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Abstract. We construct an Euler system for Galois representations associated to cohomological
cuspidal automorphic representations of GSpy, using the pushforwards of Eisenstein classes for
GL;, x GL5.
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1. Introduction

The theory of Euler systems is one of the most powerful tools available for studying
the arithmetic of global Galois representations. However, constructing Euler systems
is a difficult problem, and the list of known constructions is accordingly rather short.
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In this paper, we construct a new example of an Euler system, for the 4-dimensional
Galois representations associated to cohomological cuspidal automorphic representations
of GSp, /Q, and apply this to studying the Selmer groups of these Galois representations.
Our construction relies crucially on an unexpected relation with branching problems in
smooth representation theory, which is the key input in proving the norm-compatibility
relations for our Euler system classes.

We construct this Euler system in the étale cohomology of the Shimura variety
of GSp,. The strategy that we use for this construction is also applicable to many other
examples of Shimura varieties, including those associated to the groups GU(2, 1), GSpg,
and GSp, x GL,, which will be explored in forthcoming work.

The starting point for our construction is a family of motivic cohomology classes
for Siegel threefolds, which were introduced and studied by Francesco Lemma [20-22].
Lemma’s classes are constructed by using the subgroup H = GL; X, GL, inside GSpy,.
Beilinson’s Eisenstein symbol gives a supply of motivic cohomology classes for the
Shimura varieties attached to H, and pushing these forward to GSp, gives motivic coho-
mology classes for the Siegel threefold. By applying the étale realisation map and project-
ing to an appropriate Hecke eigenspace, Lemma’s motivic classes give rise to elements of
the groups H1(Q, WP (—q)), where I1 is a suitable automorphic representation of GSpy,
Wi the dual of the associated p-adic Galois representation, and ¢ is an integer in a certain
range depending on the weight of IT.

To build an Euler system for these representations Wi, we need to modify this con-
struction in order to obtain classes defined over cyclotomic fields Q({,,). These classes are
required to satisfy an appropriate norm-compatibility relation as m changes, and to take
values in a Z,-lattice in W[} independent of m. We define these classes by translating
the natural embedding of H in G via appropriately chosen elements of G(Ay), following
a strategy that has been successfully used in several earlier Euler-system constructions
[18,19].

Using the theory of A-adic Eisenstein classes initiated by Kings, we show that these
Euler system classes can be interpolated p-adically as the parameters (including the Tate
twist g) vary. This leads to a definition of a “motivic p-adic L-function” for I1, which
is a p-adic measure on Z; interpolating the images of the Euler system classes under
the Bloch—Kato logarithm and dual-exponential maps at p. Assuming various technical
hypotheses, we prove in § 11 that if this motivic L-function is non-vanishing for a value of
g such that Wj(—q) is critical (in the sense of Deligne), then the corresponding Bloch—
Kato Selmer groups H{ (Q, Wi (—q)) and H}NQ, Wn(1 + q)) are zero. Our motivic
p-adic L-function should interpolate the critical values of the spin L-function of IT (that
is, we expect an “explicit reciprocity law”, analogous to those that have been proved for
the Beilinson—Kato and Beilinson—Flach Euler systems). If such an explicit reciprocity
law holds, then our bounds for Hf1 would give new cases of the Bloch—Kato conjecture.
The construction of a spin p-adic L-function and the proof of an explicit reciprocity law
are the topics of forthcoming joint work with Vincent Pilloni.

One of the chief novelties of our construction is in the proofs of the norm-compatibil-
ity relations for the Euler system classes. In place of the (exceedingly laborious) double-
coset computations used in [18] for example, we use methods of smooth representation
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theory to reduce the norm-compatibility statement to a far easier, purely local statement
involving Bessel models of unramified representations of GSp,(Qy). This reduction is
possible thanks to a case of the local Gan—Gross—Prasad conjecture due to Kato, Murase
and Sugano, showing that the space of SO4(Qy)-invariant linear functionals on an irre-
ducible spherical representation of SO4(Q¢) x SO5(Q) has dimension < 1. This tech-
nique promises to be applicable in many other settings where local multiplicity 1 results
of this type are known; for instance, in [23] we use a similar approach to prove norm-
compatibility relations in an Euler system for the Shimura variety of the unitary group
GU(2, 1), using the local Gan—Gross—Prasad conjecture for the pair (U(2), U(3)).

Outline of the paper

For the benefit of the reader, we give a brief outline of how our Euler system classes are
constructed, and how the norm-compatibility relations for these are proved.

Construction of the elements. Let G = GSp,, and for each open compact U C G(Ay),
let Yo (U) be the Siegel three-fold of level U (a Shimura variety for G). We construct a
map of G (A r)-representations, the Lemma—Eisenstein map,

£6:1 ® H(G(Ay) —limHr (Ye(U), D)
J(H (A7) o

where # (—) denotes the Hecke algebra, Z is a relative Chow motive (a “motivic sheaf”)
over Y arising from some algebraic representation of G, and [ is a certain explicit rep-
resentation of H(Ar). This construction depends on parameters a, b, g, r, specifying
weights for G and for H, but we shall suppress this for now. The construction of £§,
given in §8.3, is essentially formal: the representation / records the data needed to define
an Eisenstein class in the motivic cohomology of Yz, and £& maps this Eisenstein class
to a linear combination of G (A )-translates of its pushforward to Y, with the # (G(Ar))
term recording which translations to apply.

Let K be a level, unramified outside S U {p} (where S ¥ p is a finite set of primes)
and having a certain specific form at p. Then for any n coprime to S, the base-extension
Y6 (K) Xspec@ Spec Q(un) is itself a Shimura variety for some subgroup K’ € K. In
§8.4 we use these isomorphisms, and certain explicit choices of test data as input to £8&,
to define a collection of classes

ZMm € Hyo (Yo (K) x Spec Q(uarpm), 7)
for m > 0 and M square-free and coprime to p.S. These are our Euler system classes.
Norm-compatibility. The “ideal” norm-compatibility result for these classes would be an

identity of the form
norm(zeprm) = Pe(0,") - Zsam
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for primes £ { MpS. Here “norm” denotes the Galois norm map from Q(par¢pm) to
Q(uarpm), oy is the Frobenius at £, and 5 (X) is a degree-4 polynomial with coeffi-
cients in the spherical Hecke algebra at £, which acts on each irreducible representation
as the corresponding spin L-factor. However, we cannot prove the full strength of this
statement here (we hope to return to this issue in a later paper). Instead, we prove a ver-
sion of this result after mapping to Galois cohomology. We choose IT a suitably nice
cohomological automorphic representation of GSp, such that H}( # 0. (We need Iy
to be generic for almost all £, which excludes certain “endoscopic” representations such

as Saito—Kurokawa lifts.) Then H;i ® W appears with multiplicity 1 as a direct sum-

mand of 1_ir_)nU H2(Yo(U ) Z). and does not contribute to cohomology outside degree 3.

Choosing a vector ¢ € Il¢ thus gives a homomorphism of Galois representations
H} ® Wi — W,

which factors through (H;)K if ¢ is K-invariant. Combining this with the Hochschild—
Serre spectral sequence gives a map of vector spaces

HA(Ya(K) x Spec Q(uatpn). 7) — H (Q(uatpm). W)

We thus obtain a collection of cohomology classes ZAI},m € H'(Q(umpm), W), depend-
ing on the choice of ¢, and we shall prove the norm-compatibility relations for these
instead.

For simplicity, assume that M = 1 and m = 0, so we are trying to compare ZEO with
norm(zgo) (the general case can be reduced to this by twisting). We have constructed a
G (Ar)-equivariant bilinear pairing

I H(G(A I H'(Q, W
(%(H(X()A‘/-)) ( (f)))@ f = @Q r[)

or equivalently (via Frobenius reciprocity) an H (A r)-equivariant pairing
3: 1 @My — HY(Q,Wp).

By construction the classes ZEO and norm(zgo) are values of this pairing, at different
choices of test data v, v’ € I @ I1r. In most cases (away from a few small weights) the
representation / is a direct sum of principal series representations 7, each of which factors
as @) prime Tw’ and by construction the projections of v and v’ to 7y ® Iy, coincide for
w # L.

It is at this point that the decisive input from local representation theory appears:
known cases of the Gan—Gross—Prasad conjecture imply that Homg(q,)(t¢ ® Il¢, 15)
is 1-dimensional, and we can construct a canonical basis 3; of this space using zeta-
integrals. So it suffices to show that 3¢(v¢) = P¢(1)3¢(vy), which is a simple, purely local
computation which we carry out in §3. It then follows that 3}, (v¢) = P¢(1)3}(v}) for every
H -equivariant homomorphism 3, from 7; ® I, to a space with trivial H -action, and the
desired norm relation follows (see Proposition 10.5.2).
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2. General notation

1
e Let J be the skew-symmetric 4 x 4 matrix over Z given by ( ! ) Welet G =
-1
GSp, be the group scheme over Z defined by
G(R) := GSp4(R) = {(g, 1) € GL4(R) x GL1(R) : g' - J - g = pJ }
for any commutative unital ring R. We write i : G — GL; for the symplectic multiplier
map.

e We define the standard Borel subgroup B C G to be the subgroup {(g, 1) : g is upper-
triangular}.

e We define a standard parabolic subgroup to be a subgroup of G containing B; there
are exactly four of these, namely B, G, the Siegel parabolic Ps and the Klingen

parabolic Pg;, where
k %k k k * k *k %
N S _ * ok ok
PS—( **)v PKI—( ***)
* ok *

e We write T for the diagonal torus of G, which is equal to the product A x T, where
A, T’ are the tori defined by

X X
)
y 1

e Let H = GL; xgr, GL; (fibre product over the determinant map), and let ¢ denote the
embedding H < G given by

a b
b ’ b/ ’ b/
o ("en).
c d
We write By = 1~ '(B) = (~!(Ps) for the standard Borel subgroup of H.

Remark 2.1. The quotient of G by its centre Zg is the split form of the orthogonal
group SOs. We have Zg C t(H), and the image of H/Zg in G/ Z ¢ via is the split form
of SO4, embedded as the stabiliser of an anisotropic vector in the defining 5-dimensional
representation. This will be used in §3.7 below, in order to make use of the results of the
Gan—Gross—Prasad theory of restriction of representations of SO5 to SO4. o

3. Preliminaries I: Local representation theory
In this section, we fix a prime £ and collect some definitions and results regarding smooth

representations of the groups GL,(Qy), G(Qy), and H(Qg) on complex vector spaces.
For brevity we shall write G; = G(Qy) and similarly for H,.
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3.1. Principal series representations of GL,(Qy)

Notation 3.1.1. We write dx and d*x for the Haar measures on Q; and Q; normalised
so that Zy (resp. Z;) has volume 1. The norm | - | is normalised so that [£] = 1/£. If y is
a smooth character of QEX, we write L(y, s) for its local L-factor, which is

{(1 —x(OU)T if gy =1,
1

L(x.s)=L(x|-I°,0) = otherwise

Definition 3.1.2. Given two smooth characters y and ¥ of Q}, we let I(x, V) be the
space of smooth functions f : GL,(Qg) — C such that

7((§5)8) = x@v(@la/d|'? £(g).
equipped with a GL, (Qg)-action via right translation of the argument.
As is well-known, the pairing I(y, ¥) x I(3~ ', ¥~!) — C defined by

Ui = [

GL2(Z

)fl (g) f2(g) dg,

where we normalise the measure so that GL,(Z) has volume 1, identifies 7(y =1, ¥ ~!)
with the dual of I(y, ). Moreover, if y/y # |- |*1, then I (), ) is an irreducible rep-
resentation.

We will frequently need to use analytic continuation in an auxiliary parameter s. The
following construction will be helpful:

Definition 3.1.3. A polynomial section of the family of representations (x| - |*,¥|-|™%)
is a function on GL,(Qy) x C, (g,s) — fs(g),suchthat g+ fi(g)isin I(x|-|%,¥|-|~%)
foreach s € C, and s > f;(g) lies in C[€*,£~°] for every g € GL,(Qy). A section is flat
if its restriction to GL,(Zy) is independent of s.

From the Iwasawa decomposition, one sees that every f € I(y, ¥) extends to a unique
flat section. The space of polynomial sections is stable under the action of GL,(Q,) (while
the space of flat sections clearly is not).

Definition 3.1.4. Let M : I(y,¥) — I(y, x) be the normalised standard intertwining
operator, defined by analytic continuation to s = 0 of the integral

M(fyig) = L(x/p.25)"" /Q £iw (37)g) dn

where w = (% §) is the long Weyl element.

More precisely, if |y /v| = | -|", and ( f;)sec is any polynomial section, then the inter-
twining integral for M( fs; g) is absolutely convergent for r + 20 (s) > 0 and defines a
polynomial section of 7(y|-|~%, x| - |¥) (see e.g. [3, Proposition 4.5.7] for further details).
The specialisation of this section at s = 0 depends only on fy € I(),¥), not on the choice
of section passing through fj, and this defines a non-zero intertwiner between /(y, ¥) and
I(, y) (even in the exceptional case y = V).
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Proposition 3.1.5. Suppose y and  are unramified. Then for all fi € I(x, V) and all
fre I, x7 1) we have

(M(f1), f2) = (f1, M(f2)).

Proof. By choosing polynomial sections passing through the f;, we may assume without
loss of generality that y /¥ # | - |1, so that both I (), ¥) and I(¥ !, x ') are irreducible.
Hence it suffices to check the equality when f; and f, are the respective spherical vectors
(normalised so that f; (1) = 1). With our conventions, M sends the normalised spherical
vector of I(x,¥) to the normalised spherical vector of I(y, x), and these normalised
vectors pair to 1 under the duality pairing. ]

3.2. Siegel sections

Notation 3.2.1. Let § (Q%, C) denote the space of Schwartz functions (locally constant,
compactly supported functions) on Q%. We let GL,(Qy) act on this space from the left by

(g-9)(x.y) = ¢((x.y)g) for g € GL2(Q¢) and ¢ € §(Q7, C). For § € $(Q7.C), we
define its Fourier transform qg by

¢A>(x»y) Z//ee(xv—yu)¢(u,v)dudv,

where ey (x) is the standard additive character of Q¢, mapping 1/£" to exp(27i /™).

Proposition 3.2.2. Let ¢ € S(Q%, C), and let x, Y be characters of Q with |x/¥| =
| - |". Then the integral

P x(det g)|det g|*+1/2
,8) =
o.x.v\8 L(i/¥.2s + 1)

converges for r + 2N (s) > —1, and defines a polynomial section of I(x|-|%, ¥ |- |~*%), so
Jo.00(8) = fo.x.v(g,0) € I(x, V) is well-defined. These elements satisfy

Fesow () = x(detg) " |det g2 fy  y (he),
fogpy® = W(detg) " [detg| "2 f5  (hg)

forall g, h € GL,(Qy).

| (008 G/

6]

Proof. The convergence of the integral, and its analytic continuation as a function of s,
form part of Tate’s theory of local zeta integrals for GL;. The fact that fg , v (—,s) lies
in I(y|-1|%,¥|-]~%) is immediate from the definition in the region of convergence of the
integral, and follows for all s by analytic continuation. The first of the transformation
formulae (1) is obvious from the definition, and the second follows from the identity

(g-¢) = (‘g-$), where ‘g=(detg)”'g. m

|det g|



D. Loeffler, C. Skinner, S. L. Zerbes 676

Proposition 3.2.3. We have

e(V/x)

M(fo.x0) = qu;,w,x,

where (W] x) is the local e-factor (a non-zero scalar, equal to 1 if x /Y is unramified).

Proof. This is a straightforward consequence of the functional equation for Tate’s GL;
zeta integral. u

If /¥ = |- |! we interpret the right-hand side as 0, so the elements f, .y all land
in the 1-dimensional subrepresentation. Let us evaluate these integrals explicitly for some
specific choices of ¢, assuming now that y and v are unramified characters.

Definition 3.2.4. We define functions ¢; € § (Q%, C) for integers ¢ > 0 as follows.
e Fort =0, we let ¢g := ch(Zy X Zy).
e Fort > 0, welet ¢, := ch({'Zy x ZF).

Note that ¢, is preserved by the action of the group Ko(£') = {(%5) € GL(Z,) :

¢ =0mod ¢'}.

Lemma 3.2.5. We have

1 iftr=0,

Jooxw () = {L(X/w» D= ift>0.

Moreover, the function fg, yy is supported on B(Qg) Ko (£").

Proof. The computation of the value at the identity is immediate. The assertion regarding
the support of the function is vacuous for t = 0, and for # > 1 we have

¢ = (15" 9) 1,

so in fact it suffices to prove the assertion for ¢ = 1; in this case, we simply observe that
the function fp, .y vanishes on the long Weyl element w = (% §), since ¢, ((0, x)w) =
¢:(—x,0) = 0 for all x. L]

3.3. Notation: subgroups of Gy and Hy

We now define an assortment of open compact subgroups of G, and H,. We represent
elements of G in block form (é g ) where A, B, C, D are 2 x 2 matrices.

KGZ = G(Zy).

Kg,o(") ={g € G(Z¢) : g = (§ %) mod £} forn > 0.

Kg, (4" = {g € G(Zy): g = (g 1) mod E”} forn > 0.

Kg, (", ") ={g € K, 1 (£") : u(g) = 1 mod £} form,n > 0.

K’Ge(ﬁ”’,(”) ={g€Kg,1({"): g =1mod {"} forn > m > 0.
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(The subgroups Ky, (Z”’ £") will not be used until §8.4.) We define subgroups Ky, ,
Kp,0("), etc. of Hg as the preimages (via ¢) of the corresponding subgroups of G,. We
write dg and d/ for the Haar measures on G¢ and Hy normalised so that K¢, (resp. Kg,)
has volume 1.

3.4. Induced representations of Hy

Given two pairs of characters y = (x1, x2) and ¥ = (Y1, ¥2), we define /g (. ¥) as the
representation of Hy given by the normalised induction from By (Qy) of the character

( “ % ) = x1(@)¥1(b) x2(a) 2 (b')  (where ab = a'b’).
b

Since H acts transitively on P1(Q) x P1(Qy), restriction of functions from GL,(Q/) x
GL,(Qy) to Hy defines an isomorphism of H-representations 1(y1,¥1) ® 1(x2,¥2) —
I (x, ), where Hy acts on the source via its inclusion in GL2(Qg) x GL,(Qy). In
particular, there is an intertwining operator M : Ig(y,¥) — Ig (¥, x) given by the
tensor product of the two GL, intertwining operators. o

Proposition 3.4.1. [If there is no quadratic character n such that y1/v1 = x2/¥2 =
n, then every irreducible subquotient of I(yx1, V1) ® I()2, V¥2) as a representation of
GL3(Qy¢) x GL,(Qy) remains irreducible as a representation of Hy.

Proof. This is an instance of [10, Lemma 2.1]. [

Given? =Y i1 ®pis € S(Q%, C)®2, we let f, #.x.w be the image in IH(Z(,y) of
the element

Zf¢i,lyX1,W1 ® f¢i,2,)(2,1/f2 € 1(x1,¥1) ® 1(x2,¥2).
i

For a non-negative integer ¢, let ¢p; = ¢y Q@ ;.

Proposition 3.4.2. Lett > 0. Then:
(a) We have

1 ift =0,
L(x1/¥1. )" L(x2/¥2. D' ift > 1.

() fos,x.w is supported on By (Q¢)Kp,0(L").

Proof. Follows from Lemma 3.2.5. ]

Jor,xw (D) = {

3.5. Representations of Gy

3.5.1. Principal series representations of Gy. We follow the notations of [34] for rep-
resentations of Gy. See op. cit. for further details (in particular §2.2 and the tables in
Appendix A).
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Definition 3.5.1. Let x1, x2, p be smooth characters of Q such that

|- 15 ¢ s x2s 1 x2s xa/ x2)- 2

We let y1 x y2 x p denote the representation of Gy afforded by the space of smooth
functions f : Gy — C satisfying

2

“ * * b
f (( gty ) g) — @GO,

with Gy acting by right translation. We refer to such representations as irreducible prin-
cipal series.

The above representation has central character y y»p?; the condition (2) implies that
it is irreducible and generic. If 7 is a smooth character of Q, then twisting x; X y2 x p
by n (regarded as a character of G, via the multiplier map) gives the representation

X1 X X2 X pn.

Definition 3.5.2. Let 0 = y; X y2 % p be an irreducible principal series representation.
The local (spin) L-factor of o is the function

L(o.s) = L(e ®|-I°.0) = L(p.5)L(px1.5)L(px2.5)L(px1X2.5).

Proposition 3.5.3. Ifo = y; X y2 % p is an irreducible principal series representation,
then o is unramified if and only if all three characters y1, X2, p are unramified. Moreover,
every irreducible, generic, unramified representation of Gy is isomorphic to x1 X Y2 X p,
for a unique Weyl-group orbit of unramified characters (1, x2, p) satisfying (2).

Proof. See [34, §2.2]. .

3.5.2. Hecke operators. Firstly, we consider the action of the spherical Hecke algebra
H(Kc,\G¢/Kg,) on o%6¢ when o is an unramified principal series representation.

Lemma 3.5.4. Consider the following elements in the Hecke algebra J(K\Gy/K):

1
L
V4 Kg,.
52

T(Z):KGe(llz )KGZ, T1(£2)=KGE<
L

L
R(0) = Kg, ( ‘¢, )KGZ.
L

If P¢(X) is the polynomial over 3 (Kg,\G¢/Kg,) defined by
1—TO)X + (T (£*) + (£* + DR(0)X*> = CTERWU)X> + L°R()*X*,

then for any unramified principal series representation 6 = x1 X y2 X p, Pe({™°) acts
ono¥6¢ as L(o,s — 3/2)7 L

Proof. See [41, §2.4]; our £¢(X) is X*Q,(1/X) in Taylor’s notation. |
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Secondly, we consider the larger space of invariants under the Siegel parahoric sub-

L
group Kg,,0(£). We let U({) denote the Kg,,0(£)-double coset of ( ¢ 1 ) which acts
1

L uwv
14
X Z ( lf':)x

on o K60 iy

u,v,weZ/l
Proposition 3.5.5. If o is an unramified principal series representation, then oKGe0®
is 4-dimensional, and
det(1 — U0 | 6K6e0®) = L (0,5 —3/2)7".
Proof. See [41, Lemma 2.4]. [

3.6. Zeta integrals for G

In this section we isolate the key local zeta integral calculations used in our proofs of the
tame norm relations.

3.6.1. The Bessel model.
X

Definition 3.6.1. Let A be the torus Y. ) : X,y € Gy . The Bessel subgroup R

y
of G is the semidirect product A x Ng, where Ng is the unipotent radical of the Siegel
parabolic Ps.

Definition 3.6.2. Let A be a character of A. A (split) A-Bessel functional on a represen-
tation o of Gy is a linear functional y : 0 — C transforming under left-translation by
R(Qy) via the formula

1 uv
I’L(( llfu)a.(p) = eg(u)A(a)u(p) ©)

1
forallp € 0,a € A,and u,v,w € Q.

If o is irreducible, then the space of A-Bessel functionals on ¢ has dimension < 1, by
[35, Theorem 6.3.2]. It is clearly zero unless A|z(g,) coincides with the central character
of 0.

Theorem 3.6.3 (Roberts—Schmidt). If o is an irreducible generic representation of Gy
(such as an irreducible principal series representation), then o admits a non-zero A-
Bessel functional ), for every A whose restriction to Z(Gy) agrees with the central
character of o. If both ¢ and A are unramified, then we may normalise |1) so that
wa(wo) = 1, where @q is the spherical vector of o.

Proof. For the existence of the Bessel functional see [35, Proposition 3.4.2]. It is shown
in op. cit. that the Bessel functional can be explicitly constructed by integrating functions
in the Whittaker model of o; and the assertion that in the unramified case the spherical
vector maps to 1 under this functional follows, for example, from the computations of
[34, §7.1]. |
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If o is any irreducible representation admitting some A-Bessel functional y, then for
any ¢ € o we may define a function B, 3 on G¢ by By, 1(g) = ux(g - ¢). The space of
functions {By » : ¢ € 0} is the A-Bessel model of o.

Proposition 3.6.4. Let o be an irreducible representation of Gy admitting a A-Bessel
model, and let ¢ € o be invariant under Ns(Zg). Define

1 uv Kk
ez (F)[0)-
1

u,v,weZ/Lk
Then

if x| >1,

. 0
X — ok
BU“"""’*(( )) 53ka,A(< S )) if Ix[ <1
1

Proof. We first note that the assumption that the Bessel function B, j is fixed by right-
X
translation by Ns(Z¢), and transforms on the left via (3), implies that B, 3 (( * ))
1

is zero if |x| > 1. We now compute

Byeypn ((xxll)) =2 Bos ((xxll) (11:%:1;) (zk i 1))

u,v,w

k
_ p2k Ex k
=/ E e¢(xu)By 5 Fx ) .
u mod £K 1

If |x| > €F then the Bessel function is zero; and if £ > |x| > I, then the sum of the e;
terms vanishes. This leaves the cases |x| < 1, in which case the terms ey (xv) are all equal
to 1 and we obtain the result. ]

3.6.2. Novodvorsky’s integral. In order to construct an intertwining operator between o
and a principal-series H -representation, we shall use an integral involving a choice of
vector in the Bessel model of o, for some choice of character A as above. For ¢ € o, n an
unramified character of Qz, and s € C, we define

Z(g.n.A.8) = Lo ®n.s) [@x By.a (( 1 1)) N0l 2d
4

Here L(o ® 7, s) is the spin L-factor of 0 ® 7, as in Definition 3.5.2.

Remark 3.6.5. This integral apparently first appears in [28, Equation 2.7]. In an earlier
draft of the present paper, we mistakenly ascribed this construction to Sugano; in fact
Sugano’s paper [40] considers a related but slightly different integral — see Remark 3.7.4
below. o
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Proposition 3.6.6. Suppose o is an irreducible unramified principal series representa-
tion, with central character xs, and let n be an unramified character. Let A be given by

( . ) > A1(x)A2(y) for unramified characters Ay, A2 of Q.
y

(a) The integral defining Z (¢, 1, A, s) is absolutely convergent for R(s) > 0, and it has
analytic continuation to all s € C as an element of C[£*,£75].

(b) If @o is the spherical vector (normalised so that By, (1) = 1) then
Z(@o.n.A.) = [L(an.s + 1/2L(an.s +1/2)]7 .

“ A @Az (b)
Z(( e )enas) = TR0 2.,
(( “b)“’ ! s) pp 2O

(c) We have

foranyv,w € Qganda,b,t € Qj.

Proof. Replacing o with 0 ® 7, and (A1, A») with (A1, n4;), we may assume 7 is trivial.
It suffices to prove (a) under the assumption that ¢ = g - ¢¢ for some g € Gy (since
these vectors span o). The validity of (a) for this vector will only depend on the class
of g in the double coset space R(Q¢)\G¢/Kg,. A set of coset representatives for this
double quotient, and a formula for the values of By, 4 on these representatives, is given in
[40, Proposition 2-5]; see also [4, Corollary 1.9] for an alternative, slightly more concrete
formulation. The result now follows by an explicit calculation, which also gives (b) as a
special case (compare also [31, §3.2]).

Finally, part (c) is obvious from the integral formula if % (s) > 0, and follows for all s
by analytic continuation. |

From Proposition 3.6.4 above, we see that

s+3/2
0 [LAin,s+1/2) ' L(on.s +1/2)7 = Lo ® n,5)7'].
“)

This formula will be fundamental to the proof of our Euler system norm relations later in
the paper.

ZU)go.n. A, 5) =

Remark 3.6.7. It is not always true that the ideal of C[g*, ¢~*] given by {Z (¢, n, A, ) :
@ € 0} is the unit ideal. A sufficient condition is that L(A17n,s + 1/2)L(An,s + 1/2) and
L (o ® n,s) should have no poles in common, since then at least one of Z(¢g,n,A,s) and
Z(U{)@o,n, A, s) is non-vanishing for every s. In fact, this condition is also necessary,
as shown by the computations of [36], although we do not need this here. <

3.7. A local bilinear form

As in the preceding section, let o be an irreducible unramified principal series represen-
tation of Gy, with central character yo. Let x = (x1, x2) and ¥ = (Y1, ¥2) be pairs of
unramified characters of Q satisfying

X1X2- Vv xo = 1,
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and suppose that neither y; /vy nor y» /v is quadratic or equal to | - |~! (but we do allow
either or both to equal | - |). In the notation of the above section, we define a character A of
Aby Ay = (V1x2)" 1, A2 = (x1¥2)"'; and we take for ;) the character ¥, yr. For brevity,
we write ys for the pair (y1| - |75, x2| - |™*), and similarly ¥y = (Y| - |*, ¥2] - |%).

Proposition 3.7.1. Mapping ¢ € o to the function z;(¢) on Hy defined by
zs(@)(h) = Z(h-¢,n, 1,25 +1/2)

is an Hg-equivariant map from o to the space of polynomial sections of Iy (f;l, ls_l)-
For the spherical vector o, normalised as in Proposition 3.6.6(b), we have

zs(po)(1) = L(Y1/x1,2s + D' L(Y2/x2,25 + 1),

2425
zs(UO¢po)(1) = ———
R T .0
-1 -1 -1
) [L(E 25+ 1) L(L.25+ 1) = Lo ®y1va.25 + 5) ' ].
Proof. Follows from Proposition 3.6.6 and equation (4). ]

We impose the following assumption:

e The functions L(o ® Y12, s) and L(Y1/x1,5 + 1/2)L(¥2/ x2,s + 1/2) do not both
have a pole at s = 1/2.

It follows that the homomorphism z € Hompg, (0, Iz (!, x~!)) given by specialising z

at s = 0 is not zero, since at least one of z(¢g) and z(U({)¢p) is non-vanishing at 1 € H.

Our assumptions on y, ¥ imply that, although Iz (¥, y~1) may be reducible, it has a

unique irreducible subrepresentation, and this subrepresentation is generic.

Lemma 3.7.2. The image of the homomorphism z is contained in the unique irreducible
subrepresentation of Iy (!‘1 , l_l).

Proof. If L(Y1/x1.5 + 1/2)L(¥2/x2,s + 1/2) is finite at s = 1/2, then Iy (¥~ 1, x 1)
is irreducible and there is nothing to prove. So it suffices to treat the case when one or
both of y;/y; is | - |, assuming that L(o ® 1>, s) has no pole at s = 1/2. We shall
not give the details of this computation, as it is somewhat technical, and it will only be
relevant in a few boundary cases. We write o as an induced representation from the Siegel
parabolic Ps(Qy). There are exactly two orbits of Hy on the flag variety G/ Ps(Qy), and
an application of Mackey theory allows us to compute Homg, (0, t) for each non-generic
quotient T of g (¥ !, y~!) in terms of the inducing data for o. These Hom-spaces all
turn out to be zero unless L(o ® V1V, s) has apole at s = 1/2. |

Corollary 3.7.3. Let (-,-) denote the canonical duality pairing
Ig(Ys. xs) x In (' ') — C.
Then the bilinear form 3y,y € Homp,(I1(x. ) ® 0, C) defined by
sxw(f ®¢) = lm L(Y1/x1.25 + DL(Y2/x2. 25 + DM (f). 25(9)).
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for fs any polynomial section of I(xs. ¥ s) passing through f, is well-defined and non-
zero.

Proof. We have (M( fs), zs(¢)) = (fs, M(z5(p))) by Proposition 3.1.5. From the previ-
ous lemma, M (z;(¢)) vanishes at s = 0 to order equal to the order of the pole of the Euler
factor, so the limit is well-defined and depends only on f. ]

Remark 3.7.4. In the paper [29] (published in 1997, but circulated as a preprint many
years before), Piatetski-Shapiro defines a zeta-integral Z(¢, ¢, A, 1, s), for ¢ € o and

¢ € S(@} xQ}), by

Z(p, 9. A n,5) = f By (¢ ((0,1) - by, (0, 1) - hy)y(deth)|det ¥ /2 dh,
B NH[\HK -

where Ny, is the unipotent radical of Bg(Qg). This integral also appears in Sugano’s
work [40]. If n and A are chosen as above, then one checks that 3y, ( f;b o ® @) is equal

to the leading term of Z(¢, ¢, A, n,s) at s = 1/2, up to a non-zero scalar factor. However,
we cannot simply take this as the definition of 3,y since it is not a priori clear that this
leading term depends only on the vector f- b € I (x. ¥) rather than on ¢ itself. o

Vitally, the linear functional 3,y of Proposition 3.7.3 is unique:

Theorem 3.7.5 (Kato-Murase—Sugano). For y and Y satisfying the above assumptions,
we have
dimHomp,(Ia(x. ¥) ®0,C) < 1.

Proof. Let t be the representation /g (), ¥). Since the group of unramified characters
of Q is 2-divisible, we may replace o and 7 with o0 ® o~ and T ® w, where w is any
square root of o, and therefore assume that both o and 7 are trivial on Z (Gy¢). Thus o
factors through G = PGSp,(Q;) = SO5(Qy); and 7 factors through the image H of H
in SO5(Qy), which is a copy of SO4(Q;), embedded as the stabiliser of an anisotropic
vector in the defining 5-dimensional representation.

We now apply the main theorem of [13], which shows that for any representations o
of SOs and t of SO4 which are generated by a spherical vector, the space Hom(r ® o, C)
has dimension < 1. [

Remark 3.7.6. Alternatively, the proof of Lemma 3.7.2 shows that this Hom-space
injects into Hompg, (0 ® 19, C) where 7o is the unique irreducible subrepresentation of
Iu (x,¥). We can now invoke a very general result, which forms part of the Gan—Gross—
Prasad conjecture for special orthogonal groups: for any 7 > 0 and any irreducible smooth
representations o of SO, 4+1(Q¢) and p of SO, (Q¢), one has dimHomgp, (0 ® p,C) <1,
by [45, Théoreme 1]. <&

Corollary 3.7.7. In the situation of Theorem 3.1.5, the bilinear form 3y y is a basis of
HomHl(IH(Z,y) ® o, C).

Proof. Clear. ]
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3.8. Explicit formulae for the unramified local pairing

We record the following formulae for the values of 3, . We assume, as before, that o is
an irreducible unramified principal series representation of Gy. We choose our characters
x and ¥ as follows:

e Y1 =yr=1-]""%
o yi = |- |(/2+kid g, where T = (1, 12) is a pair of finite-order unramified characters,
and k; > 0 are integers.

If one or both of the k; is zero, we also assume that o is essentially tempered (a twist of a
tempered representation); since o is | - | ~®*17%2) up to a finite-order character, all poles of
L(o,s) therefore have real part (k1 + k2)/2 >0, sothat L(o0 ® Y¥1y2,1/2) = L(0,—1/2)
is finite and the assumptions of the previous section are satisfied.

Forg e § (Q%)@’z, we write Fy for the Siegel section f«fb,x,ll/ € I (x.¥); from (1), this

depends Hy-equivariantly on ¢. We shall apply this to the particular Schwartz functions

¢ introduced in §3.4 above.

Theorem 3.8.1. Let 3 € Homg, (I(Z’f) ® o0, C). Then, for anyt > 1, we have

F, = ! 1 £ 1 £ F,
o0 = s (1= ) (1= ) 3o 0

and

Fy U)oo) = — 1€kllek2 L(o.—1/2) " |5(F,
- 00m = | (1= 55 ) (= ) 1021727 [

Proof. We know that Hompg, (I(x. ) ® o, C) is 1-dimensional and spanned by the spe-
cific bilinear form 3,y constructed above, so it suffices to assume that 3 = 3,,y. By
construction Fg, is the value at s = 0 of the Siegel section f; _ . . and we have

@ PisXs: Vs

M(fét,ls,fs) = L(XI/WI’ 1- 25)_114()(2/1//27 1- 23)_1](@,@;,;@’

by the functional equation for Siegel sections (Proposition 3.2.3). As we have seen above,
the restriction of fy, 4, to H(Z) is a scalar multiple of the characteristic function of
K, 0(¢"), so we have

_ Vol KH[,O(K’)f?@,Z(l)
"~ L(x1/¥1. DL(x2/¥2. )
x Wm[L(Y1/ )1 1+ 25)L(V2/ X2, 1+ 25)zs(9)(1)]

3w (Fo,9)

for any ¢ € o invariant under Ky, o(£"). In particular, if ¢ = @ then the bracketed term
is identically 1, and from the formula for fj, 4,4 (1) given in Lemma 3.2.5 we see that for
t > 1 we have -

30 (Fgp00) = Vol Ky o(€) - LWt/ x1. D)™ L2/ x2. 1) 30,05 (Fo. 00)

which is the first formula claimed. The second formula is similar, using the formula for
zs(U(£)¢p)(1) given in Proposition 3.7.1. |
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3.9. An application of Frobenius reciprocity

Proposition 3.9.1. Let t (resp. 0) be smooth representations of Hy and Gy respectively.
Then there are canonical bijections of C-vector spaces

G G
Homg, (c—IndHfZ (v),0") = Homg, (c—IndHfZ (r) ® 0,C) = Hompg, (t ® (0|a,). C).

Proof. The first isomorphism is standard, and interchanging the roles of ¢ and the com-
pactly induced representation also shows that
G G
Homg, (c-Ind (v) ® 0, C) = Homg, (0. (c-Ind )Y).
One has a canonical isomorphism (C-Indg‘; 7)Y = IndzfZ (tV) [33, §111.2.7]. (Care must
be taken here since the contragredient on the left-hand side denotes G;-smooth vectors in
the abstract vector-space dual, while on the right-hand side it denotes Hy-smooth vectors.)
We then apply Frobenius reciprocity for the non-compact induction [33, §II1.2.5] to obtain
G
Homg, (o, IndH‘z (V) = Hompy, ((0|a,). T")
= Homgp, (t ® (0|n,),C),

as required. ]

Remark 3.9.2. The Hom-spaces in Proposition 3.9.1 will not in general be isomorphic
to Homg, (7. (6¥)|a,). The problem is that (6¥)|p, is in general much smaller than
(o|n,)Y, since the two notions of contragredient do not match — an H-smooth linear
functional on o may not be G¢-smooth. <

For later use it will be important to have an explicit form for this bijection. Let # (Gy)
denote the Hecke algebra of locally constant, compactly supported C-valued functions
on Gy, with the algebra structure defined by convolution (normalising Haar measure as
in §3.3). We regard o as a left # (G¢)-module via the usual formula

E-¢ =/G £(g)(g-9)dg,

sothat g1 - (£ - (g2-9)) = E(g7 (g5 1Y) - .

Definition 3.9.3. For smooth representations 7, o as above, let X(z, ") denote the space
of linear maps
3:1®c H(Gy) — o

which are Hy x Gg-equivariant, where the actions are defined as follows:

e The H, factor acts trivially on oV, and on t ®c H# (Gy) it acts via the formula

h-(v®§) = (h-v)QEHLT(-).
e The Gy factor acts trivially on 7, and on #(Gy) it acts via g - £ = £((—)g)-

Unwinding the definitions, we reach the following formula:
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Proposition 3.9.4. There is a canonical bijection X(t,0") = Hompg, (t ® (0]a,). C),
characterised as follows: if 3 € ¥(t,0") corresponds to 3 € Homg,(t ® (0|n,). C),
then

3 ®@8)(p) =3(f ®(§-9)
forall f €1,&e€ H(Gy), and ¢ € 0.

Proof. Immediate. u

Corollary 3.9.5. Suppose 3 <> 3 as in the above proposition; and let Uy > Uy be two
open compact subgroups of Gy, fo, f1 € T, and go, g1 € Gy. Suppose that

3(f1.81-9) = 3(f0.80 R-9)

for some R € 3 (Up\G¢/Up) and all ¢ € cY0. Then the elements 3; = 3(f; ® ch(g;Uy))
€ (0cV)Yi,i = 0,1, are related by

Z u-31=R"-3o

uelUy/ U,y
as elements of (o¥)Y0, where R'(g) = R(g™").

Proof. Since both sides of the desired equality are in (¢¥)Y0 = (¢¥0)V, it suffices to
check that they pair to the same value with ¢ for every ¢ € U0, This follows from the
above description of 3(—)(¢). [ ]

3.10. Results for deeper levels

In order to prove norm-compatibility relations in the “p-direction” for our Euler system,
we shall also need a few supplementary results which are proved directly (rather than
using the uniqueness result of Theorem 3.7.5). In this section, W denotes an arbitrary
smooth complex representation of G, (not necessarily irreducible or even admissible),
and we let X(W) denote the space of homomorphisms

3:8(Q7.C)®% ®c #(Ge) > W
satisfying the same equivariance property under H; x Gy as in Definition 3.9.3.
Notation 3.10.1. For¢ > 1,let¢;, € $ (Q%, C) denote the characteristic function of the
set £'Z¢ x (1 +£'Zy), and ¢p1; = d1.1 ® ¢1,, € $(QF, C)®2. This is stable under the
group Kpy,,1(£") (see §3.3).
Lemma 3.10.2. Let & € H(Gy) be invariant under left-translation by the principal con-

gruence subgroup of level £T in H(Zy), for some T > 1. Then, for any 3 € X(W), the
expression

Yol Ko (00 K, 1(0)) 3(2')1,t ® &)

is independent of t > T, where Vol(—) denotes volume with respect to our fixed Haar
measure on Hy.
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Proof. For any integers ¢t > T > 1, let J be a set of coset representatives for the quotient
Kp, 1 (€7)/Kp, 1 (£7). Then ¢y.7 = Y ,cs ¥ - $1.4. 50 we have

361 @)=Y 3((r- 1.0 ®E = 3 361 ®EW()).

veJ yeJ

We can (and do) assume that J is a subset of the principal congruence subgroup of
level ¢7 in H. By assumption, all such elements will act trivially on & from the left,
so the above equality becomes

Vol Kg,,1(¢7)
Vol Kg1,1 (L")

as required. ]

317 ®E =#J) 31 ®E) = 3@ ®§)

Notation 3.10.3. We write 3(¢1,00 ® £) for this limiting value.
The case that interests us is the following. Let m, n be integers with m > 0 and n >

1 ¢

max(m, 1), and let n,, = ( L. e ) Recall the subgroup K¢, (£™,£") of §3.3; we
1
consider the Hecke operator

1 !
U@)=—————ch|Kg, (™ ¢" ¢! Kg, (", ¢ |.
© Vol K, (™, £") (Gz( )< 11) Gl ))

Proposition 3.10.4. For any 3 € X(W) we have

3(@1,00 ® ch(m+1Kg, (L™, £")))

_ v ifm=>1
=0 —-1 ifm=0

Proof. Writing K = K¢g,({™, £") for brevity, we have

}m@m®mwm@wwmy

{ uwv
U/(l) : 3(?1,00 ® ch(nmK)) = Z 3 (?l,oo ®ch (nm ( ¢ zf u) Km,n))
1

u,v,weZ/L
1 —1 m
- { Y (1+L"u)
- Vol Kg,.1(¢") u;u 3((( 11))’( zf)) ?1:’1 ®Ch(77m+l K))
EZ

=T W™t 7, 5 (1 + "7, ®2 @ ch(n " g
VolKHe,l(Zn)Xu:S(C( ¢ X (1 +4"Zg))®" ® ch(n,, 44 )

= Z 3(?1,00 ® Ch(ngi—fmu)K))

There are now two cases to consider. If m > 1 then all terms in this sum are actually
a
equal, since the powers of 7,4 are conjugate via elements of the form ( 4 ) (with
1
a € 14+ {™Zy), which are in K and act trivially on the Schwartz function ¢ ,; so the
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sum is simply £3(¢1,00 ® ch(n, K)) as required. If m = 0, then £ — 1 of the terms are
conjugate, but the term for u = —1 requires special consideration since 1 + £™u = 0;
thus we obtain

[U'(6) = 1]+ 3($1,00 ® ch(K)) = (£ — 1)3(¢1.00 ® ch(n1K)),
which proves the formula in this case. ]

We also have an analogous result for n = 0, under rather stricter hypotheses. We
take for W the smooth dual oV of an essentially tempered, unramified principal series
representation of G. We shall suppose that 3 € ¥ (o) factors through a certain induced
representation of H: more precisely, we shall take pairs of characters y = (x1, y2) and
¥ = (Y1, ¥2) of QF with Y1 = ¥ = |- |=1/2 and y; = |- [kitY/27; for finite-order
characters 7; and positive integers k;, so our setup is similar to Theorem 3.8.1 except that
we do not assume that the t; are unramified. We then have a natural map

SQLO)® > Iy(x.¥), ¢+ Fy,
and we suppose that 3 factors through this map.
Corollary 3.10.5. In this situation, we have
3(¢1.00 ® (ch(Kg,) —ch(mKq,))) = g5y L(0.~1/2)7" - 3(do. ch(Kg,))-

In particular, if the t; are not both unramified, then this holds vacuously (both sides of the
formula are zero).

Proof. Since Kg, 0({) fixes ch(Kg,) on the left, we have

3(¢1.00 ® ch(Kg,)) = 3(¢1 ® ch(Kg,)) = (£ + 1)*3(¢1 ® ch(Kg,)).

VO] KH@,O(E)

where (as in §3.4) ¢1 = ch(£Z x Z)®2. On the other hand, takingm = O andn = 1 in
Proposition 3.10.4, we have

U'e)—1
30100 @ N1 K1 (0) = 12 361,00 ® ch(K1 ().

Since the action of the quotient Kg,,0({)/Kg,,1(€) = GL2(Z/{) commutes with the
Hecke operator U’(£), we can sum over representatives for the quotient to deduce that
(¢ +1? /
3@ ®ch(mKe ) ="——— > v U ©O)=D3(g ®ch(Kg,0(0)).
Y€KG,/KG,.00)
Combining these two formulae we have
3(¢1.00 ® (ch(Kg,) — ch(n1Kg,))) = (£ + D*(1 + 27)3(¢1 ® ch(Kg,))

2
- —(lltll) Z yU' () - 3(¢1 ® ch(Kg,,0(0))).
v€K/Kg, 00
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We can now quickly dispose of the ramified cases. The map ¢ — Fy is a morphism of
(GL; x GL,)-representations (not only of H -representations). Moreover, the elements [

and ¢ are the characteristic functions of subsets of Q2 7 X Q2 ¢ invariant under Z x Z;
hence their images in any representation of GL, x GL, with ramified central character
must be zero. Hence Fy, and Fy, are both zero, and the desired formula becomes 0 = 0,
if either of the characters t; is ramified.

Let us now assume that the 7; are unramified, which means we may apply Theorem
3.8.1. Translating to the homomorphism 3 from its corresponding bilinear form 3, the first
statement in the theorem (for t = 1) becomes

€+ D21+ £45)3(¢1 ® ch(K6,)) = 75 (1 — £5) (1 — £55) - (o ® ch(Ke,))-

On the other hand, the second statement of Theorem 3.8.1 gives us

EEZ S YU 391 ® ch(Ka,.0(0))

v€KG,/KG,.00)
k k _
= 50— £5) (10— £5) - L(0.-1/27]3(¢0 ® ch(Kg,)).

Combining these two formulae, the “extra” Euler factors coming from the t; cancel out,
and we are left with the desired formula. [

4. Preliminaries II: Algebraic representations and Lie theory

4.1. Representations of G
We recall the parametrisation of algebraic representations of the group GSp,.

Notation 4.1.1. We write T for the diagonal torus of G (as in §2 above), and we write
X1,- .., x4 for characters of T' given by projection onto the four entries. Thus y; + y4 =
X2 + x3 is the restriction to T of the symplectic multiplier u, and {1, y2, i} is a basis
of the character group X *(7).

Definition 4.1.2. Let a, b > 0 be integers. We denote by V%? the unique (up to isomor-
phism) irreducible algebraic representation of G whose highest weight, with respect to B,
is the character (a + b)y1 + ay».

This representation has dimension é(a + 1)+ 1)(a+b+2)2a+ b+ 3). Its cen-
tral character is x — x297%_ and it satisfies

(Va,b)* ~ Va,b ® M—(Z(l-’rb)'

Note that V%! is the 4-dimensional defining representation of GSp,, and V-0 is the
5-dimensional direct summand of /\2 V%1, The representation V!® ® p~1 has trivial
central character, and is the defining representation of G/Z¢g = SOs.
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4.2. Integral models

Let
A=(a+b)ys+ayx, +cu, witha,b >0,

be a dominant integral weight, V) the corresponding representation, and v, a highest
weight vector in V. The pair (V}, v,) is then unique up to unique isomorphism.
An admissible lattice in V), is a Z-lattice L with the following properties:
o the homomorphism GSp, — GL(V),) extends to a homomorphism GSp, — GL(L) of
group schemes over Z;

e the intersection of L with the highest weight space of V) is Z - v.

It is known that there are finitely many such lattices, each of which is the direct sum
of its intersections with the weight spaces; and we set V), 7 to be the maximal such lattice.

Proposition 4.2.1. Let A, A" be dominant integral weights. Then there is a unique G-
equivariant homomorphism, the Cartan product,

Viz®Viz—>Varaz, vQwiv-w,

such that vy - vy = vy . Moreover, for any non-zero v € Vy and v' € V), we have
!
v-v #0.

Proof. After tensoring with QQ the existence and uniqueness of this homomorphism is
obvious from highest-weight theory. Hence the image of V) 7z ® Vi 7 is a Z-lattice in
Vi+a, which is clearly admissible; so it must be contained in the maximal one, which is
Vit .z

This product gives the ring €0, V) z the structure of a graded ring. The Borel-Weil
theorem shows that this ring injects into @ (G ), which is an integral domain; so the Cartan
product of non-zero vectors is non-zero. ]

4.3. Branching laws

We are interested in the restriction of V% to H via the embedding ¢ : H < G, which
we shall denote by ¢*(V%?). Computing the weights of these representations (and their
multiplicities), one deduces the following branching law describing ¢* (V4?):

Proposition 4.3.1. The restriction of V® to H = GL, xgL, GL2 via ¢ is given by

t*(Va’b) — @ @ Wa+b—q—r,a—q+r ® det?,

0=<g=<ao0<r=<b

where W4 denotes the representation Sym® = Symd of H.

Remark 4.3.2. Compare [22, §1] for an equivalent, although less explicit, statement. In

Lemma’s notations the highest weight of our representation V% is A(a + b, a,2a + b).
o
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For the constructions below it will be useful to fix choices of highest-weight vectors
in each of these subrepresentations. For 0 < ¢ <« and 0 < r < b we define a vector

vabar ¢ Vg’b as follows:
p&bar — a4 b (w/)q . (v’)r

where the product operation is the Cartan product, and:

e v € V%! is the highest-weight vector;

| ocoo

—_
ocooo

) € Lie G.

oSo~O
ocooo

e v/ = X5 - v is abasis of the y, weight space, where X»; = (
e w is the highest-weight vector of V1-9,

0000
e w' = Z - wisabasis of the u weight space of V1:%, where Z = (‘1’888) € LieG.
0100

Remark 4.3.3. We can identify V%! with the standard representation of GSp, C GLy4,
with basis (eq, ..., e4), by choosing the highest-weight vector v = ey; of course we
then have v/ = e,. Moreover, we can identify V'1:® with a subspace of /\2 Vo1 by
choosing e; A e, for the highest-weight vector w; and it follows that w’ is the vector
€1 Neqg—ex3 Nes. <o

Proposition 4.3.4. For all integers 0 < g < a and 0 < r < b, the vector V80T s
defined is a non-zero highest-weight vector for the unique irreducible H -summand of
(VY isomorphic to Watb=a4-ra=a+r @ detd.

Proof. Since v*?9" is a Cartan product of non-zero H -highest weight vectors (i.e. vec-
tors fixed by the action of the unipotent radical of the Borel of H), it is itself a non-zero
H -highest weight vector, and thus generates an irreducible H -subrepresentation of V%%
The result now follows by comparing weights. ]

Since the representation W4 of H has a canonical highest-weight vector (namely
ef ™ fld, where (e, e2) and ( f1, f2) are bases of the standard representations of the two
GL, factors), we therefore have a canonical homomorphism of H -representations

br[a,b,q,r] . Wa+b—q—r,a—q+r ® det? — L*(Va’b) (5)
mapping the highest-weight vector to v4-2-9" . We refer to these maps as branching maps.

Proposition 4.3.5. The maps brl*? %" restrict to maps

W£+b—q—r,a—q+r ® det? < V;’b,

where W£+b_q_r’a_q+r is the minimal admissible lattice in Watb—4—ra—q+r,

Note that the minimal admissible lattice in the representation Symk of GL; is isomorphic to
the module TSymk Z? of symmetric tensors, while Symk 7?2 is the maximal lattice.
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Proof. Ttis clear that (brl®®-¢-rh)=1(y4 ) is a lattice in Wa+tb=4-ra—a+r @ de? stable
under the action of H, and since v42:9" ¢ V; ’b, the intersection of this lattice with the

highest-weight subspace contains the highest-weight vector ¢4 & £~ Hence
this lattice must contain the minimal admissible lattice in W@ +b—a-ra=q+r ]

4.4. A Lie-theoretic computation

X
As in §2 above, let T’ C T be the rank-1 split torus ( * ); and let u be the element
1

11
( lll)ofG(Z).
1

Since T” is split, the representations V%? are the direct sums of their weight spaces
relative to 7", with weights between 0 and 2a + b; and the T’-weight of v#297 is 2a +
b — ¢q. The purpose of this section is to prove the following result, which will be used in
§9.5:

Lemma 4.4.1. Let v = v@?%" € V&P pe one of the above H -highest weight vectors.
Then for any non-zero integer h, the projection of u”(v) to the highest-T'-weight space is
given by (2h)1vp%b-07

Proof. Recall that v#24" = vb=" . (v/)" . a9 . (w')4. The vectors v, v/, and w all lie
in the highest-T’-weight subspaces of their parent representations, so they are fixed by u.
Hence it suffices to check that the projection of u” (w’) to the highest-7"-weight subspace
of V10 is non-trivial; and one computes easily that u” (w’) = w’ + 2hw. ]

5. Modular varieties

5.1. Modular curves
We fix conventions for modular curves.

Definition 5.1.1.

(a) For N > 3, we let Y(N) be the QQ-variety pararametrising triples (E, ey, e2), where
E is an elliptic curve (over some Q-algebra R) and ey, e, € E(R)[N] are a basis of
the N -torsion of E.

(b) If ¥ is a finite set of primes containing all those dividing N, we write Y(N)x for
the natural model of Y (N) over Z[1/ X] (representing the same functor on Z[1/ X]-
algebras).

We identify Y (N )(C) with the double quotient
GL3 (@Q\(GL2(Ay) x H)/U(N),

where U(N) C GL, (Z) is the principal congruence subgroup of level N and # is the
upper half-plane, in such a way that:



Euler systems for GSp(4) 693

e The double coset of (1, t), for t € J, corresponds to the triple

C T 1
Zt+7Z N N
o The right-translation action of g € GL, (Z) on the double quotient corresponds to the
action on Y(N)(C) given by

o '’ e\ _ 1. (e
(E7el762) g_(E’el’e2)’ (eé)_g (ez)'

If g € SL,(Z/NZ) then the above action of g on Y(N)(C) coincides with the action of
y~!on #, for any y € SL,(Z) congruent to g modulo N . The components of Y (N )(C)
are indexed by the set p; of primitive N -th roots of unity, via the Weil pairing (£, e1, e2)
> (e1, ez)n; and the induced action of g € GL,(Z/NZ) on uy, is given by g - ¢ =
é-l/det(g)'

Remark 5.1.2. Note that our model is not the Deligne—Shimura canonical model of the
Shimura variety for GL, with its standard Shimura datum [25, Example 5.6]. Rather, it is
the canonical model for the twisted Shimura datum defined by

(a +ib) € Resc/r(Gm) — m (42),
which has the effect of flipping the sign of the Galois action on the connnected compo-
nents. <

By passage to the quotient, we define similarly algebraic varieties Y (U) over Q, for
every open compact subgroup U C GL3(Ay); if U is unramified outside the finite set X,
then Y (U) has a model over Z[1/ X] which we denote Y(U)x.

The right-translation action gives isomorphisms 7 : Y(U) — Y (= 'Un) for every n €
GL, (A s), which are compatible with the action of n~! on H# if n € GL;r (Q); in particular,
scalar matrices (‘g g) with A € Q™ act trivially. This structure allows us to view the

inverse limit ¥ = lir_nU Y(U) as a pro-variety over Q with a right action of GL;(Ay),
whose C-points are GL (Q)\(GL2(Af) x J).

Definition 5.1.3. We say U C GL,(A ) is sufficiently small it every non-identity element
of U acts without fixed points on the set GL;‘ (Q\(GL2(Af) x H).

This condition is equivalent to requiring that for all g € GL,(A s), every non-identity
element of the discrete group I' = GL;r (Q) N gUg™! acts without fixed points on . For
instance, U(N) is sufficiently small if N > 3. If U is sufficiently small, then Y (U) is the
solution to a moduli problem (classifying elliptic curves with appropriate level structure),
and therefore has an associated universal elliptic curve &(U) — Y(U).

We define similarly algebraic surfaces Yg (U), where U is an open compact sub-
group of H(A ), and by passage to the limit a pro-variety Yg = l(ir_nU Yy (U) with aright
action of H(Ay). Of course, if U is a fibre product U; x U, of subgroups of GL>(Af)
such that det(Uy) = det(Us), then Yy (U) is the fibre product of the modular curves Y (Uj)
and Y (U,) over their common component set ZX/ det(Uy) = 7x /det(Us).
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5.2. Siegel modular varieties

Definition 5.2.1. Let N > 3. There exists a Q-variety Y (N ), smooth and quasiprojective
of dimension 3, parametrising 6-tuples (A4, A, eq, ..., eq) where

e A is an abelian surface (over some (Q-algebra R);

e A is a principal polarization 4 >~ AY;

e ¢1,...,eq4 are N-torsion sections of A giving an isomorphism A[N] = (Z/NZ)*;

o the matrix of the Weil pairing (induced by the polarization 1), with respect to the basis
e1,...,eq,1s J - £ for some { € R*.

Moreover, for any finite set of primes ¥ containing the primes dividing N, Yg (/) has a
model Y (N )y over Z[1/ %], representing the same functor for Z[1/N]-algebras.

For the existence of this scheme see e.g. [17, Corollary 3.3]. The complex manifold
Y6 (N)(C) can be identified with the double quotient

GSpy (Q)\(GSpy(Ay) x JH2)/ Ug(N).

where J{> denotes the genus-2 Siegel space of symmetric complex 2 x 2 matrices with
positive-definite imaginary part, and Ug(N) is the principal congruence subgroup of
level N (the kernel of reduction GSp, (/Z\) — GSpy(Z/N7Z)).

The right-translation action of GSp,(Z/NZ) on Yg(N) corresponds to the action on
the moduli problem given by g : (4,1, e1,...,e4) = (4,A4,¢€],...,¢e,), where

I
€] el

l
€y €4

More generally, if U is any open compact subgroup of G(Ay), we define a Q-model
for Y (U) by taking the quotient of Y5 (N) by the action of U/Ug(N), for any N > 3
such that Ug (N) C U. The same procedure gives Z[1/ X]-models Y (U)yx if U is unram-
ified outside X. If U is sufficiently small (in the same sense as for GL;), then Yg (U) is
smooth, and can be interpreted as a moduli space for abelian surfaces with level U struc-
ture. As before, the inverse limit 1<i_r_nU Y (U) acquires a right action of G(Ay).

5.3. The embedding of Yy in Yg
For any open compact subgroup U of G(A ), we have a natural morphism of Q-varieties
w:Yg(UNH)—YgWU).

The map (g is not always injective (even if U is sufficiently small). However, we have the
following criterion:

Proposition 5.3.1. Suppose there is an open compact subgroup U containing U and

_1 -
wUw, where w = ( . ) with U sufficiently small. Then 1y is injective.
-1
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Proof. As above, write Y for the infinite-level Shimura variety G(Q) + \(G(Ay) x #3),
and similarly for Yg . It is clear that ¢ gives an injection Yz < Yg. If Q, Q' € Yy have
the same image in Y (U), then Q' = Qu for some u € U; we want this to imply that
u lies in U N H. So it suffices to prove that, for any element of U — (U N H), we have
Ygu N Yy = @ as subsets of Y.

Since w is central in H, its action on Y fixes Yy pointwise. Thus, if Q € Yy and
Qu € Yy, we have Quw = Qu = Qwu, so ii = u - wu~'w fixes Q. This element i
lies in U, by hypothesis, and since U is sufficiently small, we conclude that 7 = 1. Thus
u lies in the centraliser of w in G(A ), which is exactly H(Ay). |

We shall say a subgroup U is H-small if it satisfies the hypotheses of the above
proposition. For instance, if U is contained in the principal congruence subgroup Ug (N)
for some N > 3, then U is H-small (since Ug(N) is normal in G(/Z\), and sufficiently
small by [30, §0.6]).

5.4. Component groups and base extension

Via strong approximation for Sp,, we have an isomorphism of component sets

m0(Yo(C)) = QY \Af = 2%,

Our moduli-space description of Y determines a Galois action on these components as
follows.

Definition 5.4.1. We write
Art: QF\A¥ — Gal(Q/Q)*

for the Artin reciprocity map of class field theory, normalised so that for x € 7* C A}‘,
Art(x) acts on roots of unity as ¢ + {* (and hence uniformizers map to geometric Frobe-
nius elements).

Proposition 5.4.2. All components of Yg(C) are defined over the cyclotomic extension
Q® = Q(&y : n > 1), and the right-translation action of u € G(Ay) on 7o (Y (C)) coin-
cides with the action of the Galois automorphism Art(ju(u)™").

Proof. This is an instance of Deligne’s reciprocity law for the action of Galois on the
connected components of any Shimura variety; see e.g. [25, §13]. ]

We will be particularly interested in the following special case. If U C G(Ay) is an

open compact subgroup, and Vy is the subgroup of 7> defined by {x : x = 1 mod N}
for some integer N, then there is an embedding of Q-varieties

Yo (U N p~ (V) <= Y6 (U) sp;iQSpeC QEn).

which is an isomorphism if (U surjects onto (Z /N Z)*. This map intertwines the action
of g € G(Ay) on the left-hand side with that of (g, o) on the right-hand side, where o is

the image of Art(u(g)™!) in Gal(Q(¢n)/Q).
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6. Coefficient sheaves on modular varieties

6.1. Etale coefficient sheaves

Let U C GL, (Z) be a sufficiently small open compact subgroup, and S a finite set with
a continuous left action of U. Then we may construct a finite étale covering of Y(U) as
follows: we take any open normal subgroup V' < U acting trivially on S, and we let .
be the quotient of Y(V') x S by the left action of U/ V given by

h-(y.s) = (yh™', hs).

If S is a Z[U]-module, then .¥ can be considered as a locally constant étale sheaf of
abelian groups over Y (U). Note that the sections of . over Y(V), for any V' <J U open,
are canonically isomorphic to S, and the pullback action of u € U/V on H(Y(V),.%)
is identified with the natural left action of U/V on SY. This construction extends in the
obvious fashion to profinite modules S, and in particular to continuous representations
of U on finite-rank Z,-modules; via passage to the isogeny category we may also allow S
to be a Q,-vector space.

If the action of U on § extends to some larger monoid M C GL»(A ) containing U,
then the sheaf . naturally becomes M-equivariant. That is, for every o € M, given a
morphism of varieties Y(U) S Y(0~'Uo), we have morphisms o*(.¥’) — .#, where
% and .’ are the sheaves on Y(U) and Y (0 ~'Uo), respectively, corresponding to S
and these morphisms satisfy an appropriate cocycle condition. This construction equips
the cohomology groups H*(Y(U),.¥) with an action of the Hecke algebra J/ (U\M/U).

Remark 6.1.1. Compare [24, Proposition 4.4.3]; our conventions here are a little different
as we are considering right, rather than left, actions on our Shimura varieties. <o

Exactly the same theory applies, of course, to the modular varieties Y5 (U) and
Yy (U), and these constructions are compatible via ¢: the pullback functor ¢* on étale
sheaves corresponds to restriction of representations from G to H.

6.2. Sheaves corresponding to algebraic representations

As we have seen above, the modular curves Y (U), for U sufficiently small, are moduli
spaces: Y(U) parametrises elliptic curves E equipped with a U-orbit of isomorphisms
Eis = (Q/7Z)?. Thus Y(U) comes equipped with a universal elliptic curve &. From
the description of the action of GL,(Z/NZ) on the moduli problem, one deduces the
following compatibility:

Lemma 6.2.1. Suppose U C GL, (Z) For N > 1, the sheaf &[N] of N -torsion points of
& is canonically isomorphic to the sheaf associated to the dual of the standard represen-
tation of GL,(Z/NZ).

Let p be a prime. Taking N = p” and passing to the limit over r shows that the relative
Tate module 7,¢& corresponds to the dual of the standard representation of GL,(Zp). On
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the other hand, 7,,& is a lattice in the p-adic étale realisation of a “motivic sheaf” — a
relative Chow motive — over Y(U), namely h'(&)V.

This is the first instance of a more general phenomenon. Let ¢ temporarily denote any
of the three groups {GL,, GL> X1, GL2, GSp,}; and let U be a sufficiently small open
compact in 4 (A ), so we have an associated Shimura variety Y« (U).

Lemma 6.2.2 ([1, Theorem 8.6]). There is an additive functor
Ancy y : Rep(¢) - CHM (Y4 (U))

from the category of representations of & over Q to the category of relative Chow motives
over Y4 (U) with the following properties:

o Ancg,y preserves tensor products and duals;

e if | denotes the multiplier map 4 — Gy, then Ancg y(i) is the Lefschetz
motive Q(—1);

e if V denotes the defining representation of 4, then Ance y (V) = h' (), where oy
is the universal PEL abelian variety over Yo (U);

e for any prime p and 9-representation V, the p-adic realisation of Ancg y (V)
is the étale sheaf associated to V ® Q,, regarded as a left U-representation via
U—=YAr) > 9Qp).

Remark 6.2.3. In fact Ancona’s construction is much more general, applying to arbitrary
PEL Shimura varieties, but we shall only need the above three groups here. The theorem
stated in op. cit. is slightly different from ours, since he normalises his functor to send the
multiplier representation to Q(1), and the defining representation to 4! (.<7)"'; our functor
is obtained from his by composing with the automorphism of Rep(¥) induced by the map
g (@) 'gond. ©

We shall need some “naturality” properties of Ancona’s construction, which we now
recall.

Proposition 6.2.4. Suppose U, U’ are open subgroups of 9(Ar) and o € 9 (Ay) is such
that 6~ YUo C U, so that right translation defines a map o : Y4(U) — Y4(U'). Then
we have isomorphisms of functors

0% o Ancg i’ = Ancy v,
satisfying a suitable compatibility condition under composition.

Proof. Since Ancg 7 (V') for a general V is defined as a direct summand of a tensor power
of h'(<#y), one reduces easily to checking this functoriality property for the specific
relative motives i ' (o).

By a standard argument (see e.g. [6, Prop. 3.3]) one can interpret Y« (U) as a mod-
uli space for abelian varieties up to isogeny, from which we can deduce that there is a
canonical isomorphism

Ao 1 oy ® Q > 0* () ® Q
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in the isogeny category of abelian varieties over Yo (U). The functor 4! (—) extends to
the isogeny category of abelian varieties, so A, induces an isomorphism of relative Chow
motives. Moreover, the A, satisfy a cocycle condition for varying ¢ (which we leave it to
the reader to formulate explicitly). ]

Remark 6.2.5. Note that A, comes from a “genuine” isogeny if and only if the matrix
of o (in the defining matrix representation of ¢) has entries in 7. To fix conventions, note
that if U = U’ and o = diag(x, ..., x) for some x € Q**, then the map A, is given by
multiplication by x. o

An equivalent way of stating Proposition 6.2.4 is as follows. We define a ¢ (Ay)-
equivariant relative Chow motive over Y« to be the data of a relative Chow motive ¥
over Y« (U) for each sufficiently small open U C G(Ay), together with a collection of
isomorphisms o *(#y/) = #y for each inclusion 0~ !Uo C U’, compatible with compo-
sition. These objects form a category CHM(Ye7)¥ A7) and the proposition states that the
functors Ancy, y for varying U assemble into a functor

Ancy : Rep(¥4) — CHM(Yy)? A1),

(Note that the isomorphisms Ance (1) = Q(—1) are not compatible with the equiv-
ariant structure, since the isogenies A, only preserve the polarisation up to a scalar; as
equivariant motives we have Ancg (i) = Q(—1)[—1], where [—1] denotes that the equiv-
ariant structure is twisted by the character |||~ of G(Af).)

If ¥ is a 4 (Ar)-equivariant relative Chow motive over Yy, we can define its motivic
cohomology by

H;OI(Y%»’V) = li_n)lH:mt(Yg(U),’VU), (6)
U
and this is naturally a smooth representation of ¥(Ay). As motivic cohomology with
rational coefficients satisfies Galois descent (see e.g. [7, §1.3]), for each sufficiently small
U we can recover H. (Y4 (U), Yy ) as the U-invariants of the direct limit (6).
Finally, we shall need to show a compatibility with respect to changing ¢:

Proposition 6.2.6 (“Branching” for motivic sheaves). Let G = GSp, and H =
GL; xgr, GLo, as in §2 above. Then there is a commutative diagram of functors

Rep(G) 2265 CHM(Yq)CA)

1

Ancpy

Rep(H) —25 CHM(Yy)H®r)

where the left-hand 1* denotes restriction of representations, and the right-hand 1* denotes
pullback of relative motives.

Proof. This is an instance of a general theorem due to Torzewski [43, Corollary 9.8],
which verifies the above naturality property for a wide class of homomorphisms of PEL-
type Shimura data. ]
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7. Eisenstein classes for GL

7.1. Modular units
Let So(A%, Q) € $(AZ, Q) denote the subspace of functions satisfying ¢ (0, 0) = 0.
Recall that Y denotes the infinite-level modular curve, so that O(Y) = li_I>nU O )).

Proposition 7.1.1. There is a canonical, GL2(Af)-equivariant map So (A}, Q) —
O) ®Q, ¢ — g¢, with the following characterising property: if ¢ is the charac-
teristic function of (a,b) + NZ2 for some N > 1 and (a,b) € Q* — NZ?, then gy is the
Siegel unit g4/ n,p/N in the notation of [12, §1.4].

Proof. See e.g. [5, Théoreme 1.8]. [

In order to work integrally, we need to modify the construction somewhat. Let ¢ > 1
be an integer. We let . So (A}, Z) denote the subgroup of SO(A}, Q) consisting of all

functions of the form ¢ = ¢ . ch(Z?), where $© is a Z-valued Schwartz function
on (AJ(,C))z, and Z =[]y, Z¢. Then we have the following refinement:

Proposition 7.1.2. [f ¢ is coprime to 6, there is a map So(A%,Z) — O(Y)*, ¢ > g4,
which is equivariant for the action of GL, (A}c)) and satisfies

8o ®1=(c*—(§ g)_l)g¢ as elements of O(Y)* ® Q,
where (§ %) is understood as an element of GLZ(A}C)).

Proof. See [12, §1.4]. .

7.2. Higher Eisenstein classes

Definition 7.2.1. For k > 0, let %”éf denote the GL, (A s)-equivariant relative Chow
motive over Y associated to the representation Sym* (std) ® det ™% of GL, /Q.
Theorem 7.2.2 (Beilinson). Let k > 1. There is a GLy (A f)-equivariant map S (A%, Q)
— H}L (Y, ,%”éf 1), ¢ — Eisﬁmw, the motivic Eisenstein symbol, with the following

property: the pullback of the de Rham realization rdR(Eisﬁow) to the upper half-plane is
the % -valued differential 1-form

—Fék+2) (r)2mi dz)k (2midr),

where F dfk+2) is the Eisenstein series defined by

FR gy = KDL e $(x.y)
— i )k+2 k+2°
(2mi)k¥2 - Lo (Tt y)
(x,3)#(0,0)

Proof. See [2]. [
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Remark 7.2.3. Note that if ¢ is the characteristic function of (0, ) + N Z2, then Eisﬁm’ o
is the class Eisﬁm’b’N defined in [16, Theorem 4.1.1]. If kK = 0, then we need to assume
¢ € So (A}, Q) in order for the series defining F| dsz) to be absolutely convergent. With this
assumption, we may define Eisgww to be the unit gy, since H} (Y,Q(1)) =O0*(Y) ® Q;
the de Rham realisation of this class is then dlog g4 = —F, (;2) - (2mi dt), so our statements

are consistent. o

Since we lack a good theory of relative Chow motives with coefficients in Z, we do
not have an integral version of the motivic Eisenstein classes for k > 0. However, we can
obtain a Z,-structure (for a fixed p) using étale cohomology instead. For each U we have
an étale realisation map

re s Hao(Y(U), A5 (1) — Hy(Y(U), A3 (1)

for any prime p, where H; denotes continuous étale cohomology in the sense of [11], and
%61) is the lisse étale QQ,-sheaf which is the p-adic realisation of #g. This is naturally

the base extension to Q,, of the étale Z,-sheaf %”ka associated to the minimal admissible

lattice in the GL,-representation Sym* (std) ® det™*.

Proposition 7.2.4. Let k > 0. If ¢ is coprime to 6p, then for each sufficiently small open
compact U C GL, (A}p RN/ pe) there is a map
S(AY X 2,2, 2,)V — Hy(Y(U), 2, (1), ¢ > cEisk y,
which is equivariant for the action of GL, (A](,p ) % Zpc), and satisfies
(Eisk 4 ®1 = (¢ = ¥ (§9) ) ra(Eisk )
as elements of HL(Y(U), %”éfp ().

Note that étale cohomology with Z,, coefficients does not satisfy Galois descent, so
it is important to formulate Proposition 7.2.4 for each individual level, rather than simply
passing to the direct limit.

Proof of Proposition 7.2.4. For levels of the form U(N ) this is explained in [14], and the
arguments apply without change to a general U. ]

Remark 7.2.5. For k = 0, Jkap is the constant sheaf Z,, and of course cEing is the

image of . g4 under the Kummer map, so the k = 0 case of Proposition 7.2.4 is consistent
with Proposition 7.1.2. o

7.3. The modular unit representation

We will need a description of the modular units @ (¥') ® C as a GL, (A r)-representation.
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Definition 7.3.1. For k > 0, and 7 a finite-order character of A}( JQ* satisfying n(—1) =
(=¥, let It (n) denote the space of functions f : GL;(A ) — C satisfying

£((¢5)g) = llal*d| 'n(a) f(g)  foralla,b,d € GLa(Ay),

regarded as a representation of GL,(Af) by right translation. For k = 0 and n = 1, let
Ié’(l) denote the subrepresentation which is the kernel of the natural map /y(1) — C
given by integration over GL>(As)/B(Ay).

Theorem 7.3.2. There is a GL, (A r)-equivariant isomorphism
L 0X(Y)

do :
0 (Qab)x

®C > 13 & L.
n#1

characterised by the statement that if g € O*(Y), then d9(g) (1) is the order of vanishing
of g at the cusp oo.

Proof. See [39, Theorem 3]. (Scholl’s normalisations are slightly different from ours, as
he uses the canonical model of Y for a different choice of Shimura datum; see Remark
5.1.2. The above formulation is correct for our choice of model.) [

For k > 1 we have an analogous statement for the image of the Eisenstein symbol,
although we do not know if this image is the whole of the motivic cohomology:

Theorem 7.3.3. For k > 1, there is a surjective GL, (A r)-equivariant map

O = Hpo (Y. AL (1) ® C — €D L (),
n

such that 3 (x)(1) is the residue at oo of the 1-form rqr(x). This map is an isomorphism
on the image of the Eisenstein symbol ¢ +— Eisﬁm, e

Proof. Tt is shown in [38, Theorem 7.4] that the residue map d; gives an isomorphism
between the image of the Eisenstein symbol and a certain vector space denoted Bj. For
the description of this By as a sum of induced representations, see [22, Lemma 4.3]. =

For 7 a character of A;f/ Q> as above, let us write S(AZ, C)” for the subspace of
$(AZ,C) on which Z* acts via the character n.

Proposition 7.3.4. Let ¢ € S(A%, C)" be of the form [], prime $¢- If k' =0and n =1
then assume that ¢(0,0) = 0. Then

2(k + DIL(k +2,7n)

-k — N
Ok Bisnong) = —— 5 iz [T foemsra e
L

Proof. This follows from a computation of the constant term of the Eisenstein series

F qgk+2) at the cusp oo, using the formulae in [12, Proposition 3.10]. [
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8. Construction of Lemma—Eisenstein classes

8.1. Coefficients

Let (a,b) > 0 be a pair of non-negative integers, defining an algebraic representation VV%-?
of G. We write D” > for the twist V%P ® 1 ~2+5) We then have an equivariant relative
Chow motive @Q = Ancg (D?%?) over the Shimura variety Y.

Notation 8.1.1. Let us choose integers (¢, ) with 0 < g <a and 0 < r < b, and set
c=(@—q)+(b-r),d=(a—q)+r(soc,d>0).

Then there is a branching map
brl?41: (Sym® ® Sym?) ® det ~€¢+4) — pab @ 14

as in (5). Via the commutative diagram of functors in Proposition 6.2.6, we have a homo-
morphism of equivariant Chow motives over Yg,

brla:b-a.r] . jfé’d — L*(.@é’b(—Q)[_CI])’

where %”(g 4 js the relative motive associated to the H -representation (Sym® ® Symd) ®
det ~(¢*+4) (Recall that [m] denotes twisting by the character ||je(—) | of G(A £))

8.2. Pushforwards in motivic cohomology

Let (a,b,q,r) and (c, d) be as in the previous section. We shall define in this section a
homomorphism of left H(Ar) x G(Ar)-representations

dabarl s g2 (Vg 257 (2) @ H(G(Ar):Q) — Hio (Y. 257 (3 — 9)—q]. (D)

The actions of H(A ) x G(Ay) for which this map is equivariant are given as follows:

e The H(A ) factor acts trivially on the right-hand side of (8), and on the left-hand side
it acts via the formula

he-(x®§&) = (h-x)®EMR ().

e On the left-hand side, the G(A f) factor acts trivially on H2,,(Yg, %6"1 (2)), and on
H(G(Ar);Z)itactsviag - & = £((—)g).

e On the right-hand side, G(As) via its natural action on H} (Y (U), @6’1’ B3-9)
(deduced from Proposition 6.2.4) twisted by the character || (—)|~9.

For ease of reading we shall drop the superscripts [a, b, ¢, r] for the rest of this section.

Lemma 8.2.1. The space H2 (Yn, %”C A (2)) ® H(G(Ar); Q) is spanned by vectors of
the form x ® ch(gU), where x € H t(YH %”6 d(2)) g € G(Ay), and U is an open
compact subgroup of G(Ay) such that H(Ays) N gUg™! fixes x and gUg™" is H-small
in the sense of §5.3.
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Proof. This is immediate from the fact that the principal congruence subgroup Ug (N ),
for any N > 3, is H-small, and these are cofinal among open compact subgroups
of G(Ay). |

For an element x ® ch(Ug) as in Lemma 8.2.1, we have a closed immersion tgy :
Yu(V) — Yg(U), where V = U N H(Ay), given by the composite
L —1 —1
Yi (V) == Y6(gUg ™) <= Y6 (U).
Combining this with the morphism of sheaves brl*?%"1 gives a map
.d b
tgu : Hoq(Yu (V), 25 (2) > Hpo (Y6 (U), 77 3 = 9)[—q].
We define 14 (x ® ch(gU)) as the image of the element
VoI(V) - tgux(x) € Hito (Y6 (U). 25" (3 — 9))[—q]

in the direct limit (6). (Here Vol(V) is volume with respect to Haar measure, normalised
such that Vol H(Z) = 1.)

Now, suppose U’ C U is another H -small open compact subgroup, so that ch(gU) =
> yev v ch(gyU’). We want to show that L« (x ® ch(gU)) =} ey p tx(x®ch(gyU”))
for any x invariant under V. It suffices to prove this when U’ < U (since otherwise we
may compare both U and U’ with a third open compact U” normal in both U and U’);
we may clearly also assume g = 1.

Let V' = U’ N H(Ay); we then have degeneracy maps prg/ : Y6 (U') — Yg(U) and
pr}f/ 1Yy (V') — Yy (V), fitting into a commutative diagram

Yu(V') =25 Ye(U')

7 7
prl l lprg

Yu(V) —= Y6(U)
By the functoriality of the pushforward maps, we have
(prZ,)* o (prgl)* oLy« = (prg/)* oLy« © (pr{f/)*.
The composite (prg/)*(prg/)* is given by ZyeU/ y ¥*; and as x is invariant under V
(not only V), then (prgl)*(x) = [V : V']x. So we can write this as
VoIl(V) - D"y a(x) = Vol(V) - (rf ) 1 (x).
yeu/u’

Pulling back from level U’ to the direct limit over all levels, we can write this as

(x®ch(U)) = > w(x ®ch(yU").
yeUu/U’
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It follows that ¢y is well-defined on H2  (Yg, %ﬂé’d (2)) ® H(G(Ay): Q). It is obvi-
ous that this map is G(Ay)-equivariant; and the H (A s)-equivariance follows from the
obvious compatibility

wlh-x) =h-gyp—1 .(x)

of pushforward maps at finite level.

8.3. The Lemma—Eisenstein map

The cup-product of the Eisenstein symbols for the two factors of H defines an H(Af)-
equivariant map

So(A}:Q)®* - H2 (Yu. /5" (2). ¢+ Eisid

mot,¢

Definition 8.3.1. We define the Lemma—Eisenstein map
LEPar] 5 (A2: Q)% ® H(G(Ar): Q) — Hito (Y. 25" (B —q)—q]  (8)

by £&le-b:a7] (p®8) = debar(gised ) where (190 s as in (7).

mot,¢

Remark 8.3.2. When £ is the characteristic function of an open compact subgroup
U € G(Ay), our class £& gljl’b’q’r] (¢ ® &) coincides with the motivic cohomology class
Eis’j{’"’W(h) considered in [21] for § = Yg(U), (m,n) = (a—q +b—r,a—q +r),
W the representation V%?, and h an appropriate element of Lemma’s space 8, ® By,
depending on ¢. In particular, it follows from the regulator computations of [22, §7] that
the Lemma-Eisenstein map is non-zero under fairly mild hypotheses on a, b, ¢, r. o

8.4. Choices of the local data

We shall now fix choices of the input data to the above map £6& l.b:0.71 in order to
define a collection of motivic cohomology classes satisfying appropriate norm relations
(a “motivic Euler system”). We shall work with arbitrary (but fixed) choices of local data
at the bad primes; it is the local data at good primes which we shall vary, according to the
values of three parameters M, m, n.

8.4.1. Subgroups of tame level 1. We fix a prime p, a finite set of primes S not containing
p, and an arbitrary open compact subgroup Ks C G(Qs) = [[,c5 G(Q¢). By enlarging
S and shrinking K if necessary, we may assume that the open compact subgroup

Kg = Ks x [ [ G(Zo) € G(Ay)
L¢S

is sufficiently small in the sense of §5.2. For each n > 0, we define a compact subgroup
of G(Ayr) by

Kgo(p") = Ks x Kg,o(p") x [[ G(@.
L¢SU{p}
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where the subgroup K, ,0(p") of G, = G(Q)) is as defined in §3.3. We define similarly
subgroups Kg,1(p") for n > 0, and Kg(p™, p") for m,n > 0, using the other local
subgroups at p defined in §3.3. All of these groups are contained in K¢g, and hence are
sufficiently small.

Notation 8.4.1. We adopt the notational convention that if K .(O) denotes some open
subgroup of G(Ay), then Yg .(O) denotes the corresponding Shimura variety, so e.g.
YG,1(p") is an abbreviation for Y (Kg,1(p")).

8.4.2. Local data at the bad primes. We choose the following “test data” at S:
o A vector g € $(Q%,7)%2.

e An open compact subgroup Ws C H(Qg) such that Wg € H(Qs) N K, and Wy acts
trivially on ¢5.

Whenever we deal with norm-compatibility relations we shall assume that the local
data Ks, Ws, ¢ remain fixed (i.e. we shall not attempt to formulate any non-trivial
norm-compatibilities at the bad primes). Regarding the choice of ¢ g, see Remark 10.6.4
below. B

8.4.3. Subgroups of higher tame level. Now let us choose a square-free integer M > 1
coprime to S U {p} (which we shall refer to as a “tame level”). Form > 0 and n > 1, we
define a subgroup K¢ (M, p™, p") € Kg(p™, p") by

Kg(M, p™, p") = {k € Kg(p™,p") : u(k) = 1 mod M}.

As explained in §5.4, we have isomorphisms
mpr Y6 (M. p™. p") = Yeu(p") %  SpecQ(apm)- )
pec

Assuming n > m, we also define K (M, p™, p") = {k € K (p™, p") : u(k) =
1 mod M }; note that the difference between this and K¢ (M, p™, p”) is only at p — we
do not impose stronger congruences at M .

8.4.4. Test data of higher level. Let (M, m,n) be integers as above. For each such triple,
we shall define the following data:

e an element &pmyn € H(G(Afr), Z), fixed by the right-translation action of
Ke(M. p™. p*);

e a subgroup W of H(Af) such that for all x in the support of &p7 1, we have W C
H(Ar) N xKg(M, p™, p")x~";

e anelement @prmn € So(A%, Z)®? stable under W.

We shall define these as products

EM,m,n = Ch(KS) ® ®$l, W = WS X 1_[ WZv ?M,m,n = ?S ® ®?la

L¢S LesS Les
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where the local data Kg, Ws,g& s at the bad places are the ones chosen above (indepen-
dently of M, m, n) and the local data at primes £ ¢ S are as follows. As in §3, we let

ne,r € G(Qg) denote the element
-
. .
1

o If £ t Mp, we set & = ch(G(Zy)), Wy = H(Zy), and ¢ = ch(Z2)®>.

o If{ | M, weseté& =ch(Kg,(¢,1)) —ch(ne: - Kg, (£, 1)), and Wy = Kg, (£, £%). We
take ¢y = ch(€2Z x (1 + £?Z¢))®2.

e For{ = p,weset§, =ch(npm- Kg,(p™. p")). We choose an integer # > 1 sufficiently
large” that Kg,(p™. p') is contained in 1, - Kg, (p™, p") - n;}n; we let W), be this

subgroup, and we define

¢p = ch(pZ, x (1 + pth))®2.

Note that ¢arm.n € SO(AJ%, 7)%% C S(A}, 7)®2, since our local Schwartz functions
at p vanish at (0, 0). Both the element ¢ a5, and the group W, depend on the auxiliary
choice of ¢; but if we let ° > ¢ be another choice, and ?X/I,m,n’ W*° the objects defined
using ¢° in place of 7, then we have

PMmn = Y, WD mn (10)

wew/we

We also define a version mildly modified at p, assuming that n > 1 and m < n. Recall
the subgroup K’GP (p™, p") defined in §3.3. We define &, = Ch(ﬁp,oK’GP (p™. p") =
ch(K’GP (p™, p")Np.,0)- Thus &, is preserved under left-translation by W, = Kl/qp (p™, p™);
and we choose ¢, = ch(p"Z, x (1 + P"Z,))®%. Welet K (M, p™, p"), Ertmns Prmn
and W' be the adélic objects defined using these modified choices at p, and the same
choices as before at all other primes.

Remark 8.4.2. These alternative local choices will give elements related to the “non-
dashed” versions in the same way as the elements Z_ relate to the elements & in [18].
As in op. cit., it is the non-dashed versions that are of interest for applications, but the
dashed versions are convenient for certain calculations, in particular for studying p-adic
integrality and interpolation properties. <

8.4.5. The Lemma-Eisenstein classes and their norm relations at p. With the above nota-
tions and choices, let us define

[a,b.q,r]
M,m,n

— 1 [a,b,q,r] 4 m n a,b
- WigKg(M,pm,p")(?MJ"’n &® EM,m,n) € Hmot(YG(M’p 4 ), -@Q (3 - C]))

20ne can check that 7 = n + 2m suffices.



Euler systems for GSp(4) 707

We refer to these elements as Lemma—Eisenstein classes. A priori this element depends
on the auxiliary integer ¢, but it follows readily from (10) that it is in fact independent
of this choice (this is essentially the same computation as in Lemma 3.10.2). It can be
written concretely as follows: letting U be the subgroup Kg (M, p™, p"), we can write our
Hecke-algebra element £ps,, » as a finite Z-linear combination of characteristic functions
ch(x;U). For each of these terms, if we set U; = x; Ux;” 1 then by hypothesis we have
W C V; := H N U;, and we can consider the composition of maps

2 c,d (pr‘{/‘;)* 2 c,d
Hmot(YH(W)9 %Q’ (2)) —_— Hmo[(YH(I/i)s f%pQ, (2))
L[a.b.q.r]

Uj.* a X a
—— Hpo (Y6 (U, 75" (3 = @) = Hpu(Y6(U). 25" —¢)). (1D

(Note that U; may not be H-small, so 1y, : Yi (V;) — Y5 (U;) may not be a closed immer-
sion, but it is still a finite morphism of smooth varieties and this suffices to define the

pushforward map L[L‘Z”b;q,r] )

Theorem 8.4.3. The Lemma—Eisenstein classes satisfy the following norm-compatibility
relations as m and n vary:
(i) Forn > 1, we have

( rKG(M,p’”,p”+l)) ( la,b,q.,r] ) — Slab.ar]
PIg G (M,pm,pm) *\“Mmn+1) — “Mm,n

(i1) For m > 0, we have

U'(p) ;
(Pric oroom ) ) () = { oo el } ofg]
Kg(M,p™, pn m+1,n) — U’ . m,n
G o * p(‘lp) _ 1) zfm =0

p—l
Here U'(p) € #(Gp) is given by the K¢, (p™, p")-double coset of ( ! ) )
1

Proof. Part (i) is immediate from the definition of the classes, since the sum of the trans-
lates of &ar,m,n+1 over Kg (M, p™, p")/Ke(M, p™, pn+1) is EMomn-

For part (ii), we note that the Hecke-algebra elements a7, » and s m+1,, are identi-
cal outside p, as are the Schwartz functions @as,m,» and das,m+1,,- So we need to compare
two values of a map on $(Q2,Q)®? ® #(G(Q))) (given by tensoring with the common
away-from-p parts and applying £8&). It clearly suffices to check the equality after ten-
soring with C, which puts us in a position where we may apply Proposition 3.10.4 (for
£ = p). If we assume that the parameters ¢ are chosen identically for the two elements,
then the proposition shows that

Ko (M m+l’ n
(ergéMi;m,p"I; ))*efg((_bM,m-&-l,n ® EM,m+1,n)
177/
_ {;U (»)

- L& m,n ® m,n
W } (Pm, EMmn)
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as elements of H* (Yo (M, p™, p"), Dy b(3 — ¢))[—¢]. The factor of 1 - (resp. — ) is

cancelled out by the factors
m+1

vOl(W) , since the subgroups W correspondlng to the classes

at levels Mp and M p™ differ in volume by exactly this factor. Finally, the twist [—¢]
gives a factor of p?. |

8.4.6. Integral p-adic étale classes. We now treat questions of integrality. We choose
integers c1, ¢y > 1 satisfying the following list of conditions:

e The ¢; are coprime to 6p [ [jcg L.

e Our chosen vector ¢5 € $(Q3, Z)®? is preserved by the action of the elements
(7). () ) and (%), ()" of (GLa x GL2)(Qs). (Note that these ele-
ments are not in H.) 1

e For each ¢ € S, the subgroup K, is normalised by the elements ( “y ) and

cl

(62 L ) of G(Qo).
1

(The last two conditions can, of course, always be achieved by taking ¢ and c; to be
sufficiently close £-adically to 1, forall £ € S.)
Recall the alternative local data & 1/1/1 - 93\4 e W' introduced at the end of §8.4.

Definition 8.4.4. Forn > max(m 1), let

,b,g, ,b
Cl,sz[a - eI_Izl(YG(]VI ™. p"), @% B-9)

ét,M,m,n
be the class defined using the alternative local data & Mom.n ¢ Mmn W' in place of their

non-dashed versions, and substituting for Eis’’ & the integral étale Eisenstein classes

mot
1,02 Elsén,g-

To see that this is well-defined, we use the explicit description of the Lemma—
Eisenstein map as a sum of pushforward maps as in (11). Since &, ,, ., is a Z-linear

combination of cosets x; U (where U = K (M, p™, p")) with x; € G(A}p) x Zp), the
[a b.q.r]

maps ¢ , are well-defined on étale cohomology with coefficients in the integral

sheaf @%Fb (3 — g). (Note that &7, is not supported in G(A}’J ) x Zp), which is why we
need to introduce the alternative data.)

Definition 8.4.5. For n > max(m, 1), let s, : Y5 (M, p™, p") — Y (M, p™, p") be the
pm
map given by the action of ( " .| € G(Qp); and let s 4 : @%f — sk (@%f) be
1 p —m
the morphism of sheaves given by the action of ( 7y ) on the representation D%’pb.
1

See [15, §6.1]. The morphism s,, is well-defined on the Shimura varieties, since

m 71 m
)4 D
( . ) K’Gp(p’”,p”)< o ) < Kg, (™. p").
1 1
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To construct the morphism s, 4 of integral coefficient sheaves, we note that the repre-
sentation D%? of G has all weights < 0 for the torus 7’ of §2, so the action of G(Zp)

P -1
on D%’b extends to an action of the monoid generated by G(Z,) and ( 7y ) .
? 1

Proposition 8.4.6. If (cy, c2) satisfy the above conditions, then for any m,n, M as in the
previous section with M chosen coprime to ¢y and c,, there is a class

,b,q, b
ereaZinion € Hi(Yo (M, p™. p™). 757 (3 — q))

whose image in the cohomology of @éj B—q)is

1 -1 c2 -1
2 —(a—q+b-r) c 2 —(a—q+r) 1 la.b.q.r]
pmq (Cl - ( 1 1 ) )(62 —Cy ( e ) )rét(zM,m,n ),
4] 1

where the matrices on the left-hand side are understood as elements of Hfl MpS G(/Z\)
acting on Yg (M, p™, p") by right translation.

Remark 8.4.7. If a = b = 0, then ¢, ¢, Zé?}&’(i;loll is the image of a class ¢, ¢, 21[3’?,;0,;0] in
the motivic cohomology with Z coefficients. However, we do not know how to define this
group fora, b > 0. o

Proof of Proposition 8.4.6. Assume for the moment that m < n, and define

lab,g,r] ._ [a.b,q.r]
Cl’szét,M,m,n = Smx (CI,CZZét,M,m,n)’

where the action of s, on the coefficients is given by s,, 3. By definition, this has coef-
la,b,q,r] .
in the stated

ficients in 9%’: (3 —¢), so it remains to verify that is related to z;,’,

manner.
A simple check shows that
la.b,q,r] _ zla,b,q,r]
C1,62 é?,M,znr,n - pmqrét(zﬂl},m?nr )
where Z is the class obtained in the same way as z, with the Schwartz function ¢ replaced
by B
2 —(a—q+b—r) 0y :n—1\/.2 —(a—q+r) (- 0\ —1
(e = TG ¢ )-id) ) e =TT (T () )e

0 c 0 c2

(The factor p™4 appears because we ignored the twist [—¢g] in the definition of s, 4.)
However, our assumptions on the ¢; imply that

(¢} = “TPT((G ) 0T e T (i (G ) )

0 cp 0 ¢
= (=TT E) (D) NS =G TG (68) e

and in this second formula, all the elements acting are in H, normalise our level groups,
and commute with 7, so we can pull them through the equivariance properties of the
Lemma-FEisenstein map to obtain the result.
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Finally, we remove the restriction m < n: if n < m, then we simply define

cl,cﬂiﬁﬁ’ﬁii to be the pushforward of 01,6225’1‘%&’:}, for any integer n’ > m. This is
independent of the choice of n’, as is easily seen, and using Theorem 8.4.3(i) and the

preceding argument with n’ in place of n, we see that it has the required properties. ]

Remark 8.4.8. It follows from Theorem 8.4.3 that the Lemma—Eisenstein classes

8B4 4p q their variants ¢, , ZE; ’fﬂ;{i satisfy norm-compatibility relations in both

C1,€2<¢t,M,m,n
m and n after tensoring with Q,. However, one can check that these norm relations actu-

ally hold integrally, without needing to quotient out by the torsion subgroup of the étale
cohomology group. This is not obvious from the proofs we have given, but can easily be
verified after carefully unwinding the normalisation factors. <

9. Moment maps and p-adic interpolation

We now study the interpolation of the étale Euler system classes, for varying values of the
parameters (a, b, ¢, r). Our goal is Theorem 9.6.4, which shows that these classes can all
be obtained as specialisations of a single class “at infinite level”.

9.1. Interpolation of the GL, Eisenstein classes

We begin by recalling a theorem of Kings [14], which will be the fundamental input
for our p-adic interpolation results. In this section, let us fix an arbitrary open com-

pact subgroup K® GLz(A}p)), and for n > 1, write K, = K® x {g € GL2(Zp) :

g= (%) mod p"}. Letus assume, by shrinking K (7 if necessary, that K| is sufficiently
small (and hence so is K, for alln > 1).

We also choose a finite set of primes = containing p and all primes where K is
ramified, so the modular curves have models Y (K}, )x over Z[1/ %] for all n.

Remark 9.1.1. Working with integral models is necessary here, because continuous étale
cohomology for Q-varieties does not necessarily commute with inverse limits, but this
problem does not arise for finite-type Z-schemes such as the Y (K,)x. <

Definition 9.1.2. We define
Hp\ (Y(Koo)z. Zp(1)) = Lingélt(Y(Ks)z, Zp(1))

s>1
where the inverse limit is with respect to the pushforward maps.

If %’jlk denotes the mod p” reduction of the sheaf %ﬂé‘p on Y(Ky) (cf. §7.2), then we
have a canonical section

en = (e1)* € HY(Y(Kn)s, H).
Hence, for any n > 1, we have a map

mom¥ : il (Y (Koo)s. Zp(1) — HA(Y(Kn). J5 (1)),
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mapping (gs)s>1 to the restriction to the generic fibre Y(K,) C Y (K,)x of the element

(Pr.), (85 U eks)szn € lim Hy (Y (Kn)x. A (1) = Hy(Y(Kn)x. A7, (1)).

s>n

Definition 9.1.3. Let ¢ be a Z,-valued Schwartz function on (Aj(,p ))2, stable under K (®);
andlet ¢y = ¢ @ ch(p*Z, x (1 + p*Zp)). Forn > 1, and ¢ > 1 coprime to 6p and to all
primes where ¢ is ramified, we define

c€dp = (c8py)s>1 € HI;(Y(Koo)E»Zp(l))-

The following theorem, which will be fundamental for our p-adic interpolation results
later in this paper, shows that the Siegel units interpolate Eisenstein classes of all weights
via these moment maps:

Theorem 9.1.4 (Kings). For all integers k > 0 and n > 1, we have

k

momﬁ(cé‘J(ﬁ,n) = (.Eisélj(bn

as elements of H}(Y (K), jfzkp (1)).

Proof. This is a generalisation of [15, Theorems 4.4.4 & 4.5.1], which is the case where
¢ is the characteristic function of (0,1) + N (/Z\(l”))2 for some integer N. The general case
can be recovered from this using the action of the group J = neez—{ o} GL,(Qy), since
both the Siegel units and Eisenstein classes depend J -equivariantly on ¢, and the moment
map clearly commutes with the action of J (as it acts trivially on ey ). ]

Of course, this argument carries over readily to the modular varieties for H: if we fix
a small enough prime-to- p level Kg') and let Ky , = Kg’) x Kg,1(p"), then we obtain
moment maps

mom§%, + H2,(Yir (Ki,00)5. Zp(2)) > HZ(Ye (Kmn), 5% (2),

for any n > 1 and integers ¢, d > 0; and there is a class CIJQSJ? in HI%V, for any 17 IS
S (A}p )2, Z p)@’2 stable under Kg’) and unramified at the primes dividing cjcz, whose

. ,d . . . c,d
images under mom:* are the Eisenstein classes 1,62 Elsgt, o

9.2. Moment maps for G

For the group G = GSp, we have analogous moment maps, as we shall now explain. As
in the GL, case, we fix an arbitrary subgroup K g’ ) ¢ G(Aj(,p )) unramified outside X, and
write Kg,n = Kg’) x Kg,,1(p"). We assume that K¢ 5 is sufficiently small for all n > 1.

Proposition 9.2.1. Ler d'4?47] pe the image of vl@047] ¢ Vg’b in D%’b = Vil’b ®

w240 and et AP er) pe its reduction modulo p". Then the vectors o] for
0 <r < b, are stable under K¢, 1(p").
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Proof. We recall that the vectors v!%?:%71 Jie in the highest-T’-weight subspace of V42,

X
where T’ is the torus ( 1 ) Hence they are fixed by the unipotent radical N of the
1

Siegel parabolic, and T’ acts on them as x > x2978_Thus the twists d #2971 are fixed
by T’ and by Ns, and the same holds for their reductions modulo p. ]

Definition 9.2.2. For n > 1, and any integers 0 < ¢ < a and 0 < r < b, we define the

moment map Inorn[g’i7 47] 25 the following composition of maps:

Hy3(Y6(K6.00) 3. 75, (3) = lim H;; (Y6 (K6.s) 5. 78°(3)

- l(iLnHéT(YG(KG,s)E’ (22° ® 7¢77)(3))
S

— lim H (Y6 (KG.s)z, 75 (3)
S

— lim H;; (Y6 (Kg.n)s. 77 (3))

N
= H(Ye(Kan)s. 757 (3)
— Hi(Ya(Ken). 75" 3)).

Here the second arrow is cup-product with 41442071 ¢ HY(Y6(Kg.s)s, 2¢%0); the
third arrow is given by the Cartan product; the fourth by projection to level n; and the

final one by restriction to the generic fibre.

Remark 9.2.3. This construction also has an interpretation in terms of sheaves of mea-
sures as in [14]. Suppose g = 0 for simplicity. One finds that A}, (Y6 (Kg,00)x. Zp(3)) =
H;(YG(KGn)s,A(3)), where A is the sheaf on Y (K¢ »)x given by LiLns (prgg:; )« (Zp).
We can interpret A as the sheaf corresponding to the profinite Z,[K g ,]-module of Z -
valued measures on the quotient X, = K¢,/ Kg,c0; in this optic, the moment map is
given by the morphism of sheaves

AXn) = Dg e | ged 0 du(g) o

Proposition 9.2.4. The Hecke operator U’ (p) is well-defined as an endomorphism of the
inverse limit H{,(YG(KG,00) 5. @2’: (3)), and the moment map mom[g’i’,q,r] is compatible
with the actions of U'(p) and of [[ex—(,y G(Q¢) on both sides.

Proof. Easy check, compare e.g. [15, Remark 4.5.3]. ]
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9.3. Compatibility with the moment maps for H

We shall now consider compatibility of these constructions between G and H. We take
Kg’) = K(Gp) n H(Aj(,p)), so we have maps ¢, : Yg(Kg,,) = Y6 (Kg,n) foralln > 1,
and write (o, for the collection (i5)s>1. As before, let (c,d) =(a+b—qg—r,a—q +7r).

Proposition 9.3.1. There is a commutative diagram

[¢,0,4,0]
L T
HE (Yer (KH,00) 3. Zp(2) ————— Hi$,(Y6(KG.00)5, 75 (3= )
mom;}iinl Jmom[Ga:’l;,q,r]
Ly x 0 brl@:b:ar]

H2(Ye (Kn), 5 (2) HE (Yo (Kan), 757 (3 - )

Proof. After much unwinding, this reduces to the assertion that the modulo p* reduc-
tion of brl¢-b-¢71 . %’”Zc,’)d — L*@%f maps the section (e1.5)° ® (f1.5)¢ over K ¢ to the

pullback of @l9%40 . gla=a:b.0r] _ gla:b.ar] yhich s true by the construction of the
branching maps. ]

Remark 9.3.2. In [15], the analogous statement for the GL, x GL,-moment maps (Lem-
ma 6.3.1) gives rise to a binomial factor; so using the Cartan product simplifies matters
considerably. o

9.4. Application to Lemma—Eisenstein classes

We now return to the situation considered in §8.4. We can apply the machinery of the

previous section with K(Gp) taken to be the product Kg % H[¢Su{p} G(Zy), so the Kg
of the previous section is Kg,1(p"), and we obtain moment maps

,b.q, ; ,
moml 24+ H (Y 1 (p™)s. 75° (3 — q) > HE(Ya.1(p"). 757 (3 — q)).

for any ¥ O S U {p}. More generally, if we take any m > 0 and any squarefree M > 1
whose prime divisors lie in ¥ — (S U {p}), the same construction also gives maps

Hi (Y6 (M, p™, p®)z, 7573 = q) > Hi(Y6(M. p™, p"). 7573 =) (12a)
forany n > 1, and
Hy, (Y6(M, p™, p®)5. 7503 = q)) = Ha(Y6(M. p™, p"), 757 (3—q))  (12b)

for any n > max(m, 1), which we also denote by mom[g’f’q’r].
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Proposition 9.4.1. For each q > 0, there exists a class
,0
Cl’C2Z;1w,M,m € Hy (Yo (M, p™, p™)s. 9%1, B—9)

such that bl wbar]
a,b,q,r q _ a,b,q,r
momG,n (Cl’szIw,M,m) — C1,C2 zét,M,m,n

for all integers a,b,r,n witha > ¢, 0 <r < b andn > max(m, 1).

Remark 9.4.2. Strictly speaking the elements ., , Z?w m.m depend also on X, but they
are easily seen to be compatible with the natural maps given by enlarging ¥, so we will
suppress this from the notation. <
Proof of Proposition 9.4.1. We define ¢, ¢, Z% 1., 10 be (c1.cs Zg’;‘)jq,;lo]n)pmax(l my’
which is norm-compatible by the same argument as in Theorem 8.4.3(i) (and Remark
8.4.8).

By construction, there is a finite set of integers a; and x; € G(Ay), independent of m
and n, such that

Ertmn = Zai ch(x; Kg (M, p™, p™)).
i

We can therefore write

q — § : ) [¢,0,4,0]
61,62ZIW,M,m = ai (inK’C;(M,pm,pw),* obr )01,628‘197
i

la,bg.r] _ . [a,b.q.r] - led]
ce2 sy Mmn = Z ai(ty, Ky (M,p™,p"),* © br Jerea EISQ,,

1
All the x; have the same p-component, namely 7, ; this acts trivially on the vector
dla—a.b,0.r ], and hence commutes with the moment map. We know that Eis([;;d] is the

image of €J4 under moqu’i by Theorem 9.1.4, and the commutative diagram of Propo-

sition 9.3.1 (taking for KP) the prime-to-p part of x; 'K (M, p™, p")x;, for each i)
shows that the image of each summand at level oo under mom[g ’s “27] coincides with the

corresponding summand at level 7. ]

Corollary 9.4.3. For each q > 0, there exists a class
crea i m € Hiw(Y6 (M, p™, p¥)z, 757 (3 = 9)

such that bl abaar]
a,n.q,r q _ a,o.q.,r
n’10InG,n (CI’CZZIW,M,m) - Cl’CZZét,M,m,n

for all integers a,b,r,n witha > q,0 <r <bandn > 1.

Proof. The moment maps of (12a) and (12b) are compatible with respect to the push-

-1

forwards (s;,)«, because the action of diag(p~", p_l, 1,1) on D%;q’b fixes the vector

d1a=a:6:0.11 'S¢ for n > m the corollary follows from Proposition 9.4.1 by applying (sm )«
to both sides; and since both sides of the desired formula are norm-compatible in 7, the
result follows for n < m also. [
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9.5. Cyclotomic twists

We now consider the more difficult problem of interpolating the classes of the previous
sections as the parameter g varies, analogously to [15, Theorem 6.2.4] in the Rankin—
Selberg setting. Our main technical result will be the following:

Proposition 9.5.1. For eachm > 1 and g > 0, we have
cl,czz[w Mm — ( 2) Claﬂzzlow,M,m U (dr['?,0,0,0] ® E;,Z) mod pm.

Here {pm € H) (Y (1, p™, p™),Z/ p™ (1)) is the canonical p™-th root of unity given
by the isomorphism (9). In an attempt to restrain the excessive proliferation of indices
in our notations, we shall give the arguments assuming M = 1, and drop M from the
subscripts throughout the remainder of the section; the case of general M can be handled
similarly (using the decomposition of & 1’\4mn as a finite sum of characteristic functions of
cosets, as in the proof of Proposition 9.4.1). In this case, we have

12 B = (14 0 too o bIIION (0 E040) € Hil (Y (0™, p™), 7503 = q).

The branching map brl4:0:4:01 appearing in the above constructions is given by map-
ping 1 € Z,, to the H(Z,)-invariant element 19999 @ (=4 ¢ D%’: (—q), where ¢ denotes
a basis of the multiplier representation p of G. After reducing modulo p™, this element
is invariant under a larger group:

Proposition 9.5.2. The modulo p™ reduction d&**%°

C G(Z,).

is stable under Kg (p™, p™)

Proof. Since K ( p™, p™) 1s contained in the principal congruence subgroup mod-
ulo p™, it acts tr1V1a11y on Z, ® for any a, b. |

It follows that we may write
ererZium = (1 © too,#)(c1,0,649)] U (nudy 4% @ £79), (13)
where 7, d14%4% ¢ HO(YL(p™, p™), 289,
Proposition 9.5.3. We have
Sm g (el 00 0) = (=2) 57, (20
as sections of sy, (785°).

Proof. We may decompose D%’: as a direct sum of its eigenspaces for the action of
the torus 7", which all have weights < 0. On all eigenspaces other than the weight-0
eigenspace, the map s, 4 is zero, since diag(p, p, 1, 1)™"™ acts as a positive power of p™,
which annihilates the module D,‘i,’o. Hence s, 3 factors through projection to the highest-
weight space relative to T’. So we need to compute the projection of 74 (d,[,?7 ,O,q,O]) =

(n_l)*(d,[,f]’o’q’o]) to this weight space. This is precisely the situation of Lemma 4.4.1
(with & = —1 in the notation of the lemma), which gives the result above. [
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Proposition 9.5.1 follows immediately from this, by applying s, « to both sides
of (13).

9.6. Projection to the ordinary part

We now define a limiting element in which m (as well as n) goes to co. We set

Hy, (Y (M. p*, p®)z. Z,(3)) = lim Hyj, (Yo (M. p™, p™)5. Z(3)).

m
On this module, there is an action of the ordinary idempotent e/ ; = limg_, o U’'( )k

Remark 9.6.1. The fact that this limit exists, and is an idempotent, follows from the cor-
responding statements for étale cohomology at finite levels, for which see [42]. Note that
Tilouine and Urban define multiple ordinary idempotents, one for each standard parabolic
subgroup; ours is the one associated to the Siegel parabolic Ps. <

Definition 9.6.2. We set

c1,c22Iw,M = (U/(p)_te(/)rd A sc2ZIOW,M,m)m21‘

This is a well-defined element of Hp (Yo (M, p™°, p®)x, Z,(3)), since U’(p) is

w
invertible on the image of ¢/ ;, and the terms in the limit are norm-compatible by Theorem
8.4.3(1i).

Definition 9.6.3. For integersm > 0,n > 1,0 <r <b,a > 0, and g € Z, we define
bl . b
mom w " H (Yo (M. p*, p®)5. 2,(3)) = Hi(Ye(M. p™. p"). 257 (3 — q))

by cup-product with 42071 ® =4 € HY(Yg(M, p™®, p®)s, 9%”5) (—q)), where ¢ is the
canononical basis of Z, (1) over Spec Z[Z ™1, {prpoo].
Note that we do not need to assume that ¢ lies in the interval {0, ..., a} in order to

define this moment map. However, when we do impose this additional assumption, we
obtain compatibility with the preceding constructions:

Theorem 9.6.4. For integersm >0,n>1,0<¢g <aand0 <r < b, we have

1 U/(P)_m lfm >1 / [a,b,q,r]
“€orglere )-

la.b.q a z
D ; e, M,m,
(—2)¢ I—U,(p) ifm=0 cLLm.n

momG,m,n’r] (Cl 52 ZIW,M) =

Proof. We factor d[@207] a5 the Cartan product of d14=4-0:071 and ¢14:0:0:01 Proposition
9.5.1 shows that cup-product with d[4:%-9-01 @ = sends ., ¢, Z1w» to the inverse system

(_2)_q(U/(p)_te(/)rd : cl,czsz’M’t)tZI-
Projecting this to level m gives the element
1 { U'(p)™ ifm>1

I L/ q
(=27 | 1- % ifm = 0} eord(cl’c2ZIW,M,m)‘
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(This is true by definition for m > 1, and the case m = 0 follows by computing the norm

of the m = 1 element using the appropriate case of Theorem 8.4.3(ii).) Computing the
:b.q.r]

image of this element under mom[g -

using Proposition 9.4.3 gives the result. ]

Remark 9.6.5. The module e(’,rdHI‘;(YG (M, p*®, p*™®)sx, Z,(3)) can be regarded as an
interpolation of the Iwasawa cohomology of the Galois representations attached to p-
ordinary Siegel modular forms with weights varying in a Hida family. Thus Theorem 9.6.4
can be interpreted as stating that our Euler system classes interpolate in Hida families. We
have not pursued this viewpoint in the present paper for reasons of space, but we intend

to revisit the topic of Hida-family variation in a future project. o

Corollary 9.6.6 (Cohomological triviality). Ifm > 1 or q > 1, then elyy(c, e, 2537 %)
is in the kernel of the base-extension map

b b 1@
Hg (Y (M, p™, p"), 77 (3 = q)) — Hi(Yo (M, p™, p")g. P27, (3 — 0)° 1Q/Q).

Proof. Using (9), for each M and each n > 1 we have

lim H°(Q, He (Yo (M, p™. p")g 752 3 — 9))

= lim H°(Q(upm). Ha (Yo, (P g 750 3 = 4)).

m

This inverse limit is zero, by standard properties of Iwasawa cohomology (see e.g. [26,

Proposition 8.3.5]).

For m > 1, it is immediate from Theorem 9.6.4 that the image of €. _; - ¢, ¢, zgf/fnrl
under the edge map lies in the image of this inverse limit, and hence is also zero. For
m = 0, this argument shows that the class becomes cohomologically trivial after applying

11— #qp), and for ¢ > 1 this operator acts invertibly on the image of e/ ;. ]

10. Mapping to Galois cohomology

In this section, we will use the motivic and étale classes we have constructed above in
order to define Galois cohomology classes in automorphic Galois representations. We
begin by recalling a number of results (due to various authors) on Galois representations
appearing in the cohomology of the Siegel varieties Y.

10.1. Automorphic representations of GSp,

Let (kq1, k») be integers with k; > k, > 3, and let (a,b) = (ky — 3, k1 — k2). There are
exactly two unitary discrete series representations of G(R) which are cohomological with
coefficients in the algebraic representation V%7 the holomorphic discrete series represen-
tation H,’:’l ko and a non-holomorphic generic discrete series representation HZ’ ko We
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refer to these as the discrete series representations of weight (k1, k3). The cuspidal auto-
morphic representations with infinite component IT ,’Z ko Are precisely those generated by
classical holomorphic Siegel modular forms of weight (k1, k3).

Remark 10.1.1. The pair {HZ oy H,?: kz} is an example of a local L-packet. o
Definition 10.1.2. Let IT = I1y ® Il be a cuspidal automorphic representation of
G(Ay) with [T, a discrete series representation of weight (kq, k2).

e We say II is of Saito—Kurokawa type if k1 = k, and there exists a Dirichlet character
x such that y? = wry, and a cuspidal automorphic representation of GL,(A) of central
character wry attached to some holomorphic newform of weight 2k; — 2, such that for
all but finitely many places v we have

L(ITy,s) = L(mwy, S)L(xv,s — 1/2)L(xv,s + 1/2).

e We say IT is of Yoshida type if there is a pair (71, 72) of cuspidal automorphic rep-
resentations of GL;(A), both with central character wry, corresponding to two elliptic
modular newforms of weights ry = k; + k» — 2 and r, = k1 — k + 2, such that for
all but finitely many places v we have

L(IIy,s) = L(m10,8)L(72,0,5).
e Otherwise, we say I1 is non-endoscopic.

Theorem 10.1.3 (Taylor, Weissauer, Urban, Xu). Let I1 be as in the previous definition,

and suppose T1 is non-endoscopic. Let S be the set of primes at which I1 ramifies, and let

w=ky +ky—3.

(1) The representation 11 is one of a pair {TTH TIW} = {Ir ® H,’:Il - Iy ® HK kz}
of cuspidal automorphic representations having the same finite part, both of which

have multiplicity 1 in Lgusp(G(Q)\G(A), o).

(2) For any prime { & S, the local representation 1y is an unramified principal series
representation.

(3) Fort ¢ S, let P(X) € C[X] denote the quartic polynomial such that
L(Tlg,s —w/2) = P07 1

Then the subfield E C C generated by the coefficients of the Py(X), forall £ ¢ S, is
a finite extension of Q.

(4) For any prime p and choice of embedding E — @p, there is a semisimple Galois
representation

p1,p : Gal(Q/Q) — GL4(Q,)
characterised (up to isomorphism) by the property that, for all primes £ ¢ S U {p},

det(1 — Xpm, p (Frob, ') = Py(X),

where Froby is the arithmetic Frobenius.
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(5) The representation pr,p is either irreducible or the direct sum of two distinct irre-
ducible 2-dimensional representations. In particular,

HO(Qabv pH,p) =0.

(6) The restriction of pn,p to a decomposition group at p is de Rham, and its Hodge
numbers® are {0,ky —2,ky — 1, ky + ky — 3} If I, is unramified, then pm,p is
crystalline, and

det(1 — Xo | Dcris(pH,P)) = PP(X)

Remark 10.1.4. Note that Py(X) in (3) is given by the action of the Hecke-operator-
valued polynomial £ (X) of §3.5.2 on the spherical vector of Ty ® | - |G~%)/2, o

Proof of Theorem 10.1.3. Parts (3) and (4) are [46, Theorem I]. Part (2) is also implicit in
that theorem, since the “purity” statement on pry, , implies that the local L-factor L (I1g, s)
has the form ]_[?=1 (1 —a;£=%)~! with |o; | = 1, which rules out all of the other classes of
unramified representations of G(Q;) (all of which have o; /oj = £ for some i, j). Part (5)
is contained in Theorem II of op. cit.

For parts (1) and (6), the fact that TT# and TT" have the same multiplicity, m (IT7) =
m(HW), and the characterisation of the Hodge numbers of pr,,, was proved in [46,
Proposition 1.5 & Theorem III] under the assumption that IT is weakly equivalent to a
globally generic representation; and in fact all such IT have this property by the main
theorem of [47]. The assertion regarding D5 is [44, Theorem 1]. Finally, Xu has shown
in [48, §3.5] that the common multiplicity of TT# and TT" is equal to 1. ]

It is expected that pry, ,, is always irreducible, but this is only known for large p:

Theorem 10.1.5 (Ramakrishnan). If I1 is unramified at p and p > 2w + 1, then the
representation pry, p is irreducible.

Proof. By [9], the automorphic representation IT lifts to a cuspidal automorphic represen-
tation of GL4. This lifted representation is regular at co (since its local parameter at co is
determined by that of IT, via the compatibility of the local and global liftings). If II,
is unramified, then the corresponding Galois representation is crystalline at p, and hence
Theorem B of [32] shows that it is irreducible as long as p — 1 is greater than the largest
difference between the Hodge—Tate weights of pr,», which translates into the condition
on p stated above. ]

10.2. Automorphic cohomology

As before, given integers k; > k, > 3 as above, we let (a,b) = (ko — 3,k — k»), so that
w = 2a + b + 3. Choosing a (sufficiently small) level group K, we thus have a Shimura

3Here “Hodge numbers” are the jumps in the Hodge filtration of Dgr, which are the negatives
of Hodge—Tate weights, so the cyclotomic character has Hodge number —1.



D. Loeffler, C. Skinner, S. L. Zerbes 720

variety Y5 (K), and a relative Chow motive @6’17 = Ancg (D%?) over this variety. We are
interested in the parabolic cohomology of the p-adic étale realisation

by
H3 (Y6 (K)g: %p) = image(Hg . — H3).

Since @6’: has an equivariant structure, the direct limit Héf’iY 6.0 .@6’:) is an admis-
sible smooth representation of G(A y), with an action of Gal(Q/Q) commuting with the
G (Ar)-action.

Notation 10.2.1. Let X(kq, k2) denote the set of isomorphism classes of representa-
tions Iy of G(Ay) which are the finite part of a cuspidal automorphic representation
IT = Ir ® Il in which I, is one of the two discrete series representations of weight

(k1,k2).

Theorem 10.2.2 (Taylor, Weissauer). There is a G(Ay) x Gal(Q/Q)-equivariant direct
sum decomposition

HE (Vo 75,30 © Qp = ) 6? k )(H;[W%] ® Wi, )
fEulky k2

where Wi, is a finite-dimensional p-adic representation of Gal(Q/Q). If T is non-
endoscopic, then the term corresponding to Il is a direct summand of the full cohomology
H é3t(Y 6.0 96’:), and the semisimplification of W, is isomorphic to pr, p.

Here If[r] = Iy ® ||(—)||", as above.
Proof. See [46, §1]. [

10.3. Arithmetic étale cohomology

We now consider the étale cohomology of Y (K) as a Q-variety (not as a Q-variety);
more precisely, we work with continuous étale cohomology in the sense of Jannsen [11].
Note that this space is not finite-dimensional in general. Nonetheless, there is a Hoch-
schild—Serre spectral sequence associated to the structure map Y (K) — Spec Q, for any
lisse étale Z ,-sheaf or Qp-sheaf .7,

E}’ = H'(Q. Hy(Yo(K)g. ) = HL (Yo (K). 7).
for any integer 1. Consequently, if we define
H3(Ye(K), 7)o = ker(Hg (Y6 (K). . F) - Hi(Y6(K)g. F))
(the cohomologically trivial classes), then we have a natural “Abel-Jacobi” map
Hi(Ye(K). F)o — H'Q. Hi (Y6 (K)g. 7))-

These maps are compatible with changing K, and therefore assemble into a map of
G (Ay)-representations. More generally, this also applies with Y replaced by its base-
extension Yg x Spec Q(¢x ), for any integer N.
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Definition 10.3.1. Suppose II is non-endoscopic. For any N > 1 and g € Z, we write

prie : HA(Y6.00x) 7673 — 4o — ME[%52] @ H'(Q(n). W, (—9))

for the composite of the Abel-Jacobi map and projection onto the H} -isotypical compo-

nent.

10.4. Ordinarity

Let us now choose a non-endoscopic IT with 1, a discrete series representation of
weight (k1, k2), as above, and let £ be a number field as in Theorem 10.1.3(3), so we
have polynomials Py(X) € E[X] for all unramified primes £.

Proposition 10.4.1. Let p be a prime such that I1, is unramified, and write
Py(X)=1+a1X 4+ +asX*.
Then, for any embedding E — @p, we have the relations

vp(ar) = 0, vplaz) > ka —2,
vplaz) > k1 +ky—3, vplas) =2k + 2ky — 6,

where the valuation is normalised so that v,(p) = 1.

Proof. By Theorem 10.1.3(6), we know that the crystalline Gg,-representation
pn,p|G@p has Hodge numbers {0, k, —2,ky — 1, k; + k, — 3} and its Frobenius has
characteristic polynomial P,(X). The above relations are now precisely the assertion that
the Newton polygon associated to this representation lies on or above its Hodge polygon
(with the same endpoints), which is a general property of crystalline representations: see
e.g. [8, Proposition 5.4.2]. ]

Remark 10.4.2. These inequalities can also be proved directly (without using p-adic
Hodge theory), by expressing the coefficients of P,(X) as Hecke eigenvalues using the
formula of Lemma 3.5.4, and showing that suitable scalar multiples of the Hecke opera-
tors preserve an integral lattice in Betti cohomology. o

Definition 10.4.3. We say that I1 is good ordinary at p, with respect to some choice
of embedding E < Q,, if IT is unramified at p and the eigenvalue of 7'(p) acting on

Hp[%]G(Zp) is a p-adic unit.

Since this T'(p)-eigenvalue is a; in the notation of the previous proposition, it follows
easily from the theory of Newton polygons that IT is good ordinary at p if and only if it
is unramified at p and P,(X) has a factor in @p [X] of the form 1 — X with @ a p-adic
unit. Moreover, this « is unique if it exists. By Proposition 3.5.5, « is also an eigenvalue

of U(p) acting on the 4-dimensional space IT p[%Tw]KGP 0(2)

on H;[wT—s]KGp,o(p)‘

, or dually of U’(p) acting
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We assume henceforth that IT is good ordinary at p; and we choose one final piece of
data needed to define our Euler system. Having fixed a set S as in §8.4 above, we obtain
a level group

KGo(p) = Ks x [] G(Zo) x Kg,.0(p).
tipS
Enlarging S and shrinking K if necessary, we suppose that I1; has non-zero invariants
under Kg,o(p).

Definition 10.4.4. We choose a vector v, € Iy invariant under the subgroup K¢ o(p)
and lying in the U(p) = « eigenspace.

This choice gives a linear functional H;‘Z — @p, and hence a homomorphism of Galois
representations

b
Hi(Ygq. Z5,3) = Wi,

which we also denote by v,,. It seems reasonable to interpret this as a “modular parametri-
sation” of the Galois representation Wn*,~~ Composing with the map prp« of the previous
section, foreach N > land0 < g <a ‘we have a map

DI ey * HE(VG .00 757G~ 4) = H'(QUn). WE, ().

Our local hypothesis at p implies that this homomorphism factors through projection
to the U'(p) = « eigenspace at level Kg o(p), and in particular through the ordinary
idempotent e/ ;.

Remark 10.4.5. It will come as no great surprise to the well-informed reader to learn
that the ordinarity condition can be relaxed somewhat, to allow sufficiently small positive
values of the “slope” v, (t(p)), where ¢ (p) is the eigenvalue of T'(p) on I1f [3_7“’] (Slope
< 1 is easy; slope < 1 + a may be accessible, using the methods of [24].) However, we
stick with v, (#(p)) = 0 in the present paper for simplicity. o

10.5. Lemma—Eisenstein classes in Galois cohomology

We apply the maps of the previous section to the classes zj[f;fn’?l’r], or more precisely to
their images in H* (Yg.1 (P)Q(Erspm)- @&’b (3 —gq)) via the map jarpm of (9).

Definition 10.5.1. For m > 0, we define a class

zae € HYQ(apm). W, (—9))

by 4 \m
1 (Ue(p)) e(/)rd ifm =1 [a,b,q,r]
— - (pPryg= o m cre(Zas 0 0).
M (p IT*,vy JMp ) {(1 . Ul/)(qp))eérd ifm =0 el( M,m,1 )
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Note that this is well-defined, since the classes concerned are cohomologically trivial
by Corollary 9.6.6. It follows from Theorem 8.4.3(ii) that the classes Zj[‘? 471 are compat-
ible under the Galois corestriction maps as m varies. More importantly, they also satisfy

a compatibility with respect to M:
Proposition 10.5.2. Let £ } Mp be a prime, with £ ¢ S. Then

COrESgE?]Mpm)(Z 4, r]) — Pg(ﬁ 1— qO_l)Z[H’q’ (14)

where oy € Gal(Q({arpm)/Q) is the arithmetic Frobenius at £.

Proof. This will (eventually) turn out to be a mildly disguised form of Corollary 3.10.5.
As in the proofs of the *p-direction” norm relations, we are comparing the images of
two elements of § (AJ%)@’2 ® JH(G(Ay)) which are pure tensors having the same local
components at all primes away from £, and at £ are

11 ®@ch(ne1G(Zy)) and  $o ® ch(G(Zy)).

(The factor £ — 1 arises by comparing the volumes of the subgroups W, and the £ from
the 1/M in the definition of Z[H > r].)

Moreover, the map which we are applying to these elements factors through the Eisen-
stein symbol map Eis‘®?), where (c,d) = (a +¢q + b —r,a — q + r). We first give the
proof assuming ¢, d > 1. In this case the divisor map 9 is injective on the image of the
Eisenstein symbol, so the local version of our map factors through the map

SQD®* > P I1m). ¢ F.

where the sum is over some set of pairs n = (11, 72) of finite-order characters of Q},
and /(n) is an irreducible principal series representation of H(Qg). So it suffices to
check that for any (G x H)(Qg)-equivariant homomorphism 1(n) ® #(G(Qy)) — W,
where W is an irreducible principal series representation of G(Qy), the images of Fy3, | ®
ch(n¢,1G(Zy)) and Fy, ® ch(G(Zy)) in W G20 are related via an Euler factor. Corollary
3.10.5 gives a relation of exactly this form, with %L(WV, —1/2)7! as the correction
factor. If M = 1 and m = 0, applying this with W = HZ‘[WT_3 - q] gives the result,
noting that L(WV,—1/2)"! = L(T1;, 1 + ¢ —w/2)"! = P,(£7179).

To obtain the result in general, we apply this to each of the twists of W by Dirichlet
characters modulo M p™; the twist of course modifies the Euler factor P;, which corre-
sponds to the appearance of oy in the statement of the theorem.

If either ¢ or d (or both) is zero, then the divisor map has a kernel (consisting of
modular units which are constant along one of the factors of Yg). However, the ker-
nel of this map is a sum of non-generic representations of H(Qy), and Lemma 3.7.2

shows that if 7y is any of these representations, then every G x H -equivariant map
T ® H(G(Qyg)) — W is zero. |
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This Euler system norm relation is not terribly useful on its own — we need to combine
it with some uniform control over the denominators of these classes. Let Tf“[/_ denote the
lattice in Wli"[f generated by the image of HJ(Yg,1( Pg .@%’:) under vy. We choose
a pair (c1, c2) of integers > 1 as before, and we impose the additional assumption that
the elements diag(1, c1, 1, c1) and diag(cz, 1, ¢2, 1) € G(Ay) act trivially on the vector vy
(which can be arranged, as usual, by assuming that the ¢; are sufficiently close to 1 modulo
the primes in ).

Definition 10.5.3. For M coprime to cjc;, and m > 0, let us define

ererzapd € HYQupm). T, (=0)

by
1 Up)™ ifm=>1 (a.b.q.7]
vl (prl'l*,va °JMpm) { B i _ ) /Td(cl ey, ql )-
M 1-— WP) ifm=0 N m
From Proposition 8.4.6 (and the interaction between jpp» and the G(Ar) action

described in §5.4), we see that the image of , szglm ") after inverting p is

(012 _ Cl_(a_q+b_r)0c1 )(c% _ cz—(a—q+r)(7 ) Z [T q r]

’

where o; € Gal(Q(¢arpm)/Q) maps to ¢; mod Mp™ under the mod M p™ cyclotomic
character.
Theorem 10.5.4. Suppose M is coprime to cic. Then:

(a) For each integer r with0 < r < b, there is a class
H *
creathnd € Hi(QUup). T )

uniquely determined by the following property: for eachm > 0and q € {0,...,a},
the image of (=2)%¢, el yg in H' (Q(Enpm ). T, (=0)) i5 cr.caZppon”
(b) If£ + Mpcicyand £ ¢ S, then we have the norm relatlon

Q¢errpoo) I, I,
coresQ(fM” (c1.c27 I[W [134) = Pt oy ) g C2ZI[wllr4]

Proof. The image of the class ¢, 62 Z1w,pm under the maps mom[g’f:l’ol’r] form > 0, define a

classin Hi (Yo (M, p™, p)s, 9 (3)) where X is the set of primes dividing MpS. This
class is cohomologically trivial by Corollary 9.6.6. By Theorem 9.6.4, the image of this
class under tensor product with {~¢ and projection to level m agrees, up to an appropriate
correction factor, with the étale class ¢, szgﬂi‘fnﬂl Applying the maps pr(ry« 5,y ©Jmpm
and dividing by M gives an Iwasawa cohomology class with the required properties.

Let us now prove (b). We claim that, for any given ¢, the map

Hy (Q(apm). Ty ) = lim H' (Q(Capm). WH , (=q))
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is injective (i.e. there is no non-zero Iwasawa cohomology class whose image at every
finite level is p-torsion). This is the map denoted by A, in [18, Appendix A]. By Proposi-
tion A.2.6 of op. cit., its kernel is contained in the A (I")-torsion submodule of the Iwasawa
cohomology; and this torsion submodule is in fact zero, by Theorem 10.1.3(5). With this
injectivity in hand, the norm relation (b) follows from the norm relation of Proposition
10.5.2 for the non-integral classes at finite level. ]

We conclude this section with a local property of these Galois cohomology classes.

Proposition 10.5.5. For each prime A t p of Q({ppm), the image of cl,cZZI[MH,;z’r] in

H'(Iy, TI*I/ (—q)) is zero, where I C Gal(@/Q(CMpm )) is any choice of inertia group
at A. For the primes above p, the localisation lies in the Bloch—Kato crystalline subspace

H{QEmpm)a. Ty, (—9))-

Proof. Tt is a standard result that Galois cohomology classes which are universal norms
in the p-cyclotomic extension are always unramified outside the primes above p (see
e.g. [37, Corollary B.3.5]). The fact that our classes satisfy the Bloch—Kato condition at
p is deeper. The comparison between étale cohomology and the syntomic cohomology
of Nekovar—Niziol [27] shows that the localisations lie in the possibly larger Bloch—Kato
space Hg1 2 Hfl. It suffices to check that p~! is not an eigenvalue of crystalline Frobe-
nius on Desis (Wy, (—¢)), since this implies that the H{ and H] spaces coincide. How-
ever, the eigenvalues of Frobenius on this space are exactly the quantities p7a;” 1 where
LIy, s —w/2) = ]_[?:1(1 —a; p~*)~ L. Since the o; are Weil numbers of weight w, the
pla; ! have weight 2¢ — w < —3; so none of these quantities may be equal to p~!, and
H{' and H] coincide for this representation. "

Equivalently, we have shown that

I,q,
ererzhd € HNQupm). T, (=),

where the right-hand side is the global Bloch—Kato Selmer group.

10.6. The Euler-system map

In this short section we give a slicker reinterpretation of the above results. Let L be
a finite extension of @, with ring of integers 9; and X a finite set of primes includ-
ing p. We let R denote the set of square-free products of primes not in X. If T is a finite
free (9-module with a continuous action of Gal(Q*/Q), and £ ¢ X, we let Py(T; X) =
det(1 — X Frob, ' : T).

Definition 10.6.1. For (7, X) as above, we define ES(T, X) to be the set of families of
cohomology classes (car)mem, with cpr € HL (Q(Larpoo), T), satisfying

Q¢ o) —
coresQ(cin (cme) = Po(T*(1):07 Dem

o)

for £ prime with £ } M, £ ¢ 3. We refer to such families as Euler systems for (T, X).
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(In the notation of [37, Definition 2.1.1], these are Euler systems for (7', X, N') where
X is the compositum of the Q({ppoo) for M € R, and N = [[;ex )

Theorem 10.5.4 shows that the classes (01,6221[3;[”1(4]) Mex are an Euler system for
T = Tﬁf, with X the set of primes not dividing pcic,S. This Euler system, of course,
depends on choices of local data at the primes in S, namely the Schwartz function ¢ and
the group Ws = [[,es We C H(Qs). The goal of this section is to make this dependence
precise.

Let KS7 = HUrpS G(Zg) x Kg,,0(p). Then our modular parametrisation vy is an

element of the space
(K5-2.U(p)= oz)

os = T;[*3*]
which is an irreducible representation of G(Q ), isomorphic to IT S[ ] The choice of
subgroups Kg and Wy at the bad primes only affects the construction of the Euler system
through the volume factor Vol(W), so we have in fact defined a canonical bilinear map

26155 1 $(QF. L)% ® 05 — BS(Tf],. %) ®o L.

mapping ¢s ® v to Vol(Ws) - (cl,czzl[\l,;[,}\r/l])Me%

Remark 10.6.2. The map £& ][ES g does still depend on (cy, ¢3). In fact, we assumed

above that the ¢; were close to 1 locally above S — where the meaning of “close” depended
on the local data chosen — but this is not needed in order to define the classes ¢, ¢, ZI[‘? Ar)
or to prove their norm relations, only to state simply their relation to the non- 1ntegra1

classes. <&

Proposition 10.6.3. This map satisfies the equivariance property
L&Y (hp. hv) = Art(deth) ™! - 265 (¢, v)

for all h € H(Qs), where we let Gal(Q™/Q) act on ES(T*/_, X)) via its natural map to
Gal(Q(lmp=)/Q) forall M € R. ’

Proof. This follows from the H(Ar) x G(Ay)-equivariance of the Lemma—Eisenstein
map. L]

Remark 10.6.4. Similarly, mapping ¢ 5 ® v to Vol(Ws) - zk Oq "1 defines an H(Qs)-
invariant bilinear form on §(Q%, L)®2 ® oslg]. If we fix characters vy, vy of Z§ and
restrict to Schwartz functions on which the centre of GL,(Zg) x GL,(Zs) acts via
V1 X vy, then this bilinear form is forced to factor through ts ® os[g] for some irre-
ducible principal series representation tg of H(Qg). Of course, the restriction is zero
unless (vv,)~! coincides with the restriction to Z of the central character of 0.

We expect that dim Homg(q,)(ts ® os[g], L) should have L-dimension < 1. This
follows from the Gan—Gross—Prasad conjecture for SO4 x SOs if vjv; is a square in the
group of characters of Z%, and should probably be true more generally, but we do not
know a reference; let us assume this for the duration of this remark.
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If this dimension is 0, then the cohomology class z%’q’r] is zero for every choice

of the local data in the (vq, v;) eigenspace. If this dimension is 1 — which is the case if
[T, is generic for all £ € S — then the choice of local data only affects this class up to a
scaling factor, which is essentially the local zeta integral of Piatetski-Shapiro appearing
in [22, §5.2]. We expect, but cannot prove, that if there exists a prime £ such that IT
is not generic, then the classes 21[‘2;3”] are zero for all choices of the local data and the
parameters (g, r, M, m). o

11. Selmer groups and p-adic L-functions

We conclude by showing that if the above Euler system is non-zero, it gives bounds on
Selmer groups.

11.1. Assumptions on T1

In this section, IT will denote a non-endoscopic automorphic representation of GSp,,
discrete series at oo of some weight (k;, k), as before. We suppose that p # 2, and fix
an embedding E «— @p, where E is a number field as in Theorem 10.1.3(3). We let L be
a sufficiently large finite extension of QQ,,, with ring of integers @1, and residue field ky ,
such that L contains the image of E and Wﬁ"f is definable over L as a quotient of the

cohomology of Y; .
We also impose the following extra hypotheses:

Assumption 11.1.1 (“no exceptional zero”). None of the roots of the polynomial P, (X)
are of the form p”{ with n € Z and ¢ a root of unity.

Assumption 11.1.2 (“big image”).

(i) The representation Tli‘}f ® ky is irreducible as a k7 [Gal(Q/Q(¢ »oo)]-module.

(ii) There exists 7 € Gal(Q/Q(¢ »o0)) such that Tlf[/_ /(t — 1)Tlf[f is free of rank 1 over O.
(This is precisely Hyp(Koo, T') of [37].)

Assumption 11.1.3 (“Siegel ordinarity”). IT is good ordinary at p in the sense of Defini-
tion 10.4.3.

Remark 11.1.4. Note that the “big image” assumption is clearly satisfied if the image of
Gal(Q/Q) in Aut Wn*f contains a conjugate of Sp4(Z,). This is expected to hold for all
but finitely many p if IT is “sufficiently general” (i.e. not a functorial lift from a proper
subgroup of GSp,). However, the big image assumption is also satisfied in certain other
cases, such as twisted Yoshida lifts of suitable Hilbert modular forms. <o

11.2. Ordinary submodules at p

Recall that the ordinarity property implies that there is a unique reciprocal root & of Py (X)
which is a p-adic unit.
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Proposition 11.2.1 (Urban; [44, Corollaire 1(i)]). The representation Wy />|G@,, has a
1-dimensional unramified subrepresentation on which geometric Frobenius acts as «.

Equivalently, Wﬁ,- has a decreasing filtration by G, -stable subspaces,

Wh, 2 7w, 2 7°Wq, 2{0},

=

with .Z* having codimension i, and the quotient Wi, | F 1 is unramified. We let .#* Ty,
be the intersection of 775 with FIWg .
¥ 1

Proposition 11.2.2. For any 0 < r < b, and any M € R, the image of the element
¢l ,szl[\g{’](,,] in HE,(Qp(Eprpeo), Tﬁ‘/_/ﬁl) is zero.

Proof. From the ordinarity of T1,, it follows that H(Q({apoe), Tlflf/ F1) =0, and
hence the natural map

HL(Qp(@upoe). T, /F) = Tim HL(Qp(Crpm), WE, (—0)/ 7
m
is injective for any integer g. So it suffices to show that the image of Cl,csz[un;Z’r]
in WH*/ (—q)/.F' is zero for all m (for any choice of ¢). However, if g is cho-
sen such that 0 < q < a, then this element lands in the Bloch—Kato subspace
HNQp(Cppm), Wﬁ“/_ (—q)/Z 1), by Proposition 10.5.5; and this subspace is zero, since

Wn*f (—q)/ F! has all Hodge-Tate weights < 0 (and is not the trivial representation). =

Let us write Qoo = Q({poo). We can use the submodule .7 ITITI/ to define Selmer

groups ﬁfw(@oo, Tli"If), via Nekoviaf’s formalism of Selmer complexes [26]; cf. [15,
§11.2]. These are finitely generated A-modules, where A denotes the Iwasawa algebra
O[[l']] of I' = Gal(Qoo /Q) = Z,,. They admit the following somewhat concrete descrip-
tions:

o A (Qeo. Tli"If) =Ounlessi = lori =2.
o A (Qu. Ty ,) is the kernel of the map

Hy, Qoo Tﬁ_,») — Hy, (Qp,c0. Tﬁ_,-/yl)-

e Let Soo denote the set of primes of Qo above S, and A = Tr1, (1) ® Qp/Zp. If we
define S (Qeo, A) to be the p-torsion group
ker( ' (Z[gp. 1/pS). A) > P H' Qoo. A) & H' Qpoo. 4/ 7)),
VESso

then there is an exact sequence
0= $(Qoor 4)Y = H(Qoo. T,) > Hip(Qpooor F' Ty )

where the last module is a finite group (cf. [15, Proposition 11.2.8]).
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Moreover, an Euler characteristic computation (using the fact that complex conju-
gation acts on W, with two +1 eigenvalues and two —1 eigenvalues) shows that

rank o H! —rankp H?=1.

Theorem 11.2.3. Suppose that there exists an r such that | ., ZI[VI} ’lr] is non-torsion. Then

ITII%V (Qoo, Tli“[f) is a torsion A-module, and we have the divisibility of characteristic ideals

_ H]
charp (HZ,) | charp (%) .

* 1,02 20w,1

Proof. This follows by applying the “Euler system machine” to the Euler system

01,6221[\1;{’19. Compare [15, Theorem 11.4.3]. ]
Corollary 11.2.4. Suppose q is an integer > 0, and assume that there isanr € {0,...,b}

such that the cohomology class Z{l})’q’r] e HY(Q, Wﬁ"f (—q)) is non-zero.

e If loc, (zgl})’q’r]) lies in the subspace H (Qp, Wﬁf (—q)), then the Bloch—Kato Selmer

group Hf1 (Q, Wn*f (—q)) has dimension 1 over L, and Zgl})’q’r] is a basis of this space.

o If loc, (z%’q’r]) does not lie in H}(Q,, Wﬁf (=q)), then HX(Q, Wn*f (—q)) is zero.
Note that the second case cannot occur if 0 < g < a, by Proposition 10.5.5.

Proof of Corollary 11.2.4. This follows from the previous theorem by descent; compare
[15, Proposition 11.5.1]. [

11.3. The motivic p-adic L-function

We can also interpret the above results in terms of p-adic L-functions. For simplicity, we
assume that I, is ordinary for the Borel subgroup (not just for the Siegel parabolic) in the
sense of [44]. In this case, Corollary 1 of op. cit. shows that there is a 2-dimensional Gg,, -
stable subspace .%?2 Wn*f, with . #1 2 %2 2 .73, Then the graded piece .7 Wﬁ“f/ﬂ’2
has Hodge-Tate weight a + 1, and Perrin-Riou’s “big logarithm” map gives a canonical
isomorphism

£ Hy(Qpoo, F' Wi,/ F?) = ALD) @ Doi(F' Wy, /- F2).

Composing £ with evaluation at y?, where y is the cyclotomic character, interpolates the
Bloch—Kato logarithm (for ¢ < a) or dual exponential (for ¢ > a + 1) of the image of z
in H'(Qp. 7' W (~q)/ F).

Definition 11.3.1. We let ¢, ., L, (I1f) be the image of ¢, ¢, ZI[\I,;I 1 under the map £.

By choosing a basis of the 1-dimensional L-vector space Ds(:-F an*f /.F?), we

may regard this as an element of Ay, (I'), well-defined up to non-zero scalars. We call this
measure the motivic p-adic L-function.
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Theorem 11.3.2. Leta + 1 < q <a + b + 1, and suppose that ¢, c, Ly (ITy) is non-
vanishing at y? for some r. Then H!(Q, Wli"[/_ (—=9)) = HYQ. W, (1 +¢)) = 0.

Proof. By construction, if the motivic L-function does not vanish, then the image of

617(3221[\)\1:[, lin HY(Q,. 7 1Wl-[*f(—q) /-%?) is non-zero. The hypotheses on ¢ imply that

this subquotient has vanishing H/!, so we conclude that ., ., Zl[\? ’lr] cannot lie in H,! locally

at p. By Corollary 11.2.4 it follows that the global H/' is zero. ]

Remark 11.3.3. Note that a + 1 < g <a + b + 1 is precisely the range such that
L(IT,1 + g —w/2) is a critical value of the spin L-function. We conjecture that, for
an appropriate r and suitably chosen test data ¢, vy, the value at 7 of ¢, ¢, L}';Ot’r(l'[ 7)
should be non-zero if and only if the critical L-value does not vanish. <
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