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Abstract
We present a Reinforcement Learning (RL) algorithm to solve infinite horizon asymp-
toticMeanFieldGame (MFG) andMeanFieldControl (MFC)problems.Our approach
can be described as a unified two-timescale Mean Field Q-learning: The same algo-
rithm can learn either the MFG or the MFC solution by simply tuning the ratio of two
learning parameters. The algorithm is in discrete time and space where the agent not
only provides an action to the environment but also a distribution of the state in order
to take into account the mean field feature of the problem. Importantly, we assume
that the agent cannot observe the population’s distribution and needs to estimate it in
a model-free manner. The asymptotic MFG and MFC problems are also presented in
continuous time and space, and compared with classical (non-asymptotic or station-
ary) MFG and MFC problems. They lead to explicit solutions in the linear-quadratic
(LQ) case that are used as benchmarks for the results of our algorithm.
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1 Introduction

Reinforcement learning (RL) is a branch of machine learning (ML) which studies
the interactions of an agent within an environment in order to maximize a reward
signal. RL algorithms solve Markov Decision Processes (MDP) based on trials and
errors. At each discrete time n, the agent observes the state of the environment Xn

and chooses an action An . Due to the agent’s action, the environment evolves to a
state Xn+1 and assigns a reward rn+1. The goal of the agent is to find the optimal
strategy π which assigns to each state of the environment the optimal action in order
to maximize the aggregate discounted rewards. A complete overview on the evolution
of this field is given in [28]. The Q-learning method was introduced by [29] to solve
a discrete time MDP with finite state and action spaces. It is based on the evaluation
of the optimal action-value table, Q(x, a), which represents the expected aggregate
discounted rewards when starting in state x and choosing the first action a, i.e.,

Q∗(x, a) = max
π

E

[ ∞∑
n=0

γ nrn+1

∣∣∣ X0 = x, A0 = a

]
, (1)

where rn+1 = r(Xn, π(Xn)) is the instantaneous reward, γ ∈ (0, 1) is a discounting
factor, and Xn+1 = b(Xn, π(Xn)). The maximum is taken over strategies (or policies)
π , which are functions of the state taking values in some action space. Since the state’s
dynamics b (and sometimes the reward function r ) are unknown to the agent, the
algorithm is characterized by the trade-off between exploration of the environment
and exploitation of the current available information. This is typically accomplished
by the implementation of an ε-greedy policy. The greedy action which maximizes the
immediate reward is chosen with probability 1 − ε and a random action otherwise,
i.e.,

πε(x) =
{
a ∈ Uni f (A), with probability ε,

a∗ = argmaxa∈A Q(x, a), with probability 1 − ε.
(2)

Note that this is the randomized policywhichwill be used in the algorithm presented in
Sect. 4, but as the optimal strategies will turn out to be deterministic (as ε goes to zero
over learning episodes), in the following, we present the problems and the Q-learning
approach only using deterministic policies called controls and denoted by α instead
of π (see [25] for additional details on randomized policies).

On the other hand, and to summarize, mean field games are the result of the applica-
tion ofmean field techniques fromphysics into game theory. Themean field interaction
is introduced to describe the behavior of a large number N of indistinguishable play-
ers with symmetric interactions. The complexity of the system would be intractable if
we were to describe all the pairwise interactions. A solution to this problem is given
by describing the interactions of each player i with the empirical distribution of the
other players. As the number of players increases, the impact of each of them on the
empirical distribution decreases. By the principle of propagation of chaos (law of large
numbers), each player becomes asymptotically independent from the others and its

123



Mathematics of Control, Signals, and Systems (2022) 34:217–271 219

interaction is with its own distribution making the statistical structure of the system
simpler. Two types of mean field problems can be distinguished between a mean field
game and amean field control depending on the goal the agents try to achieve. The aim
of amean field game is to find an equivalent of a Nash equilibrium in a non-cooperative
N -player game when the number of players becomes large. On the other hand, a mean
field control problem analyzes the social optimum in a cooperative gamewithin a large
population. Since the seminal works [23], and [21,22], the research in mean field game
theory attracted a huge interest. We refer to the extensive works [8], and [4] for further
details. Connections between machine learning and mean field theory have been pro-
posed in the recent literature. Some model-based methods have first been introduced
in [9,10,15] by combining neural network approximation tools and stochastic gradient
descent. Furthermore, model-free methods and links with reinforcement learning have
also attracted a surge of interest. [32] analyzes the benefits that a mean field (local)
interaction brings in a multi-agent reinforcement learning (MARL) algorithm when
the number of player is finite. [31] uses inverse reinforcement learning to learn the
dynamics of a mean field game on a graph. [19] defines a simulator-based Q-learning
algorithm to solve a mean field game with finite state and action spaces. [27] designs
a gradient-based algorithm to solve cooperative games (MFC) and a two-timescale
approach to solve non-cooperative games (MFG) with finite state and action spaces,
analogously to [24]. Convergence of actor-criticmethod for linear-quadraticMFG [16]
and convergence regularized Q-learning for MFG with finite state and action spaces
[1] have also been proved. To learn MFC optima, model-free policy gradient meth-
ods have been proved to converge for LQ problems in [11], whereas Q-learning for a
“lifted” MDP on the space of distributions has been introduced in [12]. To learn MFG
equilibria, the fictitious play scheme has been introduced in [7], assuming the best
response can be computed exactly. [13] analyses the propagation of error when the
best response is computed approximately in a model-free setting, while [26] extends
the analysis of the fictitious play scheme in continuous time of learning. Similarly to
our approach, [30] studies a single-loop fictitious play algorithm in which the state
and the policy are updated at each iteration. Fictitious play combined with deep neural
networks has also been used to compute Nash equilibria in multi-agent games [20].

In this paper, we propose a mean field Q-learning algorithm which is able to solve
the mean field game or mean field control problem depending on the tuning of the
parameters and the rate of update of the distribution. Differently from the approach
developed by [19], the algorithm does not require a simulator of the population simpli-
fying its application to real-world problems. It exploits themean field limit transposing
the interaction of the player with the population to the interaction of the player with
herself.

In Sect. 2, we formulate in discrete time and space the type of infinite horizon
AsymptoticMFGandMFCproblems that our algorithmwill address.Comparisonwith
classical (non-asymptotic) and stationary problems is also made. In Sect. 3, we recast
them as a two-timescale problem of Borkar’s type [5,6] which provides convergence
results. The algorithm itself is presented inSect. 4. InSect. 5,we shownumerical results
with comparison to the benchmark case of discrete time and space approximations
for continuous time and space linear-quadratic problems for which we have explicit
formulas derived in Appendix A.
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2 Mean field game andmean field control problems

We start by presenting three formulations of MFG and MFC problems: non-
asymptotic, asymptotic, and stationary. All these problems are on an infinite horizon
and for the sake of consistency with the RL literature, we present them in a discrete
time and space framework. We will, however, resort to continuous time and space
models in Sect. 5 in order to obtain simple benchmarks. Note that, as customary in the
MFG literature, without loss of generality, we minimize a cost instead of maximizing
a reward.

Let X andA be finite sets corresponding to states and actions. We denote by Δ|X |
the simplex in dimension |X |, whichwe identifywith the space of probabilitymeasures
on X . Let p : X ×A×Δ|X | → Δ|X | be a transition kernel. We will sometimes view
it as a function:

p : X × X × A × Δ|X | → [0, 1], (x, x ′, a, μ) �→ p(x ′|x, a, μ),

which will be interpreted as the probability, at any given time step, to jump to state x ′
when starting from state x and using action a and when the population distribution is
μ.

Let f : X ×A×Δ|X | → R be a running cost function. We interpret f (x, a, μ) as
the one-step cost, at any given time step, incurred to a representative agent who is at
state x and uses action a while the population distribution is μ. For a random variable
X , we denote its law by L(X). We will focus on feedback controls, i.e., functions of
the state of the agent and possibly of time.

2.1 Non-asymptotic formulations

In the usual formulation for time-dependent MFG and MFC, the interactions between
the players are through the distribution of states at the current time. More pre-
cisely, in a MFG, one typically looks for (α̂, μ̂) where α̂ : N × X → A and
μ̂ = (μ̂n)n≥0 ∈ (Δ|X |)N is a flow of probability distributions on X , such that the
following two conditions hold:

1. Optimality of the best response map: α̂ is the minimizer of

α �→ J MFG(α; μ̂) = E

[+∞∑
n=0

γ n f (Xα,μ̂
n , αn(X

α,μ̂
n ), μ̂n)

]
,

where αn(·) := α(n, ·) and the process Xα,μ̂ follows the dynamics given by:

Xα,μ̂
n+1 ∼ p

(
·|Xα,μ̂

n , αn(X
α,μ̂
n ), μ̂n

)

with initial distribution Xα,μ̂
0 ∼ μ0;

2. Fixed point condition: μ̂n = L(X α̂,μ̂
n ) for every n ≥ 0.

123



Mathematics of Control, Signals, and Systems (2022) 34:217–271 221

In a MFC problem, the goal is to find α∗ such that the following condition holds:
α∗ is the minimizer of

α �→ J MFC (α) = E

[+∞∑
n=0

γ n f (Xα
n , αn(X

α
n ),L(Xα

n ))

]
,

where the process Xα follows the dynamics:

Xα
n+1 ∼ p

(·|Xα
n , αn(X

α
n ),L(Xα

n )
)

with initial distribution Xα
0 ∼ μ0. Note that p is the same transition probability

function as for the MFG above, but we plug the law L(Xα
n ) of Xα

n instead of a given
distribution μ̂n . In other words, theMFC problem is ofMcKean–Vlasov (MKV) type.

We will sometimes use the notation μ∗ = μα∗
for the optimal distribution in the

MFC. Note that the objective function in the MFC setting can be written in terms of
the objective function in the MFG as:

J MFC (α) = J MFG(α;μα),

where μα
n = L(Xα

n ) for all n ≥ 0. However, in general,

J MFC (α∗) = J MFG(α∗;μ∗) 
= J MFG(α̂; μ̂).

In these two problems, the equilibrium control α̂ or the optimal control α∗ usually
depends on time due to the dependence of p and f on the mean field flow, which
evolves with time.

Although these are the usual formulations of MFG and MFC problems, in order to
draw connections with reinforcement learning more directly, we turn our attention to
formulations in which the control is independent of time. That is naturally the case
in some applications, and, roughly speaking, it is also in the spirit of an individual
player trying to optimally join a crowd of players already in the long-time asymptotic
equilibrium. This will be made more precise in the following section.

2.2 Asymptotic formulations

We consider the following MFG problem: Find (α̂, μ̂) where α̂ : X → A and μ̂ ∈
Δ|X |, such that the following two conditions hold:

1. α̂ is the minimizer of

α �→ J AMFG(α; μ̂) = E

[+∞∑
n=0

γ n f (Xα,μ̂
n , α(Xα,μ̂

n ), μ̂)

]
,
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where the process Xα,μ̂ follows the transitions:

Xα,μ̂
n+1 ∼ p

(
·|Xα,μ̂

n , α(Xα,μ̂
n ), μ̂

)

with initial distribution Xα,μ̂
0 ∼ μ0;

2. μ̂ = limn→+∞ L(X α̂,μ̂
n ).

We stress that in this problem the control is a function of the state only and does not
depend on time, as b and f depend only on the limiting distribution but not on time.
Intuitively, this problem corresponds to the situation in which an infinitesimal player
wants to join a crowd of players who are already in the asymptotic regime (as time
goes to infinity). This stationary distribution is a Nash equilibrium if the new player
joining the crowd has no interest in deviating from this asymptotic behavior.

We also consider the following MFC problem: Find α∗ such that the following
condition holds: α∗ is the minimizer of

α �→ J AMFC (α) = E

[+∞∑
n=0

γ n f (Xα
n , α(Xα

n ), μα)

]
,

where the process Xα follows the transitions

Xα
n+1 ∼ p

(·|Xα
n , α(Xα

n ), μα
)

with initial distribution Xα
0 ∼ μ0, and with the notation μα = limn→+∞ L(Xα

n ).
Wewill sometimes use the shorthand notationμ∗ = μα∗

for the optimal distribution
in the MFC setting. Here too, the control is independent of time, and p and f depend
only on the limiting distribution. Intuitively, this problem can be viewed as the one
posed to a central planner who wants to find the optimal stationary distribution such
that the cost for the society is minimal when a new agent joins the crowd.

Note that in this formulation again, the objective function in the MFC setting can
be written in terms of the objective function in the MFG as:

J AMFC (α) = J AMFG(α;μα),

with the notation μα = limn→+∞ L(Xα
n ).

Remark 1 Although the AMFG and AMFC problems in this section are defined using
an initial distribution μ0 for the state process, one expects that under suitable condi-
tions, ergodicity in particular, the optimal controls α̂ and α∗ are independent of this
initial distribution.

2.3 Stationary formulations

Another formulation with controls independent of time consists in looking at the situ-
ation in which the new agent joining the crowd starts with a position drawn according
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to the ergodic distribution of the equilibrium control or the optimal control. This type
of problems has been considered, e.g., in [19,27] and can be described as follows.

The stationary MFG problem is to find (α̂, μ̂) where α̂ : X → A and μ̂ ∈ Δ|X |,
such that the following two conditions hold:

1. α̂ is the minimizer of

α �→ J SMFG(α; μ̂) = E

[+∞∑
n=0

γ n f (Xα,μ̂
n , α(Xα,μ̂

n ), μ̂)

]
,

where the process Xα,μ̂ follows the SDE

Xα,μ̂
n+1 ∼ p

(
·|Xα,μ̂

n , α(Xα,μ̂
n ), μ̂

)
,

and starts with distribution Xα,μ̂
0 ∼ μ̂;

2. The process X α̂,μ̂ admits μ̂ as invariant distribution (so μ̂ = L(X α̂,μ̂
n ) for all n ≥ 0).

The key difference with the Asymptotic MFG formulation is that here the process
starts with the invariant distribution μ̂. The control is a function of the state only and
does not depend of time, and p and f depend only on this stationary distribution.

The stationary MFC problem is defined as follows: Find α∗ such that the following
condition holds: α∗ is the minimizer of

α �→ J SMFC (α) = E

[+∞∑
n=0

γ n f (Xα
n , α(Xα

n ), μα)

]
,

where the process Xα follows the MKV dynamics

Xα
n+1 ∼ p

(·|Xα
n , α(Xα

n ), μα
)
,

with initial distribution Xα
0 ∼ μα , and such that μα is the invariant distribution of Xα

(assuming it exists).
To conclude, let us mention that there is yet another formulation, in which the

solution is stationary but depends on the initial distribution, see [4, Chapter 7].

2.4 Connecting the three formulations

Denoting by α̂MFG , α̂AMFG , and α̂SMFG , the MFG equilibrium strategies, respec-
tively, in the non-asymptotic, asymptotic, and stationary formulations, we expect

{
α̂MFG
n (x) → α̂AMFG(x), ∀x, as n → +∞,

α̂AMFG(x) = α̂SMFG(x), ∀x . (3)
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Similarly denoting by α∗MFC , α∗AMFC , and α∗SMFC , the MFC optimal con-
trols, respectively, in the non-asymptotic, asymptotic, and stationary formulations,
we expect

{
α∗MFC
n (x) → α∗AMFC (x), ∀x, as n → +∞,

α∗AMFC (x) = α∗SMFC (x), ∀x . (4)

In fact, we have the following result.

Theorem 1 Consider the set of admissible controls to be defined as the set of controls
α such that the process (Xα

n )n≥0 is an irreducible and aperiodic Markov process on
the finite space X. If a solution for the asymptotic MFG (resp. MFC) exists, then it
is equal to the solution of the corresponding stationary MFG (resp. MFC) and vice
versa.

Proof Let us consider the pair (α̂AMFG , μ̂AMFG) solution of an asymptoticMFG. The
optimal control α̂AMFG is an optimizer over the set of admissible controls such that the
process (Xα

n )n≥0 is an irreducible Markov process and admits a limiting distribution
which is then the unique invariant distribution using the control α̂AMFG . Note that
the control α̂AMFG does not depend on the initial distribution μ0 and consequently
μ̂AMFG does not either. Therefore, (α̂AMFG , μ̂AMFG) is the solution of the AMFG
starting from μ̂AMFG , which is the corresponding stationary MFG problem. Thus, we
deduce the desired relation α̂AMFG = α̂SMFG . A similar argument forMFC problems
applies and shows that α∗AMFC = α∗SMFC . �

Remark 2 In terms of practical applications, the asymptotic formulation (AMFG and
AMFC) seems to be the most appropriate, and if one is interested in the optimal
controls, Theorem 1 shows that solving the asymptotic games also gives the solutions
to the corresponding stationary games. Additionally, (3) and (4) indicate that it also
gives the long-time solutions to the corresponding time-dependent games. Developing
Q-learning algorithms for solving time-dependent finite horizon games is addressed
in our forthcoming paper [2].

In Appendix A, we provide explicit solutions for MFG, AMFG, SMFG, MFC,
AMFC, and SMFC, in the case of continuous time, continuous space Linear-Quadratic
stochastic differential games. We verify that (3) and (4), and therefore, Theorem 1, are
satisfied in that case as well. In Sect. 5, discrete approximations of these games will
also serve as benchmarks for our algorithm described in Sect. 4.

3 A unified view of learning for MFG andMFC

In this section, we draw a connection between MFG, MFC, Q-learning, and Borkar’s
two timescale approach [5,6]. The definitions of MFG and MFC reveal that the two
formulations are very similar and both involve an optimization and a distribution. This
leads to the idea of designing an iterative procedure which would update the value
function and the distribution. However, in the MFG, the distribution is frozen during
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the optimization and then, a fixed point condition is enforced, whereas in the MFC
problem the distribution is directly linked to the control, which implies that it should
change instantaneously when the control function is modified. Hence, to compute the
solutions using an iterative algorithm, the updates should be done differently for each
problem: intuitively, in a MFG, the value function should be updated in an inner loop
and the distribution in an outer loop, whereas it should be the converse for MFC.
More generally, we can update both functions in turn but at different rates. Then, to
compute the MFG solution, the distribution should be updated at a lower rate than the
value function. For MFC, it should be the converse. In the rest of this subsection, we
formalize these ideas.

3.1 Action-value function in the classical Q-learning setup

One of the most popular methods in RL is the so-called Q-learning [29]. Instead of
looking at the value function V as in a PDE approach for optimal control, this method
is based on the action-value function, also called Q-function, which takes as inputs
not only a state x but also an action a. Intuitively, in a standard (non mean-field) MDP,
this function quantifies the optimal cost-to-go of an agent starting at x , using action
a for the first step and then acting optimally afterward. In other words, the value of
(x, a) is the cost of using a when in state x , plus the minimal cost possible after that,
i.e., the cost induced by using the optimal control; see, e.g., [28, Chapter 3] for more
details. The definition of the optimal Q-function, denoted by Q∗, is similar to (1), up
to a change of sign since we consider a cost f and a minimization problem instead of
a reward r and a maximization problem, namely,

Q∗(x, a) = min
α

E

[ ∞∑
n=0

γ n f (Xn, α(Xn))

∣∣∣ X0 = x, A0 = a

]
.

Using dynamic programming, it can be shown that Q∗ is the solution of the Bellman
equation:

Q∗(x, a) = f (x, a) + γ
∑
x ′∈X

p(x ′|x, a)min
a′ Q∗(x ′, a′), (x, a) ∈ X × A.

The corresponding value function V ∗ is given by:

V ∗(x) = min
a

Q∗(x, a), x ∈ X .

One of the main advantages of computing the optimal action-value function instead of
the value function is that from the former, one can directly recover the optimal control,
given by argmina∈A Q∗(x, a). This is particularly important in order to designmodel-
free methods, as we will see in the next section.
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3.2 Action-value function for asymptotic MFG

In the context of Asymptotic MFG introduced in Sect. 2.2, we can view the problem
faced by an infinitesimal agent among the crowd as an MDP parameterized by the
population distribution. Hence, given a population distribution μ, standard RL tech-
niques can be applied to compute the Q-function of an infinitesimal agent against this
given μ.

Then, the optimal Q-function is defined, for a given μ, by

Q∗
μ(x, a) = min

α
E

[ ∞∑
n=0

γ n f (Xn, α(Xn), μ)

∣∣∣ X0 = x, A0 = a

]
, (5)

where the cost function f (x, a, μ) depends on the fixed μ as well as the transition
probabilities p(x ′|x, a, μ). Since μ is fixed, as in the classical case, one obtains the
Bellman equation:

Q∗
μ(x, a) = f (x, a, μ) + γ

∑
x ′∈X

p(x ′|x, a, μ)min
a′ Q∗

μ(x ′, a′), (x, a) ∈ X × A.

(6)
This function characterizes the optimal cost-to-go for an agent starting at state x ,
using action a for the first step, and then acting optimally for the rest of the time
steps, while the population distribution is given by μ (for every time step). Note that
mina Q∗

μ(x, a) = minα J AMFG(α;μ) in the notation of Sect. 2.2.

3.3 Action-value function for asymptotic MFC

ForMFC, it is not obvious how to use the same Q-function because, as noticed earlier,
the distribution appearing in the definition of MFC is directly linked to the control
and not fixed a priori. One possibility is to look at MFC as an MDP on the space of
distributions and then to introduce a Q-function which takes a distribution as an input
[12,17,18,25].

We take a different route and consider a modified Q- function as follows. For an
admissible control α(x), we define the MKV- dynamics p(x ′|x, a, μα) so that μα is
the limiting distribution of the associated process (Xα

n ). We define the control α̃ by

α̃(x ′) =
{
a if x ′ = x,
α(x) for x ′ 
= x .

(7)

Note that α̃ depends on x and a. Our modified Q-function is given by

Qα(x, a) = f (x, a, μα̃) + E

[ ∞∑
n=1

γ n f (Xn, α(Xn), μ
α)

∣∣∣ X0 = x, A0 = a

]
.
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We then obtain that the optimal Q∗(x, a) = minα Qα(x, a) satisfies the Bellman
equation

Q∗(x, a) = f (x, a, μ̃∗)+γ
∑
x ′∈X

p(x ′|x, a, μ̃∗)min
a′ Q∗(x ′, a′), (x, a) ∈ X ×A,

(8)
where the optimal control α∗ is given by α∗(x) = argmina Q

∗(x, a), the control
α̃∗ is defined by (7) for x and a, and μ̃∗ := μα̃∗

. The optimal value function is
V ∗(x) = mina Q∗(x, a) (= J AMFC (α∗) in the notation of Sect. 2.2). The details of
the derivation of these equations are given in Appendix C.

Note that, compared with the Qμ-function used for MFG, our MFC modified Q-
function involves the differences Δμ f := f (x, a, μ̃) − f (x, a, μ) and Δμ p :=
p(·|x, a, μ̃)− p(·|x, a, μ) which play the role of derivatives with respect to the prob-
ability distribution in the classical continuous time and space Mean Field Control
problems.

3.4 Unification through a two timescale approach

The goal is now to design a learning procedure which can approximate, for either
MFG or MFC, not only Q but also the corresponding μ. For MFG, the usual fixed
point iterations are on the distribution and at each iteration, the best response against
this distribution (which can be deduced from the corresponding Q table) is computed.
For MFC, the iterations are on the control (here again, it can be deduced from the Q
table) and the distribution corresponding to this control is computed at each iteration.
Instead of completely freezing the distribution (resp. the control) in the first case (resp.
the second case), we can imagine that letting it evolve at a slow rate would still lead
to the same limit. In other words, the definitions of MFG and MFC seem to lie at the
two opposite sides of a spectrum.

Based on this viewpoint, we consider the following iterative procedure, where both
variables (Q andμ) are updated at each iteration but with different rates. Starting from
an initial guess (Q0, μ0) ∈ R

|X |×|A| × Δ|X |, define iteratively for k = 0, 1, . . . :

{
μk+1 = μk + ρ

μ
k P(Qk, μk),

Qk+1 = Qk + ρ
Q
k T (Qk, μk),

(9a)

(9b)

where

⎧⎪⎨
⎪⎩
P(Q, μ)(x) = (μPQ,μ)(x) − μ(x), x ∈ X ,

T (Q, μ)(x, a) = f (x, a, μ) + γ
∑

x ′ p(x ′|x, a, μ)mina′ Q(x ′, a′)
−Q(x, a), (x, a) ∈ X × A,

and

PQ,μ(x, x ′) = p(x ′|x, argmina Q(x, a), μ),
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(μPQ,μ)(x) =
∑
x0

μ(x0)P
Q,μ(x0, x),

PQ,μ is the transition matrix when the population distribution is μ and the agent uses
the optimal control according to Q. The learning rates ρ

μ
k and ρ

Q
k are assumed to

satisfy usual Robbins–Monro type conditions, namely:
∑

k ρ
μ
k = ∑

k ρ
Q
k = +∞ and∑

k |ρμ
k |2 = ∑

k |ρQ
k |2 < +∞.

If ρ
μ
k < ρ

Q
k , the approximate Q-function evolves faster, while it is the converse

if ρ
μ
k > ρ

Q
k . This suggests that these two regimes should converge to different limit

points. These ideas have been studied byBorkar [5,6] in connectionwith reinforcement
learning methods under the name of two timescales approach. More precisely, from
Borkar [6, Chapter 6, Theorem 2], we expect to have the following two situations. We
assume that the operators T and P are Lipschitz continuous, which, as explained in
Appendix B, can be obtained from the Lipschitz continuity of f and p in the model,
as well as a slight modification of P to regularize the minimizer. Furthermore, for
every Q, the function μ �→ μ + ρμP(Q, μ) is a strict contraction for ρμ small
enough (depending on p), which ensures existence and uniqueness of a fixed point to
this function. Similarly, for every μ the function Q �→ Q + ρQT (Q, μ) is a strict
contraction for ρQ small enough (depending on f , p and γ ), which ensures existence
and uniqueness of a fixed point to this function.

– Two timescale approach for MFG.
If ρ

μ
k /ρ

Q
k → 0 as k → +∞, the system (9a)–(9b) tracks the ODE system

⎧⎨
⎩

μ̇t = P(Qt , μt ),

Q̇t = 1

ε
T (Qt , μt ),

where ρ
μ
k /ρ

Q
k is thought of being of order ε � 1. We consider, for any fixed μ,

the ODE

Q̇t = 1

ε
T (Qt , μ),

and we assume it has a unique globally asymptotically stable equilibrium Qμ. In
particular, T (Qμ,μ) = 0, meaning by (6) that Qμ is the value function of an
infinitesimal agent facing the crowd distribution μ. We further assume that Qμ

is Lipschitz continuous with respect to μ. Convergence to Qμ can be obtained
following standard arguments for Q-learning (see, e.g., [6, Section 10.3]) and the
Lipschitz continuity of Qμ can be guaranteed through Lipschitz continuity of f , p
and the minimizer in (5). Then, the first ODE becomes

μ̇t = P(Qμt , μt ).
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Assuming it has a unique globally asymptotically stable equilibrium μ∞, this
distribution satisfies

P(Qμ∞, μ∞) = 0.

This condition implies that μ∞ and the associated control given by α̂(x) =
argmina Qμ∞(x, a) form a Nash equilibrium. From [6, Chapter 6, Theorem 2],
the system (9a)–(9b) with discrete time updates also converges to this Nash equi-
librium when ρ

μ
k /ρ

Q
k → 0 as k → +∞.

– Two timescale approach for MFC.
If ρ

Q
k /ρ

μ
k → 0 as k → +∞, the system (9a)–(9b) tracks the ODE system

⎧⎨
⎩ μ̇t = 1

ε
P(Qt , μt ),

Q̇t = T (Qt , μt ),

where ρ
Q
k /ρ

μ
k is thought of being of order ε � 1. We consider, for any fixed Q,

the ODE

μ̇t = 1

ε
P(Q, μt ),

and we assume it has a unique globally asymptotically stable equilibrium μQ . In
particular, P(Q, μQ) = 0, meaning that μQ is the asymptotic distribution of a
population in which every agent uses the control α(x) = argmina Q(x, a). We
further assume thatμQ is Lipschitz continuous with respect to Q. Then, the second
ODE becomes

Q̇t (x, a) = T (Qt (x, a), μ̃Qt ),

where μ̃Qt is defined by (7) at (x, a) for α(·) = argmina′ Qt (·, a′). This is con-
sistent with the update of Q and what the algorithm proposed in Sect. 4 does.
Assuming this ODE has a unique globally asymptotically stable equilibrium Q∞,
this Q-table satisfies

T (Q∞, μ̃Q∞) = 0.

This last condition means that Q∞ = Q∗ satisfies the MFC Bellman equation
(8), and that the control α∗(x) = argmina Q∞(x, a) is an MFC optimum for
the asymptotic formulation and the induced optimal distribution is μQ∞ . From
[6, Chapter 6, Theorem 2], the system (9a)–(9b) with discrete time updates also
converges to this social optimum when ρ

Q
k /ρ

μ
k → 0 as k → +∞.
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3.5 Stochastic approximation

The above (deterministic) algorithm relies on the operators P , T which, in many
practical situations are not known, for instance because the agent does not know for
sure the dynamics or the reward function. In such situations, the agent can only rely on
random samples (more details are provided in the next section). The algorithm can be
modified to account for such stochastic approximations. Indeed, let us assume that, for
any Q, μ, x, a, the agent can know the value f (x, a, μ) and can sample a realization
of the random variable

X ′
x,a,μ ∼ p(·|x, a, μ).

Then, she can compute the realization of the following random variables qTQ,μ,x,a and
qPQ,μ,x,a taking values, respectively, in R and Δ|X |:

qTQ,μ,x,a = f (x, a, μ) + γ min
a′ Q(X ′

x,a,μ, a′) − Q(x, a),

and

qPQ,μ,x,a(x
′′) = 1{X ′

x,a,μ=x ′′} − μ(x ′′), ∀x ′′ ∈ X .

Observe that

E[qTQ,μ,x,a] =
∑
x ′

p(x ′|x, a, μ)

[
f (x, a, μ) + γ min

a′ Q(x ′, a′) − Q(x, a)

]

= T (Q, μ)(x, a), (12)

and

E[ qPQ,μ,x,a(x
′′)] =

∑
x ′

p(x ′|x, a, μ)
(
1{x ′=x ′′} − μ(x ′′)

) = p(x ′′|x, a, μ) − μ(x ′′).

If the starting point x comes from a random variable X ∼ μ and if a is chosen to be
an optimal action at X according to a given table Q, i.e., a ∈ argminA Q(X , ·), then
we obtain

E[ qPQ,μ,X ,argmina Q(X ,a)(x
′′)]

=
∑
x

μ(x)
∑
x ′

p(x ′|x, argmina Q(x, a), μ)
(
1{x ′=x ′′} − μ(x ′′)

)
=

∑
x

μ(x)
(
p(x ′′|x, argmina Q(x, a), μ) − μ(x ′′)

)
= (μPQ,μ)(x ′′) − μ(x ′′)
= P(Q, μ)(x ′′). (13)
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We can thus replace the deterministic updates (9a)–(9b) by the following stochastic
ones, starting from some initial Q0, μ0: for k = 0, 1, . . . ,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

μk+1(x) = μk (x) + ρ
μ
k
qPQk ,μk ,Xk ,argmina Q(Xk ,a)(x)

= μk (x) + ρ
μ
k P(Qk , μk )(x) + Pk (x), ∀x ∈ X

Qk+1(x, a) = Qk (x, a) + ρ
Q
k

qTQk ,μk ,x,a

= Qk + ρ
Q
k T (Qk , μk )(x, a) + Tk (x, a), ∀(x, a) ∈ X × A,

Xk ∼ μk ,

(14a)

(14b)

where we introduced the notation:

Pk(x) = ρ
μ
k

(
qPQk ,μk ,Xk ,argmina Qk (Xk ,a)(x) − P(Qk, μk)(x)

)
, ∀x,

and

Tk(x, a) = ρ
Q
k

(
qTQk ,μk ,x,a − T (Qk, μk)(x, a)

)
, ∀(x, a),

with Xk sampled from μk . Note that Tk and Pk are martingales by the above remarks,
see (12)–(13). Hence, under suitable conditions, we expect convergence to hold by
classical stochastic approximation results [6].

However, the procedure (14a)–(14b) is synchronous (it updates all the coefficients
of the Q-table and the distribution at each iteration k) and it requires having access
to a generative model, i.e., to a simulator which can provide samples of transitions
drawn according to p(·|x, a, μk) for arbitrary state x . In the next section, we propose
a procedure which works even with a more restricted setting, which uses episodes:
In each episode, the learner is constrained to follow the trajectory sampled by the
environment without choosing arbitrarily its state.

4 Reinforcement learning algorithm

As recalled in the Introduction, RL studies the algorithms to solve a Markov decision
process (MDP) based on trials and errors. An MDP can be described through the
interactions of an agent with an environment. At each time n, the agent observes its
current state Xn ∈ X and chooses an action An ∈ A. Due to the agent’s action, the
environment provides the new state of the agent Xn+1 and incurs a cost fn+1. The
goal of the agent is to find an optimal strategy (or policy) π∗ which assigns to each
state an action in order to minimize the aggregated discounted costs. The idea is then
to design methods which allow the agent to learn (an approximation of) π∗ by making
repeated use of the environment’s outputs but without knowing how the environment
produces the new state and the associated cost. A detailed overview of this field can
be found in [28] (although RL methods are often presented with reward maximization
objectives, we consider cost minimization problems for the sake of consistency with
the MFG literature).

As presented in Sect. 3.1, the optimal strategy can be derived from the optimal
action-value function. However, Q∗ is a priori unknown. In order to learn Q∗ by
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trials and errors, an approximate version Q of the table Q∗ is constructed through an
iterative procedure. At each step, an action is taken, which leads to a cost and to a new
state. On the one hand, it is interesting to act efficiently in order to avoid high costs,
and on the other hand, it is important to improve the quality of the table Q by trying
actions and states which have not been visited many times so far. This is the so-called
exploitation–exploration trade-off. The trade-off between exploration of the unknown
environment and exploitation of the currently available information can be taken care
of by an ε-greedy policy based on Q. The algorithm chooses the action that minimizes
the immediate cost with probability 1 − ε, and a random action otherwise, as in (2)
with an argmin.

4.1 U2-MF-QL: unified two timescales mean field Q-learning

In order to apply the RL paradigm to mean field problems, the first step consists in
defining the connection between these two frameworks. In a MFG (resp. a MFC), the
goal of a typical agent is to find the pair (α̂, μ̂) (resp. (α∗, μ∗)) where α̂ : X �→ A
(resp. α∗ : X �→ A) represents the equilibrium (resp. optimal) strategy which assigns
at each state the equilibrium (resp. optimal) action in order to minimize the aggre-
gated discounted costs and μ̂ (resp. μ∗) is the ergodic distribution of the population
at equilibrium (resp. optimum). The traditional definition of an MDP based on the
agent–environment pair is augmented with the distribution of the population. In this
new framework, the agent corresponds to the representative player of the mean field
problem.

We now define the type of environment to which the agent is assumed to have
access. A key difference with prior works on RL for mean field problems is that we
do not assume that agent can witness the evolution of the population’s distribution.
Instead, the environment estimates the distribution of the population by exploiting the
symmetry property of the problem. Indeed, when the system is at equilibrium, the law
of the representative player matches the distribution of the population. As showed in
the diagram of Fig. 1, at each time n, the agent observes its current state Xn ∈ X and
then chooses an action An ∈ A. An approximation of the distribution μn is computed
by the environment based on the observed states of the representative player. Provided
with the choice of the action and the estimate of the distribution, the environment
generates the new state of the agent Xn+1 and assigns a cost fn+1.

The algorithm is designed to solve infinite horizon problems through an online
approach, i.e., interacting with the environment. The learning procedure is based on
splitting the infinite horizon in successive episodes in order to promote the exploration
of the environment. The first episode is initialized based on the initial distribution of
the representative player.Within a given episode, the agent updates her strategy at each
learning step aiming to optimize the expected aggregated cost based on the current
estimate of the distribution of the populationμn . Changes in the representative player’s
strategy have an effect on the population requiring to update μn accordingly. After an
assigned number of steps T , the episode is terminated. A new episode is initialized
based on the current version of the environment represented by the estimate of the
population obtained at the last time point of the previous episode. Onemay think at the
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Environment

Agent

Cost
fn+1

State

Xn+1

Distribution
µn

Action

An

Cost
fn

State

Xn

Fig. 1 MDP with mean field interactions: interaction of the representative agent with the environment.
When the current state of the representative agent is Xn , given an action An , the environment produces an
estimate of the distribution μn , the new state Xn+1 and incurs a cost fn+1 calculated by starting from the
current state of the environment Xn and using the transition controlled by An and parameterized by μn

initialization step as a change in the choice of the representative player who provides
the data flow. As the number of episodes increases, one expects the distribution of the
representative player to converge to the limiting distribution. Within a given learning
step, the environment computes an estimate of μn based on the current state of the
agent Xn , provides the next state Xn+1 and assigns the cost fn+1 given the triple
(Xn, An, μn). In other words, the environment consists of the dynamics of the agent
and the cost structure. The case of our interest corresponds to the one in which the
dynamics of the agent and the cost structure are unknown. In this way, introducing
the RL paradigm is equivalent to define a data-driven approach to solve mean field
models which may scale their applicability to real-world problems.

In contrast with standard Q-learning, since in the mean field framework the cost
function also depends on the distribution of the population, the goal here consists in
learning the optimal strategy along with the corresponding ergodic distribution of the
population, i.e., (α̂, μ̂) in the MFG setting and (α∗, μ∗) in the MFC setting. Based
on the intuition provided in Sect. 3 related to the two timescale approach, we propose
Algorithm 1. At each step, we update the Q-table at the observed state-action pair
Q(Xn, An). With a different learning rate, the estimate of the distribution is updated
based on the operator δ : X �→ Δ|X | which maps the next observed state Xn+1 ∈ X
to the corresponding one-hot vector measure. To be specific, we identify the sim-
plexΔ|X | with the subset

{
[μ(xi )]i=0,...,|X |−1 : μ(xi ) ∈ [0, 1] and ∑

i μ(xi ) = 1
}
of

R
|X |. Then, δ is the functionwhich associates to each element ofX = {x0, . . . , x|X |−1}

the corresponding element of the canonical basis (e0, . . . , e|X |−1) ofR|X |, i.e., for each
i = 0, . . . , |X | − 1, δ(xi ) = ei , which is an element of Δ|X | by the above identifi-
cation. In order to learn the limiting distribution of the population through successive
learning episodes, an estimate μni is computed for each step ni based on the sample
Xk
ni collected from episodes k = 1, 2, . . . . This approach attempts to minimize the
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correlation of the sampled states. The update rule presented in algorithm 1 allocates
more weight on the most recent samples allowing to forget progressively the initial
sample that were obtained by a distribution far from the limiting one. At convergence,
one may expect each μni to be an estimate of the limiting distribution.

The algorithm returns both an approximation μk
T of the distribution and an approx-

imation Qk of the Q-function, from which an approximation of the optimal control
can be recovered as x �→ argmina∈A Qk(x, a).

Algorithm 1 Unified Two Timescales Mean Field Q-learning - Tabular version
Require: T : number of time steps in a learning episode,

X = {x0, . . . , x|X |−1} : finite state space,
A = {a0, . . . , a|A|−1} : finite action space,
μ0 : initial distribution of the representative player,
ε : parameter related to the ε-greedy policy,
tolμ, tolQ : break rule tolerances.

1: Initialization: Q0(x, a) = 0 for all (x, a) ∈ X × A, μ0
n =

[
1

|X | , . . . ,
1

|X |
]
for n = 0, . . . , T

2: for each episode k = 1, 2, . . . do
3: Initialization: Sample Xk

0 ∼ μk−1
T and set Qk ≡ Qk−1

4: for n ← 0 to T − 1 do
5: Update μ:

μk
n = μk−1

n + ρ
μ
k (δ(Xk

n) − μk−1
n ) where δ(Xk

n) =
[
1x0 (X

k
n), . . . , 1x|X̃ |−1

(Xk
n)

]
6: Choose action Akn using the ε-greedy policy derived from Qk (Xk

n , ·)
Observe cost fn+1 = f (Xk

n , Akn , μk
n) and state Xk

n+1 provided by the environment
7: Update Q:

Qk (Xk
n , Akn) = Qk (Xk

n , Akn) + ρ
Q
k,n,Xk

n ,Akn
[ fn+1 + γ mina′∈A Qk (Xk

n+1, a
′) − Qk (Xk

n , Akn)]
8: end for
9: if δ(μk−1

T , μk
T ) ≤ tolμ and ‖Qk − Qk−1‖1,1 < tolQ then

10: break
11: end if
12: end for
13: return (μk , Qk )

The Unified Two Timescales Mean Field Q-learning (U2-MF-QL) algorithm rep-
resents a unified approach to solve mean field problems. On the one hand, by choosing
the learning rate for the distribution of the population slower than the one for the Q-
table, we obtain the solution to the MFG problem. Similarly to the scheme presented
in Sect. 3, the iterations in Q perceive the quantity μ as quasi-static mimicking the
freezing of the flow of measures characteristic in the solving scheme of aMFG. On the
other hand, by choosing the learning rate for the mean-field term faster than the one
for the Q-table, we obtain the solution to the MFC problem. Indeed, this choice of the
parameters guarantees that the distribution changes instantaneously for each variation
of the control function (Q-table) replicating the structure of the MFC problem.

4.2 Application to continuous problems

Although it is presented in a settingwith finite state and action spaces, the application of
the algorithm U2-MF-QL can be extended to continuous problems. Such adaptation
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requires truncation and discretization procedures to time, state, and action spaces
which should be calibrated based on the specific problem.

In practice, the learning episode will correspond to a uniform discretization τ =
{tn}n∈{0,...,|τ |−1} of a time interval [0, T ] with T large enough. The environment will
provide the new state and reward at these discrete times. We assume that T is large
enough to reach the ergodic regime. The continuous state space will be represented
as the disjoint union of equally sized neighbors. Each of them will be identified by
its centroid, and it will correspond to a row of the Q table. Likewise, actions will
be provided to the environment in a finite set A = {a0, . . . , a|A|−1} ⊂ R

k , and the
distribution μ will be estimated on the set of centroids X = {x0, . . . , x|X |−1} ⊂ R

k

identifying μ(xi ) as the probability of the neighbor centered in xi . Then, Algorithm 1
is ran on those spaces.

We will use the benchmark linear-quadratic models given in continuous time and
space for which we have explicit formulas given in Appendix A. In that case, we use
an Euler discretization. We do not address here the error of approximation since the
purpose of this comparison with a benchmark is mainly for illustration.

5 Numerical experiments

In this section, we illustrate our algorithm on a benchmark problem which admits an
analytical solution.

5.1 Benchmark problem

We illustrate our algorithm on the following model, in which the mean-field interac-
tions are through the first moment. We take d = k = 1,

f (x, α, μ) = 1

2
α2 + c1 (x − c2m)2 + c3 (x − c4)

2 + c5m
2, b(x, α, μ) = α, (15)

where m = ∫
R
xμ(x)dx . Here, the parameters c2, c4 ∈ R and c1, c3, c5 ∈ R+ are

constant such that c1 + c3 − c1c2 
= 0. In this model, the drift is simply the control,
while the running cost can be understood as follows: the first term is a quadratic cost for
controlling the diffusion, which penalizes high velocity, the second term incorporates
mean field interactions and encourages the agents to be close to c2m (if c2 = 1, this has
a mean-reverting effect), the third term creates an incentive for each agent to be close
to the target position c4, and the fourth term penalizes the population when its mean
m is far away from zero. We thus obtain a complex combination of various effects,
which can be balanced depending on the choice of parameters.

We consider both the corresponding MFG and MFC problems in the asymptotic
formulation. The details on the solutions of these problems and their connection to
the non-asymptotic formulation are given in the appendix.
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Fig. 2 MFG: learning rates over the first 500 episodes

5.2 Numerical results

We present the results obtained by applying the U2-MF-QL algorithm to the mean
field problems based on the running cost and drift specified in (15). These results
show how the algorithm successfully learns the MFG solution or the MFC solution
based on simply tuning the learning rates. Moreover, this shows that the algorithm
manages to solve problems defined on continuous time and continuous state, action
spaces even though it is conceived for discrete problems. Such applications require to
apply truncation and discretization procedures to time, state, and actions which should
be calibrated on a problem base.

We consider the problem defined by the choice of parameters: c1 = 0.25, c2 = 1.5,
c3 = 0.50, c4 = 0.6, c5 = 5, discount parameter β = 1 and volatility σ = 0.3. The
infinite time horizon is truncated at time T = 20. The continuous time is discretized
using stepΔt = 10−2. Recall that γ in the discrete time setting corresponds to e−βΔt in
the continuous time setting. The action space is given byA = {a0 = −1, . . . , aNA =
1} and the state space by X = {x0 = −2 + xc, . . . , xNX = 2 + xc}, where xc is
the center of the state space. The step size for the discretization of the spaces X and
A is given by Δ. = √

Δt = 10−1. The state space X and the action space A have
been chosen large enough to make sure that the state is within the boundary most of
the time. In practice, this would have to be calibrated in a model-free way through
experiments. In this example, for the numerical experiments, we used the knowledge
of the model. In particular, we choose xc = 0.5 for both examples. Note that if the
problem under consideration is posed on finite spaces, this issue does not occur since
the domain is fixed. The exploitation–exploration trade off is tackled on each episode
using an ε-greedy policy, see (2). In particular, the value of ε is fixed to 0.15.
We present the following results for both the MFG and MFC benchmark examples:

1. learning rates analyses;
2. learning of the controls and the ergodic distribution;
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Fig. 3 MFC: learning rates over the first 500 episodes

Fig. 4 MFG: learning rates over 80 × 103 episodes

3. empirical error analyses;
4. empirical analyses of the stopping criteria.

5.2.1 Learning rates analyses

It is important to observe that even if in theMFC case, the choice of ρμ
k below does not

satisfy the classical Robbins–Monro summability condition recalled in Sect. 3.4, the
numerical convergence of the algorithm is obtained, suggesting that these requirements
may be relaxed in this framework. Failing in satisfying these conditions generates a
noisy approximation of the distribution μ in the MFC problem. However, averaging
over the last 10k episodes allows to minimize such noise as showed in the Figures
below. Based on the theoretical results given in [14], we define the learning rates

123



238 Mathematics of Control, Signals, and Systems (2022) 34:217–271

Fig. 5 MFC: learning rates over 80 × 103 episodes

Fig. 6 MFG: comparison learning rates for state x = −1.50

appearing in Algorithm 1 as follows:

ρ
Q
k,n,x,a = 1

(1 + #|(x, a, k, n)|)ωQ , ρ
μ
k = 1

(1 + k)ωμ , (16)

where #|(x, a, k, n)| is the number of times that the algorithm visited state x and
performed action a until episode k and time tn . The exponent ωQ can take values in
( 12 , 1). The value of ωμ is chosen depending on the value of ωQ and the cooperative
or non-cooperative nature of the problem we want to solve. The algorithm is run over
80 × 103 episodes over the interval [0, T ].
Figures 2, 3, 4, 5: comparison of the learning rates. The solution of the MFG
benchmark is reached based on the choice (ωQ, ωμ) = (0.55, 0.85), such that ρμ <
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Fig. 7 MFG: comparison learning rates for state x = 0.80

Fig. 8 MFC: comparison learning rates for state x = −1.50

ρQ . As pointed out in Sect. 3.4, by satisfying this relation the Q-function evolves
faster than the estimation of the distribution mimicking the solving scheme of a MFG.
On the other hand, the solution of the MFC benchmark can be obtained by opting for
the pair of parameters (ωQ, ωμ) = (0.65, 0.15) such that ρμ > ρQ . In Figs. 2, 3, 4,
5, we suppose that #|(x, a, k, 1)| = k. The x-axis refers to the episode. The y-axis
represents the rate evaluated at episode k.

Figures 6, 7, 8, 9: Empirical check of the two timescale conditions. The U2-MF-
QL algorithm is based on an asynchronous QL approach which makes use of different
learning rates for each Q(x, a) based on the number of visits to the relative state-
action pair. An empirical check of the two timescale conditions presented in Sect. 3.4
is presented in the following plots. The number of visits to each state depends on
their proximity to the mean of the ergodic distribution. As a proof of concept, the
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Fig. 9 MFC: comparison learning rates for state x = 0.10

Fig. 10 MFG: results averaged over 10 runs

learning rates for two different states in the MFG and MFC frameworks are analyzed
after 80× 103 learning epochs. The plots on the left are relative to the state on the left
bound ofX , while the plots on the right are relative to the closest state to the theoretical
mean. Each plot shows the value of the learning rates ρ

μ
k and ρ

Q
k,n,x,a together with

the counter of visits to each pair (x, a). The two timescale conditions are satisfied in
each plot. The number of visits changes from order 102 for the state on the border of
X to order 107 for the closest state to the ergodic mean. The x-axis refers to the action.
The left y-axis represents the learning rate. The right y-axis represents the counter of
visits for each state-action pair.
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Fig. 11 MFC: results averaged over 10 runs

Fig. 12 MFG: results averaged over 10 runs and last 10k episodes

5.2.2 Learning of the controls and the ergodic distribution

Figures 10, 11, 12, 13, 14, 15: controls, distributions andvalue functions learnedby
the algorithm.The controls and the distribution learned by the algorithmare compared
with the theoretical solution obtained in the appendix A. As presented in Sect. 3, the
control α(x) is obtained as the argmina Q(x, a). Similarly, the value function V (x)
can be recovered as mina Q(x, a). The x-axis represents the state variable x . In Figs.
10, 11, 12, 13, 14, 15, the left y-axis relates to the action α(x). The right y-axis refers
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Fig. 13 MFC: results averaged over 10 runs and last 10k episodes

Fig. 14 MFG: value function

to the probability mass μ(x). The red (resp. blue) line shows the theoretical control
function for the MFG (resp. MFC) problem. The black dots are the controls learned
by the algorithm. Note that the peak of the distribution μ is not located at the same
point x for MFG andMFC. Note that the peak of the distributionμ is not located at the
same point x for MFG and MFC. In Figs. 10, 12, the y-axis corresponds to the value
function V (x). The continuous lines refer to the theoretical solution. The black dots
are the numerical approximation recovered by the Q-function. We observe that the
algorithm converges to different solutions based on the choice of the pair (ωQ, ωμ).
On the left, the choice (ωQ, ωμ) = (0.55, 0.85) produces the approximation of the
solution of the MFG. On the right, the set of parameters (ωQ, ωμ) = (0.65, 0.15)
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Fig. 15 MFC: value function

Fig. 16 MFG: squared root of MSEα(k)

lets the algorithm learn the solution of the MFC problem. In Figs. 10, 11 the learned
controls and the learned ergodic distribution are averaged over 10 runs. In Figs. 12,
13, the learned controls and the learned distribution μT are averaged over 10 runs and
the last 104 episodes.

5.2.3 Empirical error analyses

Figures 16, 17: MSE error on the control. A metric used to evaluate the numerical
results consists in the mean squared error (MSE) of the controls learned by episode
k with respect to the theoretical solution presented in Appendix A. In particular,
this metric considers the states x ∈ X where the ergodic distribution μ̂ is mostly
concentrated. Let CMFG ⊂ X be centered in m̂ s.t. μ̂(CMFG) = 0.99, then the mean
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Fig. 17 MFC: squared root of MSEα(k)

Fig. 18 MFG: mean squared error on m̂

squared error by episode k for run i, and its average over all runs are defined as

MSEα(i, k) = 1

|CMFG |
|CMFG |−1∑

j=0

(αi,k(x j ) − α̂(x j ))
2,

MSEα(k) = 1

#runs

#runs∑
i=0

MSEα(i, k).

The x-axis represents the number of episodes used for learning. The y-axis represents
the mean squared error averaged over 10 runs (solid line) and its standard deviation
(shaded region).

Figures 18, 19:MSE on the ergodic mean. A metric used to evaluate the numerical
results consists in the squared error of the ergodicmean learned by episode k compared
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Fig. 19 MFC: mean squared error on m̂

Fig. 20 MFG: total variation on μ

with its theoretical value obtained in Appendix A averaged over the total numbers of
runs, i.e.,

MSEm(k) = 1

#runs

#runs∑
i=0

(mi,k
T − m̂)2.

The x-axis represents the number of episodes used for learning. The y-axis repre-
sents the error averaged over 10 runs (solid line) and its standard deviation (shaded
region). For theMFG, the error in the approximation of the ergodic mean reduces both
in mean and standard deviation by increasing the number of episodes. For the MFC
case, an oscillating behavior is observed. The choice ofωμ = 0.15 in the learning rates
defined in 16 allows to quicker adjustment of the mean by allocating more weights
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Fig. 21 MFG: total variation on Q

Fig. 22 MFC: total variation on μ

on the most recent sample. In this way, the algorithm mimics the nature of the MFC
problem at the expense of a slower and more oscillating convergence.

5.2.4 Empirical analyses of the stopping criteria

Figures 20, 22, 21, 23: stopping criteria. The goal of the U2-MF-QL is to obtain a
good approximation of the optimal controls and the ergodic distribution. As presented
in algorithm 1, the stopping criteria are based on the analyses of the progresses in
learning the optimal Q function and the ergodic distribution. The total variation and the
1, 1-norm between the start and the end of each episode is evaluated for the distribution

123



Mathematics of Control, Signals, and Systems (2022) 34:217–271 247

Fig. 23 MFC: total variation on Q

and the Q-table, respectively, as follows

δ(μk−1
T , μk

T ) =
∑
xi∈X

∣∣∣μk
T (xi ) − μk−1

T (xi )
∣∣∣ ,

‖Qk − Qk−1‖1,1 =
∑
i, j

∣∣∣Qk
i, j − Qk−1

i, j

∣∣∣ .
The algorithm stops when the increments are not significant anymore based on a
threshold given as input. The value of the threshold depends on the user’s needs, and
it may be calibrated by a trial and error approach. The remaining plots show how
these quantities decrease as the number of episodes increase. The x-axis represents
the number of episodes used for learning. The y-axis represents the value of the total
variation.

A Theoretical solutions for the benchmark examples

In this appendix, the solutions of the following benchmark problems are presented for
the linear-quadratic models given by (15).

A.1 Non-asymptotic Mean Field Game,
A.2 Asymptotic Mean Field Game,
A.3 Stationary Mean Field Game,
A.4 Non-asymptotic Mean Field Control,
A.5 Asymptotic Mean Field Control.
A.6 Stationary Mean Field Control.

In particular, we check that the relations (3) and (4) are satisfied. The explicit formulas
for the optimal controls (AMFGandAMFC) are used as benchmarks for our algorithm.
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A.1 Solution for non-asymptotic MFG

We present the solution for the following MFG problem

1. Fix m = (mt )t≥0 ⊂ R and solve the stochastic control problem:

min
α

Jm(α) = min
α

E

[∫ ∞

0
e−βt f (Xα

t , αt ,mt )dt

]

= min
α

E

[∫ +∞

0
e−βt

(
1

2
α2
t + c1

(
Xα
t − c2mt

)2 + c3
(
Xα
t − c4

)2 + c5m
2
t

)
dt

]
,

subject to

dXα
t = αtdt + σdWt ,

Xα
0 ∼ μ0.

2. Find the fixed point, m̂ = (m̂t )t≥0, such that E
[
X α̂
t

]
= m̂t for all t ≥ 0.

This problem can be solved by two equivalent approaches: PDE and FBSDEs. Both
approaches start by solving the problem defined by a finite horizon T . Then, the
solution to the infinite horizon problem is obtained by taking the limit T goes to
infinity. Let VmT ,T (t, x) be the optimal value function for the finite horizon problem
conditioned on X0 = x , i.e.,

VmT ,T (t, x) = inf
α

Jm,x (α)

= inf
α
E

[∫ T

t
e−βs f (Xα

s , αs,m
T
s )ds

∣∣∣Xα
0 = x

]
, VmT ,T (T , x) = 0.

wheremT = {mT
t }0≤t≤T ⊂ R.Let us consider the following ansatzwith its derivatives

VmT ,T (t, x) = Γ T
2 (t)x2 + Γ T

1 (t)x + Γ T
0 (t),

∂t V
mT ,T (t, x) = Γ̇ T

2 (t)x2 + Γ̇ T
1 (t)x + Γ̇ T

0 (t),

∂x V
mT ,T (t, x) = 2Γ T

2 (t)x + Γ T
1 (t),

∂xx V
mT ,T (t, x) = 2Γ T

2 (t),

(17)

Then, the HJB equation for the value function reads:

∂t V
mT ,T − βVmT ,T + inf

α
{AXVmT ,T + f (x, α,mT )}

= ∂t V
mT ,T − βVmT ,T + inf

α

{
α∂x V

mT ,T

+1

2
σ 2∂xx V

mT ,T + 1

2
α2 + c1(x − c2m

T )2 + c3(x − c4)
2 + c5(m

T )2
}

= ∂t V
mT ,T − βVmT ,T +

{
−∂x V

mT ,T 2 + 1

2
σ 2∂xx V

mT ,T
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+1

2
∂x V

mT ,T 2 + c1(x − c2m
T )2 + c3(x − c4)

2 + c5(m
T )2

}

= ∂t V
mT ,T − βVmT ,T − 1

2
∂x V

mT ,T 2

+ 1

2
σ 2∂xx V

mT ,T + c1(x − c2m
T )2 + c3(x − c4)

2 + c5(m
T )2 = 0,

where in the third line we evaluated the infimum at α̂T = −VmT ,T
x . The follow-

ing ODEs system is obtained by replacing the ansatz and its derivatives in the HJB
equation:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Γ̇ T
2 − 2(Γ T

2 )2 − βΓ T
2 + c1 + c3 = 0, Γ T

2 (T ) = 0,

Γ̇ T
1 = (2Γ T

2 + β)Γ T
1 + 2c1c2mT + 2c3c4, Γ T

1 (T ) = 0,

Γ̇ T
0 = βΓ T

0 + 1
2 (Γ

T
1 )2

−σ 2Γ T
2 − c3c42 − (c1c22 + c5)(mT )2, Γ T

0 (T ) = 0,

ṁT = −2Γ T
2 mT − Γ T

1 , mT (0) = E [μ0] = m0,

(18)

where the last equation is obtained by considering the expectation of Xα
t after replacing

α̂T = −∂x VmT ,T = −(Γ T
2 x + Γ T

1 ). The first equation is a Riccati equation. In

particular, the solution Γ T
2 converges to Γ̂2 = −β+

√
β2+8(c1+c3)
4 as T goes to infinity.

The second and fourth ODEs are coupled, and they can be written in matrix notation
as

˙̇(
mT

Γ T
1

)
=

[−2Γ T
2 −1

2c1c2 2Γ T
2 + β

](
mT

Γ T
1

)
+

(
0

2c3c4

)
,

(
mT (0)
Γ T
1 (T )

)
=

(
m0
0

)
. (19)

We start by solving the homogeneous equation, i.e.,

˙̇(
mT

Γ T
1

)
= KT

t

(
mT

Γ T
1

)
:=

[−2Γ T
2 −1

2c1c2 2Γ T
2 + β

](
mT

Γ T
1

)
,

(
mT (0)
Γ T
1 (T )

)
=

(
m0
0

)
.

(20)

We introduce the propagator PT , i.e.,

(
mT

Γ T
1

)
= PT

t

(
mT (0)
Γ T
1 (0)

)
. (21)
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By deriving

(
mT

Γ T
1

)
and expressing the initial conditions in terms of the inverse of PT

and

(
mT

Γ T
1

)
, we obtain

˙̇(
mT

Γ T
1

)
= ṖT

t

(
mT (0)
Γ T
1 (0)

)
= ṖT

t (PT
t )−1

(
mT

Γ T
1

)
. (22)

By comparing the last system with (20), we obtain

{
ṖT
t = KT

t PT
t

PT
0 = I2

(23)

where I2 is the identity matrix in dimension 2. The solution is given by PT
t =

e
∫ t
0 KT

s ds := eL
T
t . In particular, the exponent is equal to

LT
t =

∫ t

0
KT
s ds =

[−2
∫ t
0 Γ T

2 (s)ds −t
2c1c2t 2

∫ t
0 Γ T

2 (s)ds + βt

]
=

[
gTt dt
bt aTt

]
. (24)

We evaluate the exponential PT (t) = eL
T
t by using the Taylor’s expansion and

diagonalizing the matrix LT
t . The eigenvalues/eigenvectors of L

T
t are given by

λT
1\2,t :=

aTt + gTt ±
√

(aTt − gTt )2 + 4btdt

2
,

vT1,t :=
(

dt
λT
1,t − gTt

)
, vT2,t :=

(
dt

λT
2,t − gTt

)
. (25)

Pt is obtained by

PT
t =

(
pTt (1, 1) pTt (1, 2)
pTt (2, 1) pTt (2, 2)

)

= eL
T
t =

∞∑
k=0

[
vT1,t vT2,t

]
(

λT
1,t 0
0 λT

2,t

)k

k!
[
vT1,t vT2,t

]−1

:= STt

∞∑
k=0

DT
t
k

k! (STt )−1

= STt

(
eλT1,t 0

0 eλT2,t

)
(STt )−1

= 1

dt (λT
2,t − λT

1,t )(
dt e

λT1,t (λT
2,t − gTt ) + dt e

λT2,t (gTt − λT
1,t ) d2t (eλT2,t − eλT1,t )

(λT
1,t − gTt )(λT

2,t − gTt )(eλT1,t − eλT2,t ) dt e
λT2,t (λT

2,t − gTt ) + dt e
λT1,t (gTt − λT

1,t )

)
.

(26)
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In order to solve the non-homogeneous case, we introduce an extra term

(
hT1
hT2

)
, i.e.,

(
mT

Γ T
1

)
= PT

t

(
hT1
hT2

)
. (27)

By deriving

(
mT

Γ T
1

)
, we obtain

˙̇(
mT

Γ T
1

)
= ṖT

t

(
hT1
hT2

)
+ PT

t

˙̆(
hT1
hT2

)
= KT

t PT
t

(
hT1
hT2

)
+ PT

t

˙̆(
hT1
hT2

)

= KT
t

(
mT

t
Γ T
1

)
+ PT

t

˙̆(
hT1
hT2

)
. (28)

By comparing (19) with (28), we obtain

˙̆(
hT1
hT2

)
= (PT

t )−1
(

0
2c4c4

)
= 1

|PT
t |

(
pTt (2, 2) −pTt (1, 2)

−pTt (2, 1) pTt (1, 1)

)(
0

2c3c4

)
. (29)

By integration, we obtain

hT1 (t) = hT1 (0) − 2c3c4

∫ t

0

pTs (1, 2)

|PT
s | ds,

hT2 (t) = hT2 (0) + 2c3c4

∫ t

0

pTs (1, 1)

|PT
s | ds,

(30)

where hT1 (0) = m0 and hT2 (0) = Γ T
1 (0).

We use the terminal condition Γ T
1 (T ) = 0 to obtain an evaluation of hT2 (0) =

Γ T
1 (0) in terms of PT

T and m0, i.e.,

Γ T
1 (T ) = pTT (2, 1)hT1 (T ) + pTT (2, 2)hT2 (T ) = 0,

Γ T
1 (T ) = pTT (2, 1)(

m0 − 2c3c4

∫ T

0

pTs (1, 2)

|PT
s | ds

)

+ pTT (2, 2)

(
Γ T
1 (0) + 2c3c4

∫ T

0

pTs (1, 1)

|PT
s | ds

)
= 0,

Γ T
1 (0) = − pTT (2, 1)

pTT (2, 2)

(
m0 − 2c3c4

∫ T

0

pTs (1, 2)

|PT
s | ds

)
− 2c3c4

∫ T

0

pTs (1, 1)

|PT
s | ds.

(31)
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In order to evaluate the limit of Γ T
1 (0) as T goes to infinity, we analyze the different

terms separately. First, we evaluate the following limit:

lim
T→∞

1

T

∫ T

0
Γ T
2 (s)ds = lim

T→∞ Γ T
2 (s1) = Γ̂2, s1 ∈ [0, T ], (32)

where we applied the mean value integral theorem and Γ̂2 = −β+
√

β2+8(c1+c3)
4

is the limit of the solution of the Riccati equation obtained previously, i.e., Γ̂2 =
limT→∞ Γ T

2 (s). We recall that

λT
2,T − λT

1,T =
√

(aTT − gTT )2 + 4bTT dT = T

√(
4

T

∫ T

0
Γ T
2 (s)ds + β

)2

− 8c1c2 > 0

which goes to infinity as T goes to∞when the term under square root is well defined.
We observe that

ĝt := lim
T→∞ gTt = lim

T→∞ −2
∫ t

0
Γ T
2 (s)ds = −2Γ̂2t := gt,

bt = 2c1c2t,

ât := lim
T→∞ aTt = lim

T→∞ 2
∫ t

0
Γ T
2 (s)ds + βt = 2Γ̂2t + βt,

dt = −t,

λ̂1\2,t := lim
T→∞ λT

1\2,t = ât + ĝt ± √
(ât − ĝt )2 + 4bt dt

2

= t
β ±

√
(4Γ̂2 + β)2 − 8c1c2

2
:= tλ1\2,

P̂t := lim
T→∞ PT

t

= 1

dt (λ̂2,t − λ̂1,t )(
dt eλ̂1,t (λ̂2,t − ĝt ) + dt eλ̂2,t (ĝt − λ̂1,t ) d2t (eλ̂2,t − eλ̂1,t )

(λ̂1,t − ĝt )(λ̂2,t − ĝt )(eλ̂1,t − eλ̂2,t ) dt eλ̂2,t (λ̂2,t − ĝt ) + dt eλ̂1,t (ĝt − λ̂1,t )

)
.

(33)

To evaluate Γ̂1(0) = limT→∞ Γ T
1 (0), we study the limit of the remaining terms:

lim
T �→∞ − pTT (2, 1)

pTT (2, 2)
= lim

T �→∞
(λT

1,T − gTT )(λT
2,T − gTT )(eλT2,T − eλT1,T )

dT e
λT2,T (λT

2,T − gTT ) + dT e
λT1,T (gTT − λT

1,T )

= lim
T �→∞

1
dT

(λT1,T −gTT )(1−e
λT1,T −λT2,T )

+ dT

(λT2,T −gTT )(1−e
λT2,T −λT1,T )

= −(λ1 − g)

= −(λ1 + 2Γ̂2),

lim
T �→∞

∫ T

0

pTs (1, 2)

|PT
s | ds = lim

T �→∞

∫ T

0

ds(e
λT2,s − eλT1,s )

(λT
2,s − λT

1,s)(e
λT1,s+λT2,s )

ds
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= 1

λ2 − λ1

(
1

λ2
− 1

λ1

)

lim
T �→∞

∫ T

0

pTs (1, 1)

|PT
s | ds = lim

T �→∞

∫ T

0

1

eλT1,s+λT2,s

(
eλT1,s

λT
2,s − gTs

λT
2,s − λT

1,s

+ eλT2,s
gTs − λT

1,s

λT
2,s − λT

1,s

)
ds

= λ2 − g

λ2(λ2 − λ1)
+ g − λ1

λ1(λ2 − λ1)
. (34)

Finally, the value of Γ̂1(0) is given by

Γ̂1(0) = −(λ1 − g)m0 − 2
c3c4
λ2

. (35)

Given Γ̂1(0), we evaluate the limit as T goes to ∞ of (30), i.e.,

h1(t) := lim
T �→∞ hT1 (t) = m0 − 2c3c4 lim

T �→∞

∫ t

0

pTs (1, 2)

|PT
s | ds

= m0 + 2
c3c4

λ2 − λ1

(
1

λ2
e−tλ2 − 1

λ1
e−tλ1 + 1

λ1
− 1

λ2

)
,

h2(t) := lim
T �→∞ hT2 (t) = lim

T �→∞

(
Γ T
1 (0) + 2c3c4

∫ t

0

pTs (1, 1)

|PT
s | ds

)

= Γ̂1(0) + 2
c3c4

λ2 − λ1

(
λ2 − g

λ2
(1 − e−tλ2 ) + g − λ1

λ1
(1 − e−tλ1 )

)
.

(36)

We can conclude that

m̂t = lim
T→∞mT

t

= p̂t (1, 1)h1(t) + p̂t (1, 2)h2(t)

=
(
m0 + 2

c3c4
λ2 − λ1

(
1

λ1
− 1

λ2

))
etλ1 + 2

c3c4
λ2 − λ1

(
1

λ2
− 1

λ1

)
,

Γ̂1(t) = lim
T→∞ Γ T

1 (t)

= p̂t (2, 1)h1(t) + p̂t (2, 2)h2(t)

= m0(g − λ1)e
tλ1 + 2

c3c4
λ2 − λ1

(
λ2 − g

λ2
− λ1 − g

λ1

)
.

(37)

Finally, the third ODE in (18) can be solved by plugging in the solution of the
previous ones and integrating. Since our interest is into the evolution of the mean and
the control function, we omit these calculations, but we recall that:

α̂t = −(Γ̂2x + Γ̂1(t)), Γ̂2 = −β + √
β2 + 8(c1 + c3)

4
, (38)

and we observe that

lim
t→∞ α̂t = −(Γ̂2x + Γ̂1), Γ̂1 = −4c1c2Γ̂2

λ2
= c3c4Γ̂2

2(c1 + c3 − c1c2)
. (39)
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A.2 Solution for asymptotic MFG

The asymptotic version of the problem presented above is given by:

1. Fix m ∈ R and solve the stochastic control problem:

min
α

Jm(α) = min
α

E

[∫ ∞

0
e−βt f (Xα

t , αt ,m)dt

]

= min
α

E

[∫ ∞

0
e−βt

(
1

2
α2
t + c1

(
Xα
t − c2m

)2 + c3
(
Xα
t − c4

)2 + c5m
2
)
dt

]
,

subject to: dXα
t = αtdt + σdWt , Xα

0 ∼ μ0.

2. Find the fixed point, m̂, such that m̂ = limt→+∞ E

[
X α̂,m̂
t

]
.

Let Vm(x) be the optimal value function givenm ∈ R and conditioned on X0 = x ,
i.e.,

Vm(x) = inf
α

Jm,x (α)

= inf
α
E

[∫ +∞

0
e−βt

(
1

2
α2
t + c1

(
Xα
t − c2m

)2 + c3
(
Xα
t − c4

)2 + c5m
2
) ∣∣∣Xα

0 = x

]
.

We consider the following ansatz with its derivatives with respect to x :

Vm(x) = Γ2x
2 + Γ1x + Γ0,

V̇ m(x) = 2Γ2x + Γ1,

V̈ m(x) = 2Γ2.

Let us consider the HJB equation

βVm(x) − inf
α

{AXVm(x) + f (x, α,m)}

= βVm(x) − inf
α

{
αV̇ (x) + 1

2
σ 2V̈ m(x) + 1

2
α2 + c1(x − c2m)2

+c3(x − c4)
2 + c5m

2
}

= βVm(x) −
{
−(V̇ m)2(x) + 1

2
σ 2V̈ m(x) + 1

2
(V̇ m)2(x)

+c1(x − c2m)2 + c3(x − c4)
2 + c5m

2
}

= βVm(x) + 1

2
(V̇ m)2(x)

− 1

2
σ 2V̈ m(x) − c1(x − c2m)2 − c3(x − c4)

2 − c5m
2 = 0,
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where in the third line we evaluated the infimum at α̂(x) = −V̇ m(x). Replacing the
ansatz and its derivatives in the HJB equation, it follows that

(
βΓ2 + 2Γ 2

2 − c1 − c3
)
x2 + (βΓ1 + 2Γ2Γ1 + 2c1c2m + 2c3c4)x + βΓ0

+1

2
Γ 2
1 − σ 2Γ2 − (c1c2

2 + c5)m
2 − c3c4

2 = 0.

An easy computation gives the values

Γ2 = −β + √
β2 + 8(c1 + c3)

4
,

Γ1 = −2c1c2m + 2c3c4
β + 2Γ2

,

Γ0 = c5m2 + c3c42 + c1c22m2 + σ 2Γ2 − 1
2Γ

2
1

β
.

By plugging the control α̂(x) = −(2Γ2x +Γ1) into the dynamics of Xt and taking
the expected value, we obtain an ODE for mt

ṁt = −(2Γ2mt + Γ1). (40)

The solution of (40) is used to derive m as follows

m = lim
t �→∞mt = lim

t �→∞ − Γ1

2Γ2
+

(
m0 + Γ1

Γ2

)
e−2Γ2t = − Γ1

2Γ2
= 2c1c2m + 2c3c4

2Γ2(β + 2Γ2)
,

m = c3c4
Γ2(β + 2Γ2) − c1c2

(41)
To summarize, we derived that α̂(x) = −(2Γ2x + Γ1) with Γ2 = Γ̂2 and Γ1 = Γ̂1

obtained in (39). In other words, we have checked that

lim
t→∞ α̂MFG

t (x) = α̂AMFG(x), ∀x,

that is the first part of (3) for this LQ MFG.

A.3 Solution for stationary MFG

The only difference with the derivation above in the case of asymptotic MFG is that
mt should be a constant which, from (40), should satisfy 2Γ2m + Γ1 = 0. Therefore,
m takes the same value as in (41), and we deduce

α̂SMFG(x) = α̂AMFG(x), ∀x,

that is the second part of (3) for this LQ MFG.
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A.4 Solution for non-asymptotic MFC

We present the solution for the following non-asymptotic MFC problem

min
α

J (α) = min
α

E

[∫ ∞

0
e−βt f (Xα

t , αt ,E
[
Xα
t

]
)dt

]

= min
α

E

[∫ +∞

0
e−βt

(
1

2
α2
t + c1

(
Xα
t − c2E

[
Xα
t

])2 + c3
(
Xα
t − c4

)2 + c5E
[
Xα
t

]2) dt

]
,

subject to: dXα
t = αtdt + σdWt , Xα

0 ∼ μ0.

Note that here the mean E
[
Xα
t

]
of the population changes instantaneously when α

changes.
This problem can be solved by two equivalent approaches: PDE and FBSDEs.

Both approaches start by solving the problem defined by a finite horizon T . Then,
the solution to the infinite horizon problem is obtained by taking the limit for T goes
to infinity. Let V T (t, x) be the optimal value function for the finite horizon problem
conditioned on X0 = x , i.e.,

V T (t, x) = inf
α

Jm
α,x (α)

= inf
α
E

[∫ T

t
e−βs f (Xα

s , αs,m
α
s )ds

∣∣∣Xα
0 = x

]
, V T (T , x) = 0.

Let us consider the following ansatz with its derivatives

V T (t, x) = Γ T
2 (t)x2 + Γ T

1 (t)x + Γ T
0 (t), V T (T , x) = 0,

∂t V
T (t, x) = Γ̇ T

2 (t)x2 + Γ̇ T
1 (t)x + Γ̇ T

0 (t),

∂x V
T (t, x) = 2Γ T

2 (t)x + Γ T
1 (t),

∂xx V
T (t, x) = 2Γ T

2 (t),

(42)

Starting by theMFC-HJB equation (4.12) given in [4], we extended it to the asymptotic
case as follows

βV T − V T
t − H (t, x,μ, α) −

∫
R

δH

δμ

(
t, h,μ,−∂x V

T
)

(x)μt (h)dh = 0,

where mt = ∫
R
yμt (dy) and α∗ = −∂x V T . We have:

H (t, x,μ, α)

:= inf
α

{
AXV T + f (t, x, α,μ)

}
= inf

α

{
α∂x V

T + 1

2
σ 2∂xx V

T + 1

2
α2 + c1(x − c2mt )

2 + c3(x − c4)
2 + c5mt

2
}

= −1

2
(∂x V

T )2 + 1

2
σ 2∂xx V

T + c1(x − c2mt )
2 + c3(x − c4)

2 + c5mt
2,
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δH (t, h,μ, α)

δμ
(x)

= δ

δμ

(
c1(h − c2mt )

2 + c5mt
2
)

(x)

= δ

δμ

(
c1

(
h − c2

∫
R

yμt (dy)

)2

+ c5

(∫
R

yμt (dy)

)2
)

(x)

= −2c1c2x

(
h − c2

∫
R

yμt (dy))

)
+ 2c5x

∫
R

yμt (dy)

= −2c1c2x(h − c2mt ) + 2c5xmt ,

∫
R

δH

δμ

(
t, h,μ,−∂x V

T
)

(x)μt (h)dh = −2c1c2x(mt − c2mt ) + 2c5xmt ,

and finally

βV T − ∂t V
T + 1

2
(∂Tx )2 − 1

2
σ 2∂xx V

T − c1(x − c2mt )
2 − c3(x − c4)

2

− c5mt
2 + 2c1c2x(mt − c2mt ) − 2c5xmt = 0.

The following system of ODEs is obtained by replacing the ansatz and its derivatives
in the MFC-HJB:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Γ̇ T
2 − 2(Γ T

2 )2 − βΓ T
2 + c1 + c3 = 0, Γ T

2 (T ) = 0,

Γ̇ T
1 = (2Γ T

2 + β)Γ T
1

+(2c1c2(2 − c2) − 2c5)mT
t + 2c3c4, Γ T

1 (T ) = 0,

Γ̇ T
0 = βΓ T

0 + 1
2 (Γ

T
1 )2 − σ 2Γ T

2

−c3c42 − (c1c22 + c5)(mT
t )2, Γ T

0 (T ) = 0,

ṁT
t = −2Γ T

2 mT − Γ T
1 , mT (0) = E

[
Xα
0

] = m0,

(43)

where the last equation is obtained by considering the expectation of Xα
t after replacing

α∗(x) = −∂x V T (x) = −(Γ T
2 x + Γ T

1 ). The first equation is a Riccati equation. In

particular, the solution Γ T
2 converges to Γ ∗

2 = −β+
√

β2+8(c1+c3)
4 as T goes to infinity.

The second and fourth ODEs are coupled, and they can be written in matrix notation
as

˙̇(
mT

Γ T
1

)
=

[ −2Γ T
2 −1

(2c1c2(2 − c2) − 2c5) 2Γ T
2 + β

](
mT

Γ T
1

)

+
(

0
2c3c4

)
,

(
mT (0)
Γ T
1 (T )

)
=

(
m0
0

)
. (44)
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By similar calculations to the non-asymptotic MFG case, the following solutions
can be obtained

m∗
t = lim

T→∞mT
t = p∗

t (1, 1)h1(t) + p∗
t (1, 2)h2(t)

=
(
m0 + 2

c3c4
λ2 − λ1

(
1

λ1
− 1

λ2

))
etλ1 + 2

c3c4
λ2 − λ1

(
1

λ2
− 1

λ1

)
,

Γ ∗
1 (t) = lim

T→∞ Γ T
1 (t) = p∗

t (2, 1)h1(t) + p∗
t (2, 2)h2(t)

= m0(g − λ1)e
tλ1 + 2

c3c4
λ2 − λ1

(
λ2 − g

λ2
− λ1 − g

λ1

)
,

(45)

where

g := −2Γ ∗
2 ,

b := 2(c1c2(2 − c2) − c5),

a := 2Γ ∗
2 + β,

d := −1,

λ1\2 := a + g ± √
(a − g)2 + 4bd

2
= t

β ±
√

(4Γ ∗
2 + β)2 − 8(c1c2(2 − c2) − c5)

2
.

(46)
As in theMFG case, the third ODE in (43) can be solved by plugging in the solution

of the previous ones and integrating. Since our interest is into the evolution of themean
and the control function, we omit the calculation for this ODE.

A.5 Solution for asymptotic MFC

The asymptotic version of the problem presented above is given by:

min
α

J (α) = inf
α
E

[∫ ∞

0
e−βt f (Xα

t , αt ,m
α)dt

]

= inf
α
E

[∫ +∞

0
e−βt

(
1

2
α2
t + c1

(
Xα
t − c2m

α
)2 + c3

(
Xα
t − c4

)2 + c5(m
α)2

)
dt

]
,

subject to: dXα
t = αtdt + σdWt , Xα

0 ∼ μ0,

where mα = limt→+∞ E
[
Xα
t

]
.

Let V (x) be the optimal value function conditioned on X0 = x , i.e.,

V (x) = inf
α

J x (α)

= inf
α
E

[∫ +∞

0
e−βt

(
1

2
α2
t + c1

(
Xα
t − c2m

α
)2 + c3

(
Xα
t − c4

)2 + c5(m
α)2

)
dt

∣∣∣Xα
0 = x

]
.

We consider the following ansatz with its derivative

V (x) = Γ2x
2 + Γ1x + Γ0,
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V̇ (x) = 2Γ2x + Γ1,

V̈ (x) = 2Γ2.

Starting by theMFC-HJB equation (4.12) given in [4], we extended it to the asymptotic
case as follows

βV (x) − H
(
x, μα, α

) −
∫
R

δH

δμ

(
h, μα,−V̇ (h)

)
(x)μα(h)dh = 0,

where mα = ∫
R
yμα(dy). We have:

H
(
x, μα, α

)
:= inf

α

{
AXV (x) + f

(
x, α, μα

)}
= inf

α

{
αV̇ (x) + 1

2
σ 2V̈ (x) + 1

2
α2 + c1(x − c2m

α)2 + c3(x − c4)
2 + c5(m

α)2
}

= −1

2
V̇ (x)2 + 1

2
σ 2V̈ (x) + c1(x − c2m

α)2 + c3(x − c4)
2 + c5(m

α)2,

δH (h, μα, α)

δμ
(x)

= δ

δμ

(
c1(h − c2m

α)2 + c5(m
α)2

)
(x)

= δ

δμ

(
c1

(
h − c2

∫
R

yμα(dy)

)2

+ c5

(∫
R

yμα(dy)

)2
)

(x)

= −2c1c2x

(
h − c2

∫
R

yμα(dy))

)
+ 2c5x

∫
R

yμα(dy)

= −2c1c2x(h − c2m
α) + 2c5xm

α,

∫
R

δH

δμ

(
h, μα,−V̇ (h)

)
(x)μα(h)dh = −2c1c2x(m

α − c2m
α) + 2c5xm

α,

and finally, the HJB equation becomes:

βV (x) + 1

2
V̇ (x)2 − 1

2
σ 2V̈ (x) − c1(x − c2m

α)2 − c3(x − c4)
2

− c5(m
α)2 + 2c1c2x(m

α − c2m
α) − 2c5xm

α = 0.

A system of ODEs is obtained by replacing the ansatz and its derivatives in the MFC-
HJB and cancelling terms in x2, and x and constant:(

βΓ2 + 2Γ 2
2 − c1 − c3

)
x2 + (

βΓ1 + 2Γ2Γ1 + 2c1c2m
α(2 − c2) + 2c3c4 − 2c5m

α
)
x

+ βΓ0 + 1

2
Γ 2
1 − σ 2Γ2 − (c1c2

2 + c5)(m
α)2 − c3c4

2 = 0.
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An easy computation gives the values

Γ2 = −β + √
β2 + 8(c1 + c3)

4
,

Γ1 = 2c5mα − 2c1c2mα(2 − c2) − 2c3c4
β + 2Γ2

,

Γ0 = c5(mα)2 + c3c42 + c1c22(mα)2 + σ 2Γ2 − 1
2Γ

2
1

β
.

By plugging the control α∗(x) = −(2Γ2x+Γ1) into the dynamics of Xα
t and taking

the expected value, we obtain an ODE for mα
t

ṁα
t = −(2Γ2m

α
t + Γ1). (47)

The solution of (47) is used to derive m as follows

mα = lim
t �→∞mα

t = lim
t �→∞

(
− Γ1

2Γ2
+

(
m0 + Γ1

Γ2

)
e−2Γ2t

)

= − Γ1

2Γ2
= −2c5mα − 2c1c2mα(2 − c2) − 2c3c4

2Γ2(β + 2Γ2)

mα = c3c4
Γ2(β + 2Γ2) + c5 − c1c2(2 − c2)

(48)

We remark that the values of mα
t and Γ1(t) obtained in the non-asymptotic case

converge to mα and Γ1, respectively, as t goes to ∞. Therefore, we have obtained
that

lim
t→∞ α∗MFC

t (x) = α∗AMFG(x), ∀x,

that is the first part of (4) for this LQ MFC problem.

A.6 Solution for stationary MFC

The only difference with the derivation above in the case of asymptotic MFC is that
mα

t should be a constant which, from (47), should satisfy 2Γ2mα +Γ1 = 0. Therefore,
mα takes the same value as in (48), and we deduce

α∗SMFG(x) = α∗AMFG(x), ∀x,

that is the second part of (4) for this LQ MFC problem .
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B Lipschitz property of the 2 scale operators

B.1 Generic setting

We modify the original operators using the softmin operator on R|A| defined as:

soft-min(z) =
(

e−zi∑
j e

−z j

)
i=1,...,|A|

∈ Δ|A|, z ∈ R
|A|.

Intuitively, it gives a probability distribution on the indices i = 1, . . . , |A| which has
higher values on indices whose corresponding values are closer to be a minimum. In
particular, the elements of min{i = 1, . . . , |A| : zi = argmin j z j } have equal weight
and this weight is the largest among

(
e−zi∑
j e

−z j

)
i=1,...,|A|

. We recall that the function

soft-min is Lipschitz continuous for the 2-norm.Denoting by Ls its Lipschitz constant,
it means that

‖ soft-min(z) − soft-min(z′)‖2 ≤ Ls‖z − z′‖2, z, z′ ∈ R
|A|.

Moreover, since |A| is finite, all the norms on R
|A| are equivalent, so there exists a

positive constant c2,∞ such that

‖ soft-min(z) − soft-min(z′)‖∞ ≤ Lsc2,∞‖z − z′‖∞, z, z′ ∈ R
|A|.

To alleviate the notation, we will write Q(x) := (Q(x, a))a∈A for any Q ∈
R

|X |×|A|. We also introduce a more general version p of the transition kernel p,
which can take as an input a probability over actions instead of a single action: for
x, x ′ ∈ X , ν ∈ Δ|A|, μ ∈ Δ|X |,

p(x ′|x, ν, μ) =
∑
a

ν(a)p(x ′|x, a, μ).

Intuitively, this is the probability for an agent at x to move to x ′ when the population
distribution is μ and the agent picks a random action following the distribution ν.

We now consider the following iterative procedure, which is a slight modification
of (9a)–(9b). Here again, both variables (Q and μ) are updated at each iteration but
with different rates. Starting from an initial guess (Q0, μ0) ∈ R

|X |×|A| ×Δ|X |, define
iteratively for k = 0, 1, . . . :

{
μk+1 = μk + ρ

μ
k P(Qk, μk),

Qk+1 = Qk + ρ
Q
k T (Qk, μk),

(49a)

(49b)
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where

⎧⎪⎨
⎪⎩
T (Q, μ)(x, a) = f (x, a, μ) + γ

∑
x ′ p(x ′|x, a, μ)mina′ Q(x ′, a′)

−Q(x, a), (x, a) ∈ X × A,

P(Q, μ)(x) = (μPQ,μ)(x) − μ(x), x ∈ X ,

with

PQ,μ(x, x ′) = p(x ′|x, soft-min Q(x), μ),

and (μPQ,μ)(x) =
∑
x0

μ(x0)P
Q,μ(x0, x),

is the transition matrix when the population distribution is μ and the agent uses an
approximately optimal randomized control according to the soft-min of Q.

Lemma 1 Assume that f is Lipschitz continuous with respect to μ and that p is
Lipschitz continuous with respect to ν and μ. Then,

– the operator T is Lipschitz continuous w.r.t. μ (with a Lipschitz constant possibly
depending on ‖Q‖∞), and Lipschitz continuous in Q (uniformly in μ);

– the operator P is Lipschitz continuous in both variables.

If p is independent of μ, then both T and P are Lipschitz continuous.

Proof Let us denote by L p and L f the Lipschitz constants of p and f , respectively.
Let (Q, μ), (Q′, μ′) ∈ R

|X |×|A| × Δ|X |. We first consider T . We have

‖T (Q, μ) − T (Q′, μ)‖∞

≤ γ
∑
x ′

max
x,a

p(x ′|x, a, μ)

∣∣∣∣min
a′ Q(x ′, a′) − min

a′ Q′(x ′, a′)
∣∣∣∣ + ∥∥Q − Q′∥∥∞

≤ (γ + 1)
∥∥Q − Q′∥∥∞ .

Moreover,

‖T (Q, μ) − T (Q, μ′)‖∞ ≤ | f (x, a, μ) − f (x, a, μ′)|
+ γ

∑
x ′

|p(x ′|x, a, μ) − p(x ′|x, a, μ′)| |min
a′ Q(x ′, a′)|

≤ (L f + γ L p‖Q‖∞)|X |‖μ − μ′‖∞,

where L f and L p are, respectively, the Lipschitz constants of f and p with respect to
μ. If p is independent of μ, we obtain

‖T (Q, μ) − T (Q, μ′)‖∞ ≤ L f ‖μ − μ′‖∞.
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We then show that the operator P is Lipschitz continuous. We have

‖P(Q, μ) − P(Q, μ′)‖∞
≤ ‖μPQ,μ − μ′PQ,μ′ ‖∞ + ‖μ − μ′‖∞

≤
∥∥∥∥∥
∑
x

(
p(·|x, soft-min Q(x), μ)μ(x) − p(·|x, soft-min Q(x), μ′)μ′(x)

)∥∥∥∥∥∞
+ ‖μ − μ′‖∞.

For the first term, we note that, for every x ∈ X ,

∥∥∥(p(·|x, soft-min Q(x), μ)μ(x) − p(·|x, soft-min Q(x), μ′)μ′(x)
)∥∥∥∞

≤
∥∥∥(p(·|x, soft-min Q(x), μ) − p(·|x, soft-min Q(x), μ′)

)
μ(x)

∥∥∥∞
+

∥∥∥p(·|x, soft-min Q(x), μ′)
(
μ(x) − μ′(x)

)∥∥∥∞
≤ (L p + 1)

∥∥μ − μ′∥∥∞ ,

whereweused the fact that discrete probabilitymeasures are non-negative andbounded
by 1.

Moreover, we have

‖P(Q, μ) − P(Q′, μ)‖∞ ≤ ‖μ(PQ,μ − PQ′,μ′
)‖∞

≤
∑
x

‖p(·|x, soft-min Q(x), μ)

− p(·|x, soft-min Q′(x), μ)‖∞
≤

∑
x

L p‖ soft-min Q(x) − soft-min Q′(x)‖∞

≤ |X | L p Ls c2,∞ ‖Q − Q′‖∞,

which concludes the proof. �


B.2 Application to a discrete model for the LQ problem

Recall that the continuous linear-quadratic model we consider is defined by (15).
Here, we propose a finite space MDP which approximates the dynamics of a typical
agent in this continuous LQ model. We consider that the action space is given by
A = {a0 = −1, a1 = −1+ Δ., . . . , aNA = 1− Δ., aNA = 1} and the state space by
X = {x0 = xc − 2, x1 = xc − 2 − Δ., . . . , xNX −1 = xc + 2 − Δ., xNX = xc + 2},
where xc is the center of the state space. The step size for the discretization of the
spaces X and A is given by Δ. = √

Δt = 10−1.

123



264 Mathematics of Control, Signals, and Systems (2022) 34:217–271

Consider the transition probability:

p(x, x ′, a, μ) = P(Zx+a,Δt ∈ [x ′ − Δ./2, x
′ + Δ./2])

= Φx+a,σ 2Δt (x
′ + Δ./2) − Φx+a,σ 2Δt (x

′ − Δ./2),

where Z ∼ N (x + a, σ 2Δt) and Φx+a,σ 2Δt is the cumulative distribution function of
the N (x + a, σ 2Δt) distribution. Moreover, consider that the one-step cost function
is given by f (x, a, μ)Δt with

f (x, a, μ) = 1

2
a2 + c1

⎛
⎝x − c2

∑
ξ∈S

μ(ξ)

⎞
⎠

2

+ c3 (x − c4)
2

+c5

⎛
⎝∑

ξ∈S
μ(ξ)

⎞
⎠

2

, b(x, a, μ) = a,

For simplicity, we write μ̄ = ∑
ξ∈S μ(ξ).

Lemma 2 In this model, f is Lipschitz continuous with respect to μ and p is Lipschitz
continuous with respect to ν and μ

Proof We start with f . For the μ component, we have:

| f (x, a, μ) − f (x, a, μ′)| ≤ c
∣∣∣(x − c2μ̄)2 − (

x − c2μ̄
′)2∣∣∣ + c

∣∣∣(μ̄)2 − (
μ̄′)2∣∣∣

≤ c
(
μ̄′ − μ̄

) · (2x + (μ̄′ − μ̄)
) + c(μ̄ − μ̄′)(μ̄ + μ̄′)

≤ cmax
x∈S ‖x‖∞

(
μ̄′ − μ̄

)
≤ cmax

x∈S ‖x‖∞
∑
x∈S

(
μ′(x) − μ(x)

)
≤ cmax

x∈S ‖x‖∞ |S| ‖μ′ − μ‖∞,

where c > 0 is a constant depending only on the parameters of the model and whose
value may change from line to line.

Then, we consider p. It is independent ofμ in thismodel. For the action component,
we have:

|p(x, x ′, ν, μ) − p(x, x ′, ν′, μ)|

=
∣∣∣∣∣
∑
a

ν(a)
(
Φx+a,σ 2Δt (x

′ + Δ./2) − Φx+a,σ 2Δt (x
′ − Δ./2)

)

−
∑
a′

ν′(a′)
(
Φx+a′,σ 2Δt (x

′ + Δ./2) − Φx+a′,σ 2Δt (x
′ − Δ./2)

)∣∣∣∣∣
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=
∣∣∣∣∣
∑
a

(
ν(a)Φx+a,σ 2Δt (x

′ + Δ./2) − ν′(a)Φx+a,σ 2Δt (x
′ + Δ./2)

)∣∣∣∣∣
+

∣∣∣∣∣
∑
a

(
ν(a)Φx+a,σ 2Δt (x

′ − Δ./2)
)

− ν′(a)Φx+a,σ 2Δt (x
′ − Δ./2)

)∣∣∣∣∣
=

∫ x ′+Δ./2

−∞
1

σ
√
2πΔt

∣∣∣∣∣
∑
a

(ν(a) − ν′(a))e
− (y−(x+a))2

2σ2Δt

∣∣∣∣∣ dy
+

∫ x ′−Δ./2

−∞
1

σ
√
2πΔt

∣∣∣∣∣
∑
a

(ν(a) − ν′(a))e
− (y−(x+a))2

2σ2Δt

∣∣∣∣∣ dy
≤ c‖ν − ν′‖∞,

where c is a constant depending only on themodel (and in particular on the state space,
the action space and Δt). �


C The Bellman equation for the optimal Q function in the asymptotic
MFC framework

In this appendix,we provide the derivation of theBellman equation (8) for themodified
Q-function presented in Sect. 3.3.
Let X and A be discrete and finite state and action spaces. Let V α : X �→ R and
Qα : X × A �→ R be value function relative to the policy α and the corresponding
modified Q-function defined as follows

V α(x) := E

[ ∞∑
n=0

γ n f (Xn, α(Xn), μ
α)

∣∣∣ X0 = x

]
, (50)

Qα(x, a) := f (x, a, μα̃) + E

[ ∞∑
n=1

γ n f (Xn, α(Xn), μ
α)

∣∣∣ X0 = x, A0 = a

]
,

(51)

where

μα = lim
n �→∞L(Xα

n ) and α̃(s) =
{

α(s), ∀s 
= x,

a, if s = x .

Theorem 2 The optimal Q∗(x, a) = minα Qα(x, a) satisfies the Bellman equation

Q∗(x, a) = f (x, a, μ̃∗)+γ
∑
x ′∈X

p(x ′|x, a, μ̃∗)min
a′ Q∗(x ′, a′), (x, a) ∈ X ×A,

(52)
where the optimal control α∗ is given by α∗(x) = argmina Q

∗(x, a), the modification
α̃∗(x) is based on the pair (x, a) and μ̃∗ := μα̃∗

.
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Remark 3 The population distribution μ̃∗ based on the modification of α∗ given the
pair (x, α∗(x)) is equal to μ∗ . Indeed, α̃∗ is equal to α∗ itself, i.e.,

α̃∗(s) =
{

α∗(s), ∀s 
= x,

α∗(s), if s = x .

Remark 4 The term mina′ Q∗(x ′, a′) does not depend on μ̃∗ , i.e.,

min
a′ Q∗(x ′, a′) = Q∗(x ′, α∗(x ′))

= f (x ′, α∗(x ′), μ̃∗) + γ
∑
x ′′∈X

p(x ′′|x ′, α∗(x ′), μ̃∗)min
a′ Q∗(x ′′, a′)

�= f (x ′, α∗(x ′), μ∗) + γ
∑
x ′∈X

p(x ′′|x ′, α∗(x ′), μ∗)min
a′ Q∗(x ′′, a′)

where step � is due to Remark 3. It follows that (52) depends on μ̃∗ only through the
cost due to the first step.

In order to prove Theorem 2, the following results are required.

Theorem 3 The Bellman equation for Qα is given by

Qα(x, a) = f (x, a, μα̃) + γE
[
Qα(X1, α(X1))

∣∣∣ X0 = x, A0 = a
]
, (53)

Lemma 3 The value function relative to the policyα is equivalent to the corresponding
Q-function evaluated on the pair (x, α(x)), i.e.,

V α(x) = Qα(x, α(x)). (54)

Theorem 4 (Policy improvement) Let α̃ be a policy derived by α

α̃(s) =
{

α(s), for s 
= x,

a, for s = x .

such that
Qα(x, α̃(x)) > V α(x). (55)

Then,
V α̃(x ′) > V α(x ′) ∀x ′ ∈ X . (56)

Theorem 5 Let V ∗ : X �→ R be defined as V ∗(x) = maxα V α(x). Then,

V ∗(x) = max
a

max
α

Qα(x, a), (57)
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Proof (Theorem 3)

Qα(x, a)

= f (x, a, μα̃)+

+ γE

[
E

[ ∞∑
n=1

γ n−1 f (Xn , α(Xn), μ
α)

∣∣∣ X0 = x, A0 = α(x), X1

] ∣∣∣ X0 = x, A0 = a

]

= f (x, a, μα̃) + γE

[
E

[ ∞∑
n=1

γ n−1 f (Xn , α(Xn), μ
α)

∣∣∣ X1

] ∣∣∣ X0 = x, A0 = a

]

= f (x, a, μα̃)+

+ γE

[
f (X1, α(X1), μ

α) + γE

[ ∞∑
n=2

γ n−2 f (Xn , α(Xn), μ
α)

∣∣∣ X1

] ∣∣∣ X0 = x, A0 = a

]

= f (x, a, μα̃) + γE
[
Qα(X1, α(X1))

∣∣∣ X0 = x, A0 = a
]
,

�

Proof (Lemma 3)

V α(x) = f (x, α(x), μα) + E

[ ∞∑
n=1

γ n f (Xn, α(Xn), μ
α)

∣∣∣ X0 = x, A0 = α(x)

]

= f (x, α(x), μα̃) + E

[ ∞∑
n=1

γ n f (Xn, α(Xn), μ
α)

∣∣∣ X0 = x, A0 = α(x)

]

(51)= Qα(x, α(x))

where we used that the modification of α given the pair (x, α(x)) is equal to α itself
and consequently μα = μα̃ . �

Proof (Theorem 4) Step 1 Show that V α(x) < V α̃(x).
We observe that

V α(x) < Qα(x, α̃(x))

(53)= f (x, α̃(x), μα̃) + γE
[
Qα(X1, α(X1))

∣∣∣ X0 = x, A0 = α̃(x)
]

(54)= f (x, α̃(x), μα̃) + γE
[
V α(X1)

∣∣∣ X0 = x, A0 = α̃(x)
]

≤
(55)≤ f (x, α̃(x), μα̃) + γE

[
Qα(X1, α̃(X1))

∣∣∣ X0 = x, A0 = α̃(x)
]

(53)= f (x, α̃(x), μα̃)

+ γE
[
f (X1, α̃(X1), μ

α̃) + γ Qα(Xt2 , α(Xt2))

∣∣∣ X0 = x, A0 = α̃(x)
]

≤
...

≤ E

[
k∑

n=0

γ n f (Xn, α̃(Xn), μ
α̃) + γ k+1V α(Xk+1)

∣∣∣ X0 = x

]
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Considering the limit as k → ∞, it follows that

V α(x) < E

[ ∞∑
n=0

γ n f (Xn, α̃(Xn), μ
α̃)

∣∣∣ X0 = x

]
= V α̃(x)

Step 2 Show that V α(x ′) < V α̃(x ′) ∀x ′ ∈ X \ {x}.
Let define τx = min{n : Xn = x}. Then,

V α(x ′) = E

[ ∞∑
n=0

γ n f (Xn, α(Xn), μ
α)

∣∣∣ X0 = x ′
]

= E

[
τx−1∑
n=0

γ n f (Xn, α(Xn), μ
α) +

∞∑
n=τx

γ n f (Xn, α(Xn), μ
α)

∣∣∣ X0 = x ′
]

= E

[
τx−1∑
n=0

γ n f (Xn, α(Xn), μ
α)

∣∣∣ X0 = x ′
]

+ E

[ ∞∑
n=τx

γ n f (Xn, α(Xn), μ
α)

∣∣∣ X0 = x ′
]

=

:= T1 + T2

We start analyzing the first term observing that Xn 
= x and α(Xn) = α̃(Xn) for all
n <= τx − 1. Then,

T1 = E

[
τx−1∑
n=0

γ n f (Xn, α̃(Xn), μ
α̃)

∣∣∣ X0 = x ′
]

The analyses of the term T2 are based on the tower property (TP), theMarkov property
(MP) and Step 1 (S1). It follows that

T2
(TP)= E

[
E

[ ∞∑
n=τx

γ n f (Xn, α(Xn), μ
α)

∣∣∣ X0 = x ′, X1, . . . , Xτx

] ∣∣∣ X0 = x ′
]

(MP)= E

[
γ τxE

[ ∞∑
n=τx

γ n−τx f (Xn, α(Xn), μ
α)

∣∣∣ Xτx

] ∣∣∣ X0 = x ′
]

= E

[
γ τx V α(Xτx )

∣∣∣ X0 = x ′] <

(S1)
< E

[
γ τx V α̃(Xτx )

∣∣∣ X0 = x ′]

123



Mathematics of Control, Signals, and Systems (2022) 34:217–271 269

Combining the analyses of T1 and T2, it follows that
V α(x ′) = T1 + T2

< E

[
τx−1∑
n=0

γ n f (Xn, α̃(Xn), μ
α̃)

∣∣∣ X0 = x ′
]

+ E

[
γ τx V α̃ (Xτx )

∣∣∣ X0 = x ′]

= E

[
τx−1∑
n=0

γ n f (Xn, α̃(Xn), μ
α̃) + γ τx

∞∑
n=τx

γ n−τx f (Xn, α̃(Xn), μ
α̃)

∣∣∣ X0 = x ′
]

= E

[ ∞∑
n=0

γ n f (Xn, α̃(Xn), μ
α̃)

∣∣∣ X0 = x ′
]

= V α̃ (x ′)

�


Proof (Theorem 5) LetX = {x1, . . . , xn} andA = {a0, . . . , am} be the state and action
spaces.
Step 1 Let α0 be an initial policy and define α1 as follows

α1(x) =
{
argmaxa Qα0

(x, a), if x = x1,

α0(x), o.w.

Then,

Qα0
(x1, α

1(x1)) ≥ V α0
(x1)

(56)�⇒ V α1
(x) ≥ V α0

(x), ∀x
Step 2 Consider α2 defined as follows

α2(x) =
{
argmaxa Qα1

(x, a), if x = x2,

α1(x), o.w.

=

⎧⎪⎨
⎪⎩
argmaxa Qα1

(x, a), if x = x2,

argmaxa Qα0
(x, a), if x = x1,

α0(x), o.w.

Then,

Qα1
(x2, α

2(x2)) ≥ V α1
(x1)

(56)�⇒ V α2
(x) ≥ V α1

(x) ≥ V α0
(x), ∀x

Step n Consider αn defined as follows

αn(x) =
{
argmaxa Qαn−1

(x, a), if x = xn,

αn−1(x), o.w.

= argmax
a

Qαk−1
(x, a), if x = xk, for k = 1, . . . , n,
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Then,

Qαn−1
(xn, α

n(xn)) ≥ V αn−1
(xn)

(56)�⇒ V αn
(x) ≥ V αn−1

(x) ≥ V α0
(x), ∀x

Step N Since the state and action spaces are finite, the policy can be improved only a
finite number of times. In other words, ∃N > 0 such that

αN (x) = argmax
a

QαN
(x, a), ∀x ∈ X

and
V αN

(x) = QαN
(x, αN (x)) = max

a
QαN

(x, a), ∀x ∈ X .

Can αN be still suboptimal? No, by extending Bellman and Dreyfus’s Optimality
Theorem (1962), [3]. �

Proof (Theorem (2))

RHS = f (x, a, μα̃) + γE

[
max
a′ Q∗(X1, a

′)
∣∣∣ X0 = x, A0 = a

]
(57)= f (x, a, μα̃) + γE

[
V ∗(X1)

∣∣∣ X0 = x, A0 = a
]

(54)= f (x, a, μα̃) + γE
[
Qα∗

(X1, α
∗(X1))

∣∣∣ X0 = x, A0 = a
]

(53)= Qα∗
(x, a) = Q∗(x, a),

where the last step is due to what shown in the proof of equation (57), i.e., the same
policy α∗ optimizes V α and Qα . �
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