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Pions in proton structure and everywhere else
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The pion cloud is important in nuclear physics and in a variety of low-energy hadronic phenomena. We
argue that it is natural to expect it to also be important in lepton-proton deep inelastic scattering and Drell-
Yan studies of proton structure. We compute the necessary consequences of the pion cloud in connection
with the recent SeaQuest data. The effects are detailed by using the exact kinematics of the experiment.
Good agreement with the measurements is obtained. Thus, the universality of pionic effects is understood.
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The recent striking experimental finding [1] that anti-
down quarks are more abundant in the proton than antiup
quarks for all observed values of the Bjorken x variable
demands an interpretation and assessment of the conse-
quences. This paper is aimed at providing such.

The results of [1] provide definitive experimental mea-
surements of the ratio d/i. Although our early prediction
[2] using a pion cloud model is in qualitative agreement
with that experiment, it is necessary to update the calcu-
lation by providing results for the specific kinematics of the
experiment that are known only since the publication [1].

We begin by explaining why it is natural to expect that
the pion cloud would play a role in probes of proton
structure. Pion exchange between nucleons provides in the
one pion exchange potential (OPEP) the longest-ranged
component of the strong force. It is an element of all
models, from the ancient to the newest, of the nucleon-
nucleon interaction. The OPEP is crucially responsible for
the binding of nuclei [3,4]. Moreover, the presence of the
pion as a significant component of the nuclear wave
function is reinforced by the dominance of the pion in
meson exchange corrections to a variety of nuclear proper-
ties. This was discussed long ago [5,6] and recently [7].

If a nucleon emits a virtual pion that is absorbed on
another nucleon, as in the OPEP, it can emit a pion that is
absorbed by itself. This is because nucleons are identical
particles and a pion can be absorbed on any nucleon. Thus,
the nucleon must consist, at least part of the time, of a
nucleon and a virtual pion. The very significant contribu-
tions of pions to nucleon and baryon properties have
been well documented for a long time [8—12]. Particular
examples in which the pion-cloud effects are prominent
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are the neutron charge distribution [9] and baryon
magnetic moments [11].

Given that the proton wave function has nz*(ud) and
pzro components, with a two to one ratio of probabilities,
there should be more antidown quarks than antiup quarks in
the nucleon. This means that the textbook description that
nucleons are composed of u# and d valence constituent
quarks, cannot be the whole story. Furthermore, the gluons
inherent in QCD generate quark-antiquark pairs via per-
turbative interactions. Thus, one is led to the question; Do
the pairs arise only from perturbative evolution at high
momentum scales, or do they have a nonperturbative origin
as in the pion cloud? A definitive answer would provide
great help in understanding the nature of confinement and
also the fundamental aspects of the nucleon-nucleon force.
Perturbative QCD predicts a sea that is almost symmetric in
light flavor. However, the discovery of the violation of the
Gottfried sum rule told us that d quarks are favored over i
quarks [13]. This highlighted the importance of the pion
cloud of the nucleon [14,15]. Reviews are presented in
[16—19]. More recent calculations of the difference d — i,
the isovector component of the proton sea, have been
published in [20-23]. We focus on the ratio d/ii, deter-
mined by the SeaQuest experiment. The ratio has been a
greater challenge for theory, since it depends on both the
isoscalar and isovector components of the sea.

The concept of a component of a nucleon wave function
makes sense only within a light front description of the
nucleon. Our previous formalism [2] provided a light cone
perturbation theory approach capable of making predic-
tions with known uncertainties. Previous calculations had
noted ambiguities related to the dependence of the pion-
baryon vertex function on momentum transfer and on
the possible dependence upon the square of the four-
momentum of intermediate baryons, and much discussion
ensued [16,24-34]. Another more fundamental issue
involving the loss of relativistic invariance occurs when
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the vertex function is treated as depending on only three of
the four necessary momentum variables. Our formalism
resolved both of these problems by using a four-
dimensional formalism and by using experimental con-
straints on the pion-baryon vertex function.

In a light-front formalism the proton wave function can
be expressed as a sum of Fock-state components [35-38].
Our hypothesis is that the nonperturbative light-flavor
sea originates from the bare nucleon, pion-nucleon (zN)
and pion-Delta (7xA) components. The interactions are
described by using the relativistic leading-order chiral
Lagrangian [39,40]. Displaying the interaction terms to
the relevant order in powers of the pion field, we use

9ga 1 _
Ling = — =y, 757w 0,1 —— iy, e we 70, ¢
2fx Sz

- 92’% (Alg™yd,x +H.c.), (1)
where v is the Dirac field of the nucleon, z¢ (a = 1, 2, 3) is
the chiral pion field, and M is the nucleon mass. In Eq. (1)
g4 denotes the nucleon axial-vector coupling and f, the
pion-decay constant. The second term is the Weinberg-
Tomazowa term which describes low-energy z-nucleon
scattering. In the third term g,y, is the ZNA coupling
constant, and the AL field is a vector in both spin and
isospin space.

The light-front Hamiltonian operator is constructed
from the 77~ component of the energy momentum tensor
[35,36,38,41,42]. The Hamiltonian can be written in terms
of a sum of kinetic energy operators, M3 and interaction
terms, denoted as V, see Fig. 1. The first two terms are
standard interactions, and the third is an instantaneous
term that enters only at higher orders in the coupling
constant. The Hamiltonian forms of the single-pion emis-
sion or absorption terms (Fig. 1) are expressed as matrix
elements evaluated between on-shell free nucleon spinors.
The light-front Schrodinger equation for the proton, p, is
given by (M} + V)|p) = M3|p). To the desired second
order it is

Ip) ~ VZ|p)o + VIp)o. (2)

1
2 2
M, — Mg
where | p), represents the nucleon in the absence of the pion
cloud, the bare nucleon, and Z is a normalization constant.
Given Eq. (2), the wave function can be expressed as a sum
of Fock-space components given by

FIG. 1. Terms in the light-front Hamiltonian.

D) =VZp+ 3 / d9,5|7B) (xB|p)y.  (3)

B=N.A

where f dQ,p is a phase-space integral [37,38]. In this
formalism the pion momentum distributions f,z(y), which
represent the probability that a nucleon will fluctuate into a
pion of light front momentum fraction y and a baryon of
light front momentum fraction 1 —y, are squares of wave
functions, |(zB|¥)|* integrated over k.

The Lagrangian of Eq. (1) is incomplete because it is not
renormalizable. We tame divergences using a physically
motivated set of regulators, depending on four-momenta,
that are constrained by data. If chiral symmetry is main-
tained, one finds that the zN vertex function g,y(f)
and the nucleon-axial form factor are related by the
generalized Goldberger-Treiman relation [43] (obtained
with m, = 0),

Mg, (t) = frgun (1), (4)

9a(1) = g4(0)/(1 + (t/M3))?, (5)

where ¢ is the square of the four-momentum transferred to
the nucleon. Equation (4) follows from partial conservation
of the axial-vector current (PCAC) and the pion pole
dominance of the pseudoscalar current. It is obtained from
a matrix element of the axial vector current between two
on-mass shell nucleons. The ¢ dependence of g, is
determined for ¢ > 0 by low-momentum transfer experi-
ments [43], with M, being the single parameter.
Equation (4) relates an essentially unmeasurable quantity
9 (1) with one g, () that is constrained by experiments.
The major uncertainty in previous calculations is largely
removed. Some models, see e.g., [44], find differences
between the ¢ dependence of g, () and g,y(¢), which is
allowed because m, # 0. Uncertainties in the parameter
M, are discussed in [2], where it is also shown that very
large values of ¢ are not important in the calculations of
this paper.

In evaluating the nucleon wave function Eq. (3) the
necessary vertex function must be applicable to situations
when either the pion or the baryon or both are off their mass
shells. We use frame-independent pion-baryon form fac-
tors, in which a nucleon of mass M and momentum p emits
a pion of mass ¢ and momentum k and becomes a baryon of
mass Mp and momentum p — k,

A? A?
I —p? = AN +ieps ((p—k)* = Mp) — A +ie”

(6)

F(k,p.y)=

where y = k' /p™.
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Using F(k, p,y) allows us to obtain a pion-baryon
light front wave function. The pion-nucleon component
is given by

Mg, y_a(p=k)irz,u(p)
¥, 1r(k.p.s)= Fa(1),
a,LF( pS) 2f;;(2717)3/2 l—y l+,u2 A()
2A*
F,(t)= s 7
alt) (A2 +1t+u2) 2N + 1 4p?) )

with s and a the spin and isospin labels for the proton.
Expanding F4(t) to first order in f, then comparing the
result to the same expansion of g, (7)/g4(0) and matching
the results determines the value A = /3/2M ,. Using this,
F(k, p,y) is equivalent to using a form factor of the form
of Eq. (4) in computing f,y(y) [2]. The parameter-
independence of this approach is maintained.

The pion 2D-momentum distribution function f (v, ¢)
is obtained by squaring |¥, g(k, p.s)| and summing
over a, s. The result is

gA ! 2
) F45(1), 8
fﬂN(y ) 167 2f2 ( () ()
with = (M?y?>+k3)/(1—y). The pion longitudinal-
momentum distribution function f,y(y) is then

Fan(y) = / ® dtf oy (v 1), (9)

In

where ty = M?y?/(1 —y). Using Eq. (4) or Eq. (7) yields
the same f,y because the integrand is dominated by the
region of low values of ¢. The pionic effects were shown to
be of long range [2] by studying the resulting three-
dimensional light front structure of the pion-baryon wave
function.

The intermediate A contribution is important because it
is sizable and tends to favor i over d. We found [2] that

1 9zNA 2 o F,24(t)
2 y dt 272
127° \ 2M o (t+p?)
1
X | t4—=(M? = M3 +1)* | (M +Mp)*+1),
4M+

(10)

fn'A(y) =

with 1, = (y>M> + y(M3 = M?))/(1 - y).

Next we use the Fock-space wave function of Eq. (3) to
compute the light-flavor sea component of the nucleon wave
function. Consider the role of the pion cloud in deep inelastic
scattering (DIS) (see Fig. 2). One needs to include terms in
which the virtual photon hits: (a) the bare nucleon, (b) the
intermediate pion [45], and (c) the intermediate baryon B of
the (zB) Fock-state component. The key assumption of the
present model is that quantum interference effects involving

(@) (b) ©

FIG. 2. (a) External interaction, X, with bare nucleon (solid
line), (b) External interaction, X, with the pion, (c) External
interaction, X, with the intermediate baryon. Here X represents
the deep inelastic scattering operator.

different Fock-space components are negligible because the
different final states obtained from deep inelastic scattering
by the pion and by the nucleon are expected to be
orthogonal.

The effects of the Weinberg-Tomazowa (WT) term
vanish because the deep inelastic scattering operator,
represented by X in the figure is diagonal in the pion-
flavor index [2].

Given the lack of interference effects, one can represent
at any Q7 the quark distribution functions of flavor
f = (i1, d) in the nucleon sea as

q[{/('x’ Qz) = ZC]‘]];O(X, Q2) + anB ® q; + ZfBﬂ ® Q;}v
B B
(11)

in which B=N.A, and f,3 ® gk = [ % f,5(y)qh (. 0?).

The first symbol in the subscript represents the struck
hadron, and the phase-space factor in Eq. (3) ensures that
fz8(y) = fB:(1 =), so that momentum is conserved. The
quark distributions of the hadrons in the cloud are given by

gk (x, Q%) and g} (x, %), and the bare nucleon distributions

are given by qf\,o(x, 0?). The model is defined by the Fock-
state expansion [Eq. (3)] using meson-baryon states.
The functions f,z(y) give the probability that the proton
fluctuates into a pion-baryon component as a function
of the pion-momentum fraction y. This defines the non-
perturbative proton wave function that depends on the pion-
baryon relative momentum and is necessarily independent
of the momentum of any probe. This wave function is to be
used to compute observables measured in reactions in
which the probe interacts with the hadrons in the Fock-state
expansion of the proton. Pionic components make their
presence known in a variety of processes such as the
computation of charge densities, magnetic moments, and
the nucleon-nucleon interaction.

Next comes the issue of computing the structure func-
tions obtained in deep inelastic scattering and in the Drell-
Yan process. This involves the photon-quark interaction. At
the high momentum transfers relevant for those processes,
the photon interacts with the quarks, not with the hadrons.
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The quark-structure functions g(x) are given in terms of the
number of quarks in the hadron wave function at ¢(¢) and a
function C that incorporates the dynamics of the photon-
quark interaction, in the schematic formula g(x, Q%) =
[ déq(E)C(x/&, Q%) [46]. The function C can be regarded
as an effective photon-quark cross section [47]. Thus the
content of the model is that the evolution of the proton is
contained in the evolution of the quarks that exist within the
component hadrons.

Evolution of the quark parton distribution functions (pdfs)
decreases the momentum fraction of the valence quarks as
the momentum fractions of the sea quarks and gluons
increase, but the momentum sum of all partons is still one.

We assume that pionic fluctuations are the only source of
the flavor asymmetry of the proton sea. This is because all
quark-gluon processes are flavor independent if the quarks
have the same mass. We have dominant u, & and d, d
quarks that are essentially massless. The bare proton and
the intermediate A and nucleon pdfs have no contribution
from pionic fluctuations, so they are flavor symmetric and
we set ‘I){/o = q£ = q'};. We have suppressed the Q2
dependence of ¢/, qyo. qf,', and q{; to simplify the notation.

Contributions to the antiquark sea of the proton
come from the valence and sea distributions of the pion
gy and g5 and the sea distributions ¢} and g}, of the
intermediate baryons and the bare proton. The use of
these distributions to describe deep inelastic scattering
from a bound pion follows from the light front Fock-
space expansion, Eq. (3), which involves only on-mass-
shell constituents. With f .+, =5 fans f20, =3 ans frars =
2fans faoar =3 fans frrno =& fza, the antiquark distri-
butions are

- 5 1
Q) = (3o +30ms) @ 42+ Gumlh (12

1 2
1) = (gfo + 3 ) @ 42 Guml (13

where QS}/m('x)EZBfﬂB ®_Q§I+ZBan®qSB+ZQISV(x)
The nN terms favor the d, but the mA terms favor
the .

For comparison with SeaQuest results, Eqs. (11)—(13)
require pion and baryon pdfs, q,’;(x, 0%), q,’;(x, 0?), and
qho(x, 0?), at the scale of the SeaQuest experiment,
Q% =25.5 GeV?. We use pdfs determined by different
groups from their fits to experimental data. We evolve these
pdfs to the SeaQuest scale before using them in Eqs. (12)
and (13). This approach has been used in meson-cloud
models for many decades. e.g., [24,25,32]. We describe our
evolution procedures below.

Two pion parton distributions were used; those of
Aicher, Schifer, and Vogelsang (ASV) [48], and the more

recent pion pdfs of the xFitter Collaboration [49], which are
consistent with the pion pdfs of the JAM Collaboration
[23], which have challenged the high-x behavior of the
ASYV valence pdfs. We evolved the ASV pion valence pdfs
at next-to-leading order (NLO) from their starting scale of
Q03 = 0.40 GeV? to Q? = 25.5 GeV?; the scale relevant
for SeaQuest. Our fit to the evolved valence distribution is
given by gZ(x) = 1.38x79320(1 — x)392(7.40x% + 1). The
ASV analysis used the pion sea-quark pdfs of Gluck, Reya,
and Schienbein [50] at their starting scale. After NLO
evolution to 25.5 GeV?, ¢S(x) = 0.113x719(1 — x)>10x
(1 —2.31y/x + 4.08x). We used the xFitter pdf paramet-
rization from the LHAPDF6 Library with ApfelWeb
[51,52] to evolve their pdfs at NLO to the SeaQuest scale.

Holtmann et al. [24] explained that the bare-proton sea
cannot be determined directly from experimental data,
which includes contributions from the pion cloud. Their
model for bare-proton parton distributions [53] used a fit to
DIS data that included corrections to remove contributions
from the pion cloud. In our updated calculation we used the
program QCDNUM [54] to evolve, at NLO, their bare
proton pdfs (valence, gluon, and sea) from the starting scale
of 03 = 4 GeV? to the SeaQuest scale of 0> =25.5GeV>.
This is the only change to our previous calculation of the
bare sea. We used the resulting bare-sea distribution for the
contributions of the proton in Fig. 2(a) and the intermediate
baryons of Fig. 2(c).

Other input parameters must be described before pre-
senting numerical results. The pion-nucleon splitting func-
tion f,y(y) depends on the coupling constant g,y and the
form factor cutoff A. The lower limit for g,y is 12.8, taken
from the Goldberger-Treiman relation g,y = fM” ga, With

ga = 1.267 £0.04, M =0.939GeV, and f, = 92.6 MeV.
The upper limit is g,y = 13.2, consistent with the scatter-
ing data analysis of Perez et al. [55] and the muon-based
determination of g, by Hill et al. [56]. As noted above the

cutoff parameter of Eq. (7), A = /3/2M, is obtained at
very low t. The two resulting splitting functions are
identical for all values of y, demonstrating that only small
values of ¢ are important in the present calculations. In the
initial calculations we used the value M, = 1.03 £+
0.04 GeV [43]. This early review result was confirmed
by many authors [57-61], all obtaining results within the
stated uncertainty. We have increased the uncertainty in our
cutoff A to £10% to allow for a difference between the
cutoffs in the NN form factor and the axial form factor.
Although one early estimate, based on the cloudy bag
model, suggested that the difference might be +20% [44],
later work using dispersion relations found consistency
between the axial form factor cutoff and a zZNN monopole
cutoff of A = 0.80 GeV + 10% [62,63]. A monopole value
of A = 0.8 GeV corresponds to a dipole value of 1.1 GeV.

The splitting function f,(v) for a range of parameters
bounded by the maximum and minimum values of g,y and
A is shown in Fig. 3.
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FIG. 3. Pion-baryon splitting functions f,5(y), B = N, A, are
shown in the upper two panels. The solid lines are found using
the central values of our coupling constants and cutoffs. The
upper (blue) and lower (red) dashed lines are obtained using the
maximum or minimum values, respectively, of these parame-
ters. The lowest panel shows the contribution of the splitting
functions to the integrated asymmetry, D — U, Eq. (14). The
smaller spread between the dashed lines is due to the corre-
lation between the coupling constants and the use of the same

cutoff in f,y(y) and f,a(y).

The value of the #NA coupling constant plays an
important role in our calculations. Both the upper limit

(;’ﬁ)z =2 g,a=1.7g,y and the lower limit, obtained

from the large N limit of g, = 1.5¢,y, are much smaller
than the value g 5 = 2.2¢,y extracted from the K-matrix
analysis of [64]. This difference is important because the
contribution of the intermediate A is proportional to g2,.
The K-matrix analysis obtained g,, from the width of the A
computed for the dominant s-channel diagram. This analy-
sis is incomplete because it neglects the influence of the

iteration of the crossed pion-nucleon Born term that makes
a substantial contribution to the width. The importance of
that diagram was explained in the textbook [65]. A detailed
calculation of the pion-nucleon scattering in the (3,3)
channel was made in [8], which found a good description
of the phase shift using quark-model values of the coupling
constant. That work used a static approximation, but
Niskanen [66] included higher-order effects which showed
that the quark-model values of the coupling constants can
be consistent with the experimental width. The definitive
coupling-constant compilation [67] found values consistent
with the large N limit. All of this early work was
confirmed by recent calculations [68—70] that find values
of g, in accord (within errors) of the large N, calculations.
Such values are consistent with the value extracted from the
covariant A width at full one-loop order [69] and with the
extraction from NN scattering [70]. Moreover, our range of
values of g, are used routinely in calculations of the
nucleon-nucleon potential [71]. The net result is that the
range of values of g,, that we use is consistent with
the width of the A.

The splitting function f,,(y) depends on the coupling
constant g,, and the form factor cutoff A. We use the same
form factor and cutoff for f,y(y) and f,(y). The ratio
Fea()/ frn(y) is less than unity for the important regions
of y. It does increase as y increases above 0.5, and becomes
greater than unity at about y = 0.8, where both splitting
functions are vanishingly small. Reference [2], showed in a
detailed discussion that the splitting functions arise from
the long-range structure of the nucleon.

Finally, it has been known for a long time that the use of
soft form factors (similar in range to those of the present
study) leads to a convergent perturbation series [8—10,72]
in the pion-baryon coupling constants. Having justified the
model, let us turn to the observations. The integrated
asymmetry D — U is the difference in number of d and
ii quarks in the proton sea. With D = [} d(x)dx, U =
Jo i@(x)dx, the asymmetry is determined from Eq. (12)
and Eq. (13) as

1 1
=03 [( a3 [ drfmt). (14
0 0
The experiment E866 [73] measured D — U = 0.118 +
0.012. Our splitting functions predict 0.098 <D — U <
0.131, in excellent agreement with the experimental result.
The computed values of d(x) — it(x) are compared to the
E866 results in Fig. 4, with bands obtained using minimum
and maximum values of the splitting functions shown in
Fig. 3, in convolution with ASV or xFitter pion pdfs. The
band includes the sum of the two contributions; p — zN
and p — zA. The width of the band is narrow because of
the correlation between the coupling constants, g,n = rg,y
with 1.5 < r < 1.7, and the use of the same cutoff A for
both terms. This band is a definitive prediction of the
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FIG. 4. d(x) — ii(x). Blue symbols from E866 [73]. The bands
are computed using minimum and maximum values of the
splitting functions shown in Fig. 3 in convolution with ASV
or xFitter pion pdfs.

present model. We stress that in any model, i and d are
correlated so that errors in each are partially cancelled in the
ratio. We find that a 15% uncertainty in d, 7, at x =03
translates to 7% in the ratio.

Calculations of the ratio d(x)/i(x) are compared with
experimental data in Fig. 5. The results for values of x less
than about 0.15 arise from a combination of pion-cloud
effects and the symmetric sea of the bare nucleon. For
larger values of x, terms of Fig. 2(b) dominate, with the zN
contribution rising with increasing x until x = 0.34. The
ratio then drops because of the enhancement of i [Eq. (13)]
provided by the zA contribution, which becomes relatively
more important as x increases.

Good agreement with experimental data is obtained for
x < 0.2, but the decrease in the ratio d(x)/ii(x) found
by E866 for higher values of x is not reproduced.

3.0

25¢- q

2.0}

(ks + ]IHH
1.0fF + ]

0.0 0.1 0.2 0.3 0.4 0.5 0.6

e mm =
-
-
-

FIG. 5. d(x)/ii(x) Blue symbols from E866 [73]. Red symbols
are from SeaQuest [1]. The solid band is computed using
minimum and maximum values of the splitting functions shown
in Fig. 3 in convolution with ASV or xFitter pion pdfs, plus the
bare sea of [53]. All pdfs were evolved to the SeaQuest scale of
0% = 25.5 GeV?. The dashed lines include the effects of varying
the bare sea by a factor of 0.75 or 1.25.

Our calculations are in agreement with the new results of
SeaQuest, which show a slight rise in the ratio d(x)/i(x) in
the x domain covered by the experiment, with a slight hint of
a downturn as x — 0.4. Our calculation predicts that this
would signal the increasing influence of the zA contribution.
The prediction of Kofler and Pasquini for d/i [20] lies well
above ours because it does not include the zA.

The present results for the ratio d/ii are a bit smaller
than those of our earlier calculation [2], but have a wider
uncertainty band because we considered two pion pdfs. The
lower ratio is caused by several factors, each of which
increases d and 7. The dominant contribution to the proton
sea comes from the valence antiquark distribution of the
pion. The number of valence antiquarks is constant, but
evolution increases g%(x) for x < 0.2 and decreases it for
x > 0.2. In the latter domain, our evolution to the SeaQuest
Q% =25.5 GeV? yields higher g¢%(x) than our earlier
evolution to the E866 Q2 = 54 GeV?, increasing the
contributions of the first terms of Eqs. (12)—(13). The second
terms of these equations make equal contributions to d and i
from the symmetric sea quark pdfs of the pion and of the
bare baryons. Evolution increases the total number of sea
quarks. After convolution, the pion sea makes a small
contribution to the proton sea, and its evolution has a small
effect. In our earlier work we did not evolve the bare sea, so
both d and 7 are increased in our present work. These
increases in both numerator and denominator decrease the
d/ i ratio, and bend our prediction band lower, improving its
agreement with experiment.

Our 2019 paper said “The pion-baryon form factors of
our model are essentially model independent, and the
coupling constants are reasonably well determined. For
values of x greater than about 0.15, the pion cloud effects
dominate. The rise and then fall of the ratio d/ii are
unalterable consequences of our approach. Significantly
changing any of the input parameters would cause severe
disagreements with other areas of nuclear physics, and
would be tantamount to changing the model. If the high-x
E866 results were to be confirmed by the SeaQuest
experiment, the model would be ruled out”.

It turned out that our predictions were in agreement with
the SeaQuest data, even though we did not know the exact
values of the kinematics. The present paper updates the
earlier calculation by including evolution of the bare
nucleon sea and using the now known SeaQuest kinemat-
ics. The present calculations show that the changes produce
small effects, and further that our earlier prediction is
improved to a good reproduction of the data.

The formalism presented here shows how to properly
obtain pion-baryon vertex functions in a four-dimensional
treatment that includes the effects of the uncertainties in the
input parameters in a controlled fashion. Our result is a
chiral light front perturbation theory calculation of the wave
function that successfully describes the flavor content of
the nucleonic light-quark sea.
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This shows that pionic effects are here, there, and
everywhere.

The work of M. A. and L.E. was supported by the
Research in Undergraduate Institutions Program of the US

National Science Foundation under Grant No. 2012982.
The work of G. A. M. was supported by the USDOE Office
of Science, Office of Nuclear Physics under Grant No. DE-
FG02-97ER41014.

[1] J. Dove et al. (SeaQuest Collaboration), The asymmetry of
antimatter in the proton, Nature (London) 590, 561 (2021).

[2] Mary Alberg and Gerald A. Miller, Chiral light front
perturbation theory and the flavor dependence of the
light-quark nucleon sea, Phys. Rev. C 100, 035205 (2019).

[3] Norbert Kaiser, R. Brockmann, and W. Weise, Peripheral
nucleon-nucleon phase shifts and chiral symmetry, Nucl.
Phys. A625, 758 (1997).

[4] Norbert Kaiser, S. Fritsch, and W. Weise, Chiral dynamics
and nuclear matter, Nucl. Phys. A697, 255 (2002).

[5] D.O. Riska and G. E. Brown, Tensor force and exchange
currents in the triton beta decay, Phys. Lett. 32B, 662
(1970).

[6] D.O. Riska and G. E. Brown, Meson exchange effects in
n + p— > d 4 gamma, Phys. Lett. 38B, 193 (1972).

[71 G.B. King, L. Andreoli, S. Pastore, M. Piarulli, R.
Schiavilla, R.B. Wiringa, J. Carlson, and S. Gandolfi,
Chiral effective field theory calculations of weak transitions
in light nuclei, Phys. Rev. C 102, 025501 (2020).

[8] S. Theberge, Anthony William Thomas, and Gerald A.
Miller, The cloudy bag model. 1. The (3,3) resonance, Phys.
Rev. D 22, 2838 (1980); 23, 2106(E) (1981).

[9] Anthony William Thomas, S. Theberge, and Gerald A.
Miller, The cloudy bag model of the nucleon, Phys. Rev. D
24, 216 (1981).

[10] Serge Theberge, Gerald A. Miller, and Anthony William
Thomas, The cloudy bag model. 4. Higher order corrections
to the nucleon properties, Can. J. Phys. 60, 59 (1982).

[11] S. Theberge and Anthony William Thomas, Magnetic
moments of the nucleon octet calculated in the cloudy
bag model, Nucl. Phys. A393, 252 (1983).

[12] V. Bernard, Norbert Kaiser, and Ulf-G. Meissner, Chiral
dynamics in nucleons and nuclei, Int. J. Mod. Phys. E 04,
193 (1995).

[13] P. Amaudruz et al. (New Muon Collaboration), The Gott-
fried Sum from the Ratio F2(n)/F2(p), Phys. Rev. Lett. 66,
2712 (1991).

[14] Anthony William Thomas, A limit on the pionic component
of the nucleon through SU(3) flavor breaking in the sea,
Phys. Lett. 126B, 97 (1983).

[15] E. M. Henley and G. A. Miller, Excess of anti-D over anti-U
in the proton sea quark distribution, Phys. Lett. B 251, 453
(1990).

[16] J. Speth and Anthony William Thomas, Mesonic contribu-
tions to the spin and flavor structure of the nucleon, Adv.
Nucl. Phys. 24, 83 (1997).

[17] Gerald T. Garvey and Jen-Chieh Peng, Flavor asymmetry of
light quarks in the nucleon sea, Prog. Part. Nucl. Phys. 47,
203 (2001).

[18] Wen-Chen Chang and Jen-Chieh Peng, Flavor structure of
the nucleon sea, Prog. Part. Nucl. Phys. 79, 95 (2014).

[19] D.F. Geesaman and P.E. Reimer, The sea of quarks and
antiquarks in the nucleon, Rep. Prog. Phys. 82, 046301
(2019).

[20] Stefan Kofler and B. Pasquini, Collinear parton distributions
and the structure of the nucleon sea in a light-front meson-
cloud model, Phys. Rev. D 95, 094015 (2017).

[21] C. Cocuzza, W. Melnitchouk, A. Metz, and N. Sato
(Jefterson Lab Angular Momentum (JAM) Collaboration),
Bayesian Monte Carlo extraction of the sea asymmetry
with SeaQuest and STAR data, Phys. Rev. D 104, 074031
(2021).

[22] J.R. McKenney, Nobuo Sato, W. Melnitchouk, and
Chueng-Ryong Ji, Pion structure function from leading
neutron electroproduction and SU(2) flavor asymmetry,
Phys. Rev. D 93, 054011 (2016).

[23] P.C. Barry, N. Sato, W. Melnitchouk, and Chueng-Ryong
Ji, First Monte Carlo Global QCD Analysis of Pion Parton
Distributions, Phys. Rev. Lett. 121, 152001 (2018).

[24] H. Holtmann, A. Szczurek, and J. Speth, Flavor and spin of
the proton and the meson cloud, Nucl. Phys. A596, 631
(1996).

[25] W. Koepf, L. L. Frankfurt, and M. Strikman, The Nucleon’s
virtual meson cloud and deep inelastic lepton scattering,
Phys. Rev. D 53, 2586 (1996).

[26] M. Strikman and C. Weiss, Chiral dynamics and partonic
structure at large transverse distances, Phys. Rev. D 80,
114029 (2009).

[27] M. Strikman and C. Weiss, Quantifying the nucleon’s pion
cloud with transverse charge densities, Phys. Rev. C 82,
042201 (2010).

[28] Mary Alberg and Gerald A. Miller, Taming the Pion Cloud
of the Nucleon, Phys. Rev. Lett. 108, 172001 (2012).

[29] Chueng-Ryong Ji, W. Melnitchouk, and A.W. Thomas,
Equivalence of pion loops in equal-time and light-front
dynamics, Phys. Rev. D 80, 054018 (2009).

[30] M. Burkardt, K.S. Hendricks, Chueng-Ryong Ji, W.
Melnitchouk, and A.W. Thomas, Pion momentum distri-
butions in the nucleon in chiral effective theory, Phys. Rev.
D 87, 056009 (2013).

[31] Chueng-Ryong Ji, W. Melnitchouk, and A.W. Thomas,
Anatomy of relativistic pion loop corrections to the electro-
magnetic nucleon coupling, Phys. Rev. D 88, 076005
(2013).

[32] Yusupujiang Salamu, Chueng-Ryong Ji, W. Melnitchouk,
and P. Wang, d—i Asymmetry in the Proton in
Chiral Effective Theory, Phys. Rev. Lett. 114, 122001
(2015).

114054-7


https://doi.org/10.1038/s41586-021-03282-z
https://doi.org/10.1103/PhysRevC.100.035205
https://doi.org/10.1016/S0375-9474(97)00586-1
https://doi.org/10.1016/S0375-9474(97)00586-1
https://doi.org/10.1016/S0375-9474(01)01231-3
https://doi.org/10.1016/0370-2693(70)90437-5
https://doi.org/10.1016/0370-2693(70)90437-5
https://doi.org/10.1016/0370-2693(72)90376-0
https://doi.org/10.1103/PhysRevC.102.025501
https://doi.org/10.1103/PhysRevD.22.2838
https://doi.org/10.1103/PhysRevD.22.2838
https://doi.org/10.1103/PhysRevD.23.2106.2
https://doi.org/10.1103/PhysRevD.24.216
https://doi.org/10.1103/PhysRevD.24.216
https://doi.org/10.1139/p82-009
https://doi.org/10.1016/0375-9474(83)90142-2
https://doi.org/10.1142/S0218301395000092
https://doi.org/10.1142/S0218301395000092
https://doi.org/10.1103/PhysRevLett.66.2712
https://doi.org/10.1103/PhysRevLett.66.2712
https://doi.org/10.1016/0370-2693(83)90026-6
https://doi.org/10.1016/0370-2693(90)90735-O
https://doi.org/10.1016/0370-2693(90)90735-O
https://doi.org/10.1007/b115010
https://doi.org/10.1007/b115010
https://doi.org/10.1016/S0146-6410(01)00155-7
https://doi.org/10.1016/S0146-6410(01)00155-7
https://doi.org/10.1016/j.ppnp.2014.08.002
https://doi.org/10.1088/1361-6633/ab05a7
https://doi.org/10.1088/1361-6633/ab05a7
https://doi.org/10.1103/PhysRevD.95.094015
https://doi.org/10.1103/PhysRevD.104.074031
https://doi.org/10.1103/PhysRevD.104.074031
https://doi.org/10.1103/PhysRevD.93.054011
https://doi.org/10.1103/PhysRevLett.121.152001
https://doi.org/10.1016/0375-9474(95)00448-3
https://doi.org/10.1016/0375-9474(95)00448-3
https://doi.org/10.1103/PhysRevD.53.2586
https://doi.org/10.1103/PhysRevD.80.114029
https://doi.org/10.1103/PhysRevD.80.114029
https://doi.org/10.1103/PhysRevC.82.042201
https://doi.org/10.1103/PhysRevC.82.042201
https://doi.org/10.1103/PhysRevLett.108.172001
https://doi.org/10.1103/PhysRevD.80.054018
https://doi.org/10.1103/PhysRevD.87.056009
https://doi.org/10.1103/PhysRevD.87.056009
https://doi.org/10.1103/PhysRevD.88.076005
https://doi.org/10.1103/PhysRevD.88.076005
https://doi.org/10.1103/PhysRevLett.114.122001
https://doi.org/10.1103/PhysRevLett.114.122001

ALBERG, EHINGER, and MILLER

PHYS. REV. D 105, 114054 (2022)

[33] C. Granados and C. Weiss, Light-front representation of
chiral dynamics in peripheral transverse densities, J. High
Energy Phys. 07 (2015) 170.

[34] C. Granados and C. Weiss, Light-front representation of
chiral dynamics with A isobar and large-N, relations,
J. High Energy Phys. 06 (2016) 075.

[35] G. Peter Lepage and Stanley J. Brodsky, Exclusive proc-
esses in perturbative quantum chromodynamics, Phys. Rev.
D 22, 2157 (1980).

[36] Stanley J. Brodsky, Hans-Christian Pauli, and Stephen S.
Pinsky, Quantum chromodynamics and other field theories
on the light cone, Phys. Rep. 301, 299 (1998).

[37] Stanley J. Brodsky, Dae Sung Hwang, Bo-Qiang Ma, and
Ivan Schmidt, Light cone representation of the spin and
orbital angular momentum of relativistic composite systems,
Nucl. Phys. B593, 311 (2001).

[38] Yuri V. Kovchegov and Eugene Levin, Quantum Chromo-
dynamics at High Energy (Cambridge University Press,
Cambridge, England, 2012), Vol. 33.

[39] Thomas Becher and H. Leutwyler, Baryon chiral perturba-
tion theory in manifestly Lorentz invariant form, Eur. Phys.
J. C9, 643 (1999).

[40] V. Pascalutsa, Quantization of an interacting spin—3/2 field
and the Delta isobar, Phys. Rev. D 58, 096002 (1998).

[41] Tung-Mow Yan, Quantum field theories in the infinite
momentum frame 3. Quantization of coupled spin one
fields, Phys. Rev. D 7, 1760 (1973).

[42] Gerald A. Miller, Light front treatment of nuclei: Formalism
and simple applications, Phys. Rev. C 56, 2789 (1997).

[43] Anthony William Thomas and Wolfram Weise, The Struc-
ture of the Nucleon (Wiley, Germany, 2001).

[44] Pierre A. M. Guichon, Gerald A. Miller, and Anthony William
Thomas, The axial form-factor of the nucleon and the pion—
nucleon vertex function, Phys. Lett. 124B, 109 (1983).

[45] J.D. Sullivan, One pion exchange and deep inelastic
electron—nucleon scattering, Phys. Rev. D 5, 1732 (1972).

[46] George F. Sterman, An Introduction to Quantum Field Theory
(Cambridge University Press, Cambridge, England, 1993).

[47] F. Halzen and Alan D. Martin, Quarks and Leptons: An
Introductory Course in Modern Particle Physics (Wiley,
New York, 1984).

[48] Matthias Aicher, Andreas Schafer, and Werner Vogelsang,
Soft-Gluon Resummation and the Valence Parton Distribution
Function of the Pion, Phys. Rev. Lett. 105, 252003 (2010).

[49] Ivan Novikov et al., Parton distribution functions of the
charged pion within the xFitter framework, Phys. Rev. D
102, 014040 (2020).

[50] M. Gluck, E. Reya, and I. Schienbein, Pionic parton
distributions revisited, Eur. Phys. J. C 10, 313 (1999).

[51] Valerio Bertone, Stefano Carrazza, and Juan Rojo, APFEL:
A PDF evolution library with QED corrections, Comput.
Phys. Commun. 185, 1647 (2014).

[52] Stefano Carrazza, Alfio Ferrara, Daniele Palazzo, and Juan
Rojo, APFEL Web: A web-based application for the
graphical visualization of parton distribution functions,
J. Phys. G 42, 057001 (2015).

[53] A. Szczurek, V. Uleshchenko, H. Holtmann, and J.
Speth, Production of the W bosons and Z bosons in the
nucleon—anti-nucleon collisions and the meson cloud in
the nucleon, Nucl. Phys. A624, 495 (1997).

[54] M. Botje, QCDNUM: Fast QCD evolution and convolution,
Comput. Phys. Commun. 182, 490 (2011).

[55] R. Navarro Pérez, J. E. Amaro, and E. Ruiz Arriola, Precise
determination of charge dependent pion-nucleon-nucleon
coupling constants, Phys. Rev. C 95, 064001 (2017).

[56] Richard J. Hill, Peter Kammel, William J. Marciano, and
Alberto Sirlin, Nucleon axial radius and muonic hydrogen—a
new analysis and review, Rep. Prog. Phys. 81, 096301 (2018).

[57] Veronique Bernard, Latifa Elouadrhiri, and UIf-G.
Meissner, Axial structure of the nucleon: Topical review,
J. Phys. G 28, R1 (2002).

[58] Cezary Juszczak, Running NuWro, Acta Phys. Pol. B 40,
2507 (2009).

[59] Teppei Katori and Marco Martini, Neutrino—nucleus cross
sections for oscillation experiments, J. Phys. G 45, 013001
(2018).

[60] S.X. Nakamura et al., Towards a unified model of neutrino-
nucleus reactions for neutrino oscillation experiments, Rep.
Prog. Phys. 80, 056301 (2017).

[61] Aaron S. Meyer, Minerba Betancourt, Richard Gran, and
Richard J. Hill, Deuterium target data for precision neutrino-
nucleus cross sections, Phys. Rev. D 93, 113015 (2016).

[62] R. Bockmann, C. Hanhart, O. Krehl, S. Krewald, and J.
Speth, The pi N N vertex function in a meson theoretical
model, Phys. Rev. C 60, 055212 (1999).

[63] Torleif Erik Oskar Ericson, B. Loiseau, and Anthony
William Thomas, Determination of the pion nucleon cou-
pling constant and scattering lengths, Phys. Rev. C 66,
014005 (2002).

[64] E. Oset, H. Toki, and W. Weise, Pionic modes of excitation
in nuclei, Phys. Rep. 83, 281 (1982).

[65] J. M. Eisenberg and D. S. Koltun, Theory of Meson Inter-
actions with Nuclei (John Wiley and Sons, Inc. New York,
New York, 1980), Chap. 2.

[66] J. A. Niskanen, The zNA coupling and the A(1232)
resonance width, Phys. Lett. 107B, 344 (1981).

[67] O.Dumbrajs, R. Koch, H. Pilkuhn, G. c. Oades, H. Behrens,
J.j. De Swart, and P. Kroll, Compilation of coupling
constants and low-energy parameters. 1982 Edition, Nucl.
Phys. B216, 277 (1983).

[68] D. Siemens, J. Ruiz de Elvira, E. Epelbaum, M. Hoferichter,
H. Krebs, B. Kubis, and U. G. Meifiner, Reconciling thresh-
old and subthreshold expansions for pion—nucleon scatter-
ing, Phys. Lett. B 770, 27 (2017).

[69] Véronique Bernard, Evgeny Epelbaum, Hermann Krebs,
and Ulf-G. MeiBner, New insights into the spin structure of
the nucleon, Phys. Rev. D 87, 054032 (2013).

[70] R. Navarro Pérez, J. E. Amaro, and E. Ruiz Arriola, The
low-energy structure of the nucleon—nucleon interaction:
Statistical versus systematic uncertainties, J. Phys. G 43,
114001 (2016).

[71] Evgeny Epelbaum, Hans-Werner Hammer, and UIf-G.
Meissner, Modern theory of nuclear forces, Rev. Mod.
Phys. 81, 1773 (2009).

[72] R.F. Alvarez-Estrada and Anthony William Thomas,
Further studies of convergence in the cloudy bag model,
J. Phys. G 9, 161 (1983).

[73] R. S. Towell et al. (NuSea Collaboration), Improved meas-
urement of the anti-d/anti-u asymmetry in the nucleon sea,
Phys. Rev. D 64, 052002 (2001).

114054-8


https://doi.org/10.1007/JHEP07(2015)170
https://doi.org/10.1007/JHEP07(2015)170
https://doi.org/10.1007/JHEP06(2016)075
https://doi.org/10.1103/PhysRevD.22.2157
https://doi.org/10.1103/PhysRevD.22.2157
https://doi.org/10.1016/S0370-1573(97)00089-6
https://doi.org/10.1016/S0550-3213(00)00626-X
https://doi.org/10.1007/PL00021673
https://doi.org/10.1007/PL00021673
https://doi.org/10.1103/PhysRevD.58.096002
https://doi.org/10.1103/PhysRevD.7.1760
https://doi.org/10.1103/PhysRevC.56.2789
https://doi.org/10.1016/0370-2693(83)91414-4
https://doi.org/10.1103/PhysRevD.5.1732
https://doi.org/10.1103/PhysRevLett.105.252003
https://doi.org/10.1103/PhysRevD.102.014040
https://doi.org/10.1103/PhysRevD.102.014040
https://doi.org/10.1007/s100529900124
https://doi.org/10.1016/j.cpc.2014.03.007
https://doi.org/10.1016/j.cpc.2014.03.007
https://doi.org/10.1088/0954-3899/42/5/057001
https://doi.org/10.1016/S0375-9474(97)88959-2
https://doi.org/10.1016/j.cpc.2010.10.020
https://doi.org/10.1103/PhysRevC.95.064001
https://doi.org/10.1088/1361-6633/aac190
https://doi.org/10.1088/0954-3899/28/1/201
https://doi.org/10.1088/1361-6471/aa8bf7
https://doi.org/10.1088/1361-6471/aa8bf7
https://doi.org/10.1088/1361-6633/aa5e6c
https://doi.org/10.1088/1361-6633/aa5e6c
https://doi.org/10.1103/PhysRevD.93.113015
https://doi.org/10.1103/PhysRevC.60.055212
https://doi.org/10.1103/PhysRevC.66.014005
https://doi.org/10.1103/PhysRevC.66.014005
https://doi.org/10.1016/0370-1573(82)90123-5
https://doi.org/10.1016/0370-2693(81)90338-5
https://doi.org/10.1016/0550-3213(83)90288-2
https://doi.org/10.1016/0550-3213(83)90288-2
https://doi.org/10.1016/j.physletb.2017.04.039
https://doi.org/10.1103/PhysRevD.87.054032
https://doi.org/10.1088/0954-3899/43/11/114001
https://doi.org/10.1088/0954-3899/43/11/114001
https://doi.org/10.1103/RevModPhys.81.1773
https://doi.org/10.1103/RevModPhys.81.1773
https://doi.org/10.1088/0305-4616/9/2/008
https://doi.org/10.1103/PhysRevD.64.052002

