound �ngerprint.
It needs dedicated user-side infrastructure (G1: 7), only supports
authentication of drones (G2: 7), and is vulnerable to record-and-
replay attacks (G3: 7). It needs per-drone pro�ling and it is unclear
whether the motor noises change over time.

To address relay attacks, distance-bounding protocols [10] are
proposed to calculate an upper bound of the distance between par-
ticipants, based on the fact that radio travels nearly at the speed
of light. As the accuracy is sensitive to the slightest processing
latency, it requires special hardware [74] that is not widely avail-
able yet (G1: 7). Plus, it is unfair and unrealistic to require all
people to own high-end hardware. Since its security is still being
actively studied [15, 62] and new attacks have been proposed [6]
(G3: ?), standard designs and protocols still have a long way to go.
Thus, even if a user owns a device that supports a certain distance-
bounding protocol, the compatibility issues between a drone and
the device cannot be ignored (G4: 7).

Being the �rst in the literature, we propose a drone-delivery
authentication technique, named G��������A��� (G2A���, for

short), that meets all the goals. It does not need special user-side
infrastructure but just an ordinary smartphone (G1: 3). A user
who holds a smartphone waves her hand to conduct authentication.
G2A��� is established on this simple yet solid fact: the IMU (inertial
measurement unit) data collected by the user’s smartphone during
waving, which can be regarded as ground truth assuming the phone
is not compromised, and the video data collected by the drone
recording the waving operations should correlate, and can be used
for mutual authentication (G2: 3). Plus, it is di�cult for a mimicry
attacker (who mimics the legitimate user to wave hand) to closely
replicate the waving operations of a legitimate user, as the average
human reaction time is greater than 200ms [40, 45, 64], which can
be detected as attacks by our system (G3: 3). Furthermore, G2A���
does not cause compatibility issues (G4: 3).

To deliver a accurate, secure and robust solution, the following
challenges need to be resolved. First, di�erent users wave their
smartphones in di�erent ways, causing very di�erent data. It is crit-
ical to examine the robustness of the correlation. We thus perform
correlation studies about the robustness (Section 3).

Second, it is highly desired that drone delivery can be conducted
day and night. When the light level is low (e.g., night time), recog-
nizing a small object and keeping track of it using a camera is still
not well resolved in the computer vision area. Moreover, colors of
the user’s skin/clothes or the background may be similar to that of
the held phone. We tried various state-of-the-art object tracking
methods, but all failed frequently in such situations. We instead
propose a simple yet e�ective solution to make the system work
well in di�erent situations (Section 4).

Third, data from IMUs and cameras are heterogeneous and can-
not be compared directly. Based on the object tracking results, we
convert the waving trajectory into an acceleration curve. We then
propose a series of features and leverage machine learning for
correlation calculation (Section 5).

Finally, a determined attacker may practice to mimic a victim
user. Defeating such trained mimicry attacks is a challenge. We
propose a usable countermeasure by having the user add random
pauses when changing the waving direction, e�ectively defeating
trained mimicry attacks.

We build a prototype of G2A��� and perform a comprehensive
evaluation (Sections 6 and 7). Below is a subset of the studied
questions. Can the system be used to authenticate users never seen
during training? Can it work at night and in various weather? Is
it resilient to mimicry attackers? The evaluation gives positive
answers to all the questions. For example, the area under the curve
(AUC) is over 0.9988 for users never seen during training, showing
a very high accuracy.

This work makes the following contributions.

● We examine existing authentication approaches and illus-
trate why they cannot be applied to drone delivery. Existing
approaches require special user-side hardware, only sup-
port one-way authentication, are vulnerable to relay attacks,
and/or have compatibility issues. We identify requirements
for a drone-delivery authentication system.● We propose the �rst authentication approach for drone de-
livery that meets all the requirements. We resolve multiple
challenges to deliver a robust, accurate, and secure design,
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which copes with di�erent waving styles, supports authenti-
cation during nighttime, compares heterogeneous data, and
tackles mimicry attacks.● We build a prototype system and the evaluation demon-
strates its high accuracy, security, robustness, and usability.

The rest of the paper is organized as follows. The system overview
is presented in Section 2. A study of the correlation between the
IMU data and video data is described in Section 3. Data prepro-
cessing is detailed in Section 4 and the correlation calculation in
Section 5. We present data collection in Section 6, the evaluation in
Section 7, and the usability study in Section 8. The related work is
discussed in Section 9. We discuss the limitations in Section 10 and
conclude in Section 11.

2 SYSTEM OVERVIEW
2.1 Background
To prove a legitimate drone is in proximity to a user’s phone, an
intuitive solution is to use radio characteristics, such as short-range
Bluetooth, Received Signal Strength Indicator (RSSI), radio �nger-
printing, etc.

However, researchers [32, 33, 43, 97] have repetitively shown
the insecurity of these proximity-proving techniques. For instance,
the practicality of radio relay attacks (aka Ma�a Fraud Attacks [21])
against the keyless entry system of modern cars, without cracking
crypto-keys, has been well demonstrated in the famous work [32].
Car thefts applying relay attacks are not only real [93] but also cheap
($22) [99]. Readers are referred to [19, 72] about the insecurity of
applying RSSI, radio �ngerprinting, etc.

2.2 Design Choices
Below, we discuss why some more straightforward designs for
drone-delivery authentication are not adopted in our system.
Distance Bounding. The concern about the insecurity of the intu-
itive proximity proving approaches (Section 2.1) has been one of
the main motivations of studying distance-bounding protocols [25].
However, as explained in Section 1, they do not meet our goals
because of the following issues. (1) It requires special user-side
hardware that supports, e.g., UWB (ultra wideband) [39, 51]. It is
particularly unrealistic to require all users in rural areas to own
high-end devices that support distance bounding. (2) The security
of distance bounding is still being actively studied [15, 62], as new
attacks are proposed [6]. (3) Due to the lack of standards, the com-
patibility issue between drones and the diverse user-side devices is
a barrier to wide deployment. Instead of relying on distance bound-
ing, our work looks for an inexpensive solution that can be widely
deployed without requiring special user-side hardware.
UsingQRCode. In order to detect the vision relay attack illustrated
in Figure 1 (interpreted in Section 1), one may propose to detect
the extra delay incurred by the attack. Speci�cally, when a QR code
is displayed, the user’s smartphone ( can record the timestamp
)( and the legitimate drone ⇡ can record the timestamp )⇡ when
it captures the image containing the QR code. Presumably, the
measurement of )⇡ −)( , when there are no vision relay attacks,
should be smaller than the measurement when there are.

The extra delay incurred by a vision relay attack is mainly af-
fected by the malicious drone’s camera frame rate and the malicious
smartphone’s display refresh rate (note the latency due to the extra
radio signal relay is 20 `s or less [32], which is negligible compared
to the delays discussed below). Assuming the malicious drone uses
a camera with fps=240 and a phone with the display refresh rate 144
Hz, the extra latency due to the attack is around 11.1 ms. (A recent
study shows that a fast digital camera provides a latency lower than
5 ms and an analog system can make it even shorter [94].) On the
side of legitimate users, however, most smartphones today have a
display refresh rate of 60 Hz [70], meaning the screen updates one
frame every 16.7 ms. After the QR code is shown on the display at
its next refresh cycle, it is captured by the next frame of the drone’s
camera. As a result, it is di�cult to distinguish whether a small
extra delay is due to an attack or the display refresh of the user’s
smartphone and the speed of the legitimate drone’s camera.
Blinking Flashlight. Similarly, one may propose to randomly
blink the �ashlight of the user’s smartphone and compare the times-
tamps recorded by the smartphone and the drone. However, because
of the camera latency, even after the �ashlight is turned on, it needs
the next frame of the camera to record it. Given a low-latency
attack system described above, it is di�cult to decide whether a
small delay is due to an attack. Moreover, an attacker may use a
phototransistor, which is used to detect the light, to build an analog
system, to make the latency even smaller [32].

The straightforward but insecure designs, such as checking RSSI,
using QR code, and blinking the �ashlight, illustrate that there are
pitfalls for devising an authentication system for drone delivery. The
common limitation of checking RSSI, using QR code and blinking
the �ashlight is that the element for authentication can be easily
and precisely “cloned” by an attacker. Therefore, it is critical to
design an authentication element that can be easily captured by
the legitimate entities but di�cult to clone.

2.3 Threat Model
Mounting radio relay attacks. Like breaking the keyless entry
system of a car [32, 99], relay attacks can fool authentication sys-
tems proposed for drone delivery, such as [38, 67, 80] described in
Section 1. For example, given a key-protected Bluetooth channel,
without knowing the key, as illustrated in Figure 1, ⇡′ and (′ can
simply relay the Bluetooth signals between ⇡ and ( , such that even
when ⇡ and ( are far away from each other, both ⇡ and ( can be
fooled to believe the proximity and conduct the authentication. Our
threat model assumes attackers have the capability to launch relay
attacks, such that an attacker can use a malicious hovering drone
to fool a victim user to start the authentication procedure and relay
the encrypted tra�c.

There are a variety of opportunities that allow attackers to mount
radio relay attacks. (1) It is not uncommon that at a popular place
(e.g., a square or apartment building) multiple users wait for their
packages (or send out packages). As GPS has inaccuracy near high
buildings and bridges [41], this can be pro�led and exploited by an
attacker. When an attacker notices a delivery drone is approaching,
he controls a malicious drone to fool the victim user and meanwhile
the attacker impersonates the victim user to fool the legitimate
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drone. (2) If a routine (e.g., picking up packages around 2pm ev-
eryday in a neighborhood) is known by the attacker, he can use
GPS spoo�ng to mislead the drone and send a malicious drone
to pick up the packages. GPS spoo�ng has been a main threat to
civilian UAVs [49, 87]. Civilian GPS signals are not encrypted; in
GPS spoo�ng, the attacker transmits fabricated GPS signals with
stronger power than the authentic ones, causing the victim receiver
to lock onto the attacker’s signals [84]. It has been demonstrated
on drones [49, 87], and GPS spoofers can be made from inexpensive
commercial o�-the-shelf components [102]. Recent research shows
the di�culty in handling GPS spoo�ng [84]. (3) When Bluetooth
beacons are used for navigation, beacon spoo�ng [46] can be used
to clone the beacons to mislead the legitimate drone.
Mimicry attacks.With the radio relay attack, an adaptive attacker
who knows how G2A��� works can mimic the user’s hand waving
in order to fool G2A���, which we call mimicry attacks. As the
average human reaction time is larger than 200ms [40, 45, 64] and
it is di�cult to keep the reaction time consistent, it is not di�cult
for G2A��� to detect such attacks. An attacker familiar with the
target user can practice well to mimic the user better. We call such
attacks as trained mimicry attacks and study them (Section 7).
Attacks out of scope. The attacker may use a camera to record the
user * ’s waving operations and perform computer vision analysis.
The analysis results are then fed into a robot to mimic * , which
we call robotic mimicry a�acks. The mimicking involves reac-
tion time, due to video analysis, data transmission, planning, and
controlling actuators. According to our survey of state-of-the-art
robotic techniques, robotic imitation of human actions is actively
studied and still very limited. For example, NAO, one of the leading
humanoid robots, is frequently used by researchers for imitation;
despite its high price ($9,000 [78]), it has a delay of 200ms to exe-
cute a prescribed motion [31]. Another study shows the end-to-end
delay from human-waving to robot-waving is 1.72 seconds [12],
much larger than human-to-human imitation. The large reaction
time probably cannot be resolved in the near future. We thus do
not consider robotic mimicry attacks as a realistic threat.

The attacker may use a camera to record the user’s waving
operations and play the live video on a screen, which is used to
fool ⇡ , called screen-based attacks. How to distinguish a live person
from one shown on a screen is a well-studied question, and there
are many software-based anti-spoo�ng solutions [58, 98, 103] and
hardware-based solutions, such as using depth, muti-spectral, or
thermal cameras [104]. For example, our experiments �nd using
a cheap thermal camera (HTI-301) can easily distinguish whether
the waving hand belongs to a live person or a screen, since the
screen does not generate infrared radiation like live persons. Our
work assumes one of the existing anti-spoo�ng solutions is used
by delivery drones.

Radio jamming [66] can be used to launch denial-of-service (DoS)
attacks. Handling DoS is beyond the scope of this work.

2.4 Main Idea and Assumptions
Main idea. The constraint of no human-drone contact and the
threat of relay attacks impose challenges on authentication for
drone delivery. We propose an approach that does not require
human-drone contact and is resilient to relay attacks. Instead of

deploying special hardware to impede attacks, our approach can
be used by any users who have smartphones. Speci�cally, a user
holding her smartphone waves her hand a few times to conduct
authentication. When the user waves, the IMU of her smartphone
generates data, and the camera on the drone records video data.
It is evident that the two kinds of data should correlate. Then,
information that represents the waving operations is extracted
from the two sides, and sent to each other via a key-protected
communication channel. Finally, the two sides conduct comparison
independently to perform mutual authentication. (Alternatively,
assuming the delivery company’s cloud server can be trusted, the
computation can be o�oaded to the server and the result is sent to
the smartphone and the drone.)
Assumptions.We assume that the drone⇡ assigned by the courier
company and the legitimate smartphone ( can establish a key-
protected communication channel.1 There are multiple easy ways
for the purpose. (1) Assuming the user has placed a delivery or-
der securely on the courier company’s TLS-protected website, the
courier company’s server generates a key and distributes it to both
⇡ and ( . (2) The server can send the digital certi�cate of ⇡ to ( ;
then, ( and ⇡ negotiate a key upon handshaking. (3) The server
can be used to bridge the communication between ( and ⇡ .

We assume ⇡ has a camera, a GPS or Bluetooth beacon receiver
for navigation, and a wireless network adapter. We assume that,
when the drone hovers for authentication, it is easy for a user to
identify its camera (e.g., many cameras have a circle of LED lights
around them) and stand in front of it. We assume ( is installed with
the courier company’s app.
Authentication procedure.We consider the following represen-
tative procedure, although the details may vary depending on the
concrete deployment.

(1) The user* places a drone-delivery order using the app in-
stalled on the user’s smartphone ( . After the drone ⇡ arrives
at the designated location, it hovers and establishes a key-
protected communication channel with ( . Then, ⇡ and ( run
a clock synchronization protocol [37].

(2) * walks towards the designated location (like using Uber)
and unlocks ( to con�rm the noti�cation.

(3) Facing the hovering drone’s camera,* holds ( and waves her
hand. ( conducts IMU data based gesture recognition [52]
to recognize waving. Once recognized, ( noti�es ⇡ to start
video recording; besides, ( generates a short vibration to
inform the user of the start of collecting IMU data for au-
thentication. After ( collects data of # waving operations
(# is studied as a parameter), it generates a long vibration to
inform* of the completion of waving and also noti�es ⇡ .

(4) The captured IMU/video data is exchanged and comparison
is conducted independently. If it is a success, the package
delivery proceeds; otherwise, it goes back to the previous
step until the maximum number of attempts is reached.

It is worth highlighting that, given a drone-delivery task that
involves the target user’s smartphone ( and the designated drone⇡ ,
1A key-protected channel s assumed in prior existing authentication approaches for
drone delivery [10, 38, 67]. Due to radio relay attacks (Section 2.1), a key-protected
channel alone is insu�cient for authentication.
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the authentication compares the data recorded by ( and⇡ , meaning
that it is a 1-to-1 veri�cation problem, not a 1-to-n identi�cation
problem. Its accuracy does not degrade as the user base grows.

2.5 Multiple Drones and Persons
Multiple drones. If a malicious drone ⇡′ (or just another delivery
drone) hovers near ⇡ , it is di�cult for the user to decide which is
the correct one. Note that even if distance bounding [10] is used,
the same issue can arise. Nevertheless, trivial countermeasures
can be used to defeat/reveal the attacks. For example, assuming
that the multiple drones are not hovering in a vertical line (if yes,
the legitimate drone can make a horizontal move slightly; other
drones, if they closely follow it, are malicious), ⇡ can then generate
a noti�cation asking the user to stand right under one of the drones.
⇡ then notify the user whether she is under the legitimate drone.
Multiple persons and light sources. There may be people wav-
ing hands in the background. As detailed in Section 4, we use a
simple but robust method to discard waving in the background:
only waving that spans over a threshold portion of the drone’s view
is considered. Note that even if light sources in the background
(e.g., a light swinging due to wind) is considered for comparison, it
still needs to pass the correlation calculation (Section 5). In the rare
case where multiple persons dispute over a delivery drone, again
the trivial countermeasure described above can be used.

3 CORRELATION STUDY
IMU data collected by a smartphone and video data collected by a
drone are heterogeneous. How to compare the two kinds of data
for computing the correlation score is a question. Second, di�erent
people may wave in di�erent ways. Is the correlation computation
approach robust? This section answers the two questions.

3.1 Comparing Heterogeneous Data
When a user waves, the held smartphone’s IMU generates a se-
quence of acceleration and gyroscope data, and the drone’s camera
records the trajectory of the smartphone (note that a video contains
multiple frames per second; e.g., fps = 60).
Failed attempt. To compare the two kinds of data, we �rst consid-
ered this approach: inferring the waving trajectory from IMU data
and then comparing it with the trajectory recorded by the video.
But �ne-grained trajectory inference based on inertial sensor data
from smartphones is still an open question [85, 86, 101, 105], as
gravity has an impact on the accuracy of orientation projection and
double integration of the acceleration gets worse over time.
Comparing acceleration. Our observation is that based on video
frames, acceleration can be calculated from the smartphone’s dis-
placement, as the former is the second derivative of the latter. On
the side of smartphone, its IMU directly generates acceleration data.
Thus, the acceleration data can be the basis of comparison. But the
acceleration data still cannot be compared directly for two reasons.

First, the units are di�erent, as the unit for acceleration on the
smartphone side is<�B2, while that on the drone side is ?8G4;�B2.
To resolve it, we normalize the data between −1 and 1, such that
they can be compared in a uniform scale.

Second, as illustrated in Figure 2, the two sides use di�erent
Cartesian coordinate systems. The coordinate system of the accel-
erator in a smartphone is relative to the smartphone itself, which

(a) Smartphone

y

x

(b) Drone’s camera

Figure 2: Di�erent coordinate systems.

means that when the smartphone is waved, the three axes may
change relatively to the earth. On the drone’s side, it hovers in front
of a user to record waving operations; we de�ne the axis along the
width of a video frame as the G-axis and the one along the height
as the ~-axis. If a smartphone is held vertically and right in front
of the drone, the two coordinate systems align well. However, it is
not realistic to expect all users wave phones that way. Thus, it is
important to examine whether data correlation exists, regardless
of how a phone is waved. To that end, in Section 3.2, we perform
empirical studies to examine the robustness of correlation.

3.2 Robustness of Correlation
We �rst assume that a user holds her smartphone vertically and
waves her smartphone horizontally (we will show that this as-
sumption is not necessary); our observation is that, when the user
changes the waving direction (e.g., from left to right), the IMU-
collected acceleration value along the G-axis reaches either its peak
or valley.2 More generally, we hypothesize that, regardless of the
posture of the held smartphone and the waving trajectory, along
at least one of the three axes in the smartphone’s coordinate sys-
tem, the IMU-collected acceleration value will reach its peak or
valley as the waving direction changes, since it is unlikely that the
accelerometer does not sense the direction change along any axis.

To verify this hypothesis, we design an empirical study. We de-
compose an waving operation into two aspects: (1) Holding posture:
how a user holds her phone in hand; we consider three postures
in the study: vertical, diagonal, and horizontal, as shown in the
three photos on the left of Figure 3; (2) Waving direction: how a
user waves her phone; we consider three directions: “left-right”,
“diagonal”, and “up-down”. Participants then enumerate all combina-
tions of the two aspects (totalling nine) to wave smartphones. Note
that during testing of our system, users are not limited to the nine
waving styles, as long as the user does not wave the phone “forward-
backward”, since “forward-backward” waving would cause little
displacement from the view of the drone’s camera.

After data preprocessing (Section 4), for each of the nine combina-
tions, we plot the acceleration data from the two sides (smartphone
and drone). E.g., the sub-�gure in the upper left corner of Figure 3
is based on the waving operations when a user holds the phone
vertically and waves it “left-right” (i.e., waving it horizontally). It
shows that the IMU’s acceleration data along the G-axis (denoted
as a solid red line) correlate well with the acceleration data derived
from the video. This correlation exists consistently across all the nine
combinations, although the correlated axes vary. (Depending on the

2We do not make assumptions on how the two coordinate systems de�ne “positive”
and “negative”, as we use the absolute value of the correlation measurement (Section 5).
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Figure 3: One of the correlation studies. It examines three holding postures: vertical, diagonal, and horizontal, and three waving
directions: “left-right”, “diagonal”, and “up-down”. They lead to nine (9) combinations (each illustrated in a sub-�gure regarding
the acceleration data from the phone and the drone), showing high correlation between acceleration from the two sides.

waving operations, the IMU-collected acceleration data along I-axis
may also correlate with the direction changes well; to make the
illustrations clear, we did not include the data.)

We then vary the waving trajectory by using an “arc” motion (i.e.,
elbows or shoulders as the points of rotation), the waving speed,
and involve 20 participants of di�erent genders and ages ranging
from 18 to 67; the correlation always exists along at least one axis.
The axis whose data shows the largest peak-valley changes during
waving is called the primary axis. This applies to both the IMU and
video-derived acceleration data. Based on the empirical studies, we
conclude that the IMU-collected acceleration data along the primary
axis correlates well with the video-derived acceleration data along its
primary axis.

4 DATA PREPROCESSING
We discuss how to extract acceleration and preprocess data. The
output is two sequences of normalized acceleration data, one from
IMU and the other from a video.

4.1 Obtaining Trajectory from Video
To obtain the waving trajectory from the video, we �rst tried to
detect a smartphone and employ object tracking to track its move-
ment. But when a drone hovers with a secure distance (e.g., ≥5m)
away from users (Section 6), making the smartphone a small object.
While both object detection and object tracking are actively studied
and many solutions have been proposed [16, 17, 53], accurately
detecting and tracking small objects are still open questions [26].

(a) Daytime (b) Nighttime

Figure 4: Images taken by a drone’s camera (the images are
cropped from large-sized video frames).

We propose a two-step solution: (1) Our system �rst performs
person detection, which can be made very accurate. In this step, we
use YOLO_V3, one of the fastest and most accurate object detection
algorithms [75]. (2) G2A���’s mobile app installed on the user’s
smartphone automatically keeps the �ashlight on during waving.
(G2A��� requires the smartphone’s back to face the drone during
waving.) As shown in Figure 4(a), within the bounding box for
the detected hand-waving person, our system searches for a small
bright area (using contour detection [5]) to locate the possible
positions of the �ashlight; this step may locate multiple small bright
areas, which usually do not show the waving movements and thus
can be excluded easily.

During the daytime, person identi�cation in Step (1) is necessary
as there may exist many small bright areas (like cloud, metal and
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Figure 5: Preprocessed data (red: phone; blue: drone).

glass), and we can use the bounding box output by person detection
to narrow down our search. During the nighttime, person detection
is not needed, since the �ashlight distinguishes itself from the
surroundings, as shown by Figure 4(b).

Once the �ashlight is located, we start object tracking with a
square bounding box covering the �ashlight, as shown in Figure 4.
It is interesting to note that we are not tracking the smartphone,
as a phone may be partially covered by the user’s hand and have a
color similar to the user’s clothes or background, leading to tracking
failures (Section 7.1). Instead, we are tracking a �ashlight, which
has salient features. We apply a state-of-the-art small object tracker,
PrDiMP [18], which achieves the best performance in the UAV123
dataset [18], containing many small and fast moving objects. The
output of object tracking is the trajectory of the smartphone. Finally,
only waving that spans over a threshold portion % of the viewwidth
is considered (our empirical study �nds % = 1�15 works well). The
purpose is to prevent G2A��� from considering waving in the
background and other light sources in the vicinity of the user. Note
that even if huge waving light sources in the background (e.g., a
light swinging due to wind) is considered for comparison, it still
needs to pass the correlation calculation (Section 5).

In short, while small object detection and tracking are still chal-
lenging problems in general, we exploit the uniqueness of our
authentication procedure (i.e., waving) and the hardware capability
(i.e., �ashlight) to deliver a robust solution.

4.2 Preprocessing Trajectory and IMU Data
The trajectory data output by object tracking may �uctuate and
contain noises, and so do the acceleration data collected by IMU.We
thus perform the following preprocessing: (1) Linear interpolation:
gaps in the data due to uneven sampling can be �lled. (2) A Low-
pass Butterworth �lter [82] with a cut-o� frequency of 3Hz is used
to �lter out noises. The frequency of waving is less than 3Hz, so this
does not harm critical information about waving; the noise caused
by vibrations of human body has a frequency greater than 3Hz [76]
and can be removed. (3) After the trajectory is preprocessed, we
get the acceleration value at any moment by computing the second
derivative of displacement. (4) Given the two sequences of acceler-
ation data that have di�erent physical units (<�B2 from IMU and
?8G4;�B2 from video), to make them comparable, we normalize the
data of each sequence in the range of [−1, 1], as shown in Figure 5.

Figure 6: Seven devices used in our experiments.

5 CORRELATION CALCULATION
After getting the two sequences of normalized acceleration data,
we check whether the two sequences correlate with each other, in
order to determine whether the authentication is a success or not.

We consider two methods. The �rst method uses Pearson corre-
lation coe�cient (PCC) [8], one of the most widely used algorithms
for calculating the correlation of two sequences. We use its absolute
value as the correlation score, as the two coordinate systems (the
smartphone’s and drone’s) may have opposite de�nitions about
“positive” and “negative.” This method then uses thresholding to
determine whether the authentication is a success.

The second method is based on machine learning. We use the
correlation score as one of the multiple features. To extract features
from two sequences of acceleration data, we �rst de�ne critical
events as the peaks and valleys in the curve of the acceleration
data, and obtain the timestamps of these events, as shown in Fig-
ure 5. Our insight is that the two sequences of critical events should
align well in terms of their occurrence time. E.g., an attacker may
happen to “hit” some timestamps of critical events, but the vari-
ance of time di�erence between critical events from the two sides
tends to be high. Given the timestamp sequence on the smart-
phone side (% = {C(1)% , C(2)% , . . . , C(=)% } and that on the drone side

(⇡ = {C(1)⇡ , C(2)⇡ , . . . , C(=)⇡ }, we generate the following features (in
addition to the correlation score): (1) Time di�erence values: for each
C% in (% , we �nd a C⇡ in (⇡ that is closest to C% , and calculate the
di�erence between C% and C⇡ ; (2) Non-correlated event number : the
number of extra C⇡ in two consecutive timestamps in (% ; (3) Stan-
dard deviation: standard deviation of the time di�erence values;
(4) MAD: median absolute deviation of the time di�erence values;
(5) Modi�ed z-score: modi�ed z-score of the time di�erence values.

Regarding the classi�er, we consider three: support vector ma-
chine (SVM), :-Nearest Neighbors (:NN), and Random Forest (RF).
Our �nal design chooses the second method and adopts SVM be-
cause of its best performance (Section 7.3).

6 DATA COLLECTION
The research was conducted under an IRB approval and followed
the CDC guidance about COVID-19 (e.g., wearing masks and us-
ing hand sanitizer). To evaluate the system we collected multiple
datasets. We recruited 20 participants,3 whose ages range from 18
to 67, 10 males and 10 females, including undergraduates, graduates,
faculty members, janitors, and retired people, in our experiments.

3“Training Dataset Size” (Section 7.3) shows why they are su�cient.
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6.1 Devices
Figure 6 shows the devices used in our experiments, including two
DJI Mavic Mini drones and �ve smartphones. The DJI Mavic Mini
drone is positioned as a beginner camera drone. We use the built-
in camera of each DJI Mavic Mini drone to capture users’ hand
movements. The camera resolution of one drone is set to 2.7K at 30
FPS, and that of the other is set to 1080P (1920× 1080) at 60 FPS. (In
Section 7.3, we study the impacts of camera resolution and FPS on
the system performance.) We use Nexus 5X and LG K8 to collect
data for building Dataset I and Dataset II. The other smartphones
(i.e., iPhone 11, Honor View 10, and Unihertz Atom) are used for
the parameter study (Section 7.3).

6.2 Dataset I for Accuracy Evaluation
Experimental Setting. To build Dataset I, we use both the Nexus
5X and LG K8 smartphone. We randomly and equally assign the
two phones to the participants (i.e., 10 participants uses the Nexus
5X and another 10 the LG K8). We deploy two drones to record
each participant’s hand motions simultaneously. The drones hover
next to each other, and we set their height � to 4 meters.

We ask each participant to stand 5 meters (horizontal distance
⇡) away from the drones, where � = 4 and ⇡ = 5. Each participant
holds a smartphone and performs the authentication operations
in front of the drones, for 30 times. The participants are allowed
to wave the smartphone in a way most comfortable to them using
their dominant hand.
Positive Pairs. When a participant performs the authentication
operations in front of the drones, we collect one positive data pair
for each drone: one is the acceleration data from the smartphone,
and the other a video captured by this drone. For each drone, we
collect 600 (= 20 × 30) positive pairs, each with a label B = 1.
Negative Pairs.Assuming two users, `1 and `2, authenticate to the
drones⇡1 and⇡2, respectively, the accelerometer data (%1 from `1’s
smartphone and the video (⇡2 captured by ⇡2 constitute a negative
pair; also, the accelerometer data (%2 from `2’s smartphone and the
video (⇡1 captured by ⇡1 constitute another negative pair.

To build such an uncorrelated sample, we perform time alignment
for each pair of authentications, randomly selected from two users,
such that the authentications can be considered as starting nearly
at the same time. As studies [40, 45, 64] have demonstrated that,
even for athletes, the best audio/visual reaction time of human is
greater than 50ms (generally between 100–300ms), we shift the
timestamps of (%1 to make the starting time di�erence between
(%1 and (⇡2 within the range of [−300,−50]ms or [50, 300]ms. The
same time alignment is also performed for (%2 and (⇡1 . We �nally
generate 600 negative pairs, each with a label B = 0.
6.3 Dataset II for Security Evaluation
Experimental Setting. To build Dataset II, we divide the 20 partici-
pants in Dataset I into two parts: 10 act as victims and the others 10
as attackers; one victim and one attacker form a pair. Thus, there are
10 pairs of victims and attackers. We consider two types ofmimicry
attacks (MA), MA-untrained and MA-trained, as discussed in
Threat Model (Section 2.3).

We provide the attacker A with a clear view of the victim V ’s
hand movements, by letting A stand next to V (1 meter away). We

use the same drone to capture their waving operations together.
The camera resolution of the drone is set to 2.7K at 30FPS, and its
height is set to 4 meters.A and V are 5 meters (horizontal distance)
away from the drone (⇡ = 5).
MA-untrained.We tell them the purpose of this experiment: an
attacker mimics the victim’s hand movements to fool our system,
and explain how our system works. We ask the victim to perform
authentication operations and the attacker to launch the mimicry
attack simultaneously. The attack is repeated for 15 times, with one
pause introduced in each authentication procedure, and another
15 times without pauses. Here, a pause means the user pauses the
waving for a random short time intentionally prior to changing
the waving direction. Our experiment data show that 700ms works
well as a threshold for detecting a pause as an intentional pause.

For each authentication, we construct a data pair consisting of
(%+ and (⇡� , where (%+ is the acceleration data from V ’s smart-
phone and (⇡� is the video captured for A’s hand movements. We
collect 150 (= 10 × 15) pairs for the authentication operations with-
out pauses, and the same number of pairs for the authentication
operations with pauses.
MA-trained.We �rst ask each victim to perform authentication in
front of the drone for 5 times, and record a video of each authenti-
cation. Each attacker is trained by watching videos as many times
as needed. The attacker only needs to learn one victim’s actions
and launch attacks against that victim. During training, we provide
the attackers with feedback on the di�erences between their hand
movements and the victims’, so that they can adapt their operations.

After the attacker feels con�dent enough, the victim performs
authentication operations and the attacker launches the mimicry
attack simultaneously. Their hand movements are recorded by the
drone’s camera, at the same time. Similar to MA-untrained, each
pair of attacker and victim performs the authentication operations
with and without pauses for 15 times.We collect 150 (= 10×15) pairs
for the authentication operations without pauses, and the same
number of pairs for the authentication operations with pauses.

7 EVALUATION
Section 7.1 presents the accuracy of G2A���, and Section 7.2 studies
its resilience to mimicry attacks. Section 7.3 presents a detailed
parameter study, and Section 7.4 the e�ciency.
Metrics.We use False Rejection Rate (FRR) and False Acceptance
Rate (FAR) to evaluate the performance of G2A���. A lower FRR in-
dicates that the system makes fewer mistakes for authorized users,
resulting in better usability. On the other hand, a lower FAR indi-
cates better e�ectiveness of the system in preventing adversaries
from gaining access. We also report Equal Error Rate (EER) and
Area Under the Curve (AUC) of Receiver Operating Characteris-
tics (ROC) curve: EER reports FRR (FAR) when FRR=FAR, while
AUC provides an aggregate measure of performance across all pos-
sible thresholds [90].

7.1 Authentication Accuracy
We use Dataset I to test the accuracy of G2A���. Similar to many
previous works on evaluating authentication systems [29, 55], we
adopt a strict mechanism, Leave-One-Subject-Out (LOSO), to obtain
the average performance over all subjects. In LOSO, we iteratively
choose one subject for testing and use the data of the other 19
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Figure 7: ROC curves, AUC, and EER.

subjects to train the system. We compute the average performance
over all the subjects. Through this, we can examine whether our
system is user agnostic—whether it can work for users never seen
during training. We present the results using the data for the drone
whose resolution is set to 2.7K at 30 FPS (the impact of Camera
Resolution is studied in Section 7.3). We choose the number of
waving operations as 8 (also studied in Section 7.3).

In our system design, if the tracking algorithm fails to track
the phone, we ask the user to re-authenticate, instead of moving
forward to the next step of data correlation calculation. Thus, failure
of tracking has an impact on the system’s FRR, but no impact on the
system’s FAR.We de�ne �''B~B as the system’s FRR, which consists
of two parts: �''C and �''2 . �''C is the failure rate of the tracking
algorithm, and �''2 is the FRR of the system excluding the tracking
algorithm. We thus have: �''B~B = 1 − (1 − �''C ) × (1 − �''2).

When the �ashlight is turned on, the tracking algorithm we
adopted, PrDiMP [18], can achieve a success rate 0.98 (�''C =
0.02) for the daytime and a success rate 1.0 (�''C = 0) for the
nighttime. In contrast, when the �ashlight is turned o�, �''C = 0.20
for the daytime and �''C = 0.74 for the nighttime. In the following
presentation we refer to �''2 as FRR, unless otherwise stated.

To evaluate the system performance on data with pauses, we
apply the model trained using Dataset-I, which only contains data
without pauses, to test the data with pauses. Speci�cally, we ask
10 participants to perform authentication operations with random
pauses for 15 times, and use the model trained using Dataset I to
test the new collected data.

Figure 7 shows the ROC curves for experiments with andwithout
pauses. Without pauses, our system achieves an average ⇢⇢' =
�'' = ��' = 0.0158 and�*⇠ = 0.9992. The low EER indicates that
G2A��� can distinguish authorized accesses from unauthorized
ones with a high accuracy (=1-EER) of 0.9842. (When only PCC is
used, which is the �rst method described in Section 5, ⇢⇢' = 0.0283.)
With pauses, G2A��� achieves ⇢⇢' = 0.0167 and �*⇠ = 0.9988.
Thus, we �nd the model trained using the data without pauses
can be directly applied to testing data with pauses, and the high
correlation exists regardless of pauses.

We analyse the very few false rejection cases and �nd that they
are mainly caused by the inaccuracy of tracking. For example, there
are cases when the sunlight passing through the leaves form small
bright spots that look similar to the �ashlight (seeObject Tracking

Table 2: Phone tracking success rates.

Algorithms Flashlight o� Flashlight on
day night day night

CSRT [59] 0.58 0.12 0.86 1.00
ECO [17] 0.74 0.22 0.95 1.00

RT-MDNet [47] 0.74 0.24 0.96 1.00
ATOM [16] 0.76 0.24 0.96 1.00
DiMP [9] 0.76 0.26 0.98 1.00

PrDiMP [18] 0.80 0.26 0.98 1.00

Algorithm in Section 7.3). In the second attempt, the drone can
actively turn around and successfully �nish the authentication.

Our current prototype uses a simple method for clock synchro-
nization [37]. The resulting clock di�erence, measured using the
method [27], is 1.7<B(±0.9<B). This is much shorter than the aver-
age human reaction time >200ms [40, 45, 64].

7.2 Resilience to Mimicry Attacks
This section evaluates the resilience of G2A��� (based on the
threshold selected in Section 7.1 that achieves EER = 0.0158) to
mimicry attacks. We use Dataset II in this experiment, where 10
participants act as victims and the other 10 as attackers (see Sec-
tion 6.3 for details).
Resilience to MA-untrained. Without pauses introduced during
authentication, G2A��� can successfully identify 91% (= 1− ��' =
1− 0.09) of the attacks, on average. The performance can be greatly
improved if the pauses are added—on average, 98% (= 1 − ��' =
1 − 0.02) of the attacks can be identi�ed by G2A���. The results
demonstrate that pauses during authentication can increase the
di�culty for attackers in mimicking the victims’ hand movements.
Thus, the authentication operations with pauses are more secure.
Resilience to MA-trained. Under MA-trained attacks, the attack-
ers’ success rate increases sharply—G2A��� can only identify 74%
(= 1 − ��' = 1 − 0.26) of attacks on average, which reveals a weak-
ness of authentication without pauses, under trained attacks. To
enhance the resilience to MA-trained, G2A��� requires that users
to intentionally add at least one pause. This is enforced automati-
cally by checking whether the acceleration reaches zero for a short
time. All the participants successfully followed the instructions
by adding at least one pause in each authentication procedure,
which indicates that adding random pauses is not a problem to
the users. Then, the attackers’ success rate is reduced from 0.26 to
0.04—G2A��� can successfully identify 96% (= 1 − ��' = 1 − 0.04)
of attacks, on average. Thus, the pauses decreases the attackers’
success rate by making the waving operations more unpredictable
and di�cult to mimic.
More Pauses.When collecting data with pauses, users were free to
decide the number of pauses (but at least one). We then investigate
how the number of pauses a�ects the attacker’s success rate. We
�nd that when it increases to three (3), the FAR under MA-
trained a�acks becomes zero, while FRR is below 0.019. Thus, to
achieve high security, a delivery company can enforce the number
of pauses ≥ 3.
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7.3 Parameter Study
Object TrackingAlgorithm.G2A��� needs to track smartphones
through computer vision analysis. There has been much research
on object tracking. This experiment evaluates some state-of-the-
art algorithms, including CSRT [59], ECO [17], RT-MDNet [47],
ATOM [16], DiMP [9], and PrDiMP [18]. To evaluate the tracking
success rates, we manually check the bounding box during tracking
with 600 videos about phone waving (e.g., whether it instead tracks
an object in the background). The result in Table 2 shows that the
tracking success rate gets improved greatly for all the algorithms
when the �ashlight is turned on, especially in nighttime. We choose
PrDiMP for its high performance; its failed cases share a common
feature—they have bright spots in the background, e. g., mottled
sunlight through tree leaves. Therefore, we suggest users avoid
authenticating under such background.
Classi�er. We train the model with di�erent classi�ers, including
SVM, kNN and Random Forest. For SVM, we examine the linear,
polynomial and radial basis function (RBF) kernels, and �nally
adopt RBF; after grid search, we set the optimal hyperparameter, 2
as 20 and W as 0.01. For :NN, we test di�erent values of : , ranging
from 1 to 20, and �nd 3 the optimal value. For Random Forest, we
test di�erent number of trees, ranging from 50 to 200, and select
the optimal value as 120. The results (EERSVM=0.016, EERRF=0.018,
EER:NN=0.021) show that SVM has the lowest EER.
Number of Waving Operations. More operations provide better
security but also require longer time to authenticate, which harms
usability. Figure 8(a) shows the EER with varying number of events.
As expected, EER decreases as the number of events increases. We
chose eight, considering both security and usability.
Training Dataset Size.We evaluate the impact of training dataset
size on the system performance. The training dataset size is de�ned
as the number of participants for training, denoted as<, whose
samples are used for training. We train G2A��� with< (1 ≤< ≤ 19
with a step of 2) participants’ data and test it with the data of the
rest of the participants (20−<). Figure 8(b) shows the results. It can
be seen that the accuracy of the classi�ers converges, given< ≥ 15.
Camera Resolution. By downsampling the resolution of 2.7K
(2720×1530), we get di�erent camera data with a resolution of 1080P
(1920 × 1080) and 720P (1280 × 720). We then evaluate the system
performance in terms of di�erent camera resolutions. As shown
in Figure 8(c), the higher the resolution, the better performance
(the lower EER) of G2A���. Even with a low resolution (i.e., 720P),
G2A��� can still achieve a satisfactory accuracy (EER = 0.02).
Camera FPS. To measure the impact of FPS, we use the data cap-
tured by the DJI Mavic Mini drone, with the camera resulution set
as 1080P at 60 FPS. By downsampling the frame rate of the videos,
we get di�erent camera data with di�erent FPS. We then evaluate
the performance of G2A��� in terms of di�erent FPS. The results
show there is a signi�cant improvement when FPS is increased from
15 to 20, but the EERs improves little when FPS further increases.
FPS≥ 20 can be satis�ed by most cameras today [57].
IMU Sensor Sampling Rate. A higher sampling rate can capture
subtler characteristics of the IMU sensor data, but it also introduces
higher burdens (e.g., data collection and communication). To �nd
the optimal sampling rate for the IMU sensor of smartphones, we
study the sampling rate, ranging from 10Hz to 100Hz, at a step

of 10Hz by downsampling the original sensor data. Figure 8(d)
shows the result. We can see that when the sampling rate increases
from 10HZ to 20Hz, the performance increases signi�cantly. When
the sampling rate is higher than 40Hz, the performance tends to
be stable. We thus select a sampling rate of 50HZ, which can be
satis�ed by most IMU sensors [4, 65].
Smartphones. Besides the two smartphones that were used to
collect Dataset I and Dataset II, we select three more as shown in
Figure 6: (1) a very small Android Phone, Unihertz Atom, with
96 × 45 × 18 mm in dimension and 108 grams in weight, (2) a large
Android phone, Honor View 10, with 157× 75× 7 mm in dimension
and 172 grams in weight, and (3) iPhone 11 with 150.9 × 75.7 × 8.3
mm in dimension and 194 grams in weight. No signi�cant di�erence
is observed in the performance between the three smartphones. We
can thus conclude that the smartphone size, weight, and operating
system have little impact on the performance.
Horizontal Distance Between User and Drone. We test the
stability of G2A��� on di�erent horizontal distances between the
user and drone. The horizontal distance ⇡ is selected from 4 to 8
meters. We invite 10 participants; each performs the authentication
operations 15 times for each distance. In Figure 8(e), when ⇡ is
increased from 4 to 7 meters, no signi�cant di�erence is observed;
the performance decreases greatly when ⇡ reaches 8 meters. ⇡ ≥
5m is far enough to avoid physical attacks for an attacker captures
the drone. We thus select ⇡ = 5m.
Illuminance Level. To evaluate the impact of illuminance to the
performance of our system, we collect data based on di�erent times
of the day: (1) Noon, (2) Sunset, (3) Dusk, and (4) Night. Figure 8(f)
illustrates the results. G2A��� tends to work slightly better when
the light level is low, probably because the �ashlight distinguishes
itself better in such cases. But no signi�cant di�erence is observed,
showing our system can work under di�erent light levels.
Di�erent Weather. The data collection took multiple weeks, dur-
ing which there were various weather conditions, such as sunny,
cloudy, light rain, and misty. The testing results show that the data
collected in di�erent weather have negligible impacts. This is con-
sistent with the overall AUC near 1 (Section 7.1). We attribute it to
the advances in �ight stabilization and wide deployment of drone
gimbals [2, 95], which lead to stable hovering and videos under
di�erent weather.
Gender and Age. We group the testing data according to the
gender, and �nds it has little impact on the accuracy: EERmale =
0.0161 vs. EERfemale = 0.0155; so does the age.
View Angle. We assume a delivery drone’s camera is easy to iden-
tify (see Section 2.4) and during our data collection we �nd partici-
pants are able to stand right (or very close) in front of the camera.
Still, we are interested in studying the impact of di�erent angles to
the accuracy. A view angle is 0 degree if the user stands right in
font of the camera, and it increases as the user stands away from
that direct sight. More formally, it is the azimuth angle from the
point of view of the camera. The DJI Mavic Mini drone used in our
experiments supports a 83 degree �eld of view (FOV), we collect
data by varying the view angle from 0 to 25 degrees with a step
of 5 degrees. The results show that the angle of view has a very
small impact on the system performance and G2A��� can work in
a wide range of view angles.
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Figure 8: Impact of di�erent parameters and experimental settings.

Table 3: Authentication time (and standard deviation).

Part without pauses with pauses
Authentication 3250 4421
Operations (732.2) ms (1083.4) ms

Data Transmission 72 (8.7) ms 79 (9.8) ms
Data processing 34 (8.2) ms 36 (8.8) msand Decision Making

7.4 Authentication Time
We measure the authentication time of G2A���, which begins
when a user waves her hand to start the authentication, and ends
when a decision is made. It contains three main parts: (1) time
for authentication operations; (2) time for data transmission; and
(3) time for data processing and decision making (our prototype
uses a cloud server to o�oad the computation). Time for each
part is shown in Table 3. The total time, without pauses and with
pauses, is 3.36 ± 0.75s and 4.54 ± 1.10s on average, respectively.
Thus, G2A��� can make a decision quickly.

8 USABILITY STUDY
Scanning a QR code and inputting a password are two of the most
widely used authentication methods. So it helps by comparing
the usability of our method against that of the two well-accepted
methods, although we are aware that the two methods are inse-
cure/inapplicable for drone delivery authentication.

8.1 Recruitment and Design
We recruit 60 subjects for this study, including 29 females and 31
males whose ages range from 15 to 68, to participate in the data
collections. These subjects did not participate in our previous exper-
iments. To avoid bias, these subjects are not informed of anymethod
designed by us. Instead, they are told to evaluate the usability of
di�erent authentication methods.

We �rst ask each subject to sign a consent form and then intro-
duce the three authentication methods. For the password-based
method, we randomly generate an 8-character alphanumeric pass-
word, which is the most common length of a password [14], and
show the password to the subject before authentication. For the
QR code based method, a Nexus 5X smartphone, with a 5.2” screen,
is used to generate and display the QR code. Next, each subject is
instructed to perform �ve authentication attempts to get familiar
with the three methods, including G2A���. These attempts are
excluded from further analysis. After that, each subject performs
another three authentication attempts for each method and the
order of using these methods is randomized.

After that, each subject scores the three methods by answering
�ve questions, which are adapted from the widely-used SUS [11] to
investigate the usability from the following �ve aspects: easy-to-use,
quick, convenient, easy-to-learn, and comfortable. The �ve ques-
tions are listed as follows: (1) I thought the authentication method
was easy to use; (2) I am satis�ed with the amount of time it took to
complete the authentication; (3) I thought the authentication method
was convenient; (4) I think it is easy to learn the authenticationmethod;
and (5) I felt comfortable using the authentication method. On a scale
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Figure 9: Usability study results.

between strongly disagree and strongly agree, the ratings for each
question range from 1 to 5 (higher is better).

8.2 Usability Study Results
Figure 9 shows the results. The total scores for the password-based
method, G2A���, and the QR code-based method are 18.65 ± 2.26,
21.30 ± 2.39, 21.36 ± 2.29. The scores show that users �nd G2A���
and the QR code-based method have better usability than inputting
an 8-character password. The di�erence between G2A��� and the
QR code based method is small, indicating that they can achieve
similar user-acceptance levels.

9 RELATEDWORK
G2A��� can be categorized as correlation-based authentication.
Many well-known systems are proposed in this direction [48, 55,
56, 60, 61]. Along the direction of correlation-based authentica-
tion, G2A��� is the �rst for drone delivery and has resolved many
unique challenges due to the various environments and the distance
between drone and user. This work is inspired by our prior work
P2Auth [55]. Given a UI-constrained IoT device, which only has
a button, knob or small touchscreen, to perform user authentica-
tion, a user wearing a smartwatch or carrying a smartphone does
some very simple operations (e.g., clicking the button a few times).
Both the IoT device and the user-side mobile device capture the
timestamps about the operations and P2Auth uses the two series of
timestamps to calculate a correlation score.

Unlike biometrics-based authentication [20, 34, 42, 44, 54, 73, 79,
92], G2A��� does not need to collect the user biometric information
and has no concern that a user’s waving habit might change over
time. Given a drone-delivery task that assigns a drone ⇡ to serve a
user* ’s order, as G2A��� compares the video recorded by ⇡ with
the IMU data from* ’s smartphone (rather than all smartphones),
its accuracy does not degrades as the user base grows.

Many studies are done on UAVs, such as �ghting fake video
timestamps [91], audio side channels [7], stolen credentials [89],
and network attacks [30]. As summarized in Section 1, many patents
and research works [28, 38, 67, 71, 80] have been devoted to solving
the drone-delivery authentication problem. But none are resilient to
relay attacks [33, 43, 68, 97]. Secure mutual authentication without
special user-side infrastructure is not available prior to our work.

10 DISCUSSION
G2A��� works well under various weather conditions during our
experiments (Section 7.3). We have not tested very windy or foggy
weather yet. However, DJI’s manual, e.g., requires “do not use the
aircraft in severe weather conditions including wind speeds exceeding
8 m/s, snow, rain, and fog” [23]. Indeed, if the wind or fog is so
heavy, the safety of drones probably becomes an issue [63]; in that
case, the delivery should not be conducted in the �rst place.

Some users may have privacy concerns about the video recording.
Such users canwearmasks or cover faces using a hand. Our usability
study has not received such concerns.

Compared to lockbox based authentication, G2A��� has a limita-
tion: it requires the user to be present for package delivery. G2A���
has its advantages in other aspects: (1) It is unknownwhether/when
courier companies will densely install lockboxes in rural areas,
while G2A��� does not depend on such infrastructure. (2) Depend-
ing on the distance of the lockbox, a user may prefer to send/receive
package on her lawn than drive/walk to the lockbox in her area. (3)
Some sensitive deliveries require the user’s presence and signature
anyway, and G2Auth can be used as a drone-based replacement for
these sensitive deliveries. (4) Unless distance bounding becomes ma-
ture and widely deployed, existing lockbox solutions (such as [67])
are still vulnerable to relay attacks.

11 CONCLUSION
Authentication of drones and users for the emerging drone delivery
service is an important but less-studied problem. We presented the
�rst secure mutual authentication technique, without requiring
special user-side hardware or infrastructure (i.e., only an ordinary
smartphone is needed on the user side). We overcame multiple
challenges, such as diverse waving styles, heterogeneous noisy
data, nighttime delivery, and tracking small objects, to build an
accurate and robust solution. We envision G2A��� can accelerate
the deployment of drone delivery and bene�t numerous users.
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