Experience Migrating a Pipeline for the C-MAIKI gateway from
Tapis v2 to Tapis v3

Yick Ching Wong
wongy@hawaii.edu
University of Hawai'i at Manoa
Honolulu, Hawaii, USA

ABSTRACT

The C-MAIKI gateway is a science gateway that leverages a compu-
tational workload management API called Tapis to support modern,
interoperable, and scalable microbiome data analysis. This project
is focused on migrating an existing C-MAIKI gateway pipeline from
Tapis v2 to Tapis v3 so that it can take advantage of the new robust
Tapis v3 features and stay modern. This requires three major steps:
1) Containerization of each existing microbiome workflow. 2) Cre-
ate a new app definition for each of the workflows. 3) Enabling the
ability to submit jobs to a SLURM scheduler inside of a singularity
container to support the Nextflow workflow manager. This work
presents the experience and challenges in upgrading the pipeline.

CCS CONCEPTS

« Information systems — Computing platforms.

KEYWORDS
Tapis Framework, C-MAIKI, Application migration

ACM Reference Format:

Yick Ching Wong, Sean B. Cleveland, and Gwen A. Jacobs. 2022. Experience
Migrating a Pipeline for the C-MAIKI gateway from Tapis v2 to Tapis v3.
In Practice and Experience in Advanced Research Computing (PEARC °22),
FJuly 10-14, 2022, Boston, MA, USA. ACM, New York, NY, USA, 4 pages.
https://doi.org/10.1145/3491418.3535139

1 INTRODUCTION

The C-MAIKI science gateway allows researchers to run microbial
workflows on a computer cluster with just a click of a button. This
is possible because of the Tapis framework developed at the Texas
Advanced Computing Center (TACC). Currently, the C-MAIKI gate-
way uses the v2 version of Tapis, which has been refactored into a
new v3 version that is more robust and has added capabilities such
as support for containerized apps, a new Streaming Data API, and
multi-site security kernel. This project aims to keep the C-MAIKI
gateway up-to-date and modern by migrating the gateway from the
pre-existing Tapis v2 framework to the new Tapis v3 framework
starting with one of the pipelines applications as a pilot.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

PEARC °22, July 10-14, 2022, Boston, MA, USA

© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9161-0/22/07...$15.00
https://doi.org/10.1145/3491418.3535139

Sean B. Cleveland
University of Hawai'i -System
Honolulu, Hawaii, USA
seanbc@hawaii.edu

Gwen A. Jacobs
University of Hawa'i - System
Honolulu, HI, USA
gwenjh@hawaii.edu

2 BACKGROUND
2.1 Tapis

The Tapis Framework is an open-source, NSF-funded Application
Program Interface (API) platform for distributed computation [5].
It provides production-grade capabilities to enable researchers to:

(1) Securely execute workflows that span geographically dis-
tributed providers

(2) Store and retrieve streaming/sensor data for real-time and
batch job processing with support for temporal and spatial
indexes and queries

(3) Leverage containerized codes to enable portability, and re-
duce the overall time-to-solution by utilizing data locality
and other “smart scheduling” techniques

(4) Improve repeatability and reproducibility of computations
with history and provenance tracking built into the API

(5) Manage access to data and results through a fine-grained
permissions model, to enable secure sharing of digital assets
with colleagues or the community at large

Researchers and applications are able to interact with Tapis by
making authenticated HTTP requests to Tapis’s public endpoints.
In response to requests, Tapis’s network of microservices interacts
with a vast array of physical resources on behalf of users including
high performance and high throughput computing clusters file
servers and other storage systems, databases, bare metal, and virtual
servers. Tapis aims to be the underlying cyberinfrastructure for a
diverse set of research projects: from large-scale science gateways
built to serve entire communities, to smaller projects and individual
labs wanting to automate one or more components of their process.

Tapis can be accessed as either a centrally hosted solution, self-
hosted or hybrid multi-site hosted. Tapis is multi-tenant, meaning
that there can be a number of organizations (i.e. a grouping of
users, such as an institution, lab, or project) using the same set of
Tapis API services but persisting data in a logically separate, secure,
namespace. The centrally hosted instance is currently hosted by
the Texas Advanced Computing Center (TACC) at the University
of Texas at Austin. Other institutions, such as the University of
Hawaii (UH), have elected on a hybrid deployment. This allows the
selection of subsets of Tapis API services deployed locally while
leveraging others hosted at TACC.

2.2 C-MAIKI gateway

The Center for Microbiome Analysis through Island Knowledge and
Investigations (C-MAIKI), the Hawaii EPSCoR Ike Wai project, and
the Hawaii Data Science Institute developed a science gateway to
automate and run MetaFlow|mics[1], a collection of three pipelines
for processing microbiome samples. The C-MAIKI gateway provides

https://orcid.org/0000-0002-3837-461X
https://doi.org/10.1145/3491418.3535139
https://cmaiki.its.hawaii.edu/
https://doi.org/10.1145/3491418.3535139

PEARC °22, July 10-14, 2022, Boston, MA, USA

a web-based interface for accessing advanced high-performance
computing resources and storage to support and accelerate micro-
biome research. By leveraging the Tapis framework, this gateway
has made microbial sequence analysis workflows and data easier
to access, launch, track, manage and reproduce through a user-
friendly web-accessible interface. To date the C-MAIKI gateway
has enabled 40+ researchers, graduates, and undergraduates to run
over 1,200 pipeline jobs which break out into more than 750,000 par-
allel sub-jobs. This has enabled users to access more than 150,000
CPU hours and process more than 6 TB of data which would have
taken close to 16 years sequentially to process.

3 MIGRATION
3.1 Compute Systems

For the initial setup of an environment for development and testing
a Jetstream([4] development, VM was employed with Singularity 3.8
installed. This VM was then registered as an execution system with
Tapis v3 using the tapipy Python library, allowing it to be used as a
computational resource for job submissions. An example of a system
definition used to set up the VM on Tapis v3 is shown in Listing 1.
One goal of the project is to have the C-MAIKI applications run on
distributed systems, therefore the UH Manoa HPC system, MANA,
was also registered as an execution system. The system definition
for an HPC system is very similar to that seen on Listing 1, with
the only difference being the host IP and the default authentication
method (defaultAuthnMethod) which have been set to use public
key authentication (PKI) keys for security.

3.2 Applications

One major difference between Tapis v2 and v3 is how applications
are handled and registered. Specifically, applications in Tapis v3
must be containerized. The C-MAIKI gateway currently supports
3 application pipelines created by the MetaFlow|mic project [1].
The 3 pipelines utilize Nextflow[2] to manage some of the paral-
lelizations of steps in the pipelines, where the computation for each
step is run inside of a Singularity[3] container. This leads to the
first interesting challenge of the project which is that we must con-
tainerize an application that in itself is also containerized. To enable
this "container within a container” the installation of SingularityCE
3.9.0 into our parent container definition was required and was
implemented using a Dockerfile. This project leverage the ability
of Singularity to convert a docker image to a singularity image for
generating the Singularity containers used to run the pipelines as
the UH Mana HPC system uses Singularity instead of Docker to
mitigate permission escalations, as do many shared computational
clusters.

These applications can be run either on a single machine or be
run on an HPC system with a SLURM[6] scheduler. This requires
an understanding of the location of where the SLURM files are
installed on the compute resource and binding those files inside
of the container in order to enable Nextflow to submit a batch
script to run each step of the pipeline. A listing of the SLURM paths
that need to be bound inside the container is shown on Listing 2.
This functionality is still currently under development, due to bind
mount challenges that arise from how Tapis stages the files for a
job on the execution system.

Yick Ching Wong, Sean B. Cleveland, and Gwen A. Jacobs

{
"id": system_id_vm,
"description": "System for testing jobs on a VM",
"systemType": "LINUX",
"host": host,
"defaultAuthnMethod": "PASSWORD",
"port": 22,
"rootDir": "/home/"+user_id,
"canExec": True,
"jobRuntimes": [{ "runtimeType": "SINGULARITY" } 1,
"jobWorkingDir": "workdir",
"canRunBatch": False
3

Listing 1: Example of a Tapis v3 system definition to set up
a VM for development. Line 2 define the id of the system we
are registering. Line 3 define a short description of the sys-
tem. Line 4 represents what type of system it is, currently it
supports Linux, Amazon Simple Cloud Storage/S3, Globus,
and irods. Line 5 define the hostname/ip of the system. Line
6 define the default Authentication Method for the system,
it currently supports Authentication methods such as pass-
words, public key infrastructure, and an access key. Line 7
define the port on the system to connect to. Line 8 define the
root directory that Tapis will access. Line 9 define if the sys-
tem can be used to execute jobs, if set to false, then it is just
a system for storing and retrieving files. Line 10 define the
types of runtime environment available on the system, the
available inputs are Docker and Singularity. Line 11 define
the name of the working directory where Tapis will work in,
it will be created inside of the root directory. Line 12 define
if the system is able to run batch jobs.

slurm_cmds="/bin/srun,/bin/sinfo,/bin/squeue, /bin/sbatch"
slurm_conf="/etc/slurm,/etc/slurm/plugins, /mnt/config/etc/sl
— urm/plugins/"

slurm_libs="/usr/1ib64/slurm/"
munge_libs="/usr/1ib64/1libmunge.so.2"
munge_sock="/var/run/munge"

Listing 2: Example of paths that must be bound into the con-
tainer so that it is able to submit SLURM batch script. It
should be noted that these paths could be different between
systems. Line 1 define a list of absolute paths to where the
SLURM executables are store, in this example it includes
srun, sinfo, squeue and sbatch. Line 2 define a list of abso-
lute paths to where the SLURM configuration files are. Line
3 define a list of absolute paths that define where the slurm
library files are. Line 4 defines the path where the munge
library is, since munge is a needed authentication compo-
nent for SLURM to work.Lastly Line 5 define the path to the
library for a munge socket to run.

In order to register an application into Tapis, an app definition
in the form of a JSON document must be created. This leads to
another major difference between v2 and v3 which is how the app
definition is structured. Input arguments were originally exported

Experience Migrating a Pipeline for the C-MAIKI gateway

®

—D

WWW

React Web interface

@ ©)

@ C-MAIKI

STORAGE

UH HPC

@, | 4tapis | .©
v3

PEARC 22, July 10-14, 2022, Boston, MA, USA

0

ITS pipeline
Containerized
Applications
16S pipeline

[

Demux-pipeline

Figure 1: Diagram of how the C-MAIKI gateway interacts with the Tapis framework (Orange arrows) to provide easy workflow
execution on computing resources. Globus (blue arrows) also provide a second interface to access the storage system. Arrow
1 shows the initial connection between the researcher/user with the react web interface that will allow for easy job execution.
Arrow 2 shows the second step where the web interface will then make calls to the Tapis API. Arrow 3 then shows the Tapis
API gathering information on what type of containerized application is available, in this case, there is 3. Arrow 4 then shows
the Tapis API gathering information on the type of systems available. All the information on the available system(s) and
containerized application(s) will then be reported back to the web interface for the user to decide which job to execute and the
system to execute the job on. Finally, Arrow 5 shows the last step where the output data will be stored on some type of storage
system that the user can interact with via Globus shown in Arrow 6 and 7.

into the execution system as environment variable which is then
read by a wrapper script that starts the entire pipeline. In v3, those
input arguments are passed into the container itself as environment
variables. The wrapper script is run inside the container, therefore
adding a level of abstraction between the execution system and the
application. Other application definition changes include renaming
some of the keys in the JSON documents.

3.3 Job/workflow submission

In terms of job/workflow submission, the only major difference
that had to be changed was how the user’s arguments are passed to
the app. The arguments are now environment variables inside the
container instead of the execution system. Currently, an application
is only ran using the test data that exists inside of the container,
the ability for a user to provide a path to the data to be analyzed is
still currently under development.

4 FUTURE WORK

The future work for this effort is to continue migrating the remain-
ing pipelines to Tapis v3 by containerizing them and migrating
their application definitions as has been done with the ITS pipeline.
There is also a plan for a new user interface that to leverage the
tapis-ui developed by the tapis-project group as a template for the
new C-MAIKI gateway for a very modern React-based front-end

application that can be hosted on GitHub pages and make it easier
for other groups to leverage some of the C-MAIKI gateway capabil-
ities in other Tapis tenants. A diagram showcasing how the C-AIKI
gateway should interact with Tapis and the user interface is shown
in Figure 1.

5 CONCLUSION

While there is still development to be done to migrate the entire
C-MAIKI gateway the initial pilot has shown that it is possible to
run these Nextflow pipelines as a "container within a container”
for parallelization. And though the migration from Tapis v2 to v3
for the C-MAIKI pipelines is challenging the ability to leverage
a single application definition in Tapis and easily point the same
app at a different execution system makes it worthwhile for the
portability gained. This work will be leveraged to inform future
work on migrating this and other Tapis-based science gateways.

6 SOFTWARE AVAILABILITY

The source code for the C-MAIKI gateway is available on GitHub
at https://github.com/UH-Cl/cmaiki-gateway and code for the
MetaFlow|mics pipeline is available on GitHub at

https://github.com/hawaiidatascience/metaflowmics with the
documentation compiled and deposited on ReadTheDocs at
https://metagenomics-pipelines.readthedocs.io/en/latest/. The

https://github.com/tapis-project/tapis-ui

PEARC °22, July 10-14, 2022, Boston, MA, USA

containerization of the pipeline is available on GitHub at
https://github.com/UH-CI/c-maiki-tapis-ui

ACKNOWLEDGMENTS

This work is supported by the National Science Foundation Office
of Advanced CyberInfrastructure - Tapis Framework #1931439 and
#1931575, RII Track 1: ‘Tke Wai Securing Hawai‘i’s Water Future
NSF OIA #1557349 and Division of Ocean Sciences #1636402.

REFERENCES

[1] Cedric Arisdakessian, Sean B Cleveland, and Mahdi Belcaid. 2020. MetaFlow |mics:
Scalable and Reproducible Nextflow Pipelines for the Analysis of Microbiome
Marker Data. In PEARC20: Proceedings of the Practice and Experience of Advanced
Research Computing. PEARC.

[2] Paolo Di Tommaso, Maria Chatzou, Evan W Floden, Pablo Prieto Barja, Emilio
Palumbo, and Cedric Notredame. 2017. Nextflow enables reproducible compu-
tational workflows. Nature Biotechnology 35, 4 (April 2017), 316-319. https:
//doi.org/10.1038/nbt.3820

[3] Gregory M Kurtzer, Vanessa Sochat, and Michael W Bauer. 2017. Singularity:
Scientific containers for mobility of compute. PloS one 12, 5 (2017), e0177459.

[4] Craig A. Stewart, George Turner, Matthew Vaughn, Niall I. Gaffney, Timothy M.
Cockerill, Ian Foster, David Hancock, Nirav Merchant, Edwin Skidmore, Daniel
Stanzione, James Taylor, and Steven Tuecke. 2015. Jetstream. In Proceedings
of the 2015 XSEDE Conference on Scientific Advancements Enabled by Enhanced
Cyberinfrastructure - XSEDE '15. ACM Press. https://doi.org/10.1145/2792745.
2792774

[5] Joe Stubbs, Richard Cardone, Mike Packard, Anagha Jamthe, Smruti Padhy, Steve

Terry, Julia Looney, Joseph Meiring, Steve Black, Maytal Dahan, Sean Cleveland,

and Gwen Jacobs. 2020. Tapis: An API Platform for Reproducible, Distributed

Computational Research. (2020). submitted.

Andy B Yoo, Morris A Jette, and Mark Grondona. 2003. Slurm: Simple linux utility

for resource management. In Workshop on job scheduling strategies for parallel

processing. Springer, 44-60.

=

Yick Ching Wong, Sean B. Cleveland, and Gwen A. Jacobs

https://doi.org/10.1038/nbt.3820
https://doi.org/10.1038/nbt.3820
https://doi.org/10.1145/2792745.2792774
https://doi.org/10.1145/2792745.2792774

	Abstract
	1 Introduction
	2 Background
	2.1 Tapis
	2.2 C-MĀIKI gateway

	3 Migration
	3.1 Compute Systems
	3.2 Applications
	3.3 Job/workflow submission

	4 Future Work
	5 Conclusion
	6 Software Availability
	Acknowledgments
	References

