
The Indigo Program-Verification Microbenchmark

Suite of Irregular Parallel Code Patterns

Yiqian Liu

Department of Computer Science

Texas State University

San Marcos, TX, US

y l120@txstate.edu

Noushin Azami

Department of Computer Science

Texas State University

San Marcos, TX, US

noushin.azami@txstate.edu

Corbin Walters

Department of Computer Science

Texas State University

San Marcos, TX, US

ckw79@txstate.edu

Martin Burtscher

Department of Computer Science

Texas State University

San Marcos, TX, US

burtscher@txstate.edu

Abstract—Irregular programs are found in many domains
and tend to exhibit input-dependent control flow and memory
accesses. This paper introduces the Indigo suite of important
irregular parallel code patterns for testing verification and other
tools. We studied many irregular CPU and GPU programs and
extracted the key code patterns. Then, we methodically built
variations of these patterns to alter the control-flow and memory-
access behavior and/or introduce bugs, yielding the thousands
of OpenMP and CUDA microbenchmarks in the suite. Indigo
includes a set of generators to systematically create an unbounded
number of inputs for each microbenchmark, which is essential to
exercise the wide range of possible behaviors of input-dependent
codes. To manage the millions of code and input combinations,
Indigo provides the flexibility to generate user-defined subsets of
the suite. Experiments with a subset of buggy and bug-free codes
illustrate that irregular programs pose a significant challenge to
both static and dynamic program verification tools. Moreover,
such tools can perform quite differently across code patterns
that contain the same bug.

Index Terms—benchmark design, parallel computing, irregular
programs, software verification

I. INTRODUCTION

Many computational problems are irregular in nature, mean-

ing their control flow or memory accesses do not follow simple

patterns. This irregularity often arises from processing pointer-

based data structures like graphs that are used to represent real-

world objects such as road networks. Irregular algorithms can

be found in many domains, including social networking [1],

data mining [2], artificial intelligence [3], and compilers [4].

Since many important applications are irregular, it is crucial to

understand, support, and exploit the behaviors of these codes.

Every serial and parallel program has a degree of control-

flow and memory-access irregularity [5]. Control-flow ir-

regularity typically stems from while loops whose iteration

count is difficult to predict. Visiting the neighbors of graph

vertices is an example as each vertex may have a different

number of neighbors. In contrast, regular codes like dense

This research was supported in part by the National Science Foundation
under award No. 1955367 and by an equipment donation from NVIDIA Corp.

matrix multiplication tend to be based on for loops with fixed

iteration counts. Memory-access irregularity typically stems

from pointer-chasing operations where the address of the next

access is difficult to predict. Again, visiting a vertex’s neigh-

bors is an example because the neighbors are rarely located

in consecutive memory locations. In contrast, regular codes

tend to perform strided memory accesses. For instance, the

elements of a vector reside at consecutive memory addresses.

Since the control-flow and memory-access patterns of ir-

regular code are generally input dependent and tend to change

during program execution, the observed behavior for one input

or time slice may not be representative of the behavior of

the same code for a different input or time slice [5], making

bug detection more difficult. Parallelism often exacerbates the

problem as the relative timing behavior of the threads may

change from run to run. Their data dependency can make

irregular programs more challenging to analyze, optimize,

verify, and parallelize than regular codes.

The growing importance of irregular applications is reflected

in recent benchmark suites. Whereas many of the suites listed

in Table I contain breath-first search (an irregular code), the

older suites mostly consist of regular codes. Only some of the

more recent suites focus on irregular programs. However, all of

them comprise just a handful of codes and inputs in total since

they are performance benchmark suites. Thus, our community

would greatly benefit from a more extensive set of programs

and inputs that exhibits the wide range of behaviors possible

in irregular codes. Such a suite could help programmers, tool

developers, computer architects, and researchers design soft-

ware and hardware that can better handle irregular programs.

To drive the design of program verification tools, for which

irregular codes are particularly challenging, it is important to

also include common bugs. Except for DataRaceBench, such

defective codes are absent from the benchmark suites in Ta-

ble I, which lists the name, number of programs, release year,

whether it is mostly irregular, and the parallel programming

model of each suite.

TABLE I
SELECTED BENCHMARK SUITES

Suite Codes Year Irreg Models

PARSEC [6] 12 2008 No OMP, Pthreads, TBB

Lonestar [7] 22 2009 Yes C++, CUDA

Rodinia [8] 23 2009 No OMP, CUDA, OCL

SHOC [9] 25 2010 No CUDA, OCL

Parboil [10] 11 2012 No OMP, CUDA, OCL

PolyBench [11] 30 2012 No CUDA, OCL

Pannotia [12] 13 2013 Yes OCL

GAPBS [13] 6 2015 Yes OMP

graphBIG [14] 12 2015 Yes OMP, CUDA

Chai [15] 14 2017 No AMP, CUDA, OCL

DataRaceBench [16] 168 2017 No OMP, Fortran

GARDENIA [17] 9 2018 Yes OMP (target), CUDA

GBBS [18] 20 2020 Yes Ligra+

As a remedy, we designed Indigo, a parallel CPU and GPU

suite of common irregular code patterns. Its goal is to provide

the community with a systematic means to analyze irregularity

in detail, expose potential bugs, study complex control-flow

and memory-access behavior, and evaluate parallelization,

optimization, and verification strategies on irregular programs.

To create Indigo, we studied the irregular codes in Lonestar

and other suites, extracted the key patterns, generalized them,

and methodically built variations thereof, including some with

the types of bugs we have encountered when implementing our

own irregular codes. The resulting codes are microbenchmarks,

i.e., they are small, simple, and not full-fledged applications.

For this reason, we do not recommend Indigo as a performance

benchmark suite. However, being small is advantageous for

static program analysis tools and cycle-accurate simulators that

tend to be slow when analyzing or simulating large programs.

In fact, all of the codes have a runtime that is linear in the

number of vertices and edges. Version 0.9 of Indigo, upon

which this paper is based, contains 1084 CUDA and 636

OpenMP microbenchmarks, including 628 CUDA and 324

OpenMP codes with bugs.

Due to the input-dependent nature of irregular codes, it is

essential to also provide many different inputs (graphs). Rather

than including predetermined inputs, Indigo comes with a set

of graph generators that allow the user to create an unbounded

number of inputs. To support systematic and exhaustive testing

of the microbenchmarks, one generator emits all possible

directed and/or undirected graphs with a user-specified number

of vertices. Additionally, Indigo includes generators for power-

law graphs [19], k-dimensional grids and tori [20], uniform

distribution graphs [21], etc.

Each microbenchmark can be run with all generated inputs

to elicit a wide variety of runtime behaviors. However, running

all 1720 microbenchmarks on just the 4096 possible directed

4-vertex graphs1 would result in 7,045,120 tests, which is

probably too many for most use cases. After all, assuming

each test takes one second, it would take close to three months

to run the entire suite. Moreover, some users may not be

interested in the buggy codes, others may only care about the

1Note that we may not want to eliminate isomorphic graphs as vertex
permutations result in different threads and warps processing a specific vertex.

CUDA programs, and yet others may want to study undirected

graphs exclusively. To facilitate these and other use cases,

Indigo generates not only the inputs but also the desired

microbenchmarks based on a simple configuration file. This

file can be edited to enable or disable various filters, thus

allowing users to create any wanted subset of the suite. Indigo

includes sample configuration files to build various subsets.

This paper makes the following main contributions.

• It presents the Indigo suite with 1720 input-dependent

CUDA and OpenMP codes as well as an unbounded

number of inputs for each code.

• It introduces a new type of benchmark suite that generates

desired program variations and inputs on the user side.

• It describes six fundamental dwarf-like code patterns that

frequently occur in parallel graph applications.

• It explains how Indigo methodically generates variations

of code patterns, including planting bugs in them.

• It illustrates, based on hundreds of thousands of exper-

iments, that irregular codes pose a significant challenge

to many program verification tools.

The Indigo suite is available in open source at https://cs.

txstate.edu/∼burtscher/research/IndigoSuite/.

The rest of this paper is organized as follows. Section II

reviews relevant background information. Section III summa-

rizes related work. Section IV describes the design of the

Indigo suite in detail. Section V discusses the experimental

methodology. Section VI evaluates several CPU and GPU

program verification tools on buggy and bug-free Indigo codes.

Section VII summarizes the paper and draws conclusions.

II. BACKGROUND

This section provides background information on the used

graph format and presents an irregular code example.

A. CSR Graph Format

The Compressed Sparse Row (CSR) format is one of the

most widely used graph representations [22]. For example,

Pannotia [12] and Lonestar [7] use CSR inputs. All Indigo

graph generators produce graphs in this format, meaning that

every generated graph can be used as an input for any Indigo

code. Basing Indigo on the CSR format makes it easy for users

to import their own graphs and means that preexising and real-

world (non-synthetic) graphs can also be used as inputs.

B. Irregular Code Example

Determining the connected components (CCs) of a directed

graph G(V,E) is an important computation that can be imple-

mented in different ways. One way is through push-style label

propagation as outlined in Algorithm 1. First, the label of each

vertex, label, is made unique by initializing it to the vertex ID

(lines 1 to 3). Then, for each vertex v (line 7), all neighbors in

the adjacency list adj are visited (line 8) and processed. The

processing (lines 9 to 12) updates each neighbor’s label with

the label of v if v’s label is larger. Whenever a label is updated,

the flag updated is set (line 11). The algorithm iterates until no

more updates occur (line 5). Upon termination, all vertices in

the same CC will have the same label, and vertices in different

CCs will have different labels.

Algorithm 1 Label-propagation-based connected components

Input: Graph G = (V,E)
1: for all vertices v ∈ V do

2: label[v]← v
3: end for

4: updated← true
5: while updated do

6: updated← false
7: for all vertices v ∈ V do

8: for all neighbors n ∈ adj[v] do

9: if label[n] < label[v] then

10: label[n]← label[v]
11: updated← true
12: end if

13: end for

14: end for

15: end while

Output: Label of each vertex in G

Note that this label propagation algorithm is input dependent

and has both control-flow (e.g., line 8) and memory-access

(e.g., line 10) irregularity. It is impossible to statically predict

the iteration count of the inner for loop without knowing the

input graph. Similarly, it is impossible to statically predict the

order in which the elements of the label array will be written

unless we know the complete input graph.

III. RELATED WORK

Many benchmark suites exist. They target a plethora of dif-

ferent program behaviors, application domains, programming

languages, etc. The early suites that focus on parallel programs

mainly comprise regular high-performance computing (HPC)

applications. One of the first regular suites not focusing on

HPC is PARSEC [6], released in 2008. However, since the

irregular benchmark suites published so far are performance

rather than verification suites, none of them include enough

inputs to elicit a wide range of distinct program behaviors.

DataRaceBench [16] is a relatively recent suite of regular

programs designed to evaluate CPU data-race detection tools.

It includes a set of kernels, some of which contain bugs. It

comes with a script to evaluate Helgrind, Archer, ThreadSan-

itizer, Intel Inspector, and Coderrect Scanner. Verma et al.

enhanced the suite by adding kernels that represent additional

patterns and include FORTRAN code [23]. Program verifica-

tion is also the target of Indigo, which supports OpenMP and

CUDA, includes more bug types, inputs, and code versions,

and provides customizable code and input generators.

With accelerators becoming popular, quite a few benchmark

suites now include GPU code. The Rodinia [8] suite targets

heterogeneous systems. It exhibits different types of paral-

lelization, memory-access and data-communication patterns,

synchronization, and power consumption. The SHOC [9] suite

is designed to test the performance and stability of hetero-

geneous systems. Parboil [10] is a suite for evaluating the

throughput of a range of applications, which can be used by

programmers as a baseline to improve upon and/or for task-

parallel programs. The Chai [15] suite evaluates the shared

virtual memory, memory coherence, and system-wide atomics

of heterogeneous systems as well as data- and task-based

workload partitioning between the CPU and GPU.

There are several tools that target GPU program verification.

GKLEE [24] searches for correctness and performance bugs in

GPU codes. It includes 40 benchmarks that cover many CUDA

program behaviors and issues such as thread divergence, bank

conflicts, deadlock, and data races. GPUVerify [25] comes

with a suite of 163 CUDA and OpenCL kernels drawn

from public and commercial resources. Barracuda [26] is a

concurrency bug detector for CUDA programs. It handles a

wide range of parallelism constructs including branch oper-

ations, low-level atomics, and memory fences. It includes a

concurrency bug suite with 53 programs, 12 of which have

data races. Since essentially no verification suites with buggy

GPU codes exists, all of these tools include their own.

The above mentioned benchmarks mostly contain regular

programs. However, a growing number of suites focus on

parallel irregular codes. Lonestar [7] contains C++ and CUDA

implementations of iterative graph algorithms. Since it is

the largest collection of irregular codes, we used it as the

main source for extracting the irregularity patterns found in

Indigo. Pannotia [12] is an OpenCL suite of applications for

studying graph algorithms on GPUs. It includes 8 applications.

GraphBIG [14] contains implementations of representative

data structures, workloads, and data sets from 21 real-world

use cases of multiple application domains. GAPBS [13] not

only specifies graph kernels, input graphs, and evaluation

methodologies but also provides optimized reference im-

plementations. GARDENIA [17] is a benchmark suite for

studying irregular graph algorithms on massively parallel

accelerators. It includes 9 workloads from graph analytics,

sparse linear algebra, and machine learning. GBBS [18] is

a C++ suite of scalable, provably-efficient implementations

of graph problems for shared-memory multicore machines.

It extends the Ligra interface with additional primitives and

clearly defined cost bounds. All of these benchmark suites

include full-fledged graph codes. In contrast, Indigo comprises

important code patterns that are not complete algorithms.

There are also benchmark suites for other parallel program-

ming languages such as Go. Tu et al. analyzed the causes,

detection, and fixes of 171 concurrency bugs from 6 popular

Go software applications [27]. GoBench [28], the first suite for

Go concurrency bugs, was introduced in 2021. It contains 82

real bugs from 9 open source applications and 103 bug kernels.

It covers traditional and Go-specific concurrency issues. It uses

configuration files in json format that record the type of bugs

and describe how to generate the corresponding Docker files.

Similarly, the configuration file used by Indigo defines the

types of codes and inputs to be included in the generated suite.

The source code annotation and variation of CREST [29]

and DLBENCH [30] inspired the code generation process in

Indigo. DLBENCH consists of a kernel generator, a profiler,

and a performance analyzer to generate parameterized vari-

ants of a synthetic microbenchmark. CREST is a software

framework that analyzes dependencies among GPU threads

and performs source-level restructuring. It uses source-code

annotations in the code restructurer to control optimizations.

In addition to focusing on common irregular code patterns,

the main differences between Indigo and other benchmark

suites are the much larger number of codes, the much higher

number of inputs (which is important for data-dependent

codes), and the support for creating user-defined subsets of the

suite through configurable code and graph generators. Between

the thousands of codes and the unbounded number of inputs,

Indigo allows users to run millions of distinct tests and to

create subsets for many different usage scenarios.

IV. INDIGO DESIGN

The primary goal of Indigo is to enable the systematic ex-

ploration of key parallel irregular code patterns. As mentioned,

most existing suites do not focus on irregular programs. The

few that do contain dozens of full-fledged graph kernels, each

with just a few inputs, making them not particularly useful

for systematic studies. Moreover, these suites do not contain

buggy codes, making them unsuitable for program verification.

Hence, we set out to create our own benchmark suite.

A. Graph Types

Since the behavior of irregular codes is data dependent, we

may need a large number of inputs for each microbenchmark

to elicit a wide variety of control-flow and memory-access-

pattern combinations. Rather than providing a fixed set of

inputs, we opted to include graph generators that allow the

user to create any desired number of inputs. Importantly, one

of the generators creates all possible directed and undirected

graphs for a given number of vertices. The resulting graphs

necessarily cover all corner cases that could appear in a

real-world graph in this size range, making systematic and

exhaustive testing possible. Since the number of possible

graphs grows exponentially with the number of vertices, this

generator cannot be used to create graphs with many vertices.

Hence, we also included other generators to produce specific

types of graphs with larger vertex counts. All generated inputs

use the CSR format so that every microbenchmark can use all

of them. Indigo includes the following graph generators.

• All possible graphs: this generator works by enumerating

all possible adjacency matrices.

• Binary forests: this generator repeatedly picks a childless

vertex and randomly assigns it an unvisited left child,

right child, both, or none.

• Binary trees: this generator visits every vertex and ran-

domly assigns it an unvisited left and/or right child.

• Capped maximum-degree graphs: this generator assigns

up to k random edges to each vertex.

• Directed acyclic graphs (DAGs): this generator assigns a

random priority to each vertex and then creates random

edges connecting higher- to lower-priority vertices.

• k-dimensional grids: this generator links each vertex to

the next vertex in all dimensions.

• k-dimensional tori: this generator works like the grid

generator but also connects the last vertex to the first

vertex in all dimensions.

• Power-law graphs: this generator permutes the vertex list

and then picks a source and destination vertex for each

edge following a power-law distribution.

• Random neighbor graphs: this generator assigns a single

random neighbor to each vertex.

• Simple planar graphs: this generator creates a random

binary tree and links the internal nodes at the same level.

• Star graphs: this generator picks one random vertex and

adds edges from that vertex to all other vertices.

• Uniform-distribution graphs: this generator is similar to

the power-law generator but uses a uniform distribution.

Where applicable, the generators produce three versions of

each graph: undirected, directed, and counter-directed (with

the edge directions reversed). Figure 1 shows possible grids

and tori that can be generated, and Figure 2 shows examples

of the remaining supported graph types.

0

1

3 2

4

0

1

3 2

4

0

1

3 2

4

0

1

3 2

4

(1) 1D grid (2) Counter 1D grid (3) Undirected 1D grid

2

3

1 4

0

(4) 1D random grid

2

3

1 4

0

(5) Counter 1D random grid

2

3

1 4

0

(6) Undirected 1D

random grid

0

1

3 2

4

0

1

3 2

4

0

1

3 2

4

4

2

3 1

0

(7) 1D torus (10) 1D random

torus

(8) Counter 1D

torus

(9) Undirected

1D torus

4

2

3 1

0

(11) Counter 1D

random torus

4

2

3 1

0

(12) Undirected 1D

random torus

3

1

4 5

7

(13) 2D grid

0 2

6 8

3

1

4 5

7

(14) Counter 2D

grid

0 2

6 8

3

1

4 5

7

(15) Undirected

2D grid

0 2

6 8

1

2

5 6

8

(16) 2D random grid

7 4

0 3

1

2

5 6

8

(17) Counter 2D

random grid

7 4

0 3

1

2

5 6

8

(18) Undirected 2D

random grid

7 4

0 3

3

1

4 5

7

(19) 2D torus

0 2

6 8

3

1

4 5

7

(20) Counter 2D

torus

0 2

6 8

3

1

4 5

7

(21) Undirected

2D torus

0 2

6 8

1

2

5 7

8

(22) 2D random

torus

7 4

0 3

1

2

5 7

8

7 4

0 3

1

2

5 7

8

7 4

0 3

(23) Counter 2D

random torus

(24) Undirected

2D random torus

Fig. 1. Generated grid and torus inputs

Each generator takes a parameter that specifies the number

of vertices. Some take a second parameter that specifies the

maximum degree of the capped maximum-degree graph or

the number of edges of the DAG, power-law, and uniform-

distribution graphs. For the binary tree, torus, grid, random-

neighbor, and star graphs, the number of edges is determined

by the number of vertices. For the binary forests and the simple

planar graphs, the number of edges is determined dynamically.

B. Major Code Patterns

As we are interested in common patterns of irregular codes,

we conducted an extensive study of many irregular parallel

C++ and CUDA programs, including programs from the

0

1

3 2

4

(1) Binary tree (2) Counter binary tree (3) Undirected binary tree

0

1

3 2

4

0

1

3 2

4

0

1

3 2

4

(4) DAG (5) Counter DAG

0

1

3 2

4

0

1

3 2

4

(6) Binary forest (7) Counter binary forest (8) Undirected binary

forest

0

1

3 2

4

0

1

3 2

4

0

1

3 2

4

(9) K max

degree

0

1

3 2

4

(10) Counter k

max degree

0

1

3 2

4

(11) Undirected k

max degree

0

1

3 2

4

(12) Random

neighbor

0

1

3 2

4

(13) Counter random

neighbor

0

1

3 2

4

(14) Undirected

random neighbor

0

2

1 3

4

(15) Power law

0

2

1 3

4

(16) Counter

power law

0

2

1 3

4

(17) Undirected

power law

0

1

3 2

4

(18) Simple

planar

(19) Counter simple

planar
(20) Undirected simple

planar

0

1

3 2

4

0

1

3 2

4

0

1

3 2

4

(21) Star

0

1

3 2

4

(22) Counter star

0

1

3 2

4

(23) Undirected star

0

1

3 2

4

(22) Uniform

distribution

0

1

3 2

4

(23) Counter uniform

distribution

0

1

3 2

4

(23) Undirected uniform

distribution

Fig. 2. Different types of generated input graphs

Lonestar and other suites. We then generalized the extracted

patterns and narrowed them down to the following six major

patterns. We gave them names to simplify the discussion.

• Conditional-vertex pattern: this code pattern updates a

shared memory location if the neighbors of a vertex meet

some condition. For example, in Lonestar, the k-clique

and clustering codes read the neighbors’ data (e.g., the

cluster ID) and update a shared variable (e.g., the size of

the cluster with the largest ID).

• Conditional-edge pattern: this code pattern updates a

shared memory location if the edges of a vertex meet

some condition. For example, in Lonestar, the triangle

counting updates a global scalar if the edge is in an un-

explored triangle, and the maximum cardinality bipartite

matching adds the edge into a matching set if it does not

share end points with any edges in the set.

• Pull pattern: this code pattern updates a vertex-private

memory location based on some neighbors’ data. E.g.,

graph coloring in Pannotia reads the neighbors’ colors

and SSSP in Lonestar reads the neighbors’ distances.

• Push pattern: this code pattern updates a shared memory

location in some neighbors based on vertex-private data.

For example, page rank in Pannotia transfers the pagerank

value to the neighbors, and the maximal independent set

code in Lonestar marks the neighbors as ‘out’ of the set.

• Populate-worklist pattern: this code pattern conditionally

places vertices (or edges) in unique but contiguous ele-

ments of a shared array. For example, BFS in Pannotia

dynamically maintains a worklist of the vertices at the

same level, and SSSP in Lonestar adds and removes

vertices from the worklist depending on their distance.

• Path-compression pattern: this code pattern traverses par-

tially shared paths and updates some vertices on the path.

For example, the spanning tree and connected compo-

nents codes in Lonestar use it in union-find operations.

The path-compression pattern is less frequent than the other

five patterns but still occurs in several irregular algorithms. We

included this pattern because it is the only common pattern we

found that not only accesses direct graph neighbors but also the

neighbors’ neighbors, etc. The resulting six patterns represent

key low-level “dwarfs” of irregular graph codes [31].

0

1

2 3

write
write

0

1

2 3

write
write

read

read

(b) conditional-edge

pattern

(a) conditional-vertex

pattern

0

1

2 3

read

read

0

1

2 3

write

write

(c) pull pattern (d) push pattern

0

1

2 3

write write

indexing

0 3

(e) populate-worklist

pattern

(f) path-compression

pattern

read

1

global scalar

global array

2

read

read

read

read

read

read

read

Fig. 3. Major irregular code patterns

Figure 3 visualizes each pattern. Squares represent shared

global memory locations, circles denote graph vertices and

vertex-local locations, solid lines are graph edges and edge-

local locations, and dashed arrows track data flow. Red sig-

nifies shared write locations, blue demarcates shared read

locations, yellow indicates non-shared write locations, and

green marks non-shared read locations. The dashed circles

outline two active vertices [32] that are processed in parallel.

The figure highlights potential sharing issues. The condi-

tional edge pattern accesses a single shared read-modify-write

location. The conditional vertex pattern does the same but also

accesses multiple shared read-only locations. The pull pattern

only accesses multiple shared read-only locations. The push

pattern accesses multiple shared read-modify-write locations.

The populate-worklist pattern accesses a single shared read-

modify-write location as well as a single shared write-only

array in which each element is written at most once. The path-

compression pattern accesses multiple shared locations that

are read and some of which are then written. In all cases that

involve multiple shared locations, the memory accesses are

indirect. Moreover, all six patterns include non-shared indirect

accesses to the adjacency lists.

C. Pattern Variations

From each major pattern, we methodically create varia-

tions along several dimensions (where applicable). The first

dimension is the data type of the shared memory locations.

Indigo currently includes the following six types: signed 8-

bit integers, unsigned 16-bit integers, signed 32-bit integers,

unsigned 64-bit integers, 32-bit floats, and 64-bit doubles.

The second dimension is the neighbors being accessed.

Indigo can process the adjacency lists in the following six

ways: only the first neighbor, only the last neighbor, all

neighbors in the forward direction, all neighbors in the reverse

direction, the first few neighbors until a condition is met, and

the last few neighbors until a condition is met. Although it

does occur, accessing only the first or last neighbor is not very

common. We still included these versions as they represent

important corner cases (for example for bounds checks).

The third dimension is making the updates of the shared

memory locations conditional. This increases the complexity,

e.g., when trying to detect data races or out-of-bounds array

accesses, because it introduces (additional) data-dependent

control flow and makes the memory accesses more irregular.

The fourth dimension is inserting common bugs. We focus

on two types: out-of-bounds memory accesses and synchro-

nization errors. The out-of-bounds bugs involve going over the

end of either of the two CSR arrays. The synchronization bugs

involve making operations non-atomic that must be atomic,

inserting performance-enhancing guards that introduce data

races, and removing necessary barriers.

The fifth and final dimension is employing different parallel

schedules. On the OpenMP side, this involves using a static

or dynamic assignment of work to the threads. On the CUDA

side, it involves assigning one vertex or multiple vertices to

each processing entity (i.e., using persistent threads [33]),

where a processing entity is a thread, a warp, or a block.

The five dimensions are orthogonal and can be combined

in any way. Moreover, the bugs (in the fourth dimension) are

independent of each other and any combination thereof can be

present in the same code. Together, these combinations result

in the thousands of microbenchmarks in Indigo.

D. Annotation Tags

Implementing a benchmark suite containing thousands of

codes by hand is nearly impossible and not maintainable.

Instead, we wrote just six source files per major pattern and

express all variations in form of annotation tags. These tags

are similar to the annotation comments in the Java Modeling

Language (JML) [34]. Indigo automatically generates the

OpenMP and CUDA codes from these annotated source files.

Listing 1 provides an excerpt of an annotated CUDA kernel.

We use the syntax “/*@tag@*/” without the quotes to separate

alternative statements on a line of code. Each annotated line

can either be the code before the first tag, between the first

and second tag, etc., or after the last tag. Tags with different

names on different lines are independent and all combinations

can be generated. For example, the alternatives before and

after the ‘reverse’ tag will be combined with the alternatives

before (empty) and after the ‘break’ tag, resulting in four

versions. However, tags on different lines with the same name

are dependent, meaning the same alternative will be used on

all lines with the same tag names. For example, lines 2, 3,

and 13 will all use their first, middle, or last alternative, thus

only resulting in three versions. Together, the tags in Listing 1

express a total of 12 versions of this kernel. Listing 2 shows the

version that is generated when the ‘persistent’ tag is enabled

and all other tags are disabled. Note that the tag names are

arbitrary strings that can be compared for equality.

1 int idx = threadIdx.x + blockIdx.x * blockDim.x;

2 int i = idx; /*@persistent@*/ /*@boundsBug@*/ int

i = idx;

3 if (i < numv) { /*@persistent@*/ for (int i = idx;

i < numv; i += gridDim.x * blockDim.x) {

/*@boundsBug@*/

4 int beg = nindex[i];

5 int end = nindex[i + 1];

6 for (int j = beg; j < end; j++) { /*@reverse@*/

for (int j = end - 1; j >= beg; j--) {

7 int nei = nlist[j];

8 if (i < nei) {

9 atomicAdd(data1, (data_t)1); /*@atomicBug@*/

data1[0]++;

10 /*@break@*/ break;

11 }

12 }

13 } /*@persistent@*/ } /*@boundsBug@*/

Listing 1. Excerpt of Indigo source file for generating 12 versions of
the conditional-edge pattern

1 int idx = threadIdx.x + blockIdx.x * blockDim.x;

2 for (int i = idx; i < numv; i += gridDim.x *
blockDim.x) {

3 int beg = nindex[i];

4 int end = nindex[i + 1];

5 for (int j = beg; j < end; j++) {

6 int nei = nlist[j];

7 if (i < nei) {

8 atomicAdd(data1, (data_t)1);

9 }

10 }

11 }

Listing 2. One resulting CUDA version of the conditional-edge pattern

1 int beg = nindex[i];

2 int end = nindex[i + 1];

3 data_t val = 0;

4 for (int j = beg + threadIdx.x; j < end; j +=

blockDim.x) {

5 val = max(val, data2[nlist[j]]);

6 }

7 val = __reduce_max_sync(˜0, val);

8 if (lane == 0) s_carry[warp] = val;

9 __syncthreads(); /*@syncBug@*/

10 if (warp == 0) {

11 val = s_carry[lane];

12 val = __reduce_max_sync(˜0, val);

13 if (lane == 0) {

14 /*@guardBug@*/ if (data1[0] < val) {

15 atomicMax(data1, val); /*@atomicBug@*/ data1

[0] = max(data1[0], val);

16 /*@guardBug@*/ }

17 }

18 }

Listing 3. Excerpt of Indigo source file illustrating bug insertion

We use the tags to enable pattern variations, including

inserting bugs. There are five different types of bugs. They

are ‘atomicBug’, ‘boundsBug’, ‘guardBug’, ‘raceBug’, and

‘syncBug’. We introduce them by removing necessary syn-

chronization or allowing access past the end of an array. For

example, the ‘boundsBug’ on line 3 of Listing 1 enables out-

of-bound memory accesses by allowing the index i to exceed

the array size on lines 4 and 5. The ‘syncBug’ on line 9 of

Listing 3 removes a needed block-level barrier, the ‘guardBug’

on line 14 introduces a data race, and the ‘atomicBug’ on line

15 makes an update to a globally shared location non-atomic.

We believe it is important for the generated codes to be

human readable. Thus, Indigo does not use synthetic variable

names. It also automatically indents the code, which is nec-

essary when variations introduce or remove if statements, and

eliminates blank lines due to empty tags. The file name of each

microbenchmark is the pattern name followed by all enabled

tags to make it easy to identify which file contains which code.

E. Subset Selection

The large number of microbenchmarks and graphs in Indigo

yields over a million possible combinations, which may take

too long to run. Therefore, the suite provides the flexibility to

generate user-defined subsets of the programs and inputs. This

is done through two levels of configuration files. We chose this

approach to simplify the subset selection for most users.

The first level is a master list of allowable parameter settings

for each graph generator, including the range of graph sizes.

It is meant for experienced users who can add and remove

any valid parameter settings they like. Since editing this list

requires knowledge about the parameters each graph generator

takes, we opted to hide it from novice users.

The second level is a much simpler configuration file that

we think anyone can easily understand and modify. It filters

out unwanted code versions and input types and sizes. For ex-

ample, the user can select to only generate bug-free codes and

directed graphs with between 10 and 12 vertices. TACO [35]

similarly creates tensor algebra kernels based on user-defined

constraints. In this way, an Indigo user can generate a small

subset for quick testing and later a more extensive subset to

perform a detailed study.

The configuration file comprises one section to manage

the code generation and another section to manage the graph

generation as shown in Listing 4. Both sections consist of a

number of rules, each specifying a set of selections.

1 CODE:

2 bug: {hasbug}

3 pattern: {pull, populate-worklist}

4 option: {only_atomicBug}

5 dataType: {int, float}

6

7 INPUTS:

8 direction: {all}

9 pattern: {˜star}

10 rangeNumV: {0-100, 2000}

11 rangeNumE: {0-5000}

12 samplingRate: 50%

Listing 4. Sample configuration file

For ease of use, Indigo’s configuration file lists all possible

choices for each rule in form of a comment. These choices

are also shown in Tables II and III. The shorthand notation

“all” means all possible choices will be generated. The symbol

“∼” inverts the meaning of the selection. For example, “∼star”

means all graph types except for star graphs. Prefixing a choice

with “only ” as in “only atomicBug” means no other bug

type can be present. There are no specific choices for the

last three rules pertaining to the input generation. Instead,

the user needs to provide one or multiple values or ranges

of values. The sampling rate further controls the number of

graphs generated and must be a single value. For example, a

50% rate means half of the graphs that meet the other four

rules in the input section will actually be generated. Since the

code and graph generators are deterministic, they will always

produce the same suite for a given configuration regardless of

what machine the generators run on. Indigo includes several

example configuration files for building various small and

large subsets. Users can choose the default, one of four

provided, or their own filter to generate a subset.

TABLE II
CHOICES FOR MANAGING THE CODE GENERATION

Rule Choices

Bug all, hasbug, nobug

Pattern
all, conditional-vertex, conditional-edge, pull, push,

populate-worklist, path-compression

Option
all, atomicBug, boundsBug, guardBug, raceBug, syncBug,

break, cond, dynamic, last, persistent, reverse, traverse

Data type all, int, char, double, float, long, short

TABLE III
CHOICES FOR MANAGING THE GRAPH GENERATION

Rule Choices

Direction all, directed, undirected

Pattern

all, DAG, k max degree, power law,
uniform degree, all possible graphs,

binary forest, binary tree,
k dim grid, k dim torus,

rand neighbor, simple planar, star

Sampling rate value between 0% and 100%

V. EXPERIMENTAL METHODOLOGY

We used version 0.9 of Indigo to evaluate the verification

tools listed in Table IV. ThreadSanitizer [36] is a dynamic

data-race detector for C/C++ programs and is part of Clang 3.2

and gcc 4.8. Archer [37] is a data-race detector for OpenMP

codes that combines static and dynamic techniques.

CIVL is a verification platform for parallel C programs.

Its intermediate language, CIVL-C, employs a general model

of concurrency that can represent OpenMP, CUDA, MPI, and

Pthreads programs. CIVL includes front-ends to translate code

to CIVL-C and a back-end that uses symbolic execution and

model-checking techniques to verify CIVL-C programs.

Cuda-memcheck is a correctness checking suite for CUDA.

It includes the memory access error and leak detection tool

Memcheck [38], the shared memory data access hazard detec-

tion tool Racecheck [39], the unitialized global memory access

TABLE IV
TESTED VERIFICATION TOOLS

Tool Version OpenMP CUDA

ThreadSanitizer [36] 9.3.1 Yes No

Archer [37] 2.0.0 Yes No

CIVL [42] 1.20 Yes Yes

Cuda-memcheck [43] 11.4.0 No Yes

detection tool Initcheck [40], and the thread synchronization

hazard detection tool Synccheck [41].

The system we used for running the OpenMP codes has

dual 10-core 3.1 GHz Xeon E5-2687W v3 CPUs. The CUDA

codes were executed on a GeForce GTX Titan X GPU with

3072 processing elements in 24 multiprocessors. We ran the

OpenMP experiments with 2 and 20 threads. For the CUDA

experiments, we launch 2 blocks with 256 threads per block.

The operating system is Fedora 30, and the GPU driver ver-

sion is 450.66. We used gcc 9.3.1 with the “-O3 -march=native

-fopenmp” switches to compile the OpenMP codes and nvcc

11.0 with the “-O3” switch to compile the CUDA codes.

To keep the running times manageable, we excluded all

data types other than 32-bit signed integers. This yielded 692

microbenchmarks. 254 are OpenMP and 438 are CUDA codes,

including 146 OpenMP and 274 CUDA codes with bugs. We

ran each of them with 209 generated graphs. These inputs

comprise all possible undirected graphs ranging from 1 to 4

vertices and all other types of supported graphs with 29 and

773 (729 for the grids and tori) vertices. In total, we executed

106,172 tests for ThreadSanitizer and Archer as well as 91,542

tests for each Cuda-memcheck tool. Being a static tool, CIVL

only verifies each code once. Since it can take a long time

to analyze a microbenchmark, we only specified 2 threads for

the CIVL OpenMP experiments.

As out-of-bound accesses may result in an infinite loop with

the Racecheck tool, we do not use it on codes with this type of

bug. Excluding it does not affect the results because none of

the Indigo codes with this bug use the GPU’s shared memory.

To evaluate each tool, we measured the four counts shown

in Table V to produce a confusion matrix. A tool generates a

false positive (FP) if it reports a non-existing bug. If it correctly

detects an existing bug, it is a true positive (TP). It is a true

negative (TN) if the tool does not detect any bug in a bug-

free program. If it fails to detect an existing bug, it is a false

negative (FN). Note that, for a bug-free program, a tool can

only generate either an FP or TN result. Similarly, it can only

generate either a TP or FN result for a buggy program.

TABLE V
CONFUSION MATRIX

Bug-free code Buggy code

Positive report False positive (FP) True positive (TP)

Negative report True negative (TN) False negative (FN)

To make the results easier to understand, it is common to

convert them into the three higher-is-better metrics accuracy
(A), precision (P), and recall (R), which are defined as

follows: A = (TP + TN)/(TP + FP + TN + FN),
P = TP/(TP + FP), R = TP/(TP + FN). The accuracy

reflects the probability that the tool produces a correct report,

the precision denotes the probability of correctly detecting a

bug out of all positive reports, and the recall measures the

probability of detecting a bug within all buggy codes.

VI. RESULTS

Table VI lists the raw counts we obtained for each evaluated

tool. Table VII shows the corresponding accuracy, precision,

and recall. The numbers in parentheses reflect the thread count.

TABLE VI
ABSOLUTE POSITIVE AND NEGATIVE COUNTS FOR EACH TOOL

Tool
Bug-free codes Buggy codes

FP TN TP FN

ThreadSanitizer (2) 5,317 17,255 14,829 15,685

ThreadSanitizer (20) 6,565 16,007 18,103 12,411

Archer (2) 2,587 19,985 8,471 22,043

Archer (20) 21,744 828 29,689 825

CIVL (OpenMP) 0 108 18 128

CIVL (CUDA) 0 164 64 210

Cuda-memcheck 0 34,276 17,406 39,860

TABLE VII
RELATIVE METRICS FOR EACH TOOL

Tool Accuracy Precision Recall

ThreadSanitizer (2) 60.4% 73.6% 48.6%

ThreadSanitizer (20) 64.2% 73.4% 59.3%

Archer (2) 53.6% 76.7% 27.8%

Archer (20) 57.4% 57.7% 97.2%

CIVL (OpenMP) 49.6% 100.0% 12.1%

CIVL (CUDA) 52.1% 100.0% 23.4%

Cuda-memcheck 56.4% 100.0% 30.4%

The ThreadSanitizer and Archer results depend on the num-

ber of threads. They both have better accuracy and especially

recall but lower precision with more threads. Since they are

dynamic tools, they benefit from larger thread counts, which

increase the chances of a bug manifesting itself, yielding a

higher number of true positives. However, a larger number of

threads also increases the observed interleavings and thus the

analysis complexity, resulting in more false positives. Thread-

Sanitizer mostly outperforms Archer because we included an

option in ThreadSanitizer to suppress bug detection outside of

the parallel target kernel. Archer does not have such an option.

CIVL does not report any false positives, resulting in

perfect precision. However, its accuracy and especially its

recall are lower than those of Archer and ThreadSanitizer.

This is due to CIVL still being under active development.

It does not yet support several features that appear in our

microbenchmarks, including “atomic capture” and “reduction”

pragmas in OpenMP as well as atomic, warp-vote, and warp-

shuffle functions in CUDA. Moreover, every microbenchmark

with a missing atomic operation results in an internal CIVL

error for the OpenMP codes2. For now, we count codes that

use unsupported operations as negative results.

Cuda-memcheck also does not produce any false positives,

yielding a perfect precision. Its accuracy and recall are better

than CIVL’s but mostly worse than ThreadSanitizer’s and

Archer’s. Note, however, that we are comparing results from

CUDA and OpenMP codes, only some of which are equivalent.

2We reported this bug (and the missing features) to the authors of CIVL.

A. Data-race Detection

Since ThreadSanitizer and Archer were designed for de-

tecting data races, we provide results for just race detection

in Table VIII. A false positive means the tool reports a data

race but the program is race-free, though it may contain other

types of bugs. Table IX shows the corresponding metrics.

TABLE VIII
RESULTS FOR DETECTING JUST OPENMP DATA RACES

Tool
No data races Has data races

FP TN TP FN

ThreadSanitizer (2) 6,764 23,332 12,196 10,794

ThreadSanitizer (20) 9,408 20,688 14,995 7,995

Archer (2) 3,497 26,599 6,009 16,981

Archer (20) 27,338 2,758 21,819 1,171

TABLE IX
METRICS FOR DETECTING JUST OPENMP DATA RACES

Tool Accuracy Precision Recall

ThreadSanitizer (2) 66.9% 64.3% 53.0%

ThreadSanitizer (20) 67.2% 61.4% 65.2%

Archer (2) 61.4% 63.2% 26.1%

Archer (20) 46.3% 44.3% 94.8%

When detecting data races in the regular codes of the

DataRaceBench suite [16], the accuracy, precision, and recall

are 54.2%, 55.1%, and 95% for ThreadSanitizer and 83.3%,

91.2%, and 77.5% for Archer. Hence, Archer performs better

on almost all metrics on regular codes. ThreadSanitizer has a

lower accuracy and precision on the regular codes, which may

be because we used the aforementioned suppression flag, but

a higher recall. Overall, we find irregular codes to be at least

as challenging as regular codes when detecting data races.

Interestingly, the results vary substantially between the six

main code patterns. Table X shows the metrics of ThreadSan-

itizer with 20 threads split by pattern. There are no variations

of the pull pattern in Indigo that contain data races. Evidently,

the path-compression and the conditional-edge pattern make

it easy to detect data races. In contrast, the conditional-vertex

and especially the push pattern make it much harder. This

highlights the importance of not only the multiple patterns but

also including the same bug in each of them, that is, system-

atically creating variations of the irregular code patterns.

TABLE X
THREADSANITIZER METRICS FOR DETECTING JUST OPENMP DATA RACES

IN DIFFERENT CODE PATTERNS

Pattern Accuracy Precision Recall

Conditional-vertex pattern 49.9% 49.9% 70.8%

Conditional-edge pattern 88.4% 99.8% 76.9%

Push pattern 43.3% 44.7% 56.1%

Populate-worklist pattern 69.6% 99.1% 39.5%

Path-compression pattern 96.5% 100.0% 89.5%

Cuda-memcheck can only detect data races in the GPU’s

shared memory but not in global memory. Hence, we only

show results for detecting races in shared memory. Table XI

lists the counts. Table XII shows the corresponding metrics.

The Racecheck tool in Cuda-memcheck does not yield any

false positives when detecting data races in shared memory. Its

accuracy and precision are very high. Moreover, its accuracy

TABLE XI
CUDA-MEMCHECK COUNTS FOR DETECTING JUST CUDA DATA RACES IN

SHARED MEMORY

Tool
No data races Has data races

FP TN TP FN

Cuda-memcheck 0 86,976 3,304 5,016

TABLE XII
CUDA-MEMCHECK METRICS FOR DETECTING JUST CUDA DATA RACES IN

SHARED MEMORY

Tool Accuracy Precision Recall

Cuda-memcheck 98.1% 100% 65.8%

and recall are roughly twice their counterparts in Table VII,

indicating that the Racecheck tool performs quite a bit better

on our codes than some of the other tools in Cuda-memcheck.

B. Memory-error Detection

CIVL and Cuda-memcheck support detecting memory ac-

cess errors. Tables XIII and XIV list the corresponding counts

and metrics. Neither tool produces any false negatives. Note

that an out-of-bound access only happens for some of the input

graphs. Yet, both tools perform quite well on our CUDA codes.

TABLE XIII
COUNTS FOR DETECTING JUST MEMORY ACCESS ERRORS

Tool
No boundsBug Has boundsBug

FP TN TP FN

CIVL (OpenMP) 0 190 16 48

CIVL (CUDA) 0 326 64 48

Cuda-memcheck 0 68,134 14,102 9,306

TABLE XIV
METRICS FOR DETECTING JUST MEMORY ACCESS ERRORS

Tool Accuracy Precision Recall

CIVL (OpenMP) 81.1% 100% 25.0%

CIVL (CUDA) 89.0% 100% 57.1%

Cuda-memcheck 89.8% 100% 60.2%

Again, the results vary quite a bit between the code patterns.

Table XV shows the metrics for CIVL with 2 OpenMP threads.

We did not evaluate any path-compression codes with out-of-

bounds memory accesses. In the pull pattern, CIVL detects all

memory errors perfectly. However, in the conditional-vertex,

push, and populate-worklist patterns, it detects none of them.

This again illustrates the need for including the same bug in

different irregular code patterns when testing verification tools.

VII. SUMMARY AND CONCLUSIONS

Irregular programs tend to be data dependent, meaning that

different inputs can result in very different runtime behavior.

This paper presents Indigo, the first benchmark suite designed

to enable extensive studies of such dynamic behavior in

OpenMP and CUDA codes and to systematically exercise tools

like program verifiers, compilers, and architectural simulators.

Indigo is available at https://cs.txstate.edu/∼burtscher/research/

IndigoSuite/.

To create the suite, we extracted the most important dwarf-

like code patterns from parallel graph analytics applications.

We implemented Indigo to methodically generate hundreds

TABLE XV
CIVL METRICS FOR DETECTING JUST OPENMP OUT-OF-BOUND ERRORS

IN DIFFERENT CODE PATTERNS

Pattern Accuracy Precision Recall

Conditional-vertex pattern 75% 100% 0%

Conditional-edge pattern 87.5% 100% 50%

Pull pattern 100% 100% 100%

Push pattern 75% 100% 0%

Populate-worklist pattern 66.6% 100% 0%

of variations of each pattern, including some with planted

bugs. We call the resulting codes “microbenchmarks”. Indigo

comes with generators that can produce an unbounded number

of inputs for each microbenchmark, including all possible

graphs with k vertices for systematic and exhaustive testing.

Combining the thousands of codes with just as many inputs

yields millions of distinct combinations to elicit a vast number

of program behaviors. To control this number, Indigo allows

the user to generate subsets of the code variations and inputs

via their own or one of the provided configuration files.

We employed such a subset of over 100,000 experiments to

evaluate several parallel-program verification tools. Our results

show that bug detection tends to be more difficult in irregular

codes than in regular codes. For example, ThreadSanitizer and

Archer can detect 95% and 77.5% of the data races in the

‘race-yes’ regular programs from the DataRaceBench suite.

However, on our short irregular codes, they only correctly

detect 65.2% and 26.1% of the data races and produce false

positives on many race-free programs. Moreover, we found

the quality of these tools to vary greatly between different

irregularity patterns. This highlights the need for including a

variety of code patterns in irregular benchmark suites as well

as the importance of including the same bug in different codes,

that is, the importance of systematically creating variations of

code patterns. We hope that our work will inspire others to

build similar benchmark suites for additional domains.

ACKNOWLEDGMENTS

We thank the anonymous reviewers, Ganesh Gopalakrish-

nan, Stephen Siegel, Tanmay Tirpankar, and Alexander Wilton

for their help and feedback to improve this paper.

REFERENCES

[1] S. A. Myers, A. Sharma, P. Gupta, and J. Lin, “Information network or
social network? the structure of the twitter follow graph,” in Proceedings

of the 23rd International Conference on World Wide Web, 2014, pp.
493–498.

[2] D. J. Cook and L. B. Holder, “Graph-based data mining,” IEEE

Intelligent Systems and Their Applications, vol. 15, no. 2, pp. 32–41,
2000.

[3] C. Zhang, D. Song, C. Huang, A. Swami, and N. V. Chawla, “Het-
erogeneous graph neural network,” in Proceedings of the 25th ACM

SIGKDD International Conference on Knowledge Discovery & Data

Mining, 2019, pp. 793–803.
[4] S. Cyphers, A. K. Bansal, A. Bhiwandiwalla, J. Bobba, M. Brookhart,

A. Chakraborty, W. Constable, C. Convey, L. Cook, O. Kanawi et al.,
“Intel ngraph: An intermediate representation, compiler, and executor
for deep learning,” arXiv preprint arXiv:1801.08058, 2018.

[5] M. Burtscher, R. Nasre, and K. Pingali, “A quantitative study of irregular
programs on gpus,” in 2012 IEEE International Symposium on Workload

Characterization (IISWC). IEEE, 2012, pp. 141–151.
[6] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The parsec benchmark suite:

Characterization and architectural implications,” in Proceedings of the

17th international conference on Parallel architectures and compilation

techniques, 2008, pp. 72–81.
[7] M. Kulkarni, M. Burtscher, C. Casçaval, and K. Pingali, “Lonestar:

A suite of parallel irregular programs,” in 2009 IEEE International

Symposium on Performance Analysis of Systems and Software. IEEE,
2009, pp. 65–76.

[8] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee, and
K. Skadron, “Rodinia: A benchmark suite for heterogeneous computing,”
in 2009 IEEE international symposium on workload characterization

(IISWC). Ieee, 2009, pp. 44–54.
[9] A. Danalis, G. Marin, C. McCurdy, J. S. Meredith, P. C. Roth,

K. Spafford, V. Tipparaju, and J. S. Vetter, “The scalable heterogeneous
computing (shoc) benchmark suite,” in Proceedings of the 3rd Workshop

on General-Purpose Computation on Graphics Processing Units, 2010,
pp. 63–74.

[10] J. A. Stratton, C. Rodrigues, I.-J. Sung, N. Obeid, L.-W. Chang,
N. Anssari, G. D. Liu, and W.-m. W. Hwu, “Parboil: A revised
benchmark suite for scientific and commercial throughput computing,”
Center for Reliable and High-Performance Computing, vol. 127, 2012.

[11] S. Grauer-Gray, L. Xu, R. Searles, S. Ayalasomayajula, and J. Cavazos,
“Auto-tuning a high-level language targeted to gpu codes,” in 2012

innovative parallel computing (InPar). Ieee, 2012, pp. 1–10.
[12] S. Che, B. M. Beckmann, S. K. Reinhardt, and K. Skadron, “Pannotia:

Understanding irregular gpgpu graph applications,” in 2013 IEEE In-

ternational Symposium on Workload Characterization (IISWC). IEEE,
2013, pp. 185–195.

[13] S. Beamer, K. Asanović, and D. Patterson, “The gap benchmark suite,”
arXiv preprint arXiv:1508.03619, 2015.

[14] L. Nai, Y. Xia, I. G. Tanase, H. Kim, and C.-Y. Lin, “Graphbig:
understanding graph computing in the context of industrial solutions,”
in SC ’15: Proceedings of the International Conference for High

Performance Computing, Networking, Storage and Analysis, 2015, pp.
1–12.

[15] J. Gómez-Luna, I. El Hajj, L.-W. Chang, V. Garcı́a-Floreszx, S. G.
De Gonzalo, T. B. Jablin, A. J. Pena, and W.-m. Hwu, “Chai: Collabo-
rative heterogeneous applications for integrated-architectures,” in 2017

IEEE International Symposium on Performance Analysis of Systems and

Software (ISPASS). IEEE, 2017, pp. 43–54.
[16] C. Liao, P.-H. Lin, J. Asplund, M. Schordan, and I. Karlin,

“Dataracebench: a benchmark suite for systematic evaluation of data
race detection tools,” in Proceedings of the International Conference

for High Performance Computing, Networking, Storage and Analysis,
2017, pp. 1–14.

[17] Z. Xu, X. Chen, J. Shen, Y. Zhang, C. Chen, and C. Yang, “Gardenia:
A graph processing benchmark suite for next-generation accelerators,”
ACM Journal on Emerging Technologies in Computing Systems (JETC),
vol. 15, no. 1, pp. 1–13, 2019.

[18] L. Dhulipala, J. Shi, T. Tseng, G. E. Blelloch, and J. Shun, “The
graph based benchmark suite (gbbs),” in Proceedings of the 3rd Joint

International Workshop on Graph Data Management Experiences &

Systems (GRADES) and Network Data Analytics (NDA), 2020, pp. 1–8.
[19] J. Leskovec, D. Chakrabarti, J. Kleinberg, C. Faloutsos, and Z. Ghahra-

mani, “Kronecker graphs: an approach to modeling networks.” Journal

of Machine Learning Research, vol. 11, no. 2, 2010.
[20] L. Wang, W. Jie, and J. Chen, Grid computing: infrastructure, service,

and applications. CRC Press, 2018.
[21] S. R. Blackburn and S. Gerke, “Connectivity of the uniform random

intersection graph,” Discrete Mathematics, vol. 309, no. 16, pp. 5130–
5140, 2009.

[22] J. Dongarra, “Compressed row storage,” http://www.netlib.org/utk/
people/JackDongarra/etemplates/node373.html, accessed: 2021-7-3.

[23] G. Verma, Y. Shi, C. Liao, B. Chapman, and Y. Yan, “Enhanc-
ing dataracebench for evaluating data race detection tools,” in 2020

IEEE/ACM 4th International Workshop on Software Correctness for

HPC Applications (Correctness). IEEE, 2020, pp. 20–30.
[24] G. Li, P. Li, G. Sawaya, G. Gopalakrishnan, I. Ghosh, and S. P.

Rajan, “Gklee: Concolic verification and test generation for gpus,” in
Proceedings of the 17th ACM SIGPLAN Symposium on Principles

and Practice of Parallel Programming, ser. PPoPP ’12. New York,
NY, USA: Association for Computing Machinery, 2012, p. 215–224.
[Online]. Available: https://doi.org/10.1145/2145816.2145844

[25] A. Betts, N. Chong, A. Donaldson, S. Qadeer, and P. Thomson, “Gpuver-
ify: a verifier for gpu kernels,” in Proceedings of the ACM international

conference on Object oriented programming systems languages and

applications, 2012, pp. 113–132.
[26] A. Eizenberg, Y. Peng, T. Pigli, W. Mansky, and J. Devietti, “Barracuda:

Binary-level analysis of runtime races in cuda programs,” in Proceedings

of the 38th ACM SIGPLAN Conference on Programming Language

Design and Implementation, 2017, pp. 126–140.
[27] T. Tu, X. Liu, L. Song, and Y. Zhang, “Understanding real-world con-

currency bugs in go,” in Proceedings of the Twenty-Fourth International

Conference on Architectural Support for Programming Languages and

Operating Systems, 2019, pp. 865–878.
[28] T. Yuan, G. Li, J. Lu, C. Liu, L. Li, and J. Xue, “Gobench: A

benchmark suite of real-world go concurrency bugs,” in 2021 IEEE/ACM

International Symposium on Code Generation and Optimization (CGO).
IEEE, 2021, pp. 187–199.

[29] S. Unkule, C. Shaltz, and A. Qasem, “Automatic restructuring of
gpu kernels for exploiting inter-thread data locality,” in International

Conference on Compiler Construction. Springer, 2012, pp. 21–40.
[30] A. Qasem, A. M. Aji, and G. Rodgers, “Characterizing data organization

effects on heterogeneous memory architectures,” in 2017 IEEE/ACM

International Symposium on Code Generation and Optimization (CGO),
2017, pp. 160–170.

[31] K. Asanovic, R. Bodik, J. Demmel, T. Keaveny, K. Keutzer,
J. Kubiatowicz, N. Morgan, D. Patterson, K. Sen, J. Wawrzynek,
D. Wessel, and K. Yelick, “A view of the parallel computing landscape,”
Commun. ACM, vol. 52, no. 10, p. 56–67, oct 2009. [Online]. Available:
https://doi.org/10.1145/1562764.1562783

[32] K. Pingali, D. Nguyen, M. Kulkarni, M. Burtscher, M. A. Hassaan,
R. Kaleem, T.-H. Lee, A. Lenharth, R. Manevich, M. Méndez-Lojo
et al., “The tao of parallelism in algorithms,” in Proceedings of the

32nd ACM SIGPLAN conference on Programming language design and

implementation, 2011, pp. 12–25.
[33] K. Gupta, J. A. Stuart, and J. D. Owens, “A study of persistent threads

style gpu programming for gpgpu workloads,” in 2012 Innovative

Parallel Computing (InPar), 2012, pp. 1–14.
[34] G. T. Leavens, “The java modeling language (jml),” URL

http://sourceforge. net/apps/wordpress/fixedptc, 2007.
[35] F. Kjolstad, S. Kamil, S. Chou, D. Lugato, and S. Amarasinghe,

“The tensor algebra compiler,” Proc. ACM Program. Lang., vol. 1,
no. OOPSLA, Oct. 2017. [Online]. Available: https://doi.org/10.1145/
3133901

[36] “Threadsanitizer,” https://github.com/google/sanitizers, accessed: 2021-
6-28.

[37] “Archer,” https://github.com/PRUNERS/archer, accessed: 2021-6-26.
[38] “Memcheck tool,” https://docs.nvidia.com/cuda/cuda-memcheck/index.

html/memcheck-tool, accessed: 2021-6-28.
[39] “Racecheck tool,” https://docs.nvidia.com/cuda/cuda-memcheck/index.

html/racecheck-tool, accessed: 2021-6-28.
[40] “Initcheck tool,” https://docs.nvidia.com/cuda/cuda-memcheck/index.

html/initcheck-tool, accessed: 2021-6-28.
[41] “Cuda-synccheck,” https://docs.nvidia.com/cuda/cuda-memcheck/index.

html/synccheck-tool, accessed: 2021-6-28.
[42] S. F. Siegel, M. Zheng, Z. Luo, T. K. Zirkel, A. V. Marianiello, J. G.

Edenhofner, M. B. Dwyer, and M. S. Rogers, “Civl: the concurrency
intermediate verification language,” in SC ’15: Proceedings of the

International Conference for High Performance Computing, Networking,

Storage and Analysis, 2015, pp. 1–12.
[43] “Cuda-memcheck,” https://docs.nvidia.com/cuda/cuda-memcheck/index.

html, accessed: 2021-6-28.

