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Abstract
Let E/Q be a CMelliptic curve and p a prime of good ordinary reduction for E .We show that
if Selp∞(E/Q) has Zp-corank one, then E(Q) has a point of infinite order. The non-torsion
point arises from a Heegner point, and thus ords=1 L(E, s) = 1, yielding a p-converse to
a theorem of Gross–Zagier, Kolyvagin, and Rubin in the spirit of [49, 54]. For p > 3, this
gives a new proof of the main result of [12], which our approach extends to all primes. The
approach generalizes to CM elliptic curves over totally real fields [4].

Résumé
Soit E/Q une courbe elliptique à multiplication complexe et p un nombre premier de bonne
réduction ordinaire pour E . Nous montrons que si corankZpSelp∞(E/Q) = 1, alors E
a un point d’ordre infini. Le point de non-torsion provient d’un point de Heegner, et donc
ords=1L(E, s) = 1, ce qui donne une réciproque à un théorème de Gross–Zagier, Kolyvagin,
et Rubin dans l’esprit de [49, 54]. Pour p > 3, cela donne une nouvelle preuve du résultat
principal de [12], que notre approche étend à tous les nombres premiers. L’approche se
généralise aux courbes elliptiques à multiplication complexe sur les corps totalement réels
[4].
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1 Introduction

Startingwith [49, 54], severalworks have been devoted to p-converses to a celebrated theorem
ofGross–Zagier, Kolyvagin, andRubin: If the p∞-Selmer group Selp∞(E/Q) hasZp-corank
1 for an elliptic curve E/Q, then ords=1L(E, s) = 1. Besides being an evidence for the Birch
andSwinnerton-Dyer conjecture, an important impetus for the p-converse theorems has come
from recent developments in arithmetic statistics. For instance, such p-converse theorems
have led to the proof [10] that a large proportion of elliptic curves overQ—and conditionally,
100% of them—satisfy the Birch and Swinnerton-Dyer conjecture.

The p-converse theorems of [49, 54] are obtained by exhibiting a certain Heegner point
on E with infinite order, and hold for primes p > 3 of good ordinary reduction of E , and
under certain hypotheses that excluded the CM elliptic curves.

Our main result is the following CM p-converse theorem. For primes p > 3, the result
was first proved in [12].

Theorem A Let E/Q be an elliptic curve with complex multiplication by an order of an
imaginary quadratic field K of discriminant −DK < 0. Assume that the Hecke character
associated to E has conductor exactly divisible by dK := (

√−DK). Let p be a prime of good
ordinary reduction for E. Then

corankZpSelp∞(E/Q) = 1 �⇒ ords=1L(E, s) = 1.

In particular, if corankZpSelp∞(E/Q) = 1 then rankZE(Q) = 1 and #W(E/Q) < ∞.

Note that the ‘in particular’ clause in Theorem A follows from combining its conclusion
with the fundamental work of Gross–Zagier, Kolyvagin, and Rubin. In turn, this consequence
yields the following mod p criterion for analytic rank one.

123



p∞-Selmer groups and rational points on CM elliptic curves

Corollary B Let (E,K) be as in Theorem A, and let p be a prime of good ordinary reduction
for E such that:
(i) E(Q)[p] = 0;
(ii) Selp(E/Q) � Z/pZ, where Selp(E/Q) ⊂ H1(Q, E[p]) is the p-Selmer group of E.

Then ords=1L(E, s) = 1 and W(E/Q)[p∞] = 0.

More generally, we prove a p-converse for CM abelian varieties Bλ/K associated with
Hecke characters λ over K of infinity type (−1, 0) (see Theorem 8.2).

Our approach to theCM p-converse differs from [12]. A salient feature is that the approach
generalizes to CM elliptic curves over totally real fields: It sidesteps the inherence of elliptic
units in [12], and leads to the first p-converse theorems over general totally real fields. This
note might thus be viewed as a prelude to [4].

The conductor hypothesis in Theorem A arises from an appeal to [19] which supposes
a classical Heegner hypothesis. This hypothesis may be removed (cf. [3, 4]) via the p-adic
Waldspurger formula of Liu–Zhang–Zhang [34], whose habitat is the general Yuan–Zhang–
Zhang framework [53]. (The hypothesis is not present in [12], thanks to Disegni’s p-adic
Gross–Zagier formula [22], also in the framework of [53].)

Remark C The p-converse as in Theorem A is independently due to Ressler and Yu [47,
52]. Complementing the present note, their approach builds on [12] and does not require the
conductor hypothesis. A key new element in their work is a counterpart of the main results
of Agboola–Howard [1] for small primes.

Remark D A spectacular result of Smith [50] reduces Goldfeld’s conjecture [24] for CM
elliptic curves E/Q with E(Q)[2] � (Z/2Z)2 and admitting no rational cyclic 4-isogeny
to the CM p-converse and its rank zero analogue for the prime p = 2. The unconditional
rank zero CM p-converse is in fact proved in [11, 13]. Unfortunately, Theorem A falls short
of providing the desired rank one CM p-converse: First, E should be allowed to have just
potentially good ordinary reduction at p (this might be approachable by our strategy); the
second—and the main—hindrance is that Q(

√−7) is the only imaginary quadratic field of
class number 1 with 2 split, and incidentally E(Q)[2] � Z/2Z for all elliptic curves E/Q

with CM by Q(
√−7) (see e.g. the table in [38, p. 2]).

The approach Assuming #W(E/Q)[p∞] < ∞ and p � #O×
K, the p-converse as in The-

orem A goes back to Rubin [45, Thm. 4]. Around the same time, Rubin proved a striking
formula [44] which expresses the p-adic formal group logarithm of a point P ∈ E(Q)⊗Z Zp

in terms of the value of a Katz p-adic L-function outside its range of interpolation. Our
approach to TheoremA is inspired by the p-adicWaldspurger formula of Bertolini–Darmon–
Prasanna [7], which is a remarkable generalization of Rubin’s formula, and sheds new light
on [44] (cf. [6]).

Let E/Q be an elliptic curve with CM by an imaginary quadratic field K, and p a prime
of good ordinary reduction. Let λ be the Hecke character over K associated with E so that

L(E, s) = L(λ, s).

In view of a non-vanishing result of Rohrlich [42], we pick a pair (ψ, χ) of Hecke characters
over K with χ of finite order such that

ψχ = λ, L(ψ∗χ, 1) �= 0, (1.1)

where ψ∗ := ψ ◦ c is the composition of ψ with the non-trivial automorphism of K/Q. For
f = θψ the theta series associated toψ , the main result of [7] relates the p-adic formal group
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logarithm of a Heegner point Pψ,χ ∈ Bψ,χ (K) to a value (outside the range of interpolation)
of a p-adic Rankin L-series Lv( f , χ). Here Bψ,χ is a CM abelian variety over K endowed
with aK-rationalmap iλ : Bψ,χ → E . By theGross–Zagier formula [53], Pψ,χ is non-torsion
if and only if L ′( f , χ, 1) �= 0. Setting

PK := iλ(Pψ,χ ) ∈ E(K),

one thus obtains a point on E which, in light of (1.1) and the factorization

L( f , χ, s) = L(λ, s) · L(ψ∗χ, s), (1.2)

is non-torsion if and only if ords=1L(E, s) = 1.
Now, TheoremA is equivalent to: If Selp∞(E/Q) hasZp-corank 1, then PK is non-torsion.

In [12] the non-triviality is shown via the following.

(1) The anticyclotomic Iwasawa main conjecture (IMC) for (Hecke characters over) K in
the root number +1 case [43];

(2) The anticyclotomic IMC for K in the root number −1 case [1, 2];
(3) The non-vanishing of the �-adic regulator appearing in (2) [14];
(4) The �-adic Gross–Zagier formula [22].

Here � denotes the anticyclotomic Iwasawa algebra over K (with certain coefficients).
Bypassing (2), (3), and (4), our approach builds on the explicit reciprocity law [19], which

realizes Lv( f , χ) as the image of a �-adic Heegner class z f ,χ under a Perrin-Riou big
logarithm map. Similarly as in [6], we establish a factorization

Lv(θψ , χ)2
.= Lv(ψ

∗χ∗) · Lv(ψχ∗)

in Sect. 4 relatingLv(θψ , χ)2 to the product of two Katz p-adic L-functions, mirroring (1.2).
Alongwith an analogous decomposition for Selmer groups shown in Sect. 3, the Iwasawa–

Greenberg main conjecture for Lv(θψ , χ)2 is readily seen to be a consequence of the main
results of [31, 43]. Building on the �-adic explicit reciprocity law, in Sect. 5 we prove
the equivalence between the main conjecture for the p-adic L-function Lv(θψ , χ)2 and a
different main conjecture formulated in terms of the zeta element z f ,χ . Finally, the latter
yields the implication

corankZpSelp∞(E/Q) = 1 �⇒ PK �= 0 ∈ E(K) ⊗Z Q

via a variant of Mazur’s control theorem.
Dedication The p-converse for CM elliptic curves E/Q is due to Rubin if #W(E/Q)[p∞] <

∞. The essence of our removal of this hypothesis is Iwasawa theory of Heegner points,
as pioneered by Perrin-Riou [40]. The theory of big logarithm maps [41], another major
contribution of Perrin-Riou, is also elemental to our approach. It is a great pleasure to dedicate
this note to Bernadette Perrin-Riou as a humble gift on the occasion of her 65th birthday.

2 Preliminaries

Fix throughout a prime p, an algebraic closure Q of Q, and embeddings C
ı∞←↩ Q

ı p
↪→ Cp .

Fix also an imaginary quadratic field K of discriminant −DK < 0 and ring of integers OK.
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2.1 CM abelian varieties

We say that a Hecke character ψ : K×\A×
K → C× has infinity type (a, b) ∈ Z2 if, writing

ψ = (ψv)v with v running over the places of K, the component ψ∞ satisfies ψ∞(z) = za z̄b

for all z ∈ (K ⊗Q R)× � C×, where the identification is made via ı∞. Hence in particular
the norm character NK, given by q �→ #(OK/q) on ideals ofOK, has infinity type (−1,−1).
The central character of such ψ is the character ωψ on A× defined by

ψ |A× = ωψ · N−(a+b),

where N is the norm on A×.
Our fixed embedding ı p defines a natural map σ : K ⊗Q Qp → Cp , and we let σ :

K ⊗Q Qp → Cp be the composition of σ with the non-trivial automorphism of K. The p-
adic avatar of aHecke characterψ of infinity type (a, b) is the character ψ̂ : K×\A×

K,f → C×
p

given by

ψ̂(x) = ı p ◦ ı−1∞ (ψ(x))σ (xp)
aσ(xp)

b

for all x ∈ A×
K,f , where xp ∈ (K ⊗ Qp)

× is the p-component of x .
Throughout the following, we shall often omit the notational distinction between an alge-

braic Hecke character and its p-adic avatar, as it will be clear from the context which one is
meant.

Let ψ be an algebraic Hecke character ofK infinity type (−1, 0) with values in a number
field Fψ ⊂ Q with ring of integer Oψ . Let P be the prime of Fψ above p induced by ı p ,
and denote by �ψ the completion of Fψ at P and by Oψ the ring of integers of �ψ . By
a well-known theorem of Casselman’s (see [6, Thm. 2.5] and the reference [48, Thm. 6]
therein), attached to ψ there is a CM abelian variety Bψ/K, unique up to isogeny over K,
with the property that

VPBψ � ψ̂−1

as one-dimensional �ψ -representations of GK, where VPBψ = (
lim←− Bψ [P j ]) ⊗Oψ �ψ is

the rational P-adic Tate module of Bψ .

2.2 Heegner points

Let f ∈ S2(�1(N )) be a normalized eigenform of weight 2, level N prime to p, and neben-
typus ε f . We assume that K satisfies the Heegner hypothesis relative to N :

there is an idealN ⊂ OK withOK/N � Z/NZ, (Heeg)

and fix once and for all an idealN as above. We assume also that

pOK = vv splits inK, (spl)

with v the prime of K above p induced by our fixed embedding ı p . Let F ⊂ Q be the
number field generated by the Fourier coefficients of f . Denote byP the prime of F above p
induced by ı p , and assume that f isP-ordinary, i.e. vP(ap( f )) = 0, where vP is theP-adic
valuation on F .

Let A f /Q be the abelian variety of GL2-type associated to f , determined up to isogeny
over Q by the equality of L-functions

L(A f , s) =
∏

τ :F↪→C

L( f τ , s),
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where f τ runs over all the conjugates of f . Denote by � the completion of F at P, and let
O be the ring of integers of �. Let TPA f := lim←− A f [P j ] be theP-adic Tate module of A f ,
which is free of rank two over O .

For every positive integer c, let Kc be the ring class field of K of conductor c, so
Gal(Kc/K) � Pic(Oc) by class field theory, where Oc = Z + cOK is the order of K of
conductor c. For every c > 0 prime to N and every ideal a ofOc, we consider the CM point
xa ∈ X1(N )(K̃c) constructed in [19, §2.3], where K̃c is the compositum of Kc and the ray
class field of K of conductor N. Let �a be the class of the degree 0 divisor (xa) − (∞) in
J1(N ) = Jac(X1(N )), and denote by za = δ(�a) its image under the Kummer map

δ : J1(N )(K̃c) → H1(K̃c, Tp J1(N )).

Fix a parametrization π : J1(N ) → A f , and let y f ,a ∈ H1(K̃c, TPA f ) be the image of
ya under the natural projection

H1(K̃c, Tp J1(N ))
π∗−→ H1(K̃c, Tp A f ) → H1(K̃c, TPA f ).

For the ease of notation, we set y f ,c = y f ,a for a = Oc. A standard calculation shows
that if p � c, then for every n > 0 we have

CorK̃cpn /K̃cpn−1
(y f ,cpn ) =

{
ap( f ) · y f ,cpn−1 − ε f (p) · y f ,cpn−2 if n > 1,

u−1
c

(
ap( f ) − σv − σv

) · y f ,c if n = 1,
(2.1)

where uc := [O×
c : O×

cp] and σv, σv ∈ Gal(K̃c/K) are Frobenius elements at the primes of
K above p (see [19, Prop. 4.4]).

Let α be the P-adic unit root of x2 − ap( f )x + ε f (p)p, and for any positive integer c
prime to N define the α-stabilized Heegner class y f ,c,α by

y f ,c,α :=
{
y f ,c − ε f (p)α−1 · y f ,c/p if p | c,
u−1
c

(
1 − σvα

−1 − σvα
−1

) · y f ,c if p � c.

This definition is motivated by the following result.

Lemma 2.1 For all positive integers c prime to N , we have

CorK̃cp/K̃c
(y f ,cp,α) = α · y f ,c,α.

Proof This follows immediately from (2.1). ��

2.3 Heegner point main conjecture

Fix a positive integer c prime to Np, and put K̃cp∞ = ⋃
m≥0 K̃cpm . The Galois group

Gc = Gal(K̃cp∞/K) decomposes as

Gc � �c × �,

where � is the maximal torsion-free quotient of Gc, giving the Galois group of the anticyclo-
tomic Zp-extension K∞/K, and �c is a finite abelian group.

Let χ be a finite order Hecke character of K with χ |A× = ε−1
f and of conductor dividing

cN. Upon enlarging F is necessary, assume that � contains the values of χ . For each n, take
m � 0 so that K̃cpm ⊃ Kn , and set
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z f ,χ,n := α−m
∑

σ∈Gal(K̃cpm /Kn)

χ(σ ) · yσ
f ,cpm ,α. (2.2)

In view of Lemma 2.1, the definition of z f ,χ,n does not depend on the choice ofm. Moreover,
letting A f ,χ be the Serre tensor A f ⊗ χ , we see that z f ,χ,n defines a class

z f ,χ,n ∈ H1(Kn, TPA f ,χ ).

Let

�0 = O���, � = �0 ⊗O � (2.3)

be the anticyclotomic Iwasawa algebras. From their construction, the classes z f ,χ,n are
contained in the pro-P Selmer group SP(A f ,χ /Kn) ⊂ H1(Kn, TPA f ,χ ), and by Lemma 2.1
they are norm-compatible, hence defining a class z f ,χ = {z f ,χ,n}n in the compact �0-adic
Selmer group

S (A f ,χ /K∞) := lim←−
n

SP(A f ,χ /Kn).

On the other hand set,

X (A f ,χ /K∞) := HomZp

(
lim−→
n

SelP∞(A f ,χ /Kn),�/O

)
,

where SelP∞(A f ,χ /Kn) ⊂ H1(Kn, A f ,χ [P∞]) is theP∞-Selmer groups of A f ,χ . Set also

S(A f ,χ /K∞) = S (A f ,χ /K∞) ⊗O �, X(A f ,χ /K∞) = X (A f ,χ /K∞) ⊗O �,

which are finitely generated �-modules.
The following conjecture in a natural extension of Perrin-Riou’s Heegner point main

conjecture [40, Conj. B].

Conjecture 2.2 The modules S(A f ,χ /K∞) and X(A f ,χ /K∞) have both �-rank one, and

char�(X(A f ,χ /K∞)�-tors) = char�
(S(A f ,χ /K∞)/� · z f ,χ

)2
,

where the subscript �-tors denotes the maximal �-torsion submodule.

In [12] a conjecture similar to Conjecture 2.2 is formulated in terms of a �-adic Heegner
class deduced from work of Disegni [22] (see [12, Conj. 2.2]). Similarly as in [12],1 our
proof of Theorem A is based on a study of Conjecture 2.2. The novelty in our approach is in
the proof of cases of this conjecture.

3 Selmer groups

In this section we introduce the different Selmer groups entering in our arguments. In partic-
ular, the decomposition in Proposition 3.4 will play a key role.

1 As well as in other results on the p-converse theorem in rank 1 without a finiteness condition on the
Tate–Shafarevich group that appeared after [49]: [18, 21, 51], etc.
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3.1 Selmer groups of certain Rankin–Selberg convolutions

As in Sect. 2.2, let f ∈ S2(�1(N )) be aP-ordinary newform with nebentypus ε f , and let K
be an imaginary quadratic field satisfying (Heeg) and (spl).

Let c > 0 be a positive integer prime to N . Similarly as in [6, Def. 3.10], we say that a
Hecke character ξ of infinity type (2 + j,− j), with j ∈ Z, has finite type (c,N, ε f ) if it
satisfies:

(a) ωξ · ε f = 1, where ωξ is the central character of ξ ;
(b) fξ = c ·N′, whereN′ is the unique divisor ofN with norm equal to the conductor of ε f ;
(c) the local sign εq( f , ξ) is +1 for all finite primes q .

Condition (a) implies that the Rankin–Selberg L-function L( f , ξ, s) is self-dual, with
s = 0 as the central critical point, and by (c) the sign in the functional equation is +1 (resp.
−1) when j ≥ 0 (resp. j < 0). Denote by �cc(c,N, ε f ) the set of such characters ξ , and
put

�(1)
cc (c,N, ε f ) = {

ξ ∈ �cc(c,N, ε f ) | j < 0
}
,

�(2)
cc (c,N, ε f ) = {

ξ ∈ �cc(c,N, ε f ) | j ≥ 0
}
.

Denote by ρ f : GQ → Aut�(V f ) the P-adic Galois representation associated to f , so
that

Vf (1) � � ⊗O TPA f .

Let χ be a finite order character of K such that χN−1
K ∈ �

(1)
cc (c,N, ε f ), and consider the

conjugate self-dual GK-representation

V f ,χ := Vf (1)|GK ⊗ χ. (3.1)

For any �0-module M , let M∨ = Homcts(M, Qp/Zp) be the Pontryagin dual. Fix a
GK-stable lattice T f ,χ ⊂ V f ,χ , and define the GK-module

W f ,χ := T f ,χ ⊗O �∨
0 , (3.2)

where the tensor product is endowed with the diagonal Galois action, with GK acting on �∨
0

via the inverse of the tautological character � : GK � Gal(K∞/K) ↪→ �×
0 .

Definition 3.1 Fix a finite set � of places of K containing ∞ and the primes dividing Np,
and denote by K� the maximal extension of K unramified outside �. The Selmer group
Sv(W f ,χ ) is defined by

Sv(W f ,χ ) := ker

{
H1(K�/K,W f ,χ ) → H1(Kv,W f ,χ ) ×

∏

w∈�,w�p

H1(Kw,W f ,χ )

}
.

We also set

Xv( f , χ) := Homcts(Sv(W f ,χ ), Qp/Zp) ⊗O �,

which is independent of the lattice T f ,χ .

Note that Xv( f , χ) and the Selmer group X(A f ,χ /K∞) defined in Sect. 2.3 differ only
in their defining local conditions at the primes above p. More precisely, byP-ordinarity, for
every prime w of K above p there is a GKw -module exact sequence

0 → F+
w T f ,χ → T f ,χ → F−

w T f ,χ → 0 (3.3)
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with F±
w T f ,χ free of rank one over O , and the quotient F−

w T f ,χ affording an unramified
action of GKw . Put

F±
w W f ,χ = F∓

w T f ,χ ,⊗O�∨
0 .

Then the Selmer group Sord(W f ,χ ) defined by

Sord(W f ,χ ) : = ker

{
H1(K�/K,W f ,χ ) →

∏

w|p
H1(Kw,F−

w W f ,χ )

×
∏

w∈�,w�p

H1(Kw,W f ,χ )

}
(3.4)

satisfies

Sord(W f ,χ ) ⊗O � �
(
lim−→
n

SelP∞(A f ,χ /Kn)

)
⊗O �,

and so

Xord( f , χ) := Homcts(Sord(W f ,χ ), Qp/Zp) ⊗O � � X(A f ,χ /K∞). (3.5)

Letting T f ,χ := T f ,χ ⊗O �0 with GK-action via ρ f ⊗ �, and defining Šord(T f ,χ ) ⊂
H1(K�/K,T f ,χ ) in the same manner as in (3.4), we similarly have

Sord( f , χ) := Šord(T f ,χ ) ⊗O � � S(A f ,χ /K∞) (3.6)

(see e.g. [17, §4]).

3.2 Selmer groups of characters

We keep the hypothesis that the imaginary quadratic field K satisfies (spl), and let ξ be a
Hecke character of K of conductor fξ . Let F be a number field containing the values of ξ .
Let � be the completion of F at the prime P of F above p induced by ı p , and let O be the
ring of integers of �. Denote by Tξ the free O-module of rank one on which GK acts via
ξ̂−1, and consider the GK-module

Wξ := Tξ ⊗O �∨
0 ,

where as before the Galois action on �∨
0 is given by the character �−1.

Definition 3.2 Let � be a finite set of places of K containing ∞ and the primes dividing p
or fξ . The Selmer group Sv(Wξ ) is defined by

Xv(Wξ ) := ker

{
H1(K�/K,Wξ ) → H1(Kv,Wξ ) ×

∏

w∈�,w�p

H1(Kw,Wξ )

}
.

We also set Xv(ξ) = Xv(Wξ ) ⊗O �.

Remark 3.3 Suppose ξ has infinity type (−1, 0), and denote by ξ∗ the composition of ξ with
the non-trivial automorphism of K/Q, so ξ∗ has infinity type (0,−1). Then from e.g. [1,
§1.1] we see that Xv(ξ) corresponds to the Bloch–Kato Selmer group of ξ over K∞/K,
whereas Xv(ξ

∗) corresponds to the Selmer group obtained by reversing the local conditions
at the primes above p in the corresponding Bloch–Kato Selmer group of ξ∗.
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3.3 Decomposition

We now specialize the set-up in Sect. 3.1 to the case where f = θψ is the theta series of
a Hecke character ψ of K of infinity type (−1, 0). Then f has level N = DK · N(fψ) and
nebentypus ε f = ηK · ωψ , where ηK is the quadratic character associated to K/Q.

One easily checks (see [6, Lem. 3.14]) that if fψ is a cyclic ideal of norm N(fψ) prime to
DK, then K satisfies the Heegner hypothesis (Heeg) relative to N , and one may take

N = dK · fψ, where dK := (
√−DK). (3.7)

In the following, we assume that fψ satisfies the above condition, and take N as in (3.7).

Fix an integer c > 0 prime to Np, and let χ be a finite order character such that χN−1
K ∈

�
(1)
cc (c,N, ε f ).
The following decomposition will play an important role later.

Proposition 3.4 Let ψ and χ be as above. There is a �-module isomorphism

Xv(θψ, χ) � Xv(ψ
∗χ∗) ⊕ Xv(ψχ∗).

Proof Put f = θψ , and note that there is a GK-module decomposition

V f ,χ � Vψ∗χ∗ ⊕ Vψχ∗ . (3.8)

Since the module Xv( f , χ) ⊂ H1(K�/K,W f ,χ ) ⊗O � does not depend on the lattice
T f ,χ ⊂ V f ,χ chosen to defineW f ,χ , by (3.8) we may assume that T f ,χ � Tψ∗χ∗ ⊕ Tψχ∗ as
GK-modules, and so

W f ,χ � Wψ∗χ∗ ⊕ Wψχ∗

as GK-modules. The result thus follows immediately by comparing the defining local con-
ditions of the three Selmer groups involved at all places. ��

4 p-Adic L-functions

In this section we introduce the two p-adic L-functions needed for our arguments, and prove
Proposition 4.5 relating the two.

4.1 The BDP p-adic L-function

Let f = ∑∞
n=1 an( f )q

n ∈ S2(�1(N )) be an eigenform with p � N and nebentypus ε f , let
K be an imaginary quadratic field satisfying (Heeg) and (spl), and fix an idealN ⊂ OK with
cyclic quotient of order N . Let c be a positive integer prime to Np, and let χ be a finite order
Hecke character of K such that χN−1

K ∈ �
(1)
cc (c,N, ε f ).

Let F be a number field containing K, the Fourier coefficients of f , and the values of
χ , and let � be the completion of F at the prime of F above p induced by ı p , with ring of
integers O . Let �0 and � be the anticyclotomic Iwasawa algebras as in (2.3), and set

�ur
0 := �0⊗̂ZpZ

ur
p � Our���, �ur := �ur

0 ⊗O �,

where Zur
p is the completion of the ring of integers of the maximal unramified extension of

Qp .
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The p-adic L-function in the next theorem was first constructed in [7] as a continuous
function on characters of �. Its realization as a measure in�ur

0 was given in [19] following an
approach introduced in [9]. As it will suffice for our purposes, we describe below a multiple
of that p-adic L-function by an element in �×.

As in [19, §2.3], define ϑ ∈ K by

ϑ := D′ + √−DK
2

, where D′ =
{
DK if 2 � DK,

DK/2 else,

and let �p and �K be CM periods attached to K as in [op.cit., §2.5].

Theorem 4.1 There exists an element Lv( f , χ) ∈ �ur such that for every character ξ of
� crystalline at both v and v̄ and corresponding to a Hecke character of K of infinity type
(n,−n) with n ∈ Z≥1, we have

Lv( f , χ)2(ξ) = �4n
p

�4n
K

· �(n)�(n + 1)ξ(N−1)

4(2π)2n+1(Im ϑ)2n−1 · (
1 − ap( f )χξ(v)p−1

+ε f (p)χξ(v)2 p−1)2 · L( f , χξ, 1).

Proof Let η be an anticyclotomic Hecke character ofK of infinity type (1,−1) and conductor
dividing cOK, and define Lv,η( f , χ) ∈ �ur

0 by

Lv,η( f , χ)(φ) =
∑

[a]∈Pic(Oc)

ηχ(a)N(a)−1
∫

Z
×
p

ηv(φ|[a]) dμ
f �
a

for all continuous characters φ : � → Q
×
p , where:

• f � = ∑
p�n an( f )q

n is the p-depletion of f ,
• μ

f �
a
is themeasure onZ×

p corresponding (under the Amice transform) to the power series

f �(tN(a)c
√−DK

−1

a ) ∈ Our�ta − 1�

with ta the Serre–Tate coordinate of the reduction of the point xa on the Igusa tower of
tame level N constructed in [19, (2.5)],

• ηv(x) := η(recv(x)) with recv : Q×
p = K×

v → Gab
K � � the local reciprocity map at v,

• φ|[a] : Z×
p → Q

×
p is defined by (φ|[a])(x) = φ(recv(x)σ−1

a ) with σa the Artin symbol
of a.

The same calculation as in [19, Prop. 3.8] then shows that the element Lv( f , χ) ∈ �ur

defined by

Lv( f , χ)(ξ) := Lv,η( f , χ)(η−1ξ)

has, in view of the explicit Waldspurger formula in [29, Thm. 3.14], the stated interpolation
property up to fixed element in �×. The result follows. ��
Remark 4.2 We our later use, we note that the complex period �K ∈ C× in Theorem 4.1
(which also agrees with that in [7, (5.1.16)]) is different from the complex period �∞ ∈ C×
defined in [23, p. 66] and [30, (4.4b)]. In fact, one has

�∞ = 2π i · �K.
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In terms of �∞, the interpolation formula in Theorem 7.1 reads

Lv( f , χ)2(ξ) = �4n
p

�4n∞
· �(n)�(n + 1)ξ(N−1)

4(2π)1−2n(Im ϑ)2n−1 · (
1 − ap( f )χξ(v)p−1

+ε f (p)χξ(v)2 p−1)2 · L( f , χξ, 1).

Specialized to the range of critical values for the representation V f ,χ , the Iwasawa–
Greenberg main conjecture [26] predicts the following.

Conjecture 4.3 The module Xv( f , χ) is �-torsion, and

char�(Xv( f , χ)) = (Lv( f , χ)2).

In Theorem 5.2, we will explain the close link between Conjectures 2.2 and 4.3.

4.2 Katz p-adic L-functions

We continue to assume that K satisfies (spl). Let c ⊂ OK be an ideal prime to p, and let
K(cp∞) be the ray class field of K of conductor cp∞.

We say that a Hecke character φ of K is self-dual if it satisfies

φφ∗ = NK.

Note that the infinity type of such φ is necessarily of the form (−1+ j,− j) for some j ∈ Z.
The p-adic L-function in the next theorem follows from thework of Katz [32], as extended

byHida–Tilouine [30] (see also [23]). Herewe shall use the construction in [28], and similarly
as in Theorem 4.1, it will suffice for our purposes to describe a fixed �×-multiple of the
integral measure constructed in op.cit..

For any Hecke character ξ ofK, we denote by Lc(ξ, s) the Hecke L-function L(ξ, s)with
the Euler factors at the primes l|c removed.

Theorem 4.4 Let φ be a character of Gal(K(cp∞)/K) corresponding to a self-dual Hecke
character of infinity type (−1+ j,− j), with j ∈ Z≥0. Then there exists an elementLv(φ) ∈
�ur such that for every character ξ of � crystalline at both v and v̄ and corresponding to a
Hecke character of infinity type (n,−n) with n ≥ j , we have

Lv(φ)(ξ) = �
2n−2 j+1
p

�
2n−2 j+1∞

· �(n + 1 − j) · (2π)n− j

(Im ϑ)n− j
· (1 − φ−1ξ(v))2 · Lc(φ

−1ξ, 0).

Proof Let Lv be the integral p-adic measure on Gal(K(cp∞)/K) constructed in [28, §4.8],
so for every character χ of Gal(K(cp∞)/K) corresponding to a Hecke character of K of
infinity type (k + �,−�) with k > � ≥ 0 we have

Lv(χ) = �k+2�
p

�k+2�∞
· �(k + �) · (2π)�

(Im ϑ)�
· (1 − χ−1(v)p−1)(1 − χ(v̄)) · Lc(χ, 0).

Setting

Lv(φ)(ξ) := Lv(φ
−1 · π∗ξ)

for all characters ξ of �, where π∗ξ is the pullback of ξ under the projection π :
Gal(K(cp∞)/K) → �, the result follows immediately from [28, Prop. 4.9], noting that
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the condition n ≥ j assures that the infinity type of φ−1ξ , namely (1 + n − j, j − n), is of
the form (1 + �,−�) with � ≥ 0, and the p-adic multiplier that appears is

(1 − φξ−1(v)p−1)(1 − φ−1ξ(v̄)) = (1 − φ−1ξ(v̄))2,

since φ is self-dual and ξ is anticyclotomic. ��

4.3 Factorization

As in Sect. 3.3, we now specialize to the case where f = θψ for a Hecke character ψ of K
of infinity type (−1, 0) and conductor fψ with cyclic quotient of norm prime to DK, so that
K satisfies hypothesis (Heeg) relative to N = DK · N(fψ).

Fix an integer c > 0 prime to Np, and let χ be a finite order Hecke character of K such
that χN−1

K ∈ �
(1)
cc (c,N, ε f ). Then we have a GK-module decomposition

V f ,χ � Vψ∗χ∗ ⊕ Vψχ∗ , (4.1)

where V f ,χ is as in (3.1). Note that each of the characters ψχ and ψ∗χ are self-dual (see [6,
Rem. 3.7]).

For the rest of this paper, we shall writeLv(φ) for the p-adic L-function in Theorem 4.4
constructed with the auxiliary tame conductor c = cN used in the proof.

The following result is a manifestation of the Artin formalism arising from the decompo-
sition (4.1). A similar result in shown in [6, Thm. 3.17]. As we shall see in Sect. 7, this is a
counterpart on the analytic side of the Selmer group decomposition in Proposition 3.4.

Proposition 4.5 Suppose that f = θψ and χ are as above. Then

Lv( f , χ)2 = u · Lv(ψ
∗χ∗) · Lv(ψχ∗),

where u is a unit in (�ur)×.

Proof This will follow by comparing the values interpolated by each side of the desired
equality, using that an element in �ur is uniquely determined by its values at infinitely many
characters.

Let ξ be a character of � of infinity type (n,−n) with n ∈ Z≥1 as in the statement of
Theorem 4.1. The decomposition (4.1) yields

L( f , χξ, 1) = L(ψχξN−1
K , 0) · L(ψ∗χξN−1

K , 0)

= L((ψ∗χ∗)−1ξ, 0) · L((ψχ∗)−1ξ, 0), (4.2)

using that ψχ and ψ∗χ are self-dual. The factors in (4.2) are interpolated byLv(ψ
∗χ∗)(ξ)

and Lv(ψχ∗)(ξ), respectively. Noting that

(1 − (ψ∗χ∗)−1ξ(v)) · (1 − (ψχ∗)−1ξ(v)) = (
1 − ap( f )χξ(v)p−1 + ε f (p)χξ(v)2 p−1),

in light of Theorem 4.4 for Lv(ψ
∗χ∗) and Lv(ψχ∗) (with j = 1 and j = 0, respectively),

we thus find

Lv(ψχ)(ξ) · Lv(ψ
∗χ)(ξ) = �2n−1

p

�2n−1∞
· �2n+1

p

�2n+1∞
· �(n)�(n + 1) · (2π)n−1

(Im ϑ)n−1 · (2π)n

(Im ϑ)n

× (
1 − ap( f )χξ(v)p−1 + ε f (p)χξ(v)2 p−1)2 · L( f , χξ, 1).

The result now follows from Theorem 4.1 and Remark 4.2. ��
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Remark 4.6 Note that the trivial character is in the range of interpolation for Lv(ψχ∗), but
lies outside the range of interpolation for both Lv(ψ

∗χ∗) and Lv( f , χ).

5 Explicit reciprocity law

In this section we explain a variant of the explicit reciprocity law proved in [19] relating the
�-adicHeegner class z f ,χ to the p-adic L-functionLv( f , χ) via a Perrin-Riou big logarithm
map, and record a key consequence. We let f = θψ and χ be as in Sect. 3.3.

For every w|p, the natural map H1(Kw,F+
w T f ,χ ) → H1(Kw,T f ,χ ) induced by (3.3) is

injective, since its kernel is H0(Kw,F−
w T f ,χ ) = 0. Therefore, in view of (3.6) the image of

z f ,χ under the restriction map

locw : H1(K,T f ,χ ) → H1(Kw,T f ,χ )

is naturally contained in H1(Kw,F+
w T f ,χ ). Let �ur the compositum of � and Qur

p .

Theorem 5.1 There is a �ur-linear isomorphism Logv : H1(Kv,F
+
v T f ,χ ) ⊗ �ur → �ur

such that

Logv

(
locv(z f ,χ )

) = c · Lv( f , χ)

for some c ∈ (�ur)×.

Proof The existence of the map Logv (with coefficients in �ur
0 , rather than �ur) follows

from the two-variable extension by Loeffler–Zerbes [33] of Perrin-Riou’s big logarithm map
[41], and the proof of the explicit reciprocity law (integrally) is given in [19, §5.3]. That
the �ur-linear map Logv is injective follows from [33, Prop. 4.11], and so it becomes an
isomorphism after extending scalars to �ur = �ur

0 ⊗O �. ��
Similarly as observed in [15, 51], the equivalence between Conjectures 2.2 and 4.3 can

be deduced from Theorem 5.1 using Poitou–Tate global duality.

Theorem 5.2 Assume that the class z f ,χ is not�-torsion. Then the following are equivalent:
(a) rank�Sord( f , χ) = rank�Xord( f , χ) = 1,
(a’) Xv( f , χ) is �-torsion;
and the following are equivalent:
(b) char�

(Xord( f , χ)�-tors
) ⊂ char�

(Sord( f , χ)/� · z f ,χ
)2

,

(b’) char�
(Xv( f , χ)

) ⊂ (
Lv( f , χ)2

)
,

and similarly for the opposite divisibilities. In particular, Conjectures 2.2 and 4.3 are equiv-
alent.

Remark 5.3 Note that for the last claim in the theorem we are using the isomorphisms (3.5)
and (3.6).

Proof of Theorem 5.2 This can be extracted from the arguments in [16, App. A], but since our
setting is slightly different (in particular, E(K )[p] is reducible) we provide the necessary
details for the convenience of the reader. We explain the implications (a) ⇒ (a′) and (b′) ⇒
(b) (the only implication we will need later), and note that the other implication follows from
the same ideas.
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Following [16, §2.1], below we denote by Sstr,rel( f , χ) (resp. Sord,rel( f , χ), etc.) the
Selmer group defined as in Sect. 3.1 but with the strict at v and relaxed at v (resp. ordinary
at v and relaxed at v, etc.) local conditions, so in particular Sord,ord( f , χ) = Sord( f , χ) by
definition.

Assume (a), and consider the exact sequence from global duality

0 → Sstr,ord( f , χ) → Sord( f , χ)
locv−−→ H1(Kv,F

+
v T f ,χ ) → Xrel,ord( f , χ)

→ Xord( f , χ) → 0. (5.1)

Since z f ,χ is not �-torsion by hypothesis, by Theorem 5.1 it follows from (5.4) that
Xrel,ord( f , χ) has �-rank one and Sstr,ord( f , χ) is �-torsion. Since

rank�Xrel,ord( f , χ) = 1 + rank�Xord,str( f , χ)

(cf. [16, Lem. 2.3]), we conclude thatXord,str( f , χ) is�-torsion, and from the exact sequence

0 → Sstr,rel( f , χ) → Sord,rel( f , χ)
locv−−→ H1(Kv,F

+
v T f ,χ ) → Xrel,str( f , χ)

→ Xord,str( f , χ) → 0 (5.2)

we conclude that Xrel,str( f , χ) = Xv( f , χ) is �-torsion, i.e., (a’) holds.
Now, in addition to (a), assume (b’). Then Sstr,rel( f , χ) is�-torsion (since so isXv( f , χ),

as we just showed), and since H1(K�/K ,T f ,χ ) is �-torsion free as a consequence of (3.8)
and [1, Prop. 1.1.6], it follows that in fact

Sstr,rel( f , χ) = 0. (5.3)

Thus (5.2) reduces to the exact sequence

0 → Sord,rel( f , χ)
locv−−→ H1(Kv,F

+
v T f ,χ ) → Xv( f , χ) → Xord,str( f , χ) → 0. (5.4)

SinceH1(Kv,F
+
v T f ,χ )has�-rankone, the assumption that z f ,χ is not�-torsion together

with Theorem 5.1 implies that Sord,rel( f , χ) has �-rank one. Since z f ,χ ∈ Sord( f , χ) ⊂
Sord,rel( f , χ), it follows that Sord( f , χ) also has �-rank one, and by [16, Lem. 2.3(1)] so
does Xord( f , χ).

Hence the quotient Sord,rel( f , χ)/Sord( f , χ) is �-torsion, and since it injects in
H1(Kv,F

−
v T f ,χ )which is�-torsion-free, this shows the equalitySord( f , χ) = Sord,rel( f , χ).

Therefore the first two terms in the exact sequence (5.4) agree with the first two terms in the
exact sequence

0 → Sord( f , χ)
locv−−→ H1(Kv,F

+
v T f ,χ ) → Xrel,ord( f , χ) → Xord( f , χ) → 0 (5.5)

(note that Sstr,ord( f , χ) as a consequence of (5.3)), and this yields

0 → Sord( f , χ)

� · z f ,χ

locv−−→ H1(Kv,F
+
v T f ,χ )

� · locv(z f ,χ )
→ coker(locv) → 0.

In view of Theorem 5.1, it follows that

char�

(Sord( f , χ)

� · z f ,χ

)
· char�

(
coker(locv)

)
�ur = (Lv( f , χ)). (5.6)

Next, from (5.4) and (5.5) we can extract the short exact sequences

0 → coker(locv) → Xv( f , χ) → Xord,str( f , χ) → 0,

0 → coker(locv) → Xrel,ord( f , χ) → Xord( f , χ) → 0,
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from which we readily obtain (taking �-torsion in the first exact sequence and using a
straightforward variant of [16, Lem. 2.3]) the relations

char�
(Xv( f , χ)

) = char�
(Xord,str( f , χ)

) · char�
(
coker(locv)

)

= char�
(Xrel,ord( f , χ)�-tors

) · char�
(
coker(locv)

)

= char�
(Xord( f , χ)�-tors

) · char�(coker(locv))
2.

Combined with (5.6), we thus obtain

char�
(Xv( f , χ)

) · char�
(Sord( f , χ)

� · z f ,χ

)2

�ur = char�
(Xord( f , χ)�-tors

) · (
Lv( f , χ)2

)
.

The result follows. ��

6 Twisted anticyclotomic main conjectures forK
Let K be an imaginary quadratic field satisfying (spl). The Iwasawa main conjecture for K
was proved byRubin [43] under some restrictions on p (including p � O×

K) that were removed
in subsequent work by Johnson-Leung–Kings [31] and Oukhaba–Viguié [39]. In this section
we record a consequence of these results for the anticyclotomic Zp-extension.

Note that if ξ is a self-dual Hecke character in the sense of Sect. 4.2, then the Hecke
L-function L(ξ−1, s) is self-dual, with a functional equation relating its values at s and −s.
In the following, by the sign of ξ we refer to the sign appearing in the functional equation
for L(ξ−1, s).

Theorem 6.1 Let ψ be a Hecke character of K of infinity type (−1, 0), and let χ be a finite
order of character of such that the product ψχ is self-dual. Assume that ψ∗χ has sign +1.
Then:
(i) Xv(ψχ∗) is �-torsion and the following equality holds:

char�
(Xv(ψχ∗)

) = (
Lv(ψχ∗)

)
.

(ii) The following divisibility holds:
char�

(Xv(ψ
∗χ∗)

) ⊂ (
Lv(ψ

∗χ∗)
)
.

Proof As noted in Remark 3.3, the Iwasawa module Xv(ψχ∗) recovers the Bloch–Kato
Selmer group for ψχ∗ over the anticyclotomic Zp-extension K∞/K, and so the result of
part (i) follows from [1, Thm. 2.4.17], as extended in [2, Thm. 3.9]. (In these references,
the hypothesis p > 3 arises from their appearance in [43], but as already mentioned this
restriction can be removed thanks to [31, 39].)

For (ii), put �̃0 = O�Gal(K(cp∞)/K)�, �̃ = �̃0 ⊗O �, and define X̃v(ψ
∗χ∗) and

X̃v(ψχ∗) similarly as Xv(ψ
∗χ∗) and Xv(ψχ∗) in Sect. 3.2 but with �̃0 in place of �0. By

the Iwasawa main conjecture for K, the module Xv(ψχ∗) is �̃0-torsion, with

char�̃
(X̃v(ψχ∗)

) = (
Lv(ψχ∗)

)
, (6.1)

where Lv is the integral p-adic measure Lv appearing in the proof of Theorem 4.4, and
Lv(ψ

∗χ) denotes its twist by ψ∗χ . Noting that X̃v(ψ
∗χ∗) is the twist (in the sense of [46,
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§6.1]) of X̃v(ψχ∗) by ψψ∗−1, from Corollary 6.2.2 and Lemma 6.1.2 in loc. cit. we deduce
from (6.1) that the module X̃v(ψ

∗χ∗) is �̃0-torsion, with

char�̃
(X̃v(ψ

∗χ∗)
) = (

Lv(ψ
∗χ∗)

)
. (6.2)

The divisibility in (ii) now follows from (6.2) after descent. ��

7 Themain results

Recall thatK is an imaginary quadratic field of discriminant −DK < 0 satisfying (spl), with
v the prime of K above p induced by our fixed embedding ı p .

Theorem 7.1 Letψ be a Hecke character ofK of infinity type (−1, 0) and conductor fψ with
cyclic quotient of norm prime to DK, and set

f = θψ, N = DK · N(fψ), N = dK · fψ.

Let c be a positive integer prime to Np, and let χ be a finite order character such that
χN−1

K ∈ �
(1)
cc (c,N, ε f ). Assume that ψχ has sign −1. Then:

(i) The class z f ,χ is not �-torsion.
(ii) The module Xv( f , χ) is �-torsion, and

char�
(Xv( f , χ)

)
�ur ⊂ (

Lv( f , χ)2
)
.

Proof Part (i) follows from [5, Thm. 1.1], so we focus on (ii). By the Gross–Zagier formula,
the non-triviality of z f ,χ implies that for all but finitely many finite order characters ξ : � →
μp∞ we have

ords=1L( f , χξ, s) = 1. (7.1)

Fix any such ξ , and note that L( f , χξ, s) factors as

L( f , χξ, s) = L(ψχξ, s) · L(ψ∗χξ, s) (7.2)

and has sign −1, since (Heeg) holds in our setting (see Sect. 4.3). By our sign assumption
on ψχ , it follows that L(ψ∗χ, s) has sign +1 and from (7.1) and (7.2) we conclude

ords=1L(ψχξ, s) = 1, L(ψ∗χξ, 1) �= 0.

By an application of the Gross-Zagier formula [53] and [36, Thm. 3.2] we have

ords=1L(ψχξ, s) = 1 �⇒ corankOH
1
f (K,Wψ∗χ∗ξ∗) = 1,

and by [37, Thm. B] we have

L(ψ∗χξ, 1) �= 0 �⇒ corankOH
1
f (K,Wψχ∗ξ∗) = 0,

where H1
f (K,Wψ∗χ∗ξ∗) and H1

f (K,Wψχ∗ξ∗) are the Bloch–Kato Selmer groups for ψ∗χ∗ξ∗
and ψχ∗ξ∗, respectively, whose definition is recalled in Sect. 8 below.

By the analogue of the decomposition (8.1) below, it follows that H1
f (K ,W f ,χξ ) has O-

corank one, and therefore so does SelP∞(A f ,χξ /K). Varying ξ , by a variant of Mazur’s
control theorem it follows that X(A f ,χ /K∞) (or equivalently, Sord( f , χ) and Xord( f , χ))
has �-rank one, and so by Theorem 5.2 we conclude that Xv( f , χ) is �-torsion.

Finally, by the decomposition in Proposition 3.4 and the factorization in Proposition 4.5,
the divisibility in part (ii) of the theorem follows from Theorem 6.1. ��
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Corollary 7.2 Let f = θψ and χ be an in Theorem 7.1, and assume that ψχ has sign −1.
Then the modules S(A f ,χ /K∞) and X(A f ,χ /K∞) have both �-rank one, and

char�(X(A f ,χ /K∞)�-tors) ⊂ char�
(S(A f ,χ /K∞)/� · z f ,χ

)2
.

Proof That S(A f ,χ /K∞) and X(A f ,χ /K∞) have both �-rank one has been shown in the
course of the proof of Theorem 7.1, and the divisibility in the statement of Corollary 7.2
follows from Theorem 5.2 and the divisibility in part (ii) of Theorem 7.1. ��

8 The p-converse

In this section we deduce from our main results the proof of Theorem A in the Introduction.
Let λ be a self-dual Hecke character of infinity type (−1, 0) and conductor fψ , and suppose
that:

(a) λ has sign −1;
(b) λ has central character ωλ = ηK;
(c) dK‖fλ.

Note that fλ is divisible by dK = (
√−DK) by condition (b). Since λ is self-dual, fλ is

invariant under complex conjugation, so by condition (c) we can write fλ = (c)dK for a
unique c > 0.

We shall apply Corollary 7.2 for a pair (ψ, χ) which is good for λ in the following sense:

(G1) ψ has infinity type (−1, 0) and conductor fψ with cyclic quotient of norm prime to
pDK;

(G2) χ is a finite order character such that χN−1
K ∈ �

(1)
cc (c,N, ε f ), where f = θψ and

N = fψdK;
(G3) ψχ = λ;
(G4) L(ψ∗−1χ−1, 0) �= 0.

The existence of good pairs for λ is shown in [6, Lem. 3.29] building on the non-vanishing
results of Greenberg [25] and Rohrlich [42].

Fix a good pair (ψ, χ) for λ, and let F be a number field of containing the values of ψ

and χ . Let P be the prime of F above p induced by our fixed embedding ı p , let � be the
completion of F at P, and let O be the ring of integers of �. Similarly as in (3.2), for any
Hecke character ξ put

Wξ := Tξ ⊗O D

where D = �/O . Let � a finite set of places of K containing ∞, p, and the primes of
K dividing the conductor of λ. Denote by H1

f (K,Wψ∗χ∗) the Bloch–Kato Selmer group for
ψ∗χ∗:

H1
f (K,Wψ∗χ∗) = ker

{
H1(K�/K,Wψ∗χ∗) → H1(Kv,Wψ∗χ∗)

H1(Kv,Wψ∗χ∗)div

×H1(Kv,Wψ∗χ∗) ×
∏

w∈�,w�p

H1(Kur
w ,Wψ∗χ∗)

}
,
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where H1(Kv,Wψ∗χ∗)div ⊂ H1(Kv,Wψ∗χ∗) is the maximal divisible submodule and Kur
w

denotes the maximal unramified extension of Kw . Similarly, let

H1
f (K,Wψχ∗) = ker

{
H1(K�/K,Wψχ∗) → H1(Kv̄ ,Wψχ∗) × H1(Kv,Wψχ∗)

H1(Kv,Wψχ∗)div

×
∏

w∈�,w�p

H1(Kur
w ,Wψχ∗)

}

be the Bloch–Kato Selmer group for ψχ∗ (see also [1, §1.1]). Finally, let V f ,χ be as in (3.1).

Lemma 8.1 In the above setting, we have

corankO SelP∞(A f ,χ /K) = corankOH
1
f (K,Wψ∗χ∗) + corankOH

1
f (K,Wψχ∗).

Proof It is a standard fact (see e.g. [8]), SelP∞(A f ,χ /K) agrees with the Bloch–Kato Selmer
group

H1
f (K,W f ,χ ) ⊂ H1(K,W f ,χ ),

where W f ,χ := T f ,χ ⊗O D for the GK-stable O-lattice T f ,χ ⊂ V f ,χ coming from TPA f .
In turn (see e.g. [27, Prop. 2.2]), the local conditions defining H1

f (K,W f ,χ ) at the primes w

of K above p can be described in terms of the filtration (3.3), namely:

H1
f (K,W f ,χ ) = ker

{
H1(K�/K,W f ,χ ) →

∏

w|p

H1(Kw,W f ,χ )

H1(Kw,F+
w W f ,χ )div

×
∏

w∈�,w�p

H1(Kur
w ,W f ,χ ),

}

where F+
w W f ,χ := F+

w T f ,χ ⊗O D . Note that since f = θψ we have

H1(Kv,F
+
v W f ,χ ) = H1(Kv,Wψχ∗), H1(Kv,F

+
v W f ,χ ) = H1(Kv,Wψ∗χ∗).

Since different lattices T f ,χ give rise to Selmer groups H1
f (K,W f ,χ ) having the same

O-corank, taking T f ,χ so that W f ,χ � Wψ∗χ∗ ⊕ Wψχ∗ , comparing the local conditions we
thus find

H1
f (K,W f ,χ ) � H1

f (K,Wψ∗χ∗) ⊕ H1
f (K,Wψχ∗) (8.1)

and the result follows. ��
The following recovers Theorem A in the introduction as a special case.

Theorem 8.2 Let λ be a self-dual Hecke character of K of infinity type (−1, 0) with central
character ωλ = ηK and whose conductor fλ satisfies dK‖fλ. Then

corankO SelP∞(Bλ/K) = 1 �⇒ ords=1L(λ, s) = 1.

Proof By the p-parity conjecture [35], if corankO SelP∞(Bλ/K) = 1 then λ has sign −1.
Let (ψ, χ) be a good pair for λ, i.e., satisfying conditions (G1)–(G4) above, so in particular

L(ψ∗−1χ−1, 0) �= 0. (8.2)

123



A. Burungale et al.

By Theorem 4.4, the nonvanishing (8.2) implies that the p-adic L-function Lv(ψχ∗) does
not vanish at trivial character, so by Theorem 4.4 it follows that

#
(
Xv(ψχ∗)/(γ − 1)Xv(ψχ∗)

)
< ∞,

where γ ∈ � is any topological generator. Since Xv(ψχ∗) corresponds to the Bloch–Kato
Selmer group forψχ∗ overK∞/K (see Remark 3.3), it follows that corankOH1

f (K,Wψχ∗) =
0. Since SelP∞(Bλ/K) � H1

f (K,Wψ∗χ∗), from Lemma 8.1 we thus obtain

corankO SelP∞(Bλ/K) = 1 �⇒ corankO SelP∞(A f ,χ /K) = 1. (8.3)

Now, Corollary 7.2 together with a variant of Mazur’s control theorem immediately yields
the implication

corankO SelP∞(A f ,χ /K) = 1 �⇒ z f ,χ,0 �= 0 ∈ SP(A f ,χ /K) ⊗O �. (8.4)

where z f ,χ,0 is the image of z f ,χ under the specializationmapS(A f ,χ /K∞) → H1(K, V f ,χ )

at the trivial character. By definition, the class z f ,χ,0 is a nonzero multiple of
∑

σ∈Gal(K̃c)/K
χ(σ) · yσ

f ,c,

where y f ,c is the Heegner class introduced in Sect. 2.2, and so

z f ,χ,0 �= 0 ⇐⇒ ords=1L( f , χ, s) = 1 (8.5)

by virtue of the general Gross–Zagier formula [20, 53]. Finally, we note once more that (3.8)
yields the factorization

L( f , χ, s) = L(ψχ, s) · L(ψ∗χ, s).

Combining (8.3), (8.4), and (8.5) we thus obtain

corankO SelP∞(Bλ/K) = 1 �⇒ ords=1L( f , χ, s) = 1

�⇒ ords=1L(ψχ, s) = 1,

using (8.2) and the above factorization for the last implication. Sinceψχ = λ, this concludes
the proof. ��
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