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Abstract. Stochastic differential games have been used extensively to model

agents’ competitions in finance, for instance, in P2P lending platforms from the

Fintech industry, the banking system for systemic risk, and insurance markets.
The recently proposed machine learning algorithm, deep fictitious play, pro-

vides a novel and efficient tool for finding Markovian Nash equilibrium of large
N -player asymmetric stochastic differential games [J. Han and R. Hu, Math-

ematical and Scientific Machine Learning Conference, pages 221-245, PMLR,

2020]. By incorporating the idea of fictitious play, the algorithm decouples
the game into N sub-optimization problems, and identifies each player’s opti-

mal strategy with the deep backward stochastic differential equation (BSDE)

method parallelly and repeatedly. In this paper, we prove the convergence of
deep fictitious play (DFP) to the true Nash equilibrium. We can also show

that the strategy based on DFP forms an ε-Nash equilibrium. We generalize

the algorithm by proposing a new approach to decouple the games, and present
numerical results of large population games showing the empirical convergence
of the algorithm beyond the technical assumptions in the theorems.

1. Introduction. Deep neural networks have become popular and powerful tools
in scientific computing, for their remarkable performance in approximating high-
dimensional functions. Their successes have brought natural applications in sto-
chastic differential games, where high-dimensional optimization problems and/or
stochastic differential equations are solved to model and analyze tactical interac-
tions among multiple decision-makers in the context of a random dynamical system.
These decision-makers, usually referred to as players or agents, can interact in a
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manner ranging from completely non-cooperative to completely cooperative. The
nature of uncertainty makes stochastic differential games appropriate to be used for
the study of competitions in finance, e.g., in P2P lending platforms [67, 49] from
the Fintech industry and insurance markets [70, 7, 18].

For non-cooperative stochastic differential games, a core problem is to compute
the associated Nash equilibrium, which refers to a set of strategies so that when
applied, no player will profit from unilaterally changing her own choice. When the
games involve heterogeneous agents of moderate size, e.g., 5 ≤ N ≤ 100, computing
the Nash equilibrium becomes numerically challenging since conventional numeri-
cal algorithms lose their efficiency for N beyond 5, and the game with N ≤ 100
asymmetric players is not yet well approximated by a mean-field framework.

To address the challenge, the authors have recently proposed the deep fictitious
play (DFP) algorithms [31], providing a novel and efficient tool for finding Markov-
ian Nash equilibrium of large N -player asymmetric stochastic differential games.
However, despite the efficient performance in simulation, the algorithm’s theoret-
ical foundation is still lacking, which will be the focus of this paper. In addition,
we generalize the previous algorithms, and propose a general two-step scheme: The
first step aims to recast the game into N sub-problems that will be repeatedly
solved. The desired algorithm requires that, after the recast, the sub-problems are
decoupled among different players given the previous stage’s solutions, and that
their solutions converge to the true Nash equilibrium. Specifically, we propose two
options for the first step:

I. Fictitious play. This approach was used in [31], assuming that players are
myopic and will choose their best responses against others’ previous stage
action at every subsequent stage. Therefore each player still faces a nonlinear
optimization problem.

II. Policy update. We calculate the game values using all responses from the
previous stage, and the current stage responses are determined as if they are
the optimizers of the calculated game values.

The second step of the DFP algorithm aims to solve the sub-problems efficiently and
accurately. Remark that, due to a large number of players and the high dimension-
ality of the controlled state process, each sub-problem may still be high-dimensional
after the decoupling step. In [31], the Deep BSDE method was employed for each
sub-problem, which presents excellent performance. The Deep BSDE method relies
on the BSDE representations of semi-linear partial differential equations (PDEs)
and deep learning approximations after discretizing the BSDE by an Euler scheme.
The method parametrizes the initial position of the backward process and the ad-
joint process by DNNs, then simulates both processes in a forward manner, aiming
to minimize the discrepancy between the terminal value of the backward process
and its network approximation. The analysis for the second step shall focus on this
method. Meanwhile, we remark that other deep neural networks (DNNs) based al-
gorithms, such as deep learning backward dynamic programming (DBDP) method
[42] and deep Galerkin method [66], are also promising choices for solving sub-
problems.

Related literature. The theoretical study of differential games was initiated by R.
Isaacs in the early 1960s [44]. Later on, to better describe real world’s uncertainties,
noises are added to the state of the system, and stochastic differential games have
now been intensively used across many disciplines. Domains of applications include
management science (e.g., operations management, marketing, finance, systemic
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risk), economics (e.g., industrial organization, environmental and macroeconomics,
production of exhaustible resources), social science (e.g., networks, crowd behavior,
congestion), biology (e.g., flocking), and military (e.g., cyber-attacks).

Fictitious play is well documented in the economics literature, as a learning
process for finding Nash equilibria. It was firstly proposed by [11, 12] for normal-
form games. Since then, there have been extensive studies on the convergence of
fictitious play or its variation under different settings; for instance, see [54, 55, 48,
36, 8]. For stochastic differential games, besides [31], the most related work is [41],
where fictitious play is used to design numerical algorithms for finding open-loop
Nash equilibria. We remark that, the idea of fictitious play is not limited to study
the games with a moderate number of heterogeneous players [41, 31], but has also
been applied in mean-field games, e.g., see [13, 10, 22].

The proposed policy update for the first step of the DFP algorithm closely fol-
lows policy iteration (PI) in spirit, which was initially introduced by Howard [39]
for discounted Markovian decision problems (MDP). It consists of two steps: pol-
icy evaluation (obtaining the expected reward for a given policy) and policy im-
provement (updating the policy using the rewards for successor states). PI was
later generalized to modified PI in [64], and has remained the method of choice
in designing reinforcement learning algorithms, e.g., see [27, 62] and the references
therein. Recently this technique has also been utilized to solve mean-field games
numerically [29, 65].

The literature of using DNNs for learning high-dimensional function is rich, in-
cluding methods for solving high-dimensional parabolic PDEs and BSDEs (e.g., the
deep BSDE method [20, 32], the DBDP [42, 24], and many others [66, 5, 6, 61,
69, 45]). It also yields algorithms for solving the Schrödinger equation [35, 60, 34],
stochastic control problems [30, 56], mean field games [17, 1] and nonlinear optimal
stopping problems [40].

Main contribution. The contribution of this paper consists of the following: 1.
We propose a general two-step scheme that extends the original deep fictitious play
algorithm [31], and provide two options for solving the first step. The proposed al-
gorithm can efficiently solve stochastic differential games with heterogeneous agents
of large size (e.g., 5 ≤ N ≤ 100), and the presence of common noise. 2. We provide
the theoretical foundation for the proposed algorithms. Specifically, we prove that
the solutions to the decoupled sub-problems, if solved repeatedly and exactly at
each stage, converge to the true Nash equilibrium; that the numerical solutions to
each sub-problem tend to be exact as we refine the time step in the Euler scheme;
and that the strategy based on numerical solutions forms an ε-Nash equilibrium,
after running sufficiently many stages and using sufficiently fine time step. 3. We
present numerical results showing empirical convergence even beyond the technical
assumptions used in the theorems.

The rest of this paper is organized as follows. In Section 2, we give the mathe-
matical formulation of general N -player asymmetric stochastic games in continuous
time. The algorithms consisting of the decoupling step and sub-problem-solving
step via deep learning are detailed in Section 3. Section 4 provides convergence
analysis for the proposed algorithms, followed by numerical examples presented in
Section 5. We make conclusive remarks in Section 6.

2. Mathematical formulation. Throughout the paper, we shall use the following
notations:
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• A boldface character refers to a collection of objects from all players;
• A regular character with a superscript i refers to an objective from player i

(no matter a scalar or a vector) or the ith column of a vector;
• A boldface character with a superscript −i refers to a collection of objects

from all players except i;
• The state process Xt introduced below is a common process to all players,

and always in boldface.

We consider a general N -player non-zero-sum stochastic differential games. An
Rn-valued common state process Xt is controlled by a Markovian strategy/policy1

α:

dXα
t = b(t,Xα

t ,α(t,Xα
t )) dt+ Σ(t,Xα

t ) dWt, X0 = x0, (1)

where α = (α1, . . . , αN ) is the collection of all players’ Ai-valued strategies. For
simplicity, we assume Ai = Rdα for i = 1, 2, . . . , N . If not (e.g., some boundedness
constraints are put on αi), we can assume there exist Lipschitz mappings P iα from
Rdα to Ai so that Ai = P iα(Rdα), and all the statements below hold easily with
the help of the Lipschitz mappings. The drift and diffusion coefficients b and Σ are
deterministic functions of the common state, b : [0, T ]× Rn ×A ↪→ Rn, Σ: [0, T ]×
Rn ↪→ Rn×k, where A = ⊗Ni=1Ai = RNdα is the space for the joint control α, and
W is a k-dimensional standard Brownian motion on a filtered probability space
(Ω,F, {Ft}0≤t≤T ,P).

Player i aims at minimizing her expected total cost:

inf
αi∈Ai

E[

∫ T

0

f i(s,Xα
s ,α(s,Xα

s )) ds+ gi(Xα
T )] (2)

within the set of admissible strategies Ai:

Ai =
{
αi(t,x) : Borel measurable function [0, T ]× Rn ↪→ Rdα

}
,

where the running cost f i : [0, T ]×Rn×A ↪→ R and the terminal cost gi : Rn ↪→ R are
deterministic measurable functions. Obviously, the quantity in (2) is also affected
by other players’ strategies αj . To emphasize this dependence, we introduce the
notation J it (α

1, . . . , αN ) for the cost of player i starting at t when players choose
their strategies (α1, . . . , αN ):

J it (α
1, . . . , αN ) ≡ J it (α) := E[

∫ T

t

f i(s,Xα
s ,α(s,Xα

s )) ds+ gi(Xα
T )]. (3)

In the following sections, we shall present the algorithms for solving the above
game and prove its theoretical convergence. In particular, we are interested in
finding a Markovian Nash equilibrium (or the Markovian ε-Nash equilibrium).

Definition 2.1. A Markovian ε-Nash equilibrium is a tuple αε = (α1,ε, . . . , αN,ε) ∈
A, such that, for non-negative ε,

∀i ∈ I, and αi ∈ Ai, J i0(αε)− ε ≤ J i0(α1,ε, . . . , αi−1,ε, αi, αi+1,ε, . . . , αN,ε).

A Markovian Nash equilibrium, denoted by α∗, is equivalent to an ε-Nash equi-
librium where ε = 0. Here A = ⊗Ni=1Ai is the product space of Ai, and I =
{1, 2, . . . , N} is the set of all players.

1Hereafter, we shall use strategy and policy interchangeably.
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As discussed in [31], the formulation (1)–(2) is less restrictive than the usual
case where player i can only control her private state. Here, a common state Xt

is controlled by all agents, as a common feature in economics literature (see e.g.,
[19, 63, 50]). Therefore, it is important to include it in our framework, although this
will increase the coupling and make the problem harder to solve, both theoretically
and numerically. Remark that the difficulty still persists in the limiting problem
as N → ∞ with indistinguishable players, when allowing αi entering into others’
states. This is called the extended mean-field game and it has attracted certain
attention recently (e.g., [25, 26, 14]). On the other hand, by choosing b and Σ in (1)
properly, one can reduce the formulation (1) to the simpler case where each player
controls her private state through αi. For instance, if each player’s private state
is d-dimensional, we can let n = dN , b = (b1, . . . , b`, . . . , bn) with b` ≡ b`(t,x, αi)
for ` = (i − 1)d + 1, . . . , id, then the problem (1)–(2) is the standard modeling
in literature in many disciplines including social science, management science and

engineering, with the ith player’s d-dimensional private state (X
(i−1)d+1
t , . . . , Xid

t )
controlled by αi only.

In the Markovian setting, the value function of player i reads as:

V i(t,x) = inf
αi∈Ai

E[

∫ T

t

f i(s,Xα
s ,α(s,Xα

s )) ds+ gi(Xα
T )
∣∣∣Xα

t = x].

Then, to compute the Markovian Nash equilibrium, we apply the dynamic program-
ming principle and obtain a system of Hamilton-Jacobi-Bellman (HJB) equations:V

i
t + inf

αi∈Ai

{
b(t,x,α) · ∇xV i + f i(t,x,α)

}
+

1

2
Tr(ΣᵀHessxV

iΣ) = 0,

V i(T,x) = gi(x), i ∈ I,
(4)

where V it , ∇xV i, HessxV
i denote the derivative of V i with respect to t, the gradient

and the Hessian of function V i with respect to x, and Tr denotes the trace of a
matrix. Note that the system (4) is coupled, as each minimizer αi,∗ depends on V i

while b and f i in (4) depend on all minimizers α∗ = (α1,∗, . . . , αN,∗).
Under appropriate conditions, the solution to (4) is related to BSDEs, using non-

linear Feynman-Kac formula (cf. [57, 21, 58]). To ease our notations, we prescribe
the following the relation on b and Σ.

Assumption 1. There exists a measurable function φ: [0, T ] × Rn × A → Rk, so
that Σ(t,x)φ(t,x,α) = b(t,x,α) for any (t,x,α) ∈ [0, T ]× Rn ×A.

Consequently, we can define the Hamiltonian function H(t,x,α,p) : [0, T ] ×
Rn ×A× Rk×N → RN by:

H = [H1, . . . ,HN ]ᵀ, Hi(t,x,α, pi) = φ(t,x,α) · pi + f i(t,x,α), (5)

where pi ∈ Rk denotes the ith column of p. Using this notation, the HJB system
can be rewritten as:

V it + inf
αi∈Ai

Hi(t,x,α,Σᵀ∇xV i) +
1

2
Tr(ΣᵀHessxV

iΣ) = 0, ∀i ∈ I. (6)

To better describe the optimal game policies, we define a(t,x,α,p) : [0, T ]× Rn ×
A× Rk×N → A by:

a = (a1, . . . , aN ), ai(t,x,α−i, pi) = arg min
αi∈Ai

Hi(t,x, (αi,α−i), pi), ∀i ∈ I. (7)
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In other words, ai is the minimizer of the ith Hamiltonian, emphasizing the depen-
dence on the ith player’s game value Σᵀ∇xV i and others’ strategies α−i. Then, we
define a function α(t,x,p) as the fixed point of

α = a(t,x,α,p). (8)

Note that, with the above notations a and α, we have assumed the minimizer in (7)
exists and is unique, and (8) has a unique fixed point. Later in Assumption 2, we
will detail explicit conditions on the model parameters, such that these assumptions
are satisfied.

We now state the corresponding BSDE formulation of (4), which is the key
component of the algorithm design in Section 3 and the convergence analysis in
Section 4. Let (Xt,Yt,Zt) ∈ Rn × RN × Rk×N be the solution to the following
BSDE: 

Xt = x0 +

∫ t

0

Σ(s,Xs) dWs,

Yt = g(XT ) +

∫ T

t

Ȟ(s,Xs,Zs) ds−
∫ T

t

Zᵀ
s dWs,

(9)

where Ȟ(t,x,p) := H(t,x,α(t,x,p),p) is the minimized Hamiltonian vector, and
g(x) ≡ [g1, . . . , gN ]ᵀ(x) is the vector form of all terminal costs. Then we have the
relation:

Yt = [Y 1
t , . . . , Y

N
t ]ᵀ, Y it = V i(t,Xt),

Zt = [Z1
t , . . . , Z

N
t ], Zit = Σᵀ(t,Xt)∇xV i(t,Xt),

(10)

and the optimal game policy is expressed by α∗t = α(t,Xt,Zt). Using the relation
(10), we notice α∗t = α(t,Xt,Σ

ᵀ(t,Xt)∇xV (t,Xt)) where V := [V 1, . . . , V N ]2,
and sometimes write α∗t = α∗(t,Xt).

Remark 1. Note that the process Xt in (9) does not allude to b = 0 in the
controlled dynamics Xα

t defined in (1). Indeed, it is an auxiliary forward stochastic
process derived from the HJB system (6) using the nonlinear Feynman-Kac formula,
which is an object different from the controlled process Xα

t in equation (1). One, of
course, has the flexibility to choose a different forward process with nonzero drift:

X̃t = x0 +

∫ t

0

Σ(s, X̃s)µ(s, X̃s) ds+

∫ t

0

Σ(s, X̃s) dWs,

Ỹt = g(X̃T ) +

∫ T

t

Ȟ(s, X̃s, Z̃s)− Z̃ᵀ
s µ(t, X̃s) ds−

∫ T

t

Z̃ᵀ
s dWs,

and to express the solution to (6) via (10) with all (X,Y, Z) replaced by (X̃, Ỹ , Z̃).
This is essentially rewriting equation (6) to

V it + inf
αi∈Ai

Hi(t,x,α,Σᵀ∇xV i)− µ(t,x) · Σᵀ∇xV i + µ(t,x) · Σᵀ∇xV i

+
1

2
Tr(ΣᵀHessxV

iΣ) = 0, ∀i ∈ I,

and take infαi∈Ai H
i(t,x,α,Σᵀ∇xV i)− µ(t,x) · Σᵀ∇xV i as the driver. Note that

due to the coupling in (6), µ(t,x) needs to be identical across all i ∈ I. Nevertheless,
we think the choice in (9) is the most natural one, without additional knowledge of
Ȟ.

2We use ∇xV as an n×N matrix.
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A second remark is that, with Assumption 1 one can apply a change of measure
and make the controlled dynamics driftless as in (9) under a different measure,
which is indeed used in the proof of Theorem 4.

If solving directly, no matter which system ((4) or (9)), one will encounter com-
putational difficulties due to the high dimensionality of Xt or the large number of
agents. To overcome this, we propose a two-step scheme in Section 3, where we
generalize the idea in [31] and offer two options for the first step. The convergence
analysis with appropriate assumptions will be presented in Section 4.

3. Algorithm. The two-step scheme for solving Markovian Nash equilibrium works
as follows. We first decouple the problem (1)–(2) into N independent sub-problems,
for which we need to solve repeatedly and can solve in a parallel manner. Since
each sub-problem may still be high-dimensional, we then solve each using deep
neural networks with a reformulation in backward stochastic differential equations
(BSDEs). Next, we describe the algorithms of each step in detail.

3.1. Step I: Decoupling. This step aims to decentralize the game, converting it
into single-agent problems to be solved repeatedly. The algorithms start with an
initial guess of the Nash equilibrium α0 = [α1,0, . . . , αN,0] and produce a sequence of
strategies afterward, which we denote by α1, . . .αm, . . .. The following two options
at this step differ in how the sequence is determined. Notationwise, αm refers to
the collection of all players’ policies at stage m, and its ith component αi,m refers
to player i’s choice.

1. Fictitious Play. In this option of Step I, at each stage, each player faces an
optimization problem (2) while assuming that others are using their strategies
from the previous stage as fixed strategies. In other words, at stage m + 1,
αm is known to all players, and player i’s decision problem is

inf
αi∈Ai

J i0(αi;α−i,m), (11)

where J i0 is defined in (3), and the state process Xt follows (1) with α being
replaced by (αi;α−i,m). Here α−i,m represents the strategies of all players but
player i at stagem, and (αi;α−i,m) is a short notation of (α1,m, . . . , αi−1,m, αi,
αi+1,m, αN,m), which emphasis the parameter role of α−i,m.

Under the Markovian framework, we denote by V i,m+1 the problem value
of player i at stage m. Following the idea of fictitious play, it is the solution
of the following HJB system
V i,m+1
t + inf

αi∈Ai
Hi(t,x, (αi,α−i,m)(t,x),Σᵀ∇xV i,m+1)

+
1

2
Tr(ΣᵀHessxV

i,m+1Σ) = 0,

V i,m+1(T,x) = gi(x).

(12)

This option, combined with Step II introduced below, is exactly the deep
fictitious play algorithm proposed in [31]: at stage m+ 1, players myopically
respond to their opponents’ policy at stage m without considering all decisions
before stage m. As explained in [31, Remarks 3.1 and 3.2], this is a bit dis-
crepant from Brown’s original definition [11, 12], where players response take
into account all past policies α−i,0, . . .α−i,m. And the very reason to use
the last stage policy is that, it otherwise requires tracking all past functions
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α−i,0, . . .α−i,m due to direct feedback nature, which is computationally infea-
sible. Serving as the theoretical foundation of [31], we follow the terminology
therein and term this decoupling option as fictitious play.

2. Policy Update. This is slightly different from the fictitious play, where every
player follows her strategy from the previous stage to update the problem
value. In this case, it is no longer an optimization, but a linear problem for
the value function induced by the fix strategy αm:V
i,m+1
t +Hi(t,x,αm(t,x),Σᵀ∇xV i,m+1) +

1

2
Tr(ΣᵀHessxV

i,m+1Σ) = 0,

V i,m+1(T,x) = gi(x).
(13)

After solving out the decoupled PDE (12) or (13), at the end of stage m + 1, a
policy αi,m+1 is determined by

αi,m+1(t,x) = arg min
αi∈Ai

Hi(t,x, (αi,α−i,m)(t,x),Σᵀ∇xV i,m+1(t,x)), (14)

and policies from all players together form αm+1.
Note that for fictitious play algorithms, αi,m+1 is indeed the optimal strategy

of problem (11); while for policy update algorithms, the problem is linear, but
we pretend that V i,m+1 is the value of an optimization problem, and αi,m+1 is
determined as if it is an optimizer. In short, the two algorithms differ at how αm+1

is updated from αm. When interpreting via BSDEs, the different update rules
result in slightly different drivers of the backward components, see equations (15)
and (17) below. Nevertheless, the analysis based on the two algorithms presented
in Theorems 2 and 3 follows similarly.

3.2. Step II: Solving each sub-problem via BSDE. We write down the BSDE
counterpart of the sub-problem (12) in the fictitious play:

Xt = x0 +

∫ t

0

Σ(s,Xs) dWs,

Y i,m+1
t = gi(XT ) +

∫ T

t

Ĥi(s,Xs,α
−i,m(s,Xs), Z

i,m+1
s ) ds−

∫ T

t

(Zi,m+1
s )ᵀ dWs,

(15)

where Ĥi is defined by

Ĥi(t,x,α−i, pi) = Hi(t,x, (ai(t,x,α−i, pi),α−i), pi), (16)

or the BSDE counterpart of the sub-problem (13) in the policy update:
Xt = x0 +

∫ t

0

Σ(s,Xs) dWs,

Y i,m+1
t = gi(XT ) +

∫ T

t

Hi(s,Xs,α
m(s,Xs), Z

i,m+1
s ) ds−

∫ T

t

(Zi,m+1
s )ᵀ dWs.

(17)

Here x0 is a random variable whose range covers the states of interest.

Remark 2. Note that, in both BSDEs above, we choose the forward process with-
out a drift term for three reasons: (a) it avoids the involvement of αm, and thus
keeps the forward process the same from stage to stage; (b) the BSDEs can be
vectorized (cf. (30)) with a single forward process which coincides with the forward
component of (9) (corresponding to the true solution), both will facilitate our anal-
ysis (c) numerically, this means only one forward process needs to be simulated for



CONVERGENCE OF DEEP FICTITIOUS PLAY 295

all N sub-problems, which makes one iteration of step I–II more efficient. Once
the driftless BSDEs (15) and (17) are solved numerically accurate, it is proved, in
theorems in Section 4.3, that the performance on the optimal control process Xα∗

(cf. (1) with α∗ replaced by the Nash equilibrium strategy α∗) is also well.
We also remark that both BSDEs are wellposed under Assumptions 1–2, as the

drivers Hi and Ĥi are uniformly Lipschitz in pi and gi(XT ) is square integrable
(cf. [71, Theorem 4.3.1]).

For both sub-problems, the connection between the associated BSDEs and PDEs
are the same:

Y i,m+1
t = V i,m+1(t,Xt), Zi,m+1

t = Σ(t,Xt)
ᵀ∇xV i,m+1(t,Xt),

and according to (14), both optimal policy processes at stage m + 1 are expressed
by

αi,m+1
t = ai(t,Xt,α

−i,m
t , Zi,m+1

t ).

Therefore, it suffices to solve these two possibly high-dimensional BSDE systems by
an efficient algorithm, which we shall describe and call deep BSDE in the sequel.
To avoid repetition and cumbersome notation, the algorithms will be presented on
a generic BSDE with possibly non-zero drift term:

Xt = x0 +

∫ t

0

µ(s,Xs) ds+

∫ t

0

Σ(s,Xs) dWs,

Yt = g(XT ) +

∫ T

t

F (s,Xs, Zs) ds−
∫ T

t

Zᵀ
s dWs.

(18)

The algorithm applied to the exact system (15) and (17) will be presented in Sec-
tion 4.2.

The deep BSDE is firstly introduced in [20], for solving high-dimensional para-
bolic PDEs. The idea is to solve a variational form of (18) after temporal discretiza-
tions using deep neural networks. For a partition π of size NT on the time interval
[0, T ], 0 = t0 < t1 < . . . < tNT = T , ∆tk and ∆Wk are short notations for the time
and Brownian motion increments respectively, and we denote by ‖π‖ the mesh of
this partition:

∆tk = tk+1 − tk, ∆Wk = Wtk+1
−Wtk , ‖π‖ = max

0≤k≤NT−1
∆tk. (19)

We also define a step function π(t), and a set T for later use:

π(t) = tk for t ∈ [tk, tk+1), T := {t0, t1, . . . , tNT−1}. (20)

The deep BSDE method solves the minimization problem:

inf
ψ0∈N

′
0 , {φk∈Nk}

NT−1

k=0

E|g(Xπ
T )− Y πT |2, (21)

s.t. Xπ
tk+1

= Xπ
tk

+ µ(tk, X
π
tk

)∆tk + Σ(tk, X
π
tk

)∆Wk, Xπ
0 = x0, (22)

Y πtk+1
= Y πtk − F (tk, X

π
tk
, Zπtk)∆tk + (Zπtk)ᵀ∆Wk, Y π0 = ψ0(Xπ

0 ), (23)

Zπtk = φk(Xπ
tk

)

where N ′0 and {Nk}NT−1k=0 are hypothesis spaces related to deep neural networks,
and for brevity, we use the notation Xπ

0 for Xπ
t0 , Xπ

T for Xπ
tNT

, and the same applies

to the process Y π, Zπ. The goal is to find optimal deterministic maps ψ∗0 , {φ∗k}NT−1k=0

such that the loss function in (21) is minimized. Intuitively, the smaller (21), the
better the approximation to the original problem (18). In practice, the expected
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value is replaced by the loss of a very deep neural network, which is formed by
stacking all the subnetworks ψ0, {φk}NT−1k=0 in sequence according to (23). The loss

is computed by generating sample paths of {Wtk}NTk=0 and producing (22)–(23). At
each stage, there are N losses corresponding to N sub-problems solved by the deep
BSDE method.

Now we recall the existing convergence results for the deep BSDE method [33,
Theorems 1 and 2] and state them together in the following theorem.

Theorem 1. For the generic BSDE (18), we assume:

1. The functions µ, Σ, g and F satisfy the following Lipschitz condition, for
some constant L > 0:

|µ(t, x1)− µ(t, x2)|2 + ‖Σ(t, x1)− Σ(t, x2)‖2F + |F (t, x1, p1)− F (t, x2, p2)|2

+ |g(x1)− g(x2)|2 ≤ L
[
|x1 − x2|2 + |p1 − p2|2

]
;

2. The functions µ, Σ and h are all 1/2-Hölder continuous with respect to t. For
simplicity, we use K for this Hölder constant;

3. We also use K to denote the upper bound of |µ(0, 0)|2, ‖Σ(0, 0)‖2F , |F (0, 0, 0)|2
and |g(0)|2.

Then, we have the following two estimates:

sup
t∈[0,T ]

E|Yt − Y ππ(t)|2 +

∫ T

0

E‖Zt − Zππ(t)‖2F dt ≤ C
[
‖π‖+ E|g(Xπ

T )− Y πT |2
]
, (24)

and

inf
ψ0∈N

′
0 , {φk∈Nk}

NT−1

k=0

E|g(Xπ
T )− Y πT |2

≤ C
[
‖π‖+ inf

ψ0∈N
′
0 , {φk∈Nk}

NT−1

k=0

{E|Y0 − ψ0(x0)|2 +

NT−1∑
k=0

E‖Ẑtk − φk(Xπ
tk )‖2F∆tk}

]
,

(25)

where N ′0 and {Nk}NT−1k=0 are the hypothesis spaces for neural network architec-

tures to approximate Y π0 and Zπtk , ‖π‖ and π(t) are given in (19)–(20), Ẑtk =

(∆tk)−1E[
∫ tk+1

tk
Zt dt|Xπ

tk
], and C > 0 is a constant only depending on L, T , K and

E|x0|2.

Remark 3. The first inequality (24) shows that the distance between the true
solution of BSDE (18) and the output of the deep BSDE method can be controlled by
its loss function. In other words, in practice, the accuracy of the numerical solution
is effectively indicated by the value of the loss function. The second inequality
(25) states that a small loss function of the deep BSDE method is attainable if

the hypothesis spaces (N ′0 and {Nk}NT−1k=0 ) can approximate specific functions well
such that the right-hand side of (25) is small. Neural networks are such hypothesis
spaces, ensured by the universal approximation results. For instance, Theorem 2.1
in [3] states that every continuous and piecewise linear function with m-dimensional
input can be represented by a deep neural network with ReLu activation function
and at most d1 + log2(m+ 1)e layers, which justifies the choice of ψ0 and φk being
neural networks. For further discussion, we refer to the discussion on page 22 of
[33].

Beyond Theorems 1 and 2 in [33], there are still some theoretical issues remaining
unresolved regarding the deep BSDE method, which are common in almost all
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the algorithms involving deep neural networks: First, it is unclear yet that what
types of hypothesis spaces can approximate the specific functions in the deep BSDE
method without the curse of dimensionality (i.e., the number of parameters of neural
networks grows at most polynomially both in dimension and the reciprocal of the
approximation error). Second, even with suitable function spaces, it is hard to
guarantee the optimization algorithm can find approximately the minimizer of the
highly nonconvex loss function. We refer the interested readers to [20, 32, 33] for
more detailed descriptions and theoretical justifications of the deep BSDE method.
Details on the implementation in this paper are presented in Section 5.

4. Convergence analysis. This section will provide the theoretical foundation
for the deep fictitious play algorithm. Section 4.1 focuses on the decoupling step.
Theorem 2 proves the convergence to the true Nash equilibrium, if the decoupled
sub-problems are solved exactly and repeatedly. Section 4.2 focuses on the numerical
error on the deep BSDE algorithm for solving each sub-problem. Theorem 3 presents
a game version of Theorem 1. Section 4.3 combines the previous results, identifies
the ε-Nash equilibrium produced by deep fictitious play, and analyzes its numerical
performance on the original game.

4.1. Convergence analysis of the decoupling step. In this section, we will
focus on the convergence of the decoupling step, i.e., how the systems defined by
PDEs (12) (fictitious play) or (13) (policy update) converge to the system defined
by PDEs (4), or equivalently, how the corresponding BSDE systems (15) (fictitious
play) or (17) (policy update) converge to the BSDE system (9). Throughout this
paper, we shall use the following assumptions.

Assumption 2. We shall use | · |, ‖ · ‖F and ‖ · ‖S to denote the Euclidean norm,
Frobenius norm and spectral norm, respectively.

(1) The functions φ(t,x,α) : [0, T ]× Rn ×A → Rk, Σ(t,x) : [0, T ]× Rn → Rn×k,
f(t,x,α) = (f1, f2, . . . , fN )ᵀ(t,x,α) : [0, T ] × Rn × A → RN and g(x) =
[g1, g2, . . . , gN ]ᵀ(x) : Rn → RN are Lipschitz with respect to x and α, with a
positive constant L:

|φ(t,x1,α1)− φ(t,x2,α2)|2 ≤ L[|x1 − x2|2 + |α1 −α2|2],

‖Σ(t,x1)− Σ(t,x2)‖2F ≤ L|x1 − x2|2,
|f(t,x1,α1)− f(t,x2,α2)|2 ≤ L[|x1 − x2|2 + |α1 −α2|2],

|g(x1)− g(x2)|2 ≤ L|x1 − x2|2.
(2) The function a(t,x,α,p) given in (7) is well-defined, and is Lipschitz with

respect to x, α and p:

|a(t,x1,α1,p1)− a(t,x2,α2,p2)|2

≤ L(1− aα)[|x1 − x2|2 + ‖p1 − p2‖2F ] + aα|α1 −α2|2, (26)

with 0 < aα < 1. Notice that this also implies that α(t,x,p) defined by (8)
exists and is unique, which is Lipschitz with respect to x and p:

|α(t,x1,p1)−α(t,x2,p2)|2 ≤ L[|x1 − x2|2 + ‖p1 − p2‖2F ].

(3) The functions φ and Σ are uniformly bounded:

‖Σ(t,x)‖2S ≤M, max
1≤i≤k

|φi(t,x,α)|2 ≤M.
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Here φi denotes the i-th component of φ, and M is a positive constant.
(4) The functions φ, Σ, f , g and a are all 1/2-Hölder continuous with respect to

t. We shall use K as the upper bound of all the Hölder constants.
(5) The constant K is also the upper bound of constants |a(0, 0, 0, 0)|2, |f(0, 0, 0)|2,
|g(0)|2, |φ(0, 0, 0)|2 and ‖Σ(0, 0)‖2F .

Assumption 3. There exists an adapted solution of the BSDE system (9) such
that

E
[

sup
0≤t≤T

(|Xt|2 + |Yt|2) +

∫ T

0

‖Zt‖2F dt
]
< +∞. (27)

Moreover, we assume that ‖Zt‖2S ≤M ′, L× P-a.s..

We remark that Assumption 2 is quite standard in the analysis of stochastic
differential games and Assumption 3 can be satisfied in several cases. For instance,
Assumption 3 holds true under Assumptions 1 and 2 with small time duration. We
provide a detailed proof of this point (Proposition 6) in the appendix. The small
time duration assumption is commonly seen in games, for instance in solving mean-
field games [15] and the convergence of numerical schemes for mean-field games [4].
Also, through the nonlinear Feynman-Kac formula and the boundedness of Σ in
Assumption 2, Assumption 3 is satisfied if the solution to the HJB system (4) is
uniformly Lipschitz with respect to x. Specifically, with additional assumptions:

f , g are bounded, and ΣΣᵀ is uniformly nondegenerate, (28)

V i is continuous and differentiable with continuous bounded gradients on [0, T ]×Rn
(cf. [15, Prop. 2.13]). Therefore, using small time duration result (Proposition 6)
on [T − δ, T ] for small δ, one has the uniformly Lipschitz on [0, T ] and Assump-
tion 3 is fulfilled under (28). We also point out that Assumption 3 implies that the
BSDE system (9) has a unique adapted L2-integrable solution, see Proposition 7 in
Appendix A.

Recalling that m is the stage index in the decoupling step, now we present the
main result in this section regarding its convergence.

Theorem 2. Under Assumptions 1, 2 and 3, for any ε ∈ (0, 1− aα), there exists a
constant C(ε) > 0 which only depends on T , L, M , M ′ and ε such that

sup
0≤t≤T

E|Y m
t − Yt|2 +

∫ T

0

E‖Zmt −Zt‖2F dt+

∫ T

0

E|αmt −α∗t |2 dt

≤ C(ε)(aα + ε)m
∫ T

0

E|α0
t −α∗t |2 dt,

where (Y m
t ,Zmt ) is defined by Y m

t = [Y 1,m
t , . . . , Y N,mt ]ᵀ, Zmt = [Z1,m

t , . . . , ZN,mt ],

with (Y i,mt , Zi,mt ) from the BSDE systems (15) or (17), (Yt,Zt) is defined in (9) ,
αmt = αm(t,Xt) and α∗t = α∗(t,Xt).

Proof. Theorem 2 states the convergence of both fictitious play (according to (15))
and policy update (according to (17)). The proofs of these two are very similar,
and we shall focus on the fictitious play method for brevity.
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To perform convergence analysis, we first rewrite the BSDE systems to show the
explicit dependence on the players’ strategies. For (9), it reads as

Xt = x0 +

∫ t

0

Σ(s,Xs) dWs,

Yt = g(XT ) +

∫ T

t

H(s,Xs,α
∗
s,Zs) ds−

∫ T

t

(Zs)
ᵀ dWs,

α∗t = a(t,Xt,α
∗
t ,Zt),

(29)

where H,a are defined in (5) and (7). The rewritten system of (15) is
Xt = x0 +

∫ t

0

Σ(s,Xs) dWs,

Y m+1
t = g(XT ) +

∫ T

t

Ĥ(s,Xs,α
m
s ,α

m+1
s ,Zm+1

s ) ds−
∫ T

t

(Zm+1
s )ᵀ dWs,

αm+1
t = a(t,Xt,α

m
t ,Z

m+1
t ),

(30)

where Ĥ = [Ĥ1, . . . , ĤN ]ᵀ, Ĥi(t,x, ξ,γ,p) ≡ Hi(t,x, (γi, ξ−i), pi) and pi stands
for the ith column of p. Note that this is slightly an abuse of notation with (16), to
show the driver’s explicit dependence on αm+1. Also note that the rewritten system
(30) is simply a condensed form of (15), concatenating all Y i,mt into Y m

t , without
changing its decoupled nature. This will also ease the notation in the following
proof.

We now define δHm
t = Ĥ(t,Xt,α

m
t ,α

m+1
t ,Zm+1

t )−H(t,Xt,α
∗
t ,Zt). Noticing

that

δHi,m
t =φ(t,Xt, (α

i,m+1
t ,α−i,mt )) · Zi,m+1

t + f i(t,Xt, (α
i,m+1
t ,α−i,mt ))

− φ(t,Xt,α
∗
t ) · Zit − f i(t,Xt,α

∗
t )

=φ(t,Xt, (α
i,m+1
t ,α−i,mt )) · (Zi,m+1

t − Zit)
+ [φ(t,Xt, (α

i,m+1
t ,α−i,mt ))− φ(t,Xt,α

m
t )] · Zit

+ [φ(t,Xt,α
m
t )− φ(t,Xt,α

∗
t )] · Zit

+ [f i(t,Xt, (α
i,m+1
t ,α−i,mt ))− f i(t,Xt,α

m
t )]

+ [f i(t,Xt,α
m
t )− f i(t,Xt,α

∗
t )].

Therefore, with Assumptions 2 and 3,

|δHm
t |2 ≤C1{‖Zm+1

t −Zt‖2F

+

N∑
i=1

(|Zit |2 + 1)|αi,m+1
t − αi,mt |2 + ‖Zt‖2S |αmt −α∗t |2 + |αmt −α∗t |2}

≤C2

{
‖Zm+1

t −Zt‖2F + |αmt −α∗t |2 + |αm+1
t −α∗t |2

}
,

where C1, C2 are two positive constants only depending on L, M and M ′.
Next, we define δY m

t = Y m
t −Yt, δZmt = Zmt −Zt, δαmt = αmt −α∗t . With (29)

and (30), we have

dδY m+1
t = −δHm

t dt+ (δZm+1
t )ᵀ dWt.
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For any β > 0, by Ito’s formula, taking expectation on both sides and integrating
from t to T gives

eβtE|δY m+1
t |2 +

∫ T

t

eβsE‖δZm+1
s ‖2F ds

=

∫ T

t

eβsE[2δHm
s · δY m+1

s − β|δY m+1
s |2] ds

≤ 1

β

∫ T

t

eβsE|δHm
s |2 ds,

where the inequality holds because 2δHm
s · δY m+1

s ≤ β−1|δHm
s |2 + β|δY m+1

s |2.
Then, taking the supremum with respect to t, we deduce

sup
0≤t≤T

Eeβt|δY m+1
t |2 +

∫ T

0

eβtE‖δZm+1
t ‖2F dt (31)

≤ 1

β

∫ T

0

eβtE|δHm
t |2 dt

≤C2

β

∫ T

0

eβtE[‖δZm+1
t ‖2F + |δαmt |2 + |δαm+1

t |2] dt.

Choosing β = C2, we can obtain

sup
0≤t≤T

E|δY m+1
t |2 ≤ eC2T

∫ T

0

[E|δαmt |2 + E|δαm+1
t |2] dt. (32)

For β > C2, using inequality (31) again, we have∫ T

0

eβtE‖δZm+1
t ‖2F dt ≤ C2

β − C2

∫ T

0

eβt[E|δαmt |2 + E|δαm+1
t |2] dt. (33)

The Lipschitz condition of the function a (26) (with constants L and aα) and
estimate (33) give that∫ T

0

eβtE|δαm+1
t |2 dt

≤
∫ T

0

eβt[L(1− aα)E‖δZm+1
t ‖2F + aαE|δαmt |2] dt

≤aα
∫ T

0

eβtE|δαmt |2 dt+
LC2

β − C2

∫ T

0

eβt[E|δαmt |2 + E|δαm+1
t |2] dt,

which is equivalent to (further assuming β > (L+ 1)C2)∫ T

0

eβtE|δαm+1
t |2 dt ≤ β − C2

β − (L+ 1)C2

(
aα +

LC2

β − C2

)∫ T

0

eβtE|δαmt |2 dt.

For a given ε ∈ (0, 1− aα), we can choose β large enough such that

β − C2

β − (L+ 1)C2

(
aα +

LC2

β − C2

)
≤ aα + ε < 1.

Then, there exists a constant C(ε) > 0 that only depends on T , L, M , M ′ and ε
such that ∫ T

0

E|δαmt |2 dt ≤ C(ε)(aα + ε)m
∫ T

0

E|α0
t −α∗t |2 dt.
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Combining the last inequality with inequalities (32) and (33), we obtain our result.

Remark 4. The convergence in Theorem 2 holds for games with any size of N
instead of the focus in the numerical algorithm that is between 5 and 100, and is
independent of any numerical scheme.

4.2. Numerical error analysis. This section is dedicated to analyzing the numer-
ical error introduced by the deep BSDE method when solving each sub-problem.
Specifically, we aim to control the distance between (Xt,Yt,Zt) defined in (9) and
the discrete system (Xπ

tk
,Y π,m

tk
,Zπ,mtk

) satisfying:{
Xπ
tk+1

= Xπ
tk

+ Σ(tk,X
π
tk

)∆Wk, Xπ
0 = x0,

Y π,m+1
tk+1

= Y π,m+1
tk

− hm(tk,X
π
tk
,Zπ,m+1

tk
)∆tk + (Zπ,m+1

tk
)ᵀ∆Wk,

(34)

where hm is either [h1,m, · · · , hN,m]ᵀ with hi,m(t,x,p) = infαi∈Ai H
i(t,x, (αi,

α−i,π,m(t,x)),p) when decoupled through fictitious play, or hm(t,x,p) = H(t,x,
απ,m(t,x),p) when decoupled through policy update. As stated in Section 3.2,

Y π,m+1
0 and Zπ,m+1

tk
are paramterized by neural networks,

Y π,m+1
0 = ψm+1

0 (Xπ
0 ), Zπ,m+1

tk
= φm+1

k (Xπ
tk

),

where ψm0 and {φmk }NT−1k=0 are the optimal deterministic maps determined at stage

m that belongs to the hypothesis spaces (cf. Section 3.2). Then, the (m+1)th-stage
policies defined on T × Rn are updated by:

απ,m+1(t,x) = a(t,x,απ,m(t,x),φm+1(t,x)), ∀(t,x) ∈ T × Rn (35)

where φm(tk,x) = φmk (x). Note that the above notation is simply a vector form of
the deep BSDE method applied to system (15) or (17). It does not change the de-
coupling nature of the deep fictitious play algorithm, i.e., each entry (Y i,π,m, Zi,π,m)
in (Y π,m,Zπ,m) still solves its own problem.

Initially, we hope to apply Theorem 1 to the BSDE system (15) and (17). By the
game feature and the decoupling scheme, stage m+ 1’s estimates rely on the regu-
larity of stage m’s policy αm(t,x) (see definition in (14)). Specifically, it requires
the following condition, in addition to Assumption 2:

|αm(t1,x1)−αm(t2,x2)|2 ≤ L[|t1 − t2|+ |x1 − x2|2].

However, in general, this property is not inherited from stage to stage. To circum-
vent this issue, we introduce a projection operator, which needs to be applied at
the end of each stage. Along this line, we need the following assumption.

Assumption 4. The optimal policy α∗ as a function on [0, T ]×Rn is Lipschitz with
respect to x and 1/2-Hölder continuous with respect to t: |α∗(t1,x1)−α∗(t2,x2)|2 ≤
L(|t1 − t2| + |x1 − x2|2). We also assume that |α∗(t,x)|2 ≤ L(1 + |x|2) for any
(t,x) ∈ [0, T ]× Rn.

The regularity of the Nash equilibrium α∗ with respect to (t,x) itself is an
interesting question that is worth a separate study; for instance, see [37, 38] in
different settings. We leave it for future work on checking under what conditions
Assumption 4 holds. For partial justification of Assumption 4, we remark that [51,
Proposition 3.3] implies the Lipschitz continuity with respect to x but not t.

Recall the set T containing all endpoints of the size NT partition π on [0, T ] from
(20), for any η ≥ 0 we define a Hilbert space on T × Rn:
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Hπη =
{
α : measurable functions from T × Rn to RNdα ,

NT−1∑
k=0

eηtkE|α(tk,X
π
tk

)|2∆tk < +∞
}
, (36)

with norm ‖α‖2Hπη :=
∑NT−1
k=0 eηtkE|α(tk,X

π
tk

)|2∆tk, and a subset

N π =
{
α : T × Rn ↪→ RNdα , |α(t1,x1)−α(t2,x2)|2 ≤ L′[|t1 − t2|+ |x1 − x2|2],

|α(t,x)|2 ≤ L′(1 + |x|2)
}
3

with a constant L′ ≥ L. Because N π is a closed convex subset of Hπη , the projection
PNπ,η from Hπη to N π exists and does not increase distance (cf. [9, Chapter 5,
Proposition 5.3]):

‖PNπ,η(f1)− PNπ,η(f2)‖Hπη ≤ ‖f1 − f2‖Hπη ∀f1, f2 ∈ Hπη . (37)

Therefore, we are able to apply the projection operator PNπ,η at the end of each
stage, i.e., we change equation (35) to

α̃π,m+1(t,x) = a(t,x,απ,m(t,x),φm+1(t,x)), (38)

απ,m+1 = PNπ,η(α̃π,m+1). (39)

By this definition, the numerical solution απ,m+1(t,x) in fact implicitly depends
on the value of η. We suppress this dependence for brevity of notation. The main
theorem in this section is as follows.

Theorem 3. Under Assumptions 1–4, let απ,0 : T × Rn 7→ A be a measurable
function satisfying:

|απ,0(t1,x1)−απ,0(t2,x2)|2 ≤ L′[|t1−t2|+|x1−x2|2], |απ,0(t,x)|2 ≤ L′(1+|x|2).
(40)

Then, for any ε ∈ (0, 1− aα), assuming that η > ηε in (36), where ηε is a constant
depending on T , L, M , M ′ and ε, we have

sup
t∈[0,T ]

E|Yt − Y π,m
π(t) |2 +

∫ T

0

E‖Zt −Zπ,mπ(t)‖2F dt+

∫ T

0

E|α∗t −απ,mπ(t)|2 dt

≤ C(η, ε)
[
‖π‖+ (aα + ε)m

∫ T

0

E
∣∣∣α∗t −απ,0π(t)∣∣∣2 dt (41)

+

m∑
j=1

(aα + ε)m−jE
∣∣∣g(Xπ

T )− Y π,j
T

∣∣∣2 ],
where (Xπ

tk
,Y π,m

tk
,Zπ,mtk

) is defined in (34), απ,mπ(t) ≡ απ,mtk = απ,m(tk,X
π
tk

) for

t ∈ [tk, tk+1), and C(η, ε) > 0 is a constant depending only on T , L, M , M ′, K,
L′, E|x0|2, η and ε. Here (Xπ

tk
,Y π,m

tk
,Zπ,mtk

) represents either the discrete BSDE
system using fictitious play or policy update in the decoupling step, depending on
the definition of h in (34).

Next, with a slight abuse of notation (see Remark 5 (2) for details), we define
(Y m

t ,Zmt ) as

Y m
t = [Y 1,m

t , . . . , Y N,mt ]ᵀ, Zmt = [Z1.m
t , . . . , ZN,mt ]
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with (Y i,mt , Zi,mt ) from the BSDE systems (15) in the setting of fictitious play or
(17) in the setting of policy update, in which the previous stage policy is given by
the extension of the numerical approximation in time

αm(t,x) = inf
t′∈T

[απ,m(t′,x) + L′|t′ − t| 12 ]. (42)

Then we have the following inequality

inf
ψm0 ∈N ′0,{φmk ∈Nk}

NT−1

k=0

E|g(Xπ
T )− Y π,m

T |2

≤ C
[
‖π‖+ inf

ψm0 ∈N ′0,{φmk ∈Nk}
NT−1

k=0

{E|Y m
0 −ψm0 (x0)|2 (43)

+

NT−1∑
k=0

E‖Ẑmtk − φmk (Xπ
tk

)‖2F∆tk}
]
,

where N ′0 and {Nk}NT−1k=0 are hypothesis spaces for neural network architectures to

approximate Y0 and Ztk , Ẑmtk = (∆tk)−1E[
∫ tk+1

tk
Zmt dt|Xπ

tk
] and C is a constant

only depending on T , L, M , M ′, K, L′ and E|x0|2. We still refer N ′0 and Nk as
the hypothesis spaces for ψm0 : Rn → RN , φmk : Rn → Rk×N , without introducing
superscript m to indicate the stage.

Remark 5. We have the following remarks regarding Theorem 3:

(1) The interpretation of Theorem 3 is similar to that of Theorem 1. The first
inequality (41) shows that the distance between the true solution of BSDE
(9) and the output of the deep BSDE method at stage m can be controlled
together by the mesh size, the error of the initial policy and the loss functions
achieved at all the previous stages. The second inequality (43) states that the
loss function of deep BSDE method at each stage is small if the approximation
capability of the parametric function spaces (N ′0 and {Nk}NT−1k=0 ) is high. The
overall message conveyed in Theorem 3 is that, if the deep BSDE method can
solve each sub-problem accurately enough, the deep fictitious play method will
produce a strategy close to the Nash equilibrium.

(2) Note that there is a slight abuse of notation in the statement of Theorem 3, since
(Y m

t ,Zmt ) and αm have already been introduced in Sections 4.1 and 3.1 (cf.
equations (30) and (14)), as the theoretical solution from the decoupling step
at stage m. In this section, to avoid introducing further complicated notations,
we still refer (Y m

t ,Zmt ) as the theoretical solution depending on αm−1, but
αm−1 is the interpolation (42) of the deep BSDE solution απ,m−1 at stage m−
1. Nevertheless, the relation between (Y m,Zm) and the interpolated strategy
αm−1 in Theorem 3 remains the same as the relation between (Y m,Zm) and
the exact strategy αm−1 in Theorem 2, thus some estimates follow using the
same derivations as in the proof of Theorem 2. In particular, we can obtain
that there exists positive constants β0 and C only depending on T , L, M and
M ′ such that for any β > β0,

sup
0≤t≤T

E|Yt − Y m
t |2 ≤ C

∫ T

0

E|α∗t −αm−1(t,Xt)|2 dt, (44)∫ T

0

eβtE‖Zt −Zmt ‖2F dt ≤ C

β − β0

∫ T

0

eβtE|α∗t −αm−1(t,Xt)|2 dt. (45)
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where αm−1 follows (42) and is the interpolation of strategies computed nu-
merically at stage m− 1.

(3) The interpolation (42) is indeed needed to apply Theorem 1 on (Y π,m
π(t) ,Z

π,m
π(t) )

and (Y m
t ,Zmt ). The particular form (42) ensures that the Hölder continuity, as

a prerequisite of Theorem 1, is preserved after the extension (cf. [53]).
(4) The inequality (43) shares the same implication as (25) in Theorem 1. That is,

a small loss is attainable if the hypothesis spaces N ′0 and Nk can approximate
particular functions well, and this is feasible for deep neural networks given
universal approximation results. Therefore, the choice of using feed-forward
neural networks as hypothesis spaces N ′0 and Nk is justified.

Proof. Throughout this proof, we will use C to denote a positive constant depending
only on T , L, M , M ′, K, L′ and E|x0|2 and use C(·) to denote a positive constant
depending on all the above constants and the arguments represented by ·. Both C
and C(·) may vary from line to line.

Since απ,m ∈ N π, with conditions (40) and (42), we obtain (cf. [53])

|αm(t1,x1)−αm(t2,x2)|2 ≤ L′[|t1 − t2|+ |x1 − x2|2],

|αm(t,x)| ≤ L′(1 +
√
‖π‖+ |x|2).

(46)

Thus, the inequality (43) follows from Theorem 1.
We next prove the inequality (41). As before, we will focus on proving the case

of fictitious play in the sequel, and we claim that the statements also hold for policy
update using a similar argument.

Recalling the {Xπ
tk
}0≤k≤NT−1 in (34), we then define the Euler-type scheme for

BSDE system (9) as follows:
Y π
tk

= E[Y π
tk+1
|Xtk ] + Ȟ(tk,X

π
tk
,Zπtk)∆tk, Y π

T = g(Xπ
T ),

Zπtk =
1

∆tk
E[(Y π

tk+1
)ᵀ∆Wk|Xπ

tk
], ∀k = 0, 1, . . . , NT − 1.

With Assumptions 1 and 2, classical estimations of the discretization error gives

sup
0≤t≤T

[E|Xt −Xπ
π(t)|2 + E|Yt − Y π

π(t)|2] +

∫ T

0

E‖Zt −Zππ(t)‖2F dt ≤ C‖π‖. (47)

For the Z-part error, we decompose it into two terms by the Cauchy-Schwartz
inequality:∫ T

0

E‖Zt−Zπ,m+1
π(t) ‖2F dt ≤ 2

∫ T

0

E‖Zt−Zm+1
t ‖2F dt+2

∫ T

0

E‖Zm+1
t −Zπ,m+1

π(t) ‖2F dt.

(48)
A similar inequality can be written on the Y -part error. For both of them, the
second term is taken care by applying Theorem 1 to (Y m

t ,Zmt ). More precisely,
applying Theorem 1 with Assumptions 2–4, one has:

sup
t∈[0,T ]

E|Y m+1
t − Y π,m+1

π(t) |2 +

∫ T

0

E‖Zm+1
t −Zπ,m+1

π(t) ‖2F dt

≤ C
[
‖π‖+ E|Y π,m+1

T − g(Xπ
T )|2

]
, (49)

where (Y π,m
π(t) ,Z

π,m
π(t) ) is defined in (34). For the first term in (48), we recall the

inequality (45) (choosing β = β0 + 1) and deduce
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0

E‖Zt −Zm+1
t ‖2F dt ≤ C

∫ T

0

E|α∗t −αm(t,Xt)|2 dt

≤ C[

∫ T

0

E|α∗t −απ,mπ(t)|2 dt+ ‖π‖], (50)

where we have used ∫ T

0

E|απ,mπ(t) −αm(t,Xt)|2 dt ≤ C‖π‖ (51)

as a consequence of (46) and (47). Combining (48)–(50), we claim that∫ T

0

E‖Zt −Zπ,m+1
π(t) ‖2F dt

≤ C[

∫ T

0

E|α∗t −απ,mπ(t)|2 dt+ ‖π‖+ E|Y π,m+1
T − g(Xπ

T )|2]. (52)

Using equations (44), (49) and (51), we can similarly obtain that

sup
0≤t≤T

E|Yt−Y π,m+1
π(t) | ≤ C[

∫ T

0

E|α∗t−απ,mπ(t)|2 dt+‖π‖+E|Y π,m+1
T −g(Xπ

T )|2]. (53)

We next derive an estimate that is useful in controlling the α-part error. We
first require ηε > β0, then we have

NT−1∑
k=0

eηtkE‖Zπtk −Z
π,m+1
tk

‖2F∆tk =

∫ T

0

eηπ(t)E‖Zππ(t) −Zπ,m+1
π(t) ‖2F dt

≤ 3

∫ T

0

eηt[E‖Zt −Zm+1
t ‖2F + E‖Zt −Zππ(t)‖2F + E‖Zm+1

t −Zπ,m+1
π(t) ‖2F ] dt

≤ 3

∫ T

0

eηtE‖Zt −Zm+1
t ‖2F dt+ C(η)

[
‖π‖+ E|Y π,m+1

T − g(Xπ
T )|2

]
≤ C

η − β0

∫ T

0

eηtE|α∗t −απ,mπ(t)|2 dt+ C(η)
[
‖π‖+ E|Y π,m+1

T − g(Xπ
T )|2

]
, (54)

where we have used the Cauchy-Schwart inequality, inequalities (45), (47), (49) and
(51).

For the α-part error, it suffices to control
∫ T
0
eηtE|α∗t −απ,mπ(t)|2 dt and we plan to

(1) express I :=
∑NT−1
k=0 eηtkE|α∗− α̃π,m+1|2(tk,X

π
tk

)∆tk in terms of
∫ T
0
eηtE|α∗t −

απ,mπ(t)|2 dt;

(2) obtain the estimate of II :=
∑NT−1
k=0 eηtkE|α∗ − απ,m+1|2(tk,X

π
tk

)∆tk ≤ I by
the property (37) of PNπ ;

(3) take care the difference between the α-part error and II by III which is defined
by:

III :=

∫ T

0

eηtE|α∗t −α∗(π(t),Xπ
π(t))|2 dt ≤ C(η)‖π‖. (55)

Step (2) follows from the fact that απ,m+1 is defined as the projection of α̃π,m+1

into N π, and that α∗ ∈ N π if viewed as a function on T × Rn. Step (3) is a
consequence of Assumption 4 and (47). So it remains to address step (1).
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To this end, we define απ,∗tk = α(tk,X
π
tk
,Zπtk), then απ,∗tk = a(tk,X

π
tk
,απ,∗tk ,Z

π
tk

),

and α̃π,mtk = α̃π,m(tk,X
π
tk

), then α̃π,m+1
tk

= a(tk,X
π
tk
,απ,mtk ,Zπ,m+1

tk
). Thus, for

any λ > 0, using the AM-GM inequality

I ≤(1 + λ−1)

NT−1∑
k=0

eηtkE|απ,∗tk − α̃
π,m+1
tk

|2∆tk

+ C(λ)

NT−1∑
k=0

eηtkE|απ,∗tk −α∗(tk,Xπ
tk

)|2∆tk

:=(1 + λ−1)I(1) + C(λ)I(2). (56)

For term I(1), using (54) and the Lipschitz condition of a in Assumption 2(2), we
obtain

I(1) ≤
NT−1∑
k=0

eηtk
[
LE‖Zπtk −Z

π,m+1
tk

‖2F + aαE|απ,∗tk −α
π,m
tk
|2
]

∆tk

≤[aα(1 + λ−1) +
C

η − β0
]

∫ T

0

eηtE|α∗t −απ,mπ(t)|2 dt

+ C(λ, η)
[
‖π‖+ E|Y π,m+1

T − g(Xπ
T )|2

]
,

where we remove C(·)’s dependence on aα using aα < 1 and we have also used∫ T

0

eηtE|α∗t−απ,∗π(t)|2 =

∫ T

0

eηtE|α(t,Xt,Zt)−α(π(t),Xπ
π(t),Z

π
π(t)|2 dt ≤ C(η)‖π‖.

Combining the last inequality with (55) yields the estimate I(2) ≤ C(η)‖π‖. Now

plugging the estimates of I(1) and I(2) into (56) and following step (1)–(3), we obtain:∫ T

0

eηtE|α∗t −απ,m+1
π(t) |2 dt

≤(1 + λ−1)

∫ T

0

eηtE|α∗ −απ,m+1|2(π(t),Xπ
π(t)) dt+ C(λ)III

≤(1 + λ−1)eη‖π‖II + C(λ)III ≤ (1 + λ−1)II + C(λ)III + C(λ, η)‖π‖
≤(1 + λ−1)2I(1) + C(λ)(I(2) + III) + C(λ, η)‖π‖

≤(1 + λ−1)2[aα(1 + λ−1) +
C

η − β0
]

∫ T

0

E|α∗t −απ,mπ(t)|2 dt

+ C(λ, η)
[
‖π‖+ E|Y π,m+1

T − g(Xπ
T )|2

]
,

where we have used eη‖π‖II ≤ II + C(η)‖π‖II ≤ II + C(η)‖π‖∑NT−1
k=0 (E|Xπ

tk
|2 +

1)∆tk ≤ II + C(η)‖π‖. Let λ and ηε be large enough such that (1 + λ−1)2[aα(1 +

λ−1) +
C

ηε − β0
] ≤ aα + ε, then for η > ηε,

∫ T

0

eηtE|α∗t −απ,mπ(t)|2 dt ≤ C(η, ε)[‖π‖+ (aα + ε)m
∫ T

0

eηtE|α∗t −απ,0π(t)|2 dt

+

m∑
j=1

(aα + ε)m−jE|g(Xπ
T )− Y π,j

T |2].
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Combining the above inequality with inequality (52) and (53), we obtain our result.

Here are some remarks regarding Theorem 3 on its implication for numerical
algorithms. The primary concern is how we can implement the projection mapping
in practice if wished. Note that we choose 1/2-Hölder continuity in time in As-
sumption 4 for the generality of the result, although numerically it is challenging to
guarantee the Hölder continuity. If we replace that with the Lipschitz continuity in
time, as a more restrictive condition, and instead consider the projection onto the
space with the Lipschitz continuity, the estimates still hold. Accordingly, there are
some practical approaches in the literature on ensuring the Lipschitz continuity of
deep neural networks that can be introduced in our algorithms. For instance, [23]
gives an efficient and accurate estimation of Lipschitz constants for deep Neural net-
works, and [59] further extends it for robust training with regularization to keep the
Lipschitz constant of neural networks small. In practice, Wasserstein GAN [2, 28]
has shown remarkable performance when using weight clipping as a loose but ef-
ficient way to impose the Lipschitz constraint. Therefore we can leverage similar
techniques to keep the Lipschitz regularity during the training of the deep fictitious
play. Also, notice that in the above, we define a single projection N π from the
space of all players’ strategies απ,m, in consideration of the simplicity of the state-
ment. One can also use the projection of αi,π,m for each player with possibly easier
numerical implementation and the same theoretical guarantee.

4.3. On the ε-Nash equilibrium. This section combines the previous analysis,
identifies the ε-Nash equilibrium produced by the deep fictitious play, and evaluates
its performance on the original game.

Theorem 4. Under Assumptions 1–4, if α̂ is a policy function on [0, T ]×Rn and
Lipschitz in x, and ∫ T

0

E|α∗(t,Xt)− α̂(t,Xt)|2 dt ≤ ε, (57)

where Xt is the forward component of (9), then

(1) Given α̂, the game values produced by α̂ are near the Nash equilibrium, i.e.,

|J̃0(α̂)− J0(α∗)|2 ≤ Cε, and |J0(α̂)− J0(α∗)|2 ≤ Cε, (58)

where J̃0(α̂) = [J̃1
0 (α̂), . . . , J̃N0 (α̂)] with J̃ i0(α̂) := infβi∈Ai J

i
0(βi, α̂−i), J0(α̂) =

[J1
0 (α̂), . . . , JN0 (α̂)] with J i0 defined in (3). Thus, there exists 0 < εi � 1 such

that
∑N
i=1 ε

2
i ≤ Cε and

J i0(βi, α̂−i) ≥ J i0(α̂)− εi, ∀βi ∈ Ai and i ∈ I. (59)

Here C is a constant depending on T , L, M and M ′ which may vary from line
to line in the proof.

(2) The generated game paths Xα̂
t are close to the paths Xα∗

t associated with the
Nash equilibrium:

E sup
0≤t≤T

|Xα∗

t −Xα̂
t |2 ≤ C(λ)ελ,

where Xα∗

t and Xα̂
t follow (1) with the true Nash equilibrium strategy α∗ and

α̂. Here λ is an arbitrary constant in (0, 1), and C(λ) is a constant depending
on T , L, M , M ′ and λ.
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Immediately, we have the following corollary.

Corollary 1. Under Assumptions 1–4, assuming the sub-problems (34) are solved
accurately enough at all stages, i.e.,

E|g(Xπ
T )− Y π,j

T |2 ≤ Cε2, ∀j ≤ m, (60)

here C is a constant depending only on T , L, M , M ′, K, L′ and E|x0|2. Then, for
sufficiently large m and small mesh size ‖π‖, the strategy αm defined in (42), as an
interpolated policy based on the deep fictitious play, forms an ε-Nash equilibrium.

Proof. This follows from (59) in Theorem 4, with the assumptions satisfied accord-
ing to equations (41), (46) and (51).

Remark 6. As mentioned in Remark 3, there are still some theoretical issues
unsolved regarding the approximation error and optimization of the deep BSDE
method. The analysis of the deep fictitious play method has similar issues that
remain open. To circumvent these issues and have a rigorous statement for ε-Nash
equilibrium, we introduce assumption (60). In practice, an observable proxy of
(60) is the training loss of the deep BSDE method evaluated by its Monte Carlo
counterpart.

Proof of Theorem 4. The proof of item (1) relies on the estimates of BSDEs pre-

sented previously. Let (Xt, Y
i,FP
t , Zi,FPt ) solve (15) with α−i,m replaced by α̂−i,

where the superscript FP is used to emphasize that the fictitious play strategy
in adopted at the decoupling step. By the nonlinear Feynman-Kac formula (cf.

[57, 21, 58]) and the associated HJB equation, we have E[Y i,FP0 ] = J̃ i0(α̂). There-
fore, we have

|J̃0(α̂)− J0(α∗)|2 = |E[Y FP
0 ]− E[Y0]|2 ≤ E|Y FP

0 − Y0|2. (61)

To bound the above term, we claim a stronger result:

sup
0≤t≤T

E|Y FP
t − Yt|2 +

∫ T

0

E‖ZFP
t −Zt‖2F dt ≤ Cε, (62)

where (Yt,Zt) solves (9), Y FP
t = [Y 1,FP

t , . . . , Y N,FPt ]ᵀ, and ZFP
t = [Zi,FPt , . . . ,

ZN,FPt ]ᵀ, as a consequence of (44), (45) and (57).

If we let (Xt, Y
i,PU
t , Zi,PU

t ) solve (17) with αm replaced by α̂, where the super-
script PU emphasizes that policy update is used at the decoupling step, an argument
similar to (61) and (62) can give the second inequality in (58). Then (59) is obtained

by observing J i0(βi, α̂−i) ≥ J̃ i0(α̂), ∀βi ∈ Ai, and |J̃0(α̂)− J0(α̂)|2 ≤ Cε.
We now prove item (2). Under the standing assumptions, we first observe that

b1(t,x) := b(t,x,α∗(t,x)) = Σ(t,x)φ(t,x,α∗(t,x)) and b2(t,x) := b(t,x, α̂(t,x)) =
Σ(t,x)φ(t,x, α̂(t,x)) are Lipschitz in x. Thus Xα̂

t is well-defined, and the standard
estimates in SDE gives (cf. [71, Theorem 3.2.4])

E sup
0≤t≤T

|Xα∗

t −Xα̂
t |2 ≤ CE

[(∫ T

0

|b1(t,Xα∗

t )− b2(t,Xα∗

t )|dt
)2]

. (63)

To bound the right-hand side above with the condition (57), let us define a new

probability measure Q, and denote by Z the Radon-Nikodym derivative: dQ
dP ≡

Z := exp

{
−
∫ T
0
φα
∗

t · dWt− 1
2

∫ T
0
|φα∗t |2 dt

}
, where φα

∗

t := φ(t,Xα
∗

t ,α∗(t,Xα
∗

t )).

By Assumptions 2, the Novikov condition is fulfilled. Thus Q ∼ P, and WQ
· :=
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W· +
∫ ·
0
φα
∗

t ds is a standard Brownian motion under Q. In particular, the process

Xα∗

t can be rewritten as Xα∗

t = x0 +
∫ t
0

Σ(s,Xα∗

s ) dWQ
s , and immediately from

(57) we have ∫ T

0

EQ|α∗(t,Xα∗

t )− α̂(t,Xα∗

t )|2 dt ≤ ε, (64)

where we denote by EQ the expectation under Q. We next compute a bound for
Z−γ under Q, for γ > 2:

EQ[Z−γ ] =EQ

[
exp

{
γ

∫ T

0

φα
∗

t · dWQ
t −

γ

2

∫ T

0

|φα∗t |2 dt

}]
≤E1/2

Q

[
exp

{
2γ

∫ T

0

φα
∗

t · dWQ
t − 2γ2

∫ T

0

|φα∗t |2 dt

}]
× E1/2

Q

[
exp

{
(2γ2 − γ)

∫ T

0

|φα∗t |2 dt

}]
≤eCT (γ2− 1

2γ),

where EpQ denotes (EQ[·])p, and we use the Cauchy-Schwartz inequality, the martin-

gale property, and the boundedness of φ (Assumption 2).
Therefore, we have

E
[(∫ T

0

|b1(t,Xα∗

t )− b2(t,Xα∗

t )|dt
)2]

≤E1− 1
γ

Q

[(∫ T

0

|b1(t,Xα∗

t )− b2(t,Xα∗

t )|dt
) 2γ
γ−1
]
E

1
γ

Q [Z−γ ]

≤C(γ)E
1− 2

γ

Q

[(∫ T

0

|b1(t,Xα∗

t )− b2(t,Xα∗

t )|dt
)2]

× E
1
γ

Q

[(∫ T

0

|b1(t,Xα∗

t )− b2(t,Xα∗

t )|dt
)4]

≤C(γ)E
1− 2

γ

Q

[ ∫ T

0

|α∗(t,Xα∗

t )− α̂(t,Xα∗

t )|2 dt

]
≤ C(γ)ε1−

2
γ ,

where we have consecutively used Hölder’s inequality, the estimate of EQ[Z−γ ],
Hölder’s inequality again, the Lipschitz property of φ(t,x,α), the boundedness of
Σ and b (Assumption 2), and the estimate (64). Here C(γ) is a constant depending
on the T , L, M , M ′ and γ, which may vary from line to line. With (63) and noticing
0 < 1− 2

γ < 1 we conclude.

In practice, the game is played on T rather than [0, T ]. Therefore, we define a
discrete version of the stochastic differential game (1)–(2) and evaluate the perfor-
mance of απ,m in section 4.2 on the discrete game. To be precise, given a policy

function απ on T × Rn, we define the discrete state process Xπ,απ

tk
and discrete

individual cost functional Jπ,i0 (απ) as follows

Xπ,απ

tk+1
= Xπ,απ

tk
+ b(tk,X

π,απ

tk
,απ(tk,X

π,απ

tk
))∆tk + Σ(tk,X

π,απ

tk
)∆Wk, (65)

Jπ,i0 (απ) = E[

NT−1∑
j=0

f i(tk,X
π,απ

tk
,απ(tk,X

π,απ

tk
))∆tk + gi(Xπ,απ

T )],
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with Xπ,απ

0 = x0. Note that when there are both π and α in the superscript of X,
it refers to the discrete version of the original state (1), and when there is only π in

the superscript, it refers to the discrete version of Xt = x0 +
∫ t
0

Σ(s,Xs) dWs. We
then state a discrete version of Theorem 4.

Theorem 5. Under Assumptions 1–4, if α̂π is a policy function on T ×Rn, Lips-
chitz in x and Hölder continuous with t: |α̂π(t1,x1)− α̂π(t2,x2)|2 ≤ L′[|t1 − t2|+
|x1 − x2|2], and ∫ T

0

E|α∗(t,Xt)− α̂π(π(t),Xπ
π(t))|2 dt ≤ ε, (66)

then

(1) The value of the discrete game produced by α̂π is close to the one associated
with the Nash equilibrium of the continuous game, i.e.,

|Jπ0 (α̂π)− J0(α∗)|2 ≤ C[ε+ ‖π‖],
where Jπ0 (α̂π) = [Jπ,10 (α̂π), . . . , Jπ,N0 (α̂π)]. Moreover, there exists 0 < εi � 1

such that
∑N
i=1 ε

2
i ≤ C[ε + ‖π‖] and J i0(βi, α̂π,−i) ≥ Jπ,i0 (α̂π) − εi, ∀βi ∈

Ai and i ∈ I. Here C is a constant depending on T , L, M , M ′, K, L′ and
E|x0|2, which may vary from line to line in the proof.

(2) The generated game paths Xπ,α̂π

tk
are close to the paths Xα∗

t associated with
the Nash equilibrium:

E sup
0≤t≤T

|Xα∗

t −Xπ,α̂π

π(t) |2 ≤ C(λ)[ε+ ‖π‖]λ,

where Xα∗

t follows (1) with the true Nash equilibrium strategy α∗ and Xπ,α̂π

tk

follows (65), and C(λ) is a constant depending on T , L, M , M ′, K, L′, E|x0|2,
and λ (an arbitrary constant in (0, 1)).

Proof. Let α̂(t,x) = inft′∈T [α̂π(t′,x) + L′|t′ − t| 12 ], then with an argument similar
to that in Theorem 3, α̂ satisfies:

|α̂(t1,x1)− α̂(t2,x2)|2 ≤ L′[|t1 − t2|+ |x1 − x2|2]. (67)

By (47), (66) and (67), we have∫ T

0

E|α∗ − α̂|2(t,Xt) dt (68)

≤2

∫ T

0

E|α∗(t,Xt)− α̂π(π(t),Xπ
π(t))|2 dt+ 2

∫ T

0

E|α̂(t,Xt)− α̂π(π(t),Xπ
π(t))|2 dt

≤C[‖π‖+ ε].

By the regularity of α̂ (c.f. (67)) and the standard estimates of the Euler Scheme
of SDE (c.f. [47, Theorem 10.2.2]), we can obtain

E sup
0≤t≤T

|Xα̂
t −Xπ,α̂π

π(t) |2 ≤ C‖π‖. (69)

Observing that

Jπ0 (α̂π)− J0(α̂)

=E
∫ T

0

[f(π(t),Xπ,α̂π

π(t) , α̂
π(π(t),Xπ,α̂π

π(t) ))− f(t,Xα̂
t , α̂(t,Xα̂

t ))] dt



CONVERGENCE OF DEEP FICTITIOUS PLAY 311

+ E[g(Xπ,α̂π

T )− g(Xα̂
T )],

with (67), (69) and Assumption 2, one has

|Jπ0 (α̂π)− J0(α̂)|2 ≤ C‖π‖. (70)

Finally, with (68), (69), (70) and Theorem 4, we reach all the conclusions of this
theorem.

5. Numerical results. We supplement our theoretical analysis with some numeri-
cal results in a symmetric game. We shall mainly focus on how deep BSDE performs
when combined with policy update strategy in the decoupling step, i.e., when solv-
ing (17). The same example using fictitious play strategy has been studied in [31]
to where we refer readers for further details. As for numerical performances, We
did not observe a prominent difference between the two decoupling methods. For
games with asymmetric players implemented by the deep fictitious play, we refer to
a recent work on modeling pandemic policies [68].

The example we present here is an inter-bank game concerning the systemic risk
[16]. Assume an inter-bank market with N banks, and denote by Xi

t ∈ R the log-
monetary reserves of bank i at time t. Its dynamics are modeled as the following
diffusion processes,

dXi
t = [a(Xt−Xi

t)+α
i
t] dt+σ(ρdW 0

t +
√

1− ρ2 dW i
t ), Xt =

1

N

N∑
i=1

Xi
t , i ∈ I.

Here a(Xt − Xi
t) represents the rate at which bank i borrows from or lends to

other banks in the lending market, while αit denotes its control rate of cash flows
to a central bank. The standard Brownian motions {W i

t }Ni=0 are independent, in
which {W i

t , i ≥ 1} stands for the idiosyncratic noises and W 0
t denotes the systemic

shock, or so-called common noise in the general context. To describe the model in
the form of (1), we concatenate the log-monetary reserves Xi

t of N banks to form
Xα
t = [X1

t , . . . , X
N
t ]ᵀ. The associated drift term and diffusion term are defined as

b(t,x,α) = [a(x̄− x1) + α1, . . . , a(x̄− xN ) + αN ]ᵀ ∈ RN×1,

Σ(t, x) = [σρ1N , σ
√

1− ρ2IN ] ∈ RN×(N+1),

and Wt = (W 0
t , . . . ,W

N
t ) is (N + 1)-dimensional, where x̄ = 1

N

∑N
i=1 x

i, 1N is the
N -vector of ones and IN is the N ×N identity matrix. The cost functional (3) that
player i wishes to minimize has the form

f i(t,x,α) =
1

2
(αi)2 − qαi(x̄− xi) +

ε

2
(x̄− xi)2, gi(x) =

c

2
(x̄− xi)2.

Under such specifications, the solution of this game admits a quadratic form whose
coefficient functions can be solved from a Riccati equation. We direct the interested
readers to [16, 31] for the detailed interpretation of this model and the explicit char-
acterization of the solution. Note that such a setting does not satisfy Assumption 2.
However we can still observe convergence in the numerical experiment, showing the
robustness of the proposed algorithms and potential improvement of our theoretical
analysis. We also remark that Assumption 2 can be satisfied if one truncates the
f i and gi functions at large constants.

In our numerical computation, we choose N = 10, T = 1, a = 0.1, q = 0.1, c =
0.5, ε = 0.5, ρ = 0.2, σ = 1. We discretize the time [0, T ] into NT = 40 intervals

and specify the hypothesis spaces N i′

0 and {N i
k}NT−1k=0 for each player i as follows.
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Figure 1. A sample path for all N = 10 players in the inter-bank
game, obtained from decoupling the problem by policy update and
solving the sub-problems with the Deep BSDE method. Top: the
optimal state process Xi

t (solid lines) and its neural networks ap-

proximation X̂i
t (circles), under the same realized path of Brownian

motion. Bottom: comparisons of the strategies αit and α̂it (dashed
lines).

We parametrize V i(0,x) (the superscript m is dropped again for simplicity) with

a neural network, denoted by NetV (x), as the space N i′

0 of Y i0 . We also param-
etrize ∇xV i(t,x) with another network, denoted by Net∇V (t,x), as the space of

{N i
k}NT−1k=0 , in which the timestamp tk is provided as another dimension of the input.

This choice is in consistence with our theoretical analysis in Theorem 3 involving
the linear interpolation of the strategy in time.

In this numerical example, we use fully-connected feedforward networks to in-
stantiate both NetV (x) and Net∇V (t,x). Since the problem is homogeneous among
all players, we let two networks share the same parameters among all players and
only solve player 1’s problem for updating the parameters. Both networks consist
of three hidden layers with a width of 40. The activation function is hyperbolic
tangent, and the technique of batch normalization [43] is adopted right after each
linear transformation and before activation. For simplicity, we do not impose the
projection procedure discussed in Section 4.2.

Regarding the optimization, the loss function in Deep BSDE is differentiable
with respect to the network parameters. We can use backpropagation to derive the
gradient of the loss function with respect to all the parameters in the neural networks
and employ stochastic gradient descent (SGD) to optimize all the parameters. In
this work, we use Adam optimizer [46] to optimize network parameters with constant
learning rate 5e-4 and batch size 256. The parameters are updated by 30000 steps
in total.

To implement the algorithm, we also need to specify the distribution of the initial
state x0 in (15) or (17). We follow the same way as in [31]. Each component of
x0, as the initial state of each player, is sampled independently from the uniform
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distribution on [−δ0, δ0]. δ0 is chosen such that in the process driven by the optimal
policy α∗, the standard deviation of each component is approximately δ0. In other
words, δ0 is determined as a fixed-point. The rationale for such a procedure is to
make sure the data generated for the learning is representative enough in the whole
state space.

Note that our technical assumptions are not strictly satisfied in this example,
since f , g are not Lipschitz continuous, φ is not uniform bounded, and T is not
sufficiently small. Nevertheless, our numerical results show that the deep BSDE
method can solve this game when combined with policy update. In particular,
we compute the relative error of controls (proportional to the gradient of value
function):

RSE =

∑
0≤k≤NT−1

1≤j≤J

(
∇xV 1(tk,x

(j)
tk

)−∇xV̂ 1(tk,x
(j)
tk

)
)2

∑
0≤k≤NT−1

1≤j≤J

(
∇xV 1(tk,x

(j)
tk

)−∇xV
1
)2 ,

where V 1 is the true solution (of player 1), V̂ 1 is the prediction from the neural

networks, and V̄ 1 (resp. ∇xV
1
) is the average of V 1 (resp. ∇xV 1) evaluated at all

the indices j, k. To compute the relative error, we generate J = 256 ground truth

sample paths {x(j)
tk
}NT−1k=0 using Euler scheme based on (17) and the true optimal

strategy. Note that the superscript (j) here does not mean the player index, but
the jth path for all players. The final RSE for the Deep BSDE method is 0.27%.
Figures 1 presents one sample path for each player of the optimal state process Xi

t

and the optimal control αit vs. their approximations X̂i
t , α̂

i
t, with good agreement.

6. Conclusion. In this paper, we established the theoretical foundation for the
deep fictitious play algorithm for finding Markovian Nash equilibrium proposed in
[31]. Specifically, we proved the following three things: 1. The solutions of the de-
coupled sub-problems, if solved exactly and repeatedly, converge to the true Nash
equilibrium; 2. The numerical error of each sub-problem, if solved by deep BSDE
individually and repeatedly, converges to zero subject to the universal approxima-
tion capacity of neural networks; 3. The interpolated strategy based on the deep
fictitious play algorithm forms a ε-Nash equilibrium, after sufficiently many stages
m and with sufficiently small mesh ‖π‖. We also generalize the algorithm by propos-
ing a new approach to decouple the games, and present a numerical example in the
end to show the empirical convergence beyond the technical assumptions used in
the theorems. In the future, with this solidly established theory of deep fictitious
play, we aim to study the competitions in finance, including P2P lending platforms
from the Fintech industry and insurance markets. We also plan to generalize the
theory and algorithm to stochastic differential games with delays.
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Appendix A. List of some important notations. General Setting

• Ai = Rdα : the space of player i’s strategy αi

• α = (α1, . . . , αN ): a collection of all players’ strategies
• A = ⊗Ni=1Ai = RNdα : the space for the joint control α
• α−i = (α1, . . . , αi−1, αi+1, . . . , αN ): a collection of all players’ strategies ex-

cept player i
• Xα

t ∈ Rn: the common state process controlled by a collection of Markovian
strategies α, defined in (1)

• V i(t,x): the value function of player i
• V = [V 1, . . . , V N ]: the value functions of all players
• p = [p1, . . . , pN ] ∈ Rk×N : adjoint variables
• Hi(t,x,α, pi) = φ(t,x,α) ·pi+f i(t,x,α): the Hamiltonian function of player
i, defined in (5)

• H = [H1, . . . ,HN ]ᵀ: the collection of all players’ Hamiltonian functions,
defined in (5)

• ai(t,x,α−i, pi) = arg minαi∈Ai H
i(t,x, (αi,α−i), pi): the minimizer of the ith

Hamiltonian, defined in (7)

http://www.ams.org/mathscinet-getitem?mr=MR1701517&return=pdf
http://dx.doi.org/10.1007/s004409970001
http://dx.doi.org/10.1007/s004409970001
http://dx.doi.org/10.23919/ACC50511.2021.9482773
http://dx.doi.org/10.23919/ACC50511.2021.9482773
http://dx.doi.org/10.1103/PhysRevResearch.2.033429
http://dx.doi.org/10.1103/PhysRevResearch.2.033429
http://www.ams.org/mathscinet-getitem?mr=MR4322044&return=pdf
http://dx.doi.org/10.1007/s42985-020-00062-8
http://dx.doi.org/10.1007/s42985-020-00062-8
http://www.ams.org/mathscinet-getitem?mr=MR2834000&return=pdf
http://dx.doi.org/10.1007/s11768-011-0313-y
http://dx.doi.org/10.1007/s11768-011-0313-y
http://dx.doi.org/10.1007/s11768-011-0313-y
http://www.ams.org/mathscinet-getitem?mr=MR2100268&return=pdf
http://dx.doi.org/10.1023/B:JOTA.0000043996.62867.20
http://dx.doi.org/10.1023/B:JOTA.0000043996.62867.20
http://www.ams.org/mathscinet-getitem?mr=MR1270015&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR3874585&return=pdf
http://dx.doi.org/10.1016/j.jcp.2018.08.029
http://dx.doi.org/10.1016/j.jcp.2018.08.029
http://dx.doi.org/10.1287/mnsc.2016.2531
http://dx.doi.org/10.2139/ssrn.3366314
http://dx.doi.org/10.2139/ssrn.3366314
http://arxiv.org/pdf/1904.05921
http://www.ams.org/mathscinet-getitem?mr=MR2668492&return=pdf
http://dx.doi.org/10.1239/jap/1276784895
http://www.ams.org/mathscinet-getitem?mr=MR3699487&return=pdf


CONVERGENCE OF DEEP FICTITIOUS PLAY 317

• Ĥi(t,x,α−i, pi) = Hi(t,x, (ai(t,x,α−i, pi),α−i), pi): the optimized Hamil-
tonian for player i given other players’ strategies α−i, defined in (16)

• Ĥi(t,x, ξ,γ,p) ≡ Hi(t,x, (γi, ξ−i), pi): used in (30), a slightly abuse of nota-
tion with (16)

• a = (a1, . . . , aN ): the collection of all players’ Hamiltonian minimizers
• α(t,x,p): the fixed point of α = a(t,x,α,p), defined in (8)
• Ȟ(t,x,p) := H(t,x,α(t,x,p),p): the minimized Hamiltonian vector
• α∗t = α(t,Xt,Σ

ᵀ(t,Xt)∇xV (t,Xt)) orα∗t = α∗(t,Xt): the Nash equilibrium
strategy processes of the N -player game

• | · |, ‖ · ‖F and ‖ · ‖S : the Euclidean norm, Frobenius norm and spectral norm

Algorithm

• αm = (α1,m, . . . , αN,m): all players’ strategies at stage m
• (αi;α−i,m): a short notation of (α1,m, . . . , αi−1,m, αi, αi+1,m, αN,m)
• V i,m+1: the problem value of player i at stage m+ 1 given others’ strategies
αm, defined in (12) for fictitious play (depending only on α−i,m) and (13) for
policy update

• αi,m+1(t,x) = arg minαi∈Ai H
i(t,x, (αi,α−i,m)(t,x),Σᵀ∇xV i,m+1(t,x)): the

update rule based on the value function solved from fictitious play or policy
update

• π: a partition of size NT on the time interval [0, T ], 0 = t0 < t1 < . . . < tNT =
T

• ‖π‖ := max0≤k≤NT−1 ∆tk: the step size of the time partition where ∆tk =
tk+1 − tk

• T = {t0, t1, . . . , tNT−1}: the set of time grids from the partition π
• π(t) = tk for t ∈ [tk, tk+1): a step function associated with the partition π

• Y m
t = [Y 1,m

t , . . . , Y N,mt ]ᵀ: the collection of backward processes Y i,mt at stage
m, defined in (15) for fictitious play or (17) for policy update, rewritten in
the vector form in (30)

• Xπ
tk

: the discretized path of X according to the time partition π, defined in
(34)

• Y π,m
tk

: the discretized path of Y at stage m, defined in (34)
• Xπ

0 = Xπ
t0 ,X

π
T = Xπ

tNt
: short notations

• Hπη : a Hilbert space on T × Rn with parameter η ≥ 0, defined in (36)
• N π: a closed convex subset of Hπη , defined below (36)
• PNπ,η: the projection from Hπη to N π

• απ,m+1(t,x): (m+ 1)th-stage policies defined on T ×Rn, whose update rules
are defined in (38)–(39)

• αm(t,x) = inft′∈T [απ,m(t′,x) + L′|t′ − t| 12 ]: the extension of the numerical
approximation απ,m(t, x) in time, defined in (42)

Appendix B. Supporting Propositions for Assumption 3. We prove the
following propositions in this section.

Proposition 6. Under Assumptions 1 and 2, there exists a constant T0 > 0 only
depending on L and M , such that Assumption 3 is satisfied when T ≤ T0.

Proposition 7. Under Assumptions 3, the BSDE system (9) has a unique adapted
solution satisfying inequality (27).
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Proof of Proposition 6. Fix Mz > 0, we use PMz (Z) to denote the projection from

Rk×N to {Z ∈ Rk×N : ‖Z‖2S ≤Mz}, and use PMz
(Z)i for its ith column. Let H̃ =

[H̃1, . . . , H̃N ]ᵀ with H̃i(t,x,p) = φ(t,x,α(t,x,p)) · PMz
(p)i + f i(t,x,α(t,x,p)),

then its Lipschitz constants with respect to x and p are computed by

|H̃(t,x1,p1)− H̃(t,x2,p2)|2

≤3Mz|φ(t,x1,α(t,x1,p1))− φ(t,x2,α(t,x2,p2))|2

+ 3M‖PMz
(p1)− PMz

(p2)‖2F
+ 3|f(t,x1,α(t,x1,p1))− f(t,x2,α(t,x2,p2))|2

≤3(MzL+ L)|x1 − x2|2 + 3M‖p1 − p2‖2F
+ 3(MzL+ L)|α(t,x1,p1)−α(t,x2,p2)|2

≤3(Mz + 1)(L2 + L)|x1 − x2|2 + 3[M + (MzL+ 1)L]‖p1 − p2‖2F .
Now define Mz = 2M(L + 1) and M = 3(2ML + 2M + 1)(L2 + L). Consider the

solution (Xt,x
s , Ỹ t,x

s , Z̃t,xs ) to the following BSDE system
Xt,x
s = x+

∫ s

t

Σ(u,Xt,x
u ) dWu,

Ỹ t,x
s = g(Xt,x

T ) +

∫ T

s

H̃(u,Xt,x
u , Z̃t,xu ) du−

∫ T

s

(Z̃t,xu )ᵀ dWu,

for any (t,x) ∈ [0, T ] × Rn. Then, for any t0 ∈ [0, T ] and x1,x2 ∈ Rn, we define
δXt, δYt, δZt, δHt and δΣt as follows:

δXt = Xt0,x1

t −Xt0,x2

t , δYt = Ỹ t0,x1

t − Ỹ t0,x2

t ,

δZt = Z̃t0,x1

t − Z̃t0,x2

t ,

δHt = H̃(t,Xt0,x1

t , Z̃t0,x1

t )− H̃(t,Xt0,x2

t , Z̃t0,x2

t ),

δΣt = Σ(t,Xt0,x1

t )− Σ(t,Xt0,x2

t ).

Then, we have dδXt = δΣt dWt, and dδYt = −δHt dt + (δZt)
ᵀ dWt. Using Itô’s

lemma and taking the expectation on both sides yields

E|δXt|2 = |x1 − x2|2 +

∫ t

t0

E‖δΣs‖2F ds ≤ |x1 − x2|2 + L

∫ t

t0

E|δXs|2 ds,

and by Grönwall’s inequality, we have E|δXt|2 ≤ eL(t−t0)|x1 − x2|2. Similarly, we
deduce that

E|δYt|2

=E|δYT |2 +

∫ T

t

E
[
2δHs · δYs − ‖δZs‖2F

]
ds

≤LE|δXT |2 +

∫ T

t

{
ME|δYs|2 + (M)−1 [ME|δXs|2 +ME‖δZs‖2F

]
− E‖δZs‖2F

}
ds

≤(L+ T − t0)eL(T−t0)|x1 − x2|2 +M

∫ T

t

E|δYs|2 ds,

and by Grönwall’s inequality, we have |δYt0 |2 ≤ (L+T − t0)e(M+L)(T−t0)|x1−x2|2.
Following the argument in [52, Theorem 3.1], we define u(t,x) = Ỹ t,x

t and deduce

|u(t0,x1)− u(t0,x2)|2 ≤ (L+ T )e(M+L)T |x1 − x2|2. Therefore, we claim

‖∇xu(t,x)‖2S ≤ (L+ T )e(M+L)T a.s. with the Lebesgue measure on Rn,
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for all t ∈ [0, T ]. Also noticing that Z̃0,x0

t = (Σᵀ∇xu)(t,Xt) P-a.s. (cf. [52,
Theorem 3.1]),

‖(Σᵀ∇xu)(t,x)‖2S ≤ ‖Σ(t,x)‖2S‖∇xu(t,x)‖2S ≤M(L+ T )e(M+L)T ,

and the law of Xt is absolute continuous with respect to the Lebesgue measure on
Rn, we can get

‖Z̃0,x0

t ‖2S ≤M(L+ T )e(M+L)T = M(L+ T )e[3(2ML+2M+1)(L2+L)+L]T := M(T ),

P-a.s., ∀t ∈ [0, T ]. Therefore, if M(T ) ≤ 2M(L + 1), (Xt, Ỹ
0,x0

t , Z̃0,x0

t ) is the

desired solution to the BSDE system (9) with ‖Z̃0,x0

t ‖2S ≤ 2M(L + 1), which can
be fulfilled if T is small enough.

Proof of Proposition 7. Let (Xt,Y
′
t ,Z

′
t) be another adapted solution of the BSDE

system (9) satisfying inequality (27). Define δYt = Y ′t − Yt, δZt = Z ′t − Zt and
δHt = Ȟ(t,Xt,Z

′
t)−Ȟ(t,Xt,Zt). Using Itô’s lemma, taking expectation on both

side and using δYT = 0, we deduce that

E|δYt|2 +

∫ T

t

E‖δZs‖2F ds = 2

∫ T

t

E[δHs · δYs] ds

≤ λ
∫ T

t

E|δYs|2 ds+ λ−1
∫ T

t

E|δHs|2 ds, (71)

for any λ > 0. By

δHt =φ(t,Xt,α(t,Xt,Z
′
t)) ·Z ′t − φ(t,Xt,α(t,Xt,Zt) ·Zt

+ f(t,Xt,α(t,Xt,Z
′
t))− f(t,Xt,α(t,Xt,Zt))

=φ(t,Xt,α(t,Xt,Z
′
t)) · (Z ′t −Zt)

+ [φ(t,Xt,α(t,Xt,Z
′
t))− φ(t,Xt,α(t,Xt,Zt)] ·Zt

+ f(t,Xt,α(t,Xt,Z
′
t))− f(t,Xt,α(t,Xt,Zt)),

we have |δHt|2 ≤ Lz‖δZt‖2F with Lz = 3[M +M ′L2 +L2]. Taking λ = Lz in (71),

we deduce that E|δYt|2 ≤ Lz
∫ T
t
E|δYs|2 ds and therefore Y ′t ≡ Yt by Grönwall’s

inequality. We then have
∫ T
0
E‖δZt‖2F dt = 0 from the first equality in (71), which

implies Z ′t ≡ Zt.
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