Lewis acidic telluronium cations: enhanced chalcogen-bond donor
properties and application to transfer hydrogenation catalysis
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ABSTRACT: We describe the synthesis and structures of o-
CeFa(TeMes)z2 (1) and 0-CeF4(TeArF)2 (2, ArF = 3,5-(CF3)2C6Hs)).
two new two bifunctional tellurides featuring an electron-with-
drawing backbone. While 2 resisted methylation, 1 reacted
with Me30-BF4 in CH2Clz to afford o-CsF4(TeMes)(TeMeMes)
([3]*), a mixed valent telluride/telluronium cation isolated as a
tetrafluoroborate salt. Although attempts to methylate the sec-
ond telluride have been unsuccessful, [3]* readily catalyzes the
hydrogenation of 2-phenyl-quinoline with Hantzsch ester.
Comparison with simple telluronium cations including
[ArF,TeMe]* and [MesArFTeMe]* confirms that the catalytic ac-
tivity of these compounds originates from the presence of a tet-
ravalent, cationic tellurium center.

Over the past decades, the field of Lewis acid chemistry has
witnessed the emergence of saturated acceptors that interact
with Lewis basic partners through the formation of secondary
interactions.! One of the most potent classes of such saturated
acceptors is based on tellurium (Te) derivatives that interact
with donors to form “chalcogen-bonded” complexes of type A
(Chart 1).1-2 The donor-acceptor interaction formed in these
complexes displays greater stability than typical halogen bonds
involving electron deficient iodides because of the greater
Lewis acidity of Te derivatives. Moreover, the presence of two
substituents in Te(Il) derivatives provides access to a broader
chemical space in which the strength of the donor-acceptor in-
teractions, their compatibility with different environments,
and the arrangement of the electron acceptors within support-
ing molecular scaffolds can be adjusted by simple synthetic var-
iations.
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Chart 1. Schematic representation of “chalcogen-bonded”
complexes of type A and B and origin of the increase in Lewis
acidity upon oxidation of a telluride into a telluronium.

This atypical, chalcogen-centered, hypervalent bonding
mode draws increasing attention, especially in the areas of an-
ion sensing3 and organocatalysis.2& 2h To our knowledge, all ap-
plications considered by the community favor derivatives
where the Te atom is in the divalent state. Based on the under-
standing that increasing the charge and valence of a saturated
acceptor can enhance its Lewis acidity, we made the hypothesis
that the D:>Te interactions could be strengthened by oxidation
of the chalcogen atom into a tetravalent cation as in complexes
of type B (Chart 1).4 This hypothesis is based on the notion that
the increased valence and charge of the chalcogen atom would:
i) lower the energy of the accepting o* orbitals; ii) result in a
deeper c-hole (Chart 1). While we have obtained validation for
our approach in the realm of anion sequestration and
transport,* we have not investigated the use of the cationic
chalcogen bond donors as promoters of organic reactions. We
were also intrigued by the possibility of accessing bifunctional
systems, reasoning that the acceptor properties of such sys-
tems might be enhanced by cooperative as we have recently
observed for bifunctional antimony Lewis acids.5

We first synthesized 0-CsF4(TeMes)2 (1) and 0-CeF4(TeArF):
(2, ArF = 3,5-(CF3)2C6H3s) by reaction of 0-Li2CéF4 with the cor-
responding ditelluride at -78°C (Figure 1). 1°F NMR spectros-
copy confirmed the presence of a tetrafluoro-o-phenylene unit
in both products as indicated by the detection of resonances at
-106.8 and -153.0 ppm for 1 and -105.3 and -148.2 ppm for 2.
In the case of 2, the ArF groups give rise to another 19F NMR
resonance corresponding to the CF3 groups. These compounds
are air-stable. Their solid-state structure confirms the pres-
ence of two Te atoms spaced by 3.736(1) A in 1 (Figure 1) and
3.579(1) A in 2 (see SI). Having confirmed the identity of these
compounds, we investigated their methylation. While 2 failed
to react with Me30-BF4 due to its electron deficiency and steric
encumbrance, we found that a reaction occurred in the case of
the more electron-rich derivative 1, leading to the formation of
the 0-CsF4(TeMes)(TeMeMes) ([3]*), a mixed valent tellu-
ride/telluronium cation (Figure 1). The structure of [3][BF4]
shows a shortening of the Te-Te distance from 3.736(1) A in 1
to 3.515 (1) A in [3]*, indicative of Te(I)>Te(IV) bonding as
confirmed by Natural Bond Orbital analysis (Figure 1). This in-
teraction tames the nucleophilicity of the Te(II) center as indi-
cated by the reluctance of [3]* to undergo further methylation.
In the 1H NMR spectrum, the methyl group appears as a doublet
(Ju-r = 3.5 Hz), displaying the expected 125Te satellites spaced
by 2Jren = 33.5 Hz.4b Consistent with the presence of a
Te(II)->Te(IV) interactions, we note that the two 125Te reso-
nances of [3]* are flanked by satellites separated by Jre-te = 527
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Figure 1. Synthesis of 1, 2 and [3]BF4] (a: Mes2Tez, THF, -78°C; b: (3,5-(CF3)2C6H3)2Tez, Et20, -78°C). Inset A shows the crystal
structure of 1. Inset B shows the crystal structure of [3]+ as the BF4- salt. The ESP map of [3]+* (color scale is at a.u.), its LUMO
contour plot (isovalue = 0.001) and the contour plot of the NBOs (isovalue = 0.05) involved in the Te(II)>Te(IV) are also included.
When shown, the thermal ellipsoids in the crystal structures are set at the 50% probability level and the H atoms are omitted.

Hz. This value is smaller than that measured for [1-(PhTe)-8-
PhMeTe)-naphthalene]* (1093 Hz) and [1-(PhTe)-8-PhMeTe)-
acenaphthalene]+ (946 Hz) whose backbones support shorter
Te-Te interactions than in [3]*.6 In the structure, the BF4- coun-
ter anion forms a secondary interaction or chalcogen bond with
the telluronium ion, confirming the increased Lewis acidity of
the Te(IV) center. DFT calculations followed by a visualization
of the electrostatic potential (ESP) map show that oxidation
leads to an accentuated c-hole on the Te(IV) center (Figure 1).
This c-hole expectedly coincides with the LUMO of the com-
pound which has Te-C o* parentage.

Returning to one of the primary intents of this study, we
tested the activity of the above-mentioned derivatives for the
reduction of quinolines using Hantzsch ester (Scheme 1). This
simple reaction is often used to benchmark the catalytic activ-
ity of saturated acceptors based on group 15 and 16 elements.”
5b.8 We first tested the neutral bifunctional tellurides 1 and 2
(Table 1 - entries 1 and 2). We only observed conversion in the
case of 2, in line with its more electron-deficient structure and
lower steric crowding around the Te atoms. However, the re-
action proved to be slow, only reaching 8% after 3 hours when
the reaction was carried out in CDCIs with a catalyst loading of
10 mol%. By contrast, we found that [3][BF4] smoothly pro-
moted this reaction suggesting that its enhanced chalcogen
bond donor properties or synonymously its higher Lewis acid-
ity boosts its catalytic activity in this reaction. To more firmly
correlate the enhancement in catalytic activity to the oxidation
of the Te center, we endeavoured to compare the activity
[3][BF4] to that of less structurally complex telluride and tellu-
ronium cations. We selected 4 and [5][BF4] as well as 6 and
[7]1[BF4] which were prepared using protocols that we recently
described for electron-deficient tellurides and telluronium cat-
ions.#? These four new derivatives, which have been character-
ized using conventional means (see SI), are air-stable and can
be stored on the benchtop for extended periods of time. Our
survey of these four additional compounds shows that the tel-
luronium cations [5][BF4] and [7][BF4] are active catalysts (en-
tries 5 and 7) while 4 and 6 induced hardly any conversion
within the 3 h time frame chosen in this study (entries 4 and 6).
The higher activity of [5][BF4] and [7][BF4] fortifies the notion
that the oxidative methylation of the Te center is responsible
for the higher catalytic activity of these salts. It has been re-
cently proposed that Lewis acid catalysts may acidify Hantzsch
ester thus promoting protonation of the quinoline in the rate-
determining step of the reaction.® Another mechanistic sugges-
tion involves activation of the quinoline electrophile by

coordination of the nitrogen to the Lewis acid.8 Since both
pathways would benefit from a more potent Lewis acid, we
propose that the lower c* orbitals and deeper o-holes of the
telluronium cations are at the origin of the rate acceleration ob-
served with the oxidized derivatives.
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Scheme 1. Transfer hydrogenation of 2-phenyl-quinoline
and structures of additional Te-based catalysts.

Table 1. Compilation of the results obtained for the transfer
hydrogenation of 2-phenyl-quinoline using Hantzsch ester.

Entry Catalyst ([Te]) Time Conv.
1 1 3h <1%
2 2 3h 8%
3 [3][BF4] 3h 96%
4 4 3h <1%
5 [5]1[BF4] 3h 95%
6 6 3h 6%
7 [7]1[BF4] 3h 91%

To conclude this study we decided to survey additional sub-
strates using [5][BF4] as a catalyst. When used in CDCl3 with a
loading of 10 mol%, we found that quinoline was readily hy-
drogenated, reaching a conversion of 87% within 1 h (Scheme
2). The C=C bond of trans-cinnamaldehyde proved harder to
reduce as indicated by the limited conversion of 24% observed
after 16 h at an elevated temperature (Scheme 2). These addi-
tional reactions, which did not proceed in the absence of the



catalyst, show that telluronium-based catalysts may be effec-
tive in meditating the transfer hydrogenation of a larger range
of substrates.
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Scheme 2. Transfer hydrogenation of quinoline and trans-cin-
namaldehyde using [5][BF4] as the catalyst.

While we have previously demonstrated that telluronium
cations display enhanced anion binding and anion transport
properties compared to their neutral divalent precursors, this
communication shows that the same electronic effects, as sum-
marized in Chart 1, elicit greater catalytic activity in the trans-
fer hydrogenation of 2-phenyl-quinoline using Hantzsch ester.
Our results also document the synthetic difficulties associated
with the synthesis of dicationic bis(telluronium) derivatives
displaying short Te-Te separations and electron-withdrawing
ligands.6b. 10
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