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Abstract
Stochastic control problems with delay are challenging due to the path-dependent fea-
ture of the system and thus its intrinsic high dimensions. In this paper, we propose
and systematically study deep neural network-based algorithms to solve stochastic
control problems with delay features. Specifically, we employ neural networks for
sequence modeling (e.g., recurrent neural networks such as long short-term memory)
to parameterize the policy and optimize the objective function. The proposed algo-
rithms are tested on three benchmark examples: a linear-quadratic problem, optimal
consumption with fixed finite delay, and portfolio optimization with complete mem-
ory. Particularly, we notice that the architecture of recurrent neural networks naturally
captures the path-dependent feature with much flexibility and yields better perfor-
mance with more efficient and stable training of the network compared to feedforward
networks. The superiority is even evident in the case of portfolio optimization with
complete memory, which features infinite delay.
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1 Introduction

Stochastic control problems study the agent’s rational behavior with the existence
of uncertainty in observations or in the noise that drives the evolution of the system.
Inclusion of delay in stochastic control problems is important for realistic applications,
e.g., in economics for time-to-build problems [2,43], in marketing for modeling the
“carryover” or “distributed lag” advertising effect [22,24], and in finance for portfolio
selection under themarketwithmemory and delayed responses [15,17,46,50]. See also
[40, Chapter 1] for modeling systems with aftereffect in mechanics and engineering,
biology, and medicine. To model the delay feature, the dynamics of the controlled
system will depend not only on the current state but also on the history of δ time units
prior to the current time, where δ is a fixed number and can be infinity. This makes
the problem path-dependent and, thus, infinite-dimensional.

The challenge brought by the path-dependence feature in stochastic control prob-
lems with delay has attracted rich theoretical studies in the literature. For example,
[22–24] proposed to reformulate them as infinite-dimensional Markovian problems
and analyze the associated Hamilton–Jacobi–Bellman (HJB) equations. The dynamic
programming principle was proved in [11,44]. In [53], the authors studied the prob-
lem using anticipated backward stochastic differential equations (ABSDEs), and
[10,28,51] proved a stochastic maximum principle using the ABSDEs. [3] employed
the so-called randomization method, to list a few. Meanwhile, except for the special
cases where problems can be reduced to finite-dimensional ones [4,15,16,45,50], the
stochastic control problems with delay remain practically intractable, and one needs to
resort to numerical methods for possible solutions; see [18,19,41,42] for probabilistic
approaches which analyzed the corresponding discretized control problems, and [9]
for an analytical approach which focused on finite difference methods of the infinite-
dimensional HJB equation. In both approaches, one has to temporally and spatially
discretize the stochastic control problems with delay, yielding a finite-dimensional
setup with dimensionality proportional to both the number of discretized timestamps
and spatial grids. Therefore, all aforementioned existing algorithms can only work in
the low-dimensional setting but encounter demanding challenges or becomeunfeasible
when faced with high-dimensional cases.

This paper aims to address the aforementioned numerical challenges by deep
learning-based algorithms, with the model described by a stochastic differential
delay equation (SDDE). Observing deep neural networks’ remarkable performance
in representing high-dimensional functions in numerical computations in many fields
[5,6,14,32–36,54],we naturally leverage them in the context of stochastic control prob-
lems with delay. Specifically, motivated by [29], we shall approximate the controls
using neural networks of various architectures at each time, stack these subnetworks
together to form a deep network, and train them simultaneously. The optimal param-
eters are obtained by minimizing the loss function, which is the proxy of the cost
functional in the control problem. Although using deep neural networks to direct
parameterize the strategy in optimal control problems is not new, e.g., in [8,20,29,38],
our work has the following merits: Firstly, we develop deep learning algorithms with
the focus on the feature of delay, which is by nature infinite-dimensional; To the best
of the authors’ knowledge, this is the first work in the literature that systematically
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leverages neural networks to solve stochastic control problems with delay beyond the
linear-quadratic case. Secondly, we systematically study the strengths and weaknesses
of different neural network architectures by testing them on three typical examples
with benchmark solutions. The carefully selected benchmark problems with open-
sourced code facilitate the further study of numerical algorithms for stochastic control
problems with delay features. Our main findings include:

(1) The algorithm based on recurrent neural networks can naturally capture the path-
dependent feature, i.e., not requiring a priori knowledge of the lag time δ, and
yield better performance with more efficient and stable training compared to
feedforward neural networks;

(2) The former one is capable of dealing with more complex problems efficiently
and accurately, e.g., problems with infinite delay δ = ∞, and problems with
state constraints;

(3) Both algorithms perform better when training with state processes (corresponds
to closed-loop controls) than with background noise (corresponds to open-loop
controls), especially for problems with state constraints.

The rest of the paper is organized as follows. In Sect. 2, we introduce the mathemat-
ical formulation of the stochastic control problems with delay in continuous time. We
describe the deep learning-based algorithms in Sect. 3 and three benchmark examples
in Sect. 4, followed by a systemic numerical study in Sect. 5. We make conclusive
remarks and describe future works in Sect. 6.

2 The stochastic control problemwith delay

On a complete probability space (�,F ,P), we consider a stochastic control problem
in which the state process X ∈ R

n is characterized by a stochastic differential delay
equation (SDDE):{

dX(t) = b(t, Xt , π(t)) dt + σ(t, Xt , π(t)) dW (t), t ∈ [0, T ],
X(t) = ϕ(t), t ∈ [−δ, 0]. (1)

Here, δ ≥ 0 is the fixed delay, π is the control process taking values inA ∈ R
m and to

be chosen in some admissible set A and W (t) is an �-dimensional standard Brownian
motion. Throughout the paper, we denote by Pt the trajectory of a process P from time
t − δ to t , and P(t) the process value at time t , i.e., Pt (s) = P(t + s), for−δ ≤ s ≤ 0.

Remark 1 The delay parameter δ here is assumed to be deterministic and known.
However, in a more realistic setting δ might be unknown a priori. We shall see that
the recurrent neural networks (discussed in Sect. 3.2) can naturally take care of the
unknown δ implicitly due to its architecture design.

Let C := C([−δ, 0],Rn) be the Banach space of all continuous functions with the
supremum norm:

‖y‖C = sup
−δ≤s≤0

|y(s)|, ∀y ∈ C .
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The drift b and volatility σ coefficients are deterministic functionals:

(b, σ ) : [0, T ] × C × A → (Rn,Rn×�).

Denote by L2(�,C) the space of all F-measurable stochastic processes, i.e.,

� 	 ω → X(ω) ∈ C is in L2(�,C), iff.
∫

�

‖X(ω)‖2C dP(ω) < ∞,

then L2(�,C) is complete with the semi-norm ‖X‖L2(�,C) := [∫
�

‖X(ω)‖2C d
P(ω)]1/2. We assume that the initial path ϕ ∈ L2(�,C) and is independent of the
Brownian motionW (t), and the existence of solution X to the SDDE (1) is considered
in L2(�,C([−δ, T ],Rn)). Let (Ft )t≥0 be the filtration supportingW (t) and ϕ, and let
C([0, T ], L2(�,C)) be the space of all L2-continuous C-valued Ft -adapted process
P : [0, T ] 	 t → Pt ∈ L2(�,C) with the semi-norm:

‖P‖C([0,T ],L2(�,C)) := sup
0≤t≤T

‖Pt‖L2(�,C).

The trajectory Xt of SDDE (1) is considered in C([0, T ], L2(�,C)).
The agent aims to minimize her expected cost:

Eϕ

[∫ T

0
f (t, Xt , π(t)) dt + g(XT )

]
, (2)

for a given distribution of the initial condition ϕ and over all admissible strategies π

in A:

A :=
{
{Ft }-progressively measurable process π : [0, T ] × � → A ⊂ R

m :
∫ T

0
E[π(t)2] dt < ∞

}
.

(3)

where the running cost f and terminal cost g are deterministic functionals, f : [0, T ]×
C × A → R, g : C → R.

Usually, one requires uniform Lipschitz conditions in the second variable of b and
σ to ensure the existence and uniqueness of strong solutions to SDDE (1), that is,

‖(b, σ )(t, y1, π) − (b, σ )(t, y2, π)‖L2 ≤ L‖y1 − y2‖L2(�,C),

∀t ∈ [0, T ] and y1, y2 ∈ L2(�,C).

See detailed analysis in Mohammed’s monographs [48,49]. Assumptions on f and g
would ensure the expected cost (2) is finite.

In this paper, instead of discussing necessary conditions for the admissibility, we
aim at providing a systematic numerical study of deep learning algorithms for finding
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optimal strategies to stochastic control problems with delay. That is, we focus on
the deep neural networks’ (DNNs) architecture design in order to handle the high-
dimensionality arising from the delay and comparing their performance based on some
tractable examples. InSect. 4,wepresent three exampleswith tractability to benchmark
our numerical schemes and support our findings. Note that the third example has an
infinite history dependence (i.e., δ = ∞), and the numerical results further illustrate
the advantage of using recurrent neural networks in this more general framework.

3 Deep learning algorithm

Our numerical algorithm builds on the temporal discretization of (1)–(2) and approx-
imating π(t) ∈ R

m using neural networks. More precisely, let NT ∈ N and
0 = t0 < t1 < . . . < tNT = T be a partition of size NT on [0, T ]. Without loss
of generality, we assume they are equidistributed and the fixed delay δ < ∞ covers
Nδ subintervals:

h ≡ tk+1 − tk, ∀k = 0, . . . , NT − 1, and δ = Nδh.

Consequently, we can extend the partition to [−δ, 0]:

−δ = t−Nδ ≤ t−Nδ+1 ≤ . . . t0 = 0, with tk+1 − tk ≡ h, ∀k = −Nδ, . . . ,−1.

We then consider the discretized version of (1)–(2):

X(tk+1) = X(tk) + b(tk, Xtk , π(tk))h + σ(tk, Xtk , π(tk))	W (tk), (4)

inf
{π(tk)}NT −1

k=0

E

[NT −1∑
k=0

f (tk, Xtk , π(tk))h + g(XT )

]
, (5)

where Xtk represents the path with Nδ lags and 	W (tk) is the increment in Brownian
motions:

Xtk = (X(tk−Nδ ), . . . , X(tk)), 	W (tk) = W (tk+1) − W (tk).

Regarding the discretized system (4), one would expect results similar to [41, Sec-
tion 4]. That is, as the mesh size h → 0, the value function associated to (4)–(5)
converges to the one of the original problem (1)–(2); and the near-optimal control
associated to (4) (which now as functions of Xtk ) is also near-optimal to the orig-
inal one. Below we propose two architectures in deep learning for approximating
π(tk) ∈ R

m .
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3.1 Feedforward neural network

A feedforward neural network is a composition of several fully connected layers
Fd1,d2(x):

Fd1,d2(x) = ρ(Ax + b) : Rd1 → R
d2 ,

where x ∈ R
d1 and Fd1,d2(x) ∈ R

d2 are the input and output of this layer, A ∈ R
d2×d1

and b ∈ R
d2 are the weight matrix and bias vector, and ρ(·) is the activation function

applied on each element of the vector individually. Common choices of the activation
function include rectified linear unit (ReLU), identity, sigmoid, hyperbolic tangent:

ρReLU(x) = max{x, 0}, ρId(x) = x, ρs(x) = 1

1 + e−x
, ρtanh(x) = tanh(x).

Motivated by the path-dependent structure of the considered problems (the change
of current state only depends on the history up to lag δ), a natural idea is to approximate
π(tk) by a feedforward neural network taking the state history up to lag δ̄ as the
input. Note here it could be δ̄ �= δ since we may not know the underlying true δ

a priori. Without loss of generality, we assume δ̄ = Nδ̄h (Nδ̄ ∈ N
+) and define

X̄tk ≡ (X(tk−Nδ̄
), . . . , X(tk), tk) ∈ R

n×(Nδ̄+1)+1. Then, we represent the policy as

π(tk) ≈ FdI ,m ◦ FdI−1,dI · · · Fd1,d2 ◦ Fn×(Nδ̄+1)+1,d1(X̄tk ), (6)

where I is the number of hidden layers. In this case, the algorithm will produce
feedback controls, i.e., controls that are adapted to the canonical filtration of X , denoted
byF X

t . Also, with a fixed input dimension and the added time variable in the input, we
are able to share the parameters of sub-neural networks, thus reducing the parameter
number by a factor of NT compared to NT different networks at each timestamp.

3.2 Recurrent neural network

The idea of recurrent neural networks (RNNs) [55] is to make use of sequential infor-
mation. They have shown great success in natural language processing, handwriting
recognition, etc. [25–27]. Themost commonRNN is long short-termmemory (LSTM)
[37]. The advantage of an LSTM is the ability to deal with the vanishing gradient prob-
lem and data with lags of unknown duration.

An LSTM is composed of a series of units, each of which corresponds to a times-
tamp, and each unit consists of a cell and three gates: input gate, output gate, and
forget gate. Among these components, the cell keeps track of the information received
so far, the input gate captures to which extent new input information flows into the
cell, the forget gate captures to which extent the existing information remains in the
cell, and the output gate controls to which extent the information in the cell will be
used to compute the output of the unit. In our case, the kth unit is responsible for
approximating π(tk):
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forget gate: fk = ρs(W f xk +U f hk−1 + b f ),

input gate: ik = ρs(Wi xk +Uihk−1 + bi ),

output gate: ok = ρs(Woxk +Uohk−1 + bo),

cell: ck = fk � ck−1 + ik � ρtanh(Wcxk +Uchk−1 + bc),

output of the kth unit: hk = ok � ρtanh(ck),

(7)

where the operator � denotes the Hadamard product, xk denotes the kth input, ck
stores the cell information, and hk, fk, ik, ok and ck are all dh-dimensional vectors.
We take (X(t0), t0), (X(t1), t1), (X(t2), t2), . . . as the input sequence x0, x1, x2, . . .
in practice, and specify the initial information of hk, ck according to the discretized
initial condition ϕ (see details in Sect. 3.4). Then, we take an affine transformation of
hk as the proxy of π(tk):

π(tk) ≈ Whk + b. (8)

Although for both schemes (8) and (6), the input dimensions keep constant as k
changes, using (6) requires prior knowledge of δ. That is, for (6) which we feed the
discretized state values (4) of length Nδ̄ + 1, to obtain the best performance, one
needs to get a good estimate δ̄ of δ first; while for (8) we only need to provide the
current state value X(tk). Notice that in an LSTM all input information up to time tk is
summarized by the kth cell, but if the optimal control only depends on the past up to δ,
the forget gates are designed for dropping out the unneeded information. This dropout
is characterized by NN’s parameters, which are determined by supervised learning.
We shall detail the learning part in the next section.

We remark that there are many variations of LSTM, for instance, gated recurrent
units (GRUs) [13] that do not have output gates, peephole LSTM [21] where hk−1
is mostly replaced by ck−1 in all gates, etc. The numerical experiments will be con-
ducted using the standard LSTM introduced above, and extensions to the variants are
straightforward.

3.3 Choice of input data: X(tk) orW(tk)

In the previously proposed networks, we use the data consisting of the state X(tk)
as the input. On one side, using X(tk) as the input data may lead to sub-optimal
controls, as (F X

t )t≥0 might be smaller than (Ft )t≥0 in general, and thus the resulting
policy in the feedback form forms a strict subset of (3). On the other side, in many
scenarios, there exists an optimal control in (3) of the feedback form. For instance, see
examples of problems with delay, among many others, in [10,12,50]. This is also the
case in control problems without delay, if the solution to the HJB equation is smooth
enough, which provides the decoupling field of the corresponding forward–backward
stochastic differential equations [7, Chapter 4]. So we do not lose much by searching
within a smaller set.

A naive idea to enforce the progressive measurability imposed in (3) is to take the
data consisting of the Brownian motion {W (tk)}NT

k=1 as input. However, in numerical
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experiments, we observed that the resulting networks become much more challenging
to optimize, leading to much worse performance. One possible explanation is that
when there are additional constraints on the admissible set A, it is usually directly
related to the state process X(t). The constraints are hardly satisfied if NNs only
know background noises W and need to infer the state X . Another drawback of using
W (tk) as the input data in the feedforward model is that the whole input variable
becomes Wk = (W (t0), · · · ,W (tk)), whose dimension increases dramatically as k
approaches to NT . In addition, due to different input dimensions across k, we cannot
let sub-neural networks share parameters, which will further increase the number of
parameters. Based on the above reasons, we only report results with the input data
consisting of X(tk).

3.4 Implementation

To summarize the algorithms proposed in the above subsections, we essentially have

π(tk) = ψk(Data; θ),

where Data can be either (X(tk−Nδ̄
), . . . , X(tk), tk) in the feedforward model or

(X(tk), tk) in the LSTM model, and θ denotes all parameters appearing in (6) or
(8).

The internal states hk, ck in the LSTM model (7) need to be initialized properly
according to the initial segment ϕ. In our case, we start the LSTM model from the
timestamp t−Nδ = −δ (when δ = ∞, we choose a properly truncated time), and the
initial states h−Nδ and c−Nδ are both initialized as (X(−δ = t−Nδ ), 0, · · · , 0). Here,we
have assumed dh ≥ n (recall that n is the dimension of X(t)) such that there is no infor-
mation lost at the beginning, and additional zeros are added tomatch the dimension dh .
Then, we feed in the input sequence (X(t−Nδ+1), t−Nδ+1), (X(t−Nδ+2), t−Nδ+2), . . .

to evolve the model according to (7) and output controls starting at t0.
The optimal parameters θ∗ are then be obtained by minimizing the following

expected discretized loss using stochastic gradient descent algorithms:

inf
{ψk∈Nk }NT −1

k=0

E

[NT −1∑
k=0

f (tk, Xtk , ψk(Data; θ))h + g(XT )

]
.

Note that in some numerical examples, wemay need to deal with constraints involving
the control policy and/or state variables. When the policy π taking values in A is
required to be nonnegative, we apply a ReLU activation function before the final
output of the policy network to ensure such a property:

π(tk) ← ρReLU(π(tk)).

When a 1-dimensional state variable X(t) is required to be nonnegative, we add the
corresponding penalty term in the cost function:

123



Mathematics of Control, Signals, and Systems (2021) 33:775–795 783

f (tk, Xtk , ψk(Data; θ)) ← f (tk, Xtk , ψk(Data; θ)) + ξ max{−X(tk+1), 0}

where ξ is a penalty coefficient. More complicated constraints can be dealt with by
the penalty method in a similar way (see, e.g., [29]). Details on the choices of ψk ,
algorithm to obtain θ∗, NT , etc., are presented at the beginning of Sect. 5.

4 Benchmark examples

This section presents three tractable examples: a linear-quadratic regulator problem
with delay in engineering, an optimal consumption problem in a financial market with
delayed dynamics, and a portfolio optimization problem with infinite delay. They
together serve as preparation of numerical experiments in Sect. 5. With specific for-
mulas of (b, σ, f , g) depending on the current state X(t), the weighted average of Xt

and X(t − δ), the first two problems turn out to be essentially finite-dimensional and
admit solutions expressed in a simple form. This allows us to benchmark and com-
pare our proposed two deep learning schemes. A third example, where the portfolio
performance depends on the exponential average of all the historical value (δ = ∞),
is presented with analytical solutions as well, to further evidence the superiority of
the LSTM model. In the sequel, we will focus on describing the model and keep
technical details minimal. The optimal control π∗ and cost V0 to the problem (1)–
(2):

V0 := sup
π∈A

Eϕ

[∫ T

t
f (s, Xs, π(s)) ds + g(XT )

∣∣∣X0 = ϕ

]

are provided in Propositions 1–3 and we give references on their proofs.
For the first two examples, we take a special dependence form for the functionals

(b, σ, f , g). To be specific, the path dependence is characterized by distributed delay
Y (t) and discrete delay Z(t):

Y (t) :=
∫ 0

−δ

eλs X(t + s) ds and Z(t) := X(t − δ).

Note that Y (t) is also called the exponentially decayed weighted moving average.
Problems with such explicit structures have been studied in [4,15,16,45,50,51]. Some
allow general analysis, and some have tractable examples. We choose two examples
from [4] and present them in Sects. 4.1 and 4.2.

4.1 Linear-quadratic problemwith delay

Stochastic linear-quadratic (LQ) problems were extensively studied in the literature.
They have appeared in many contexts and have been used to benchmark various
numerical algorithms due to their tractability. LQ problems with delay were first
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investigated by Kolmanovskiı̆ and Shaı̆khet [40]. The delay version can be stated
as:

(LQ)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

dX(t) = (A1(t)X(t) + A2(t)Y (t) + A3Z(t) + B(t)π(t)) dt + σ(t) dW (t),

t ∈ [0, T ]
minπ(t)∈Rm Eϕ

[∫ T

0
(X(t) + eλδ A3Y (t))TQ(t)(X(t) + eλδ A3Y (t))

+π(t)TR(t)π(t) dt + (X(T ) + eλδ A3Y (T ))TG(X(T ) + eλδ A3Y (T ))

]
,

(9)

where X0 = ϕ ∈ L2(�,C) is a given initial segment, A1(t), A2(t), Q(t) ∈ R
n×n ,

B(t) ∈ R
n×m , R(t) ∈ R

m×m are deterministic matrix-valued functions in L∞[0, T ],
σ(t) ∈ R

n×� is a deterministic matrix-valued function in L2[0, T ], A3,G ∈ R
n×n are

deterministic matrices. We assume that Q(t),G are positive semi-definite and R(t)
is positive definite for all t ∈ [0, T ] and continuous on [0, T ]. To have a tractable
solution, we further prescribe the relation:

A2(t) = eλδ(λIn + A1(t) + eλδA3)A3, (10)

where In is the identity matrix with rank n. This example was studied in [4, Section
4], and we summarize the main results as follows for completeness.

Proposition 1 Consider the stochastic control problem (LQ) with the initial segment
ϕ. Assume that A3 �= 0 and (10) holds, then the optimal control is given by

π∗(t) = −R−1
(t)B(t)TP(t)(X∗(t) + eλδ A3Y

∗(t)), where Y ∗(t) =
∫ 0

−δ

eλs X∗(t + s) ds,

X∗(t) solves the SDDE (9) with the optimal control π∗, and P(t) solves the Riccati
equation

Ṗ(t) = P(t)B(t)R−1
(t)B(t)TP(t) − (A1(t) + eλδA3)

TP(t)

− P(t)(A1(t) + eλδA3) − Q(t), P(T ) = G.

The optimal cost V0 to problem (LQ) is given by

V0 ≡ V (0, X0) = (X(0) + eλδA3Y (0))TP(0)(X(0) + eλδA3Y (0))

+
∫ T

0
Tr(σ (s)σT(s)P(s)) ds.

4.2 Optimal consumption in a delayed financial market

In this section, we consider X(t) described in the SDDE (1) as the wealth process, and
study the utility maximization problem from both consumption and terminal wealth.
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Here, we do not specify dynamics of tradable assets, but directly model the wealth
return and volatility, both depending on the sliding average Y (t) = ∫ 0

−δ
eλs X(t+s) ds

and the past value Z(t) = X(t − δ). This can be interpreted as investing on of some
path-dependent options. Let c(t) be the investor’s consumption rate at time t , then the
optimal consumption problem is stated as:

(C)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

dX(t) = (μ(t, X(t),Y (t)) + aZ(t) − c(t)) dt + σ(t, X(t),Y (t)) dW (t),

t ∈ [0, T ],
maxc(t)∈R+ Eϕ

[∫ T

0
e−βtU1(c(t)) dt +U2(X(T ) + aeλδY (T ))

]
,

subject to X(t) ≥ 0, t ∈ [0, T ],

(11)

whereU1,U2 are utility functions on the consumption and the terminal wealth, and a is
a positive real number. In this example, all processes are scalars, i.e., n = m = � = 1.
To have a tractable solution, we take the power utility U1(x) = U2(x) = 1

γ
xγ and

require

μ(t, x, y) = aeλδ(aeλδ + λ)y + μt T (x, y), σ (t, x, y) = σt T (x, y), (12)

where T (x, y) = x + aeλδ y, and μt and σt are some positive continuous functions.
This example has been studied in [4, Section 5], and a special case a = −λe−λδ , λ < 0
was treated in [15]. We now summarize the results as follows.

Proposition 2 Consider the optimal consumption problem (C) with the initial wealth
segment X0 = ϕ, and assume (12) holds. Then, the problem value V0 is given by

V0 ≡ V (0, X0) = 1

γ
p(0)1−γ (X(0) + aeλδY (0))γ ,

where p(t) solves the following equation:

ṗ(t) = (
1

2
γ σ 2

t − γ

1 − γ
(μt + aeλδ)) · p(t) − e− βt

1−γ , p(T ) = 1.

The optimal consumption c∗(t) is

c∗(t) = e− βt
1−γ

1

p(t)
(X∗(t) + aeλδY ∗(t)),

with X∗(t) following the SDDE (11) associated with c∗.

Remark 2 If the terminal utility is changed to e−β2TU2(X(T ) + aeλδY (T )), then
Proposition 2 still holds except for the terminal condition of p(t). It then becomes

p(T ) = e−β2T /(1−γ ).
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If the running utility is changed toU1(x) = ηxγ

γ
, the ordinary differential equation for

p(t) then becomes

ṗ(t) = (
1

2
γ σ 2

t − γ

1 − γ
(μt + aeλδ)) · p(t) − η

1
1−γ e− βt

1−γ .

4.3 Portfolio optimization with complete memory

In the last example, we study a portfolio optimization problem with an infinite delay
feature. More precisely, in the SDDE (1) and cost functional (2), the dependence is
on X(t) and the exponential average of all the history value Y (t),

Y (t) :=
∫ 0

−∞
eλs X(t + s) ds.

Let X(t) be the wealth process as in Sect. 4.2. Here, we consider both investment π(t)
and consumption c(t) and parameterize them proportional to the wealth X(t), i.e., c(t)
denotes the fraction of wealth consumed at time t . Then, the problem reads:

(P)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

dX(t) = [((μ1 − r)π(t) − c(t) + r)X(t) + μ2Y (t)] dt + σπ(t)X(t) dW (t),

t ∈ [0, T ]
maxc(t)∈R+

π(t)∈R
Eϕ

[∫ T

0
e−βtU1(c(t)X(t)) dt + e−βTU2(X(T ),Y (T ))

]
.

(13)

The above problem was introduced in [52]. They derived explicit solutions under
exponential, power and log utilities. Given the history up to time 0, ϕ(·) ∈
L2(�,C((−∞, 0],R)), the problem value turns out depending only on X(0) ≡ ϕ(0)
and Y (0) ≡ ∫ 0

−∞ eλsϕ(t + s) ds.

Remark 3 For different choices of utility functions, wemay or may not require X(t) ≥
0, for t ∈ [0, T ]. Theoretically, if the strategy (π(t), c(t)) satisfies

|π(t)X(t)| ≤ �0 |X(t) + Y (t)| ,
|c(t)X(t)| ≤ �0 |X(t) + Y (t)| ,

for some constant �0, then X(t) in (13) stays positive. For proof, see [52, Lemma
2.1].

Proposition 3 Consider the portfolio optimization problemwith infinite delay (P) with
the complete history X0 = ϕ ∈ L2(�,C((−∞, 0],R)) under log utility:

U1(x) = log(x), U2(x, y) = 1

β
log(x + ηy), η = 1

2

(√
(r + λ)2 + 4μ2 − (r + λ)

)
.
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and require a state constraint X(t) ≥ 0, ∀t ∈ [0, T ]. Then, the optimal investment
and consumption rates are

π∗(t) = (μ1 − r)(X∗(t) + ηY ∗(t))
σ 2X∗(t)

,

c∗(t) = β(X∗(t) + ηY ∗(t))
X∗(t)

,

where X∗(t) solves the SDDE (13) associated to π∗ and c∗. The value function is of
the form

V (t, x, y) = p(t) + 1

β
log(x + ηy)

with

p(t) = �2

β
(1 − e−β(T−t)), �2 = 1

2

(μ1 − r)2

βσ 2 + log(β) − 1 + 1

β
(r + η),

and the optimal cost V0 = V (0, X(0),Y (0)).

5 Numerical results

In this section, we present numerical results on the three benchmark examples intro-
duced above: linear-quadratic problem (Sect. 5.1), optimal consumption (Sect. 5.2),
and portfolio optimization (Sect. 5.3). We choose n = 10 in the first example, while
n = 1 is fixed in the settings of the other two examples. In all three experiments, we
observe consistently good performance compared to the benchmark solutions. The
important hyperparameters and running time of these problems are summarized in
Table 1, and other problem-dependent parameterswill be introduced in the correspond-
ing subsections. The initial path ϕ ∈ L2(�,C) is modeled as a fixed deterministic
path perturbed by some white noise.

In numerical solutions, the distributed delay Y (t) is approximated by the midpoint
quadrature rule, in both calculating the benchmark solution and simulating the dynam-
ics of X(t) (cf. Eqs. (9), (11) and (13)). The activation function in the feedforward
model is ReLU in all the layers except that in the final output layer, it is an identity
if there is no constraint on the control. In the learning process, to guarantee a fair
comparison, in each problem, we use the same learning rate and choose the size of the
feedforward network and the LSTM properly such that they have a similar number
of parameters. We adopt Adam optimizer [39] to optimize the parameters in neural
networks. In each update step, we simulate 128 (batch size) paths to compute the
stochastic gradient through backpropagation. For each example, we run the algorithm
three times and report the average result.
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Table 1 Some hyperparameters and running time of the numerical examples

Parameter/problem Linear-quadratic Optimal consumption Portfolio optimization

T 1 2 5

δ 1 0.8 ∞†

NT 40 60 100

ξ (constraint penalty) 0 (no constraint) 105 10

Running time (s) 4294 1429 941

†The initial segment ϕ is constant when t ≤ −4 to ease the computation of the distributed delay Y (t). Both
neural network models are initialized at t = −4

The algorithm is implemented in Python by using the machine learning library Ten-
sorFlow [1]. The code can be found in a public GitHub repository1 upon publication,
and thus, the results presented here can be straightforwardly reproduced and further
developed.

5.1 Linear-quadratic problem

We consider a 10-dimensional example in Sect. 4.1, in which n = 10, m = 10, and
λ = 0.1. In Eq. (9), A1, A3, B, σ are random generated constant coefficient matrices,
Q, R,G are constant matrices proportional to identity matrices, and A2 is determined
by (10). The dimension of the hidden state in the LSTM model is dh = 200, which
gives 171,610 parameters in total. The feedforward model takes the state history as
inputs up to lag δ̄ = δ with Nδ̄ = 40, and it has 2 hidden layers with a width of 300,
which gives 108,910 parameters in total. The LSTM model is trained with 16,000
steps, in which the learning rate is 0.005 for the first 8000 steps and 0.0005 for the
second 8000 steps. The feedforward model is trained with 32,000 steps, in which the
learning rate is 0.005 for the first 8000 steps and 0.0005 for the remaining 24,000 steps.
We calculate the total cost on the validation data every 200 steps and plot the curve
against training time in Fig. 1.We can see that with the same learning rates and roughly
the same number of parameters, the LSTMmodel converges to a solution with a lower
cost compared to the feedforward model. We further test the learned policy on a new
set of sample paths, and the average cost of the LSTM model and feedforward model
are 2.8740 and 2.8812. Note that the cost obtained by the policy discretized from the
analytical optimal control is 2.8723 (cf. Proposition 1). Figures 2 and 3 depict one
sample path (first 5 dimensions only) of the optimal state X and control π provided by
two neural networks in comparison with the analytical solution, in which the LSTM
architecture presents a better agreement.

In the above experiment, the lag time δ̄ processed by the feedforward model is
chosen to be the same as δ. One main drawback of the feedforward model is that it
requires knowing the true lag time δ a priori to determine the network’s size. If the
chosen lag time δ̄ is smaller than the actual lag δ time, which means there is a loss of
information when the feedforward network processes the data, the final performance

1 https://github.com/frankhan91/RNN-ControlwithDelay.
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Fig. 1 Training curve of two
models in the example of
linear-quadratic problem
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Fig. 2 A sample path of the first 5 dimensions of the state X(t) and control π(t) obtained from the LSTM
model. Left: the optimal state process discretized from the analytical solution Xi (t) (solid lines) and its
approximation X̂i (t) (dashed lines) provided by the approximating control, under the same realized path of
Brownian motion. Right: comparisons of the optimal control π∗

i (t) (solid lines) and π̂i (t) (dashed lines)
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Fig. 3 A sample path of the first 5 dimensions of the state X(t) and control π(t) obtained from the
feedforward model. Left: the optimal state process Xi (t) discretized from the analytical solution (solid
lines) and its approximation X̂i (t) (dashed lines) provided by the approximating control, under the same
realized path of Brownian motion. Right: comparisons of the optimal control π∗

i (t) (solid lines) and π̂i (t)
(dashed lines)

might be compromised. To quantify this effect, we test the feedforward model with
different processed lag time δ̄ from 0.2 to 1 with step size 0.1, while the actual lag
δ = 1. The corresponding optimized costs are shown inFig. 4.As expected,we observe
that the cost increases as the lag time processed by the feedforward model decreases.
A higher optimized cost indicates that the model can only find a sub-optimal but not
an optimal strategy due to the lack of information.
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Fig. 4 The effect of lag time δ̄
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Fig. 5 Training curve of two
models in the example of
optimal consumption
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5.2 Optimal consumption

We consider the example introduced in Sect. 4.2, with λ = 0.1, β = 0.1, a = 0.2,
γ = 0.7, μt = 0.1, and σt = 0.5. The dimension of the hidden state in the LSTM
model is dh = 30, which gives 3991 parameters in total. The feedforward model
takes the state history as input up to lag δ̄ = δ with Nδ̄ = 24, and it has 2 hidden
layers with a width of 54, which gives 4483 parameters in total. The LSTM model
and feedforward model are trained with 60,000 and 80,000 steps, respectively, with
a learning rate of 0.0001. We calculate the total utility on the validation data every
200 steps and plot the curve against training time in Fig. 5. We can see that with
the same learning rates and a similar number of parameters, the LSTM model still
converges to a higher utility (which corresponds to a better control policy) than the
feedforward model. Furthermore, the training process of the feedforward model is
much more unstable than the LSTM model, probably due to its insufficient capability
to handle state constraints. We further test the learned policy on a new set of sample
paths, and the average utility of the LSTMmodel and feedforward model are 10.7202
and 10.7100. Note that the utility obtained by the policy discretized from the analytical
optimal control is 10.7142 (cf. Proposition 2). Figures 6 and 7 depict three sample
paths provided by two models in comparison with the analytical solution, in which
the LSTM model presents a better agreement.
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Fig. 6 Three sample paths of the state X(t) and control π(t) obtained from the LSTM model. Left: the
optimal state process X(t) discretized from the analytical solution (solid lines) and its approximation X̂(t)
(dashed lines) provided by the approximating control, under the same realized paths of Brownian motion.
Right: comparisons of the optimal control π∗

i (t) (solid lines) and π̂i (t) (dashed lines)
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Fig. 7 Three sample paths of the state X(t) and control π(t) obtained from the feedforward model. Left:
the optimal state process X(t) discretized from the analytical solution (solid lines) and its approximation
X̂(t) (dashed lines) provided by the approximating control, under the same realized paths of Brownian
motion. Right: comparisons of the optimal control π∗

i (t) (solid lines) and π̂i (t) (dashed lines)

5.3 Portfolio optimization

We now consider the example introduced in Sect. 4.3, with λ = 0.3, β = 0.2, μ1 =
0.1, μ2 = 0.2, r = 0.05, and σ = 0.4. In this example, the model has an infinite
memory. We choose the initial segment ϕ to be constant for t ≤ −4 and the white
noise perturbation only presents for t ∈ [−4, 0]. Under this setting, the computation
of the distributed delay Y (t), defined as an integral running from −∞ to t , becomes
tractable. Both neural networkmodels are initialized at t = −4 for the sake of fairness.
The dimension of the hidden state in the LSTMmodel is dh = 60, which gives 15242
parameters in total. The feedforward model takes the state history as input up to lag
δ̄ = 4 < δ = ∞ with Nδ̄ = 80, and it has 2 hidden layers with a width of 96, which
gives 17474 parameters in total. The LSTM model and the feedforward model are
trained with 8000 and 20,000 steps, respectively, both with a learning rate of 5×10−5.
We calculate the total utility in (13) on the validation data every 100 steps and plot the
curve against the training time in Fig. 8. We can see that in this example, the LSTM
model converges to a higher utility much faster than the feedforward model, and the
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Fig. 8 Training curve of two
models in the example of
portfolio optimization
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Fig. 9 Three sample paths of the state X(t) and control π(t) obtained from the LSTM model. Left: the
optimal state process X(t) discretized from the analytical solution (solid lines) and its approximation X̂(t)
(dashed lines) provided by the approximating control, under the same realized paths of Brownian motion.
Right: comparisons of the optimal control π∗

i (t) (solid lines) and π̂i (t) (dashed lines)

convergence is much stable. We further test the learned policy on a new set of sample
paths, and the average utilities obtained from the LSTMmodel and feedforwardmodel
are 14.5326 and 14.4979. Note that the utility obtained by the policy discretized from
the analytic optimal control is 14.5316 (cf. Proposition 3). Figures 9 and 10 depict
three sample paths provided by twomodels in comparison with the analytical solution,
in which the LSTM model presents a much better agreement.

We believe that the remarkable outperformance of the LSTM model is due to the
infinite memory feature of this problem, which can be naturally captured by the LSTM
model but not the feedforward one. In particular, for the feedforward model, the first
input at t = 0 is (X(−4), . . . , X(0), 0), and later inputs keep the same sliding window
length (Nδ̄ = 80) of the state history and gradually drop the initial information. We
believe that such information loss is the main reason why the feedforward model
performs significantly sub-optimal. Numerically, we also observed that the choice of
δ̄ < 4 will even worsen the performance due to the information loss at the initial step.

6 Conclusion

In this paper, we propose and systematically study deep neural network-based algo-
rithms to solve stochastic control problems with delay features. The challenge is
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Fig. 10 Three sample paths of the state X(t) and control π(t) obtained from the feedforward model. Left:
the optimal state process X(t) discretized from the analytical solution (solid lines) and its approximation
X̂(t) (dashed lines) provided by the approximating control, under the same realized paths of Brownian
motion. Right: comparisons of the optimal control π∗

i (t) (solid lines) and π̂i (t) (dashed lines)

brought by the path-dependent property in the SDDE system and thus its intrinsic high
dimensions. Viewing the optimal policy as a function of state process path (X(t))t≥0 or
background noise path (W (t))t≥0, we naturally start with feedforward neural networks
and take the discretized process as inputs. With the path-dependent feature, we then
employ recurrent neural networks for sequence modeling to parameterize the policy
and optimize the objective function. On the architecture design level, we point out that
recurrent neural networks such as the LSTM model do not require prior knowledge
of lag time δ. The models are then tested on three benchmark examples: (1) linear-
quadratic problemwith fixed delay; (2) optimal consumption in a financialmarket with
fixed finite delay; (3) portfolio optimization with complete memory. Numerically, we
found that the architecture of recurrent neural networks can naturally capture the path-
dependent feature with much flexibility, resulting in a better performance with more
efficient and stable training compared to the feedforward architectures. The superiority
is even evident for infinite delay δ = ∞, supported by our third example. Moreover,
the carefully selected benchmark problems with open-sourced code will facilitate the
further study of numerical algorithms for stochastic control problems with delay fea-
tures. Remark that the numerical techniques developed in this paper can be naturally
generalized to the studies on the deep fictitious play algorithms [30,31,38,47,56] for
finding the Nash equilibrium in stochastic differential games by including delay in the
games. This will be investigated in future work.

Acknowledgements J.H. and R.H. are grateful to the reviewers for their valuable and constructive com-
ments.
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