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Abstract

Let E/Qbe a CM elliptic curve and p a prime of good ordinary reduction for E£. We show that
if Sel, (E/Q) has Z,-corank one, then E(Q) has a point of infinite order. The non-torsion
point arises from a Heegner point, and thus ordy—; L(E, s) = 1, yielding a p-converse to
a theorem of Gross—Zagier, Kolyvagin, and Rubin in the spirit of [49, 54]. For p > 3, this
gives a new proof of the main result of [12], which our approach extends to all primes. The
approach generalizes to CM elliptic curves over totally real fields [4].

Résumé
Soit E/Q une courbe elliptique a multiplication complexe et p un nombre premier de bonne
réduction ordinaire pour E. Nous montrons que si corankz,Sely~(E/Q) = 1, alors E

a un point d’ordre infini. Le point de non-torsion provient d’un point de Heegner, et donc
ords—1 L(E, s) = 1, ce qui donne une réciproque a un théoreme de Gross—Zagier, Kolyvagin,
et Rubin dans I’esprit de [49, 54]. Pour p > 3, cela donne une nouvelle preuve du résultat
principal de [12], que notre approche étend a tous les nombres premiers. L’approche se
généralise aux courbes elliptiques a multiplication complexe sur les corps totalement réels

(4].
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1 Introduction

Starting with [49, 54], several works have been devoted to p-converses to a celebrated theorem
of Gross—Zagier, Kolyvagin, and Rubin: If the p°>°-Selmer group Sel ,o (£ /Q) has Z ,-corank
1 for an elliptic curve E /Q, then ordy—; L(E, s) = 1. Besides being an evidence for the Birch
and Swinnerton-Dyer conjecture, an important impetus for the p-converse theorems has come
from recent developments in arithmetic statistics. For instance, such p-converse theorems
have led to the proof [ 10] that a large proportion of elliptic curves over Q—and conditionally,
100% of them—satisfy the Birch and Swinnerton-Dyer conjecture.

The p-converse theorems of [49, 54] are obtained by exhibiting a certain Heegner point
on E with infinite order, and hold for primes p > 3 of good ordinary reduction of E, and
under certain hypotheses that excluded the CM elliptic curves.

Our main result is the following CM p-converse theorem. For primes p > 3, the result
was first proved in [12].

Theorem A Let E/Q be an elliptic curve with complex multiplication by an order of an
imaginary quadratic field KC of discriminant —Dy. < 0. Assume that the Hecke character
associated to E has conductor exactly divisible by dx. := (/—Dx). Let p be a prime of good
ordinary reduction for E. Then

corankZpSelpoo(E/Q) =1 =— ordg_L(E,s)=1.
In particular, if corankz,, Sel o (E/Q) = 1 thenrankz E(Q) = 1 and #1II(E /Q) < oc.

Note that the ‘in particular’ clause in Theorem A follows from combining its conclusion
with the fundamental work of Gross—Zagier, Kolyvagin, and Rubin. In turn, this consequence
yields the following mod p criterion for analytic rank one.
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p°°-Selmer groups and rational points on CM elliptic curves

Corollary B Let (E, K) be as in Theorem A, and let p be a prime of good ordinary reduction
for E such that:

O E@Ipl=0;
(ii) Sel,(E/Q) =~ Z/pZ, where Sel ,(E/Q) C HY(Q, E[p]) is the p-Selmer group of E.

Then ords—1 L(E,s) = 1 and II(E/Q)[p*°] = 0.

More generally, we prove a p-converse for CM abelian varieties By /K associated with
Hecke characters A over K of infinity type (—1, 0) (see Theorem 8.2).

Our approach to the CM p-converse differs from [12]. A salient feature is that the approach
generalizes to CM elliptic curves over totally real fields: It sidesteps the inherence of elliptic
units in [12], and leads to the first p-converse theorems over general totally real fields. This
note might thus be viewed as a prelude to [4].

The conductor hypothesis in Theorem A arises from an appeal to [19] which supposes
a classical Heegner hypothesis. This hypothesis may be removed (cf. [3, 4]) via the p-adic
Waldspurger formula of Liu—Zhang—Zhang [34], whose habitat is the general Yuan—Zhang—
Zhang framework [53]. (The hypothesis is not present in [12], thanks to Disegni’s p-adic
Gross—Zagier formula [22], also in the framework of [53].)

Remark C The p-converse as in Theorem A is independently due to Ressler and Yu [47,
52]. Complementing the present note, their approach builds on [12] and does not require the
conductor hypothesis. A key new element in their work is a counterpart of the main results
of Agboola—Howard [1] for small primes.

RemarkD A spectacular result of Smith [50] reduces Goldfeld’s conjecture [24] for CM
elliptic curves E/Q with E(Q)[2] ~ (Z/27)* and admitting no rational cyclic 4-isogeny
to the CM p-converse and its rank zero analogue for the prime p = 2. The unconditional
rank zero CM p-converse is in fact proved in [11, 13]. Unfortunately, Theorem A falls short
of providing the desired rank one CM p-converse: First, E should be allowed to have just
potentially good ordinary reduction at p (this might be approachable by our strategy); the
second—and the main—hindrance is that Q(+/—7) is the only imaginary quadratic field of
class number 1 with 2 split, and incidentally E(Q)[2] ~ Z/27Z for all elliptic curves E/Q
with CM by Q(v—T7) (see e.g. the table in [38, p. 2]).

The approach Assuming #III(E/Q)[p*™°] < oo and p 1 #O,é, the p-converse as in The-
orem A goes back to Rubin [45, Thm. 4]. Around the same time, Rubin proved a striking
formula [44] which expresses the p-adic formal group logarithm of a point P € E(Q) ®zZ),
in terms of the value of a Katz p-adic L-function outside its range of interpolation. Our
approach to Theorem A is inspired by the p-adic Waldspurger formula of Bertolini-Darmon—
Prasanna [7], which is a remarkable generalization of Rubin’s formula, and sheds new light
on [44] (cf. [6]).

Let E/Q be an elliptic curve with CM by an imaginary quadratic field /C, and p a prime
of good ordinary reduction. Let A be the Hecke character over K associated with E so that

L(E,s) = L(x,s).

In view of a non-vanishing result of Rohrlich [42], we pick a pair (¢, x) of Hecke characters
over K with x of finite order such that

Yx=»x L x,1)#0, (1.1

where {* := v o ¢ is the composition of { with the non-trivial automorphism of /C/Q. For
f = 0y the theta series associated to v/, the main result of [7] relates the p-adic formal group
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logarithm of a Heegner point Py, , € By, (K) to a value (outside the range of interpolation)
of a p-adic Rankin L-series .Z,(f, x). Here By, , is a CM abelian variety over X endowed
witha [C-rational map iy, : By, , — E.By the Gross—Zagier formula [53], Py, , is non-torsion
if and only if L'(f, x, 1) # 0. Setting

P = l')\(Pw’X) € E(IC),
one thus obtains a point on E which, in light of (1.1) and the factorization

L(f? )(,s):L()x,s)-L(lﬂ*X,s), (12)

is non-torsion if and only if ord;—; L(E, s) = 1.
Now, Theorem A is equivalent to: If Sel ,oc (£ /Q) has Z ,-corank 1, then Py is non-torsion.
In [12] the non-triviality is shown via the following.

(1) The anticyclotomic Iwasawa main conjecture (IMC) for (Hecke characters over) K in
the root number +1 case [43];

(2) The anticyclotomic IMC for K in the root number —1 case [1, 2];

(3) The non-vanishing of the A-adic regulator appearing in (2) [14];

(4) The A-adic Gross—Zagier formula [22].

Here A denotes the anticyclotomic Iwasawa algebra over K (with certain coefficients).

Bypassing (2), (3), and (4), our approach builds on the explicit reciprocity law [19], which
realizes £, (f, x) as the image of a A-adic Heegner class zy , under a Perrin-Riou big
logarithm map. Similarly as in [6], we establish a factorization

L0y, ) = LW ) - LX)

in Sect. 4 relating .2, (0y,, x )2 to the product of two Katz p-adic L-functions, mirroring (1.2).

Along with an analogous decomposition for Selmer groups shown in Sect. 3, the Iwasawa—
Greenberg main conjecture for £, (6y, x)? is readily seen to be a consequence of the main
results of [31, 43]. Building on the A-adic explicit reciprocity law, in Sect. 5 we prove
the equivalence between the main conjecture for the p-adic L-function .Z, (0y, )% and a
different main conjecture formulated in terms of the zeta element zs , . Finally, the latter
yields the implication

corankz, Sel = (E/Q) =1 = Pc#0€EK)®2Q

via a variant of Mazur’s control theorem.

Dedication The p-converse for CM elliptic curves E/Q is due to Rubin if #I1I(E /Q)[p™°] <
oo. The essence of our removal of this hypothesis is Iwasawa theory of Heegner points,
as pioneered by Perrin-Riou [40]. The theory of big logarithm maps [41], another major
contribution of Perrin-Riou, is also elemental to our approach. It is a great pleasure to dedicate
this note to Bernadette Perrin-Riou as a humble gift on the occasion of her 65th birthday.

2 Preliminaries

J— 0o — 1
Fix throughout a prime p, an algebraic closure Q of Q, and embeddings C & Q <4 c P
Fix also an imaginary quadratic field C of discriminant — Dy < 0 and ring of integers Ok.
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p°°-Selmer groups and rational points on CM elliptic curves

2.1 CM abelian varieties

We say that a Hecke character ¢ : K*\A; — C* has infinity type (a, b) € 77 if, writing
¥ = (Yy)y With v running over the places of K, the component ¥/, satisfies Vo0 (z) = 227°
forall z € (K ®g R)* >~ C*, where the identification is made via 1o.. Hence in particular
the norm character Ny, given by q — #(Ox:/q) on ideals of O, has infinity type (—1, —1).
The central character of such v is the character wy, on A* defined by

Vlax = @y - N7,

where N is the norm on A*.

Our fixed embedding 1, defines a natural map o : K ®p Q, — C,, and we let 5 :
K ®q Q, — C, be the composition of o with the non-trivial automorphism of K. The p-
adic avatar of a Hecke character ¥ of infinity type (a, b) is the character v : KX \A,é’f - C;
given by

U (x) =1 01 (Y ()0 (x,)"F (x,)"

forall x € A,é’f, where x, € (K ® Qp)* is the p-component of x.

Throughout the following, we shall often omit the notational distinction between an alge-
braic Hecke character and its p-adic avatar, as it will be clear from the context which one is
meant.

Let v be an algebraic Hecke character of /C infinity type (—1, 0) with values in a number
field Fy, C Q with ring of integer Oy Let P be the prime of Fy, above p induced by 1,
and denote by &, the completion of Fy at 3 and by &y, the ring of integers of ®y. By
a well-known theorem of Casselman’s (see [6, Thm. 2.5] and the reference [48, Thm. 6]
therein), attached to v there is a CM abelian variety By/x, unique up to isogeny over K,
with the property that

~

Vg By >~ ¥ !
as one-dimensional @ -representations of G, where Vg By, = (l(u_n By[P/]) ®¢, Oy is
the rational 3-adic Tate module of By,.

2.2 Heegner points

Let f € S>(I'1(IV)) be a normalized eigenform of weight 2, level N prime to p, and neben-
typus & r. We assume that /C satisfies the Heegner hypothesis relative to N:

there is an ideal 1 C Ok withOx /N ~ Z/NZ, (Heeg)
and fix once and for all an ideal O as above. We assume also that
pOx = v splitsin IC, (spD)
with v the prime of K above p induced by our fixed embedding 1,,. Let F' C Q be the
number field generated by the Fourier coefficients of f. Denote by I3 the prime of F above p
induced by 1, and assume that f is ‘B-ordinary, i.e. vip(ap(f)) = 0, where vy is the B-adic
valuation on F.

Let A £ /Q be the abelian variety of GL,-type associated to f, determined up to isogeny
over Q by the equality of L-functions

LAp9)= ] LU™,

T:F—>C
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where fT runs over all the conjugates of f. Denote by ® the completion of F at ‘3, and let
0 be the ring of integers of ®. Let TipA ¢ := 1(1r_n A f[‘Bj ] be the -adic Tate module of A ¢,
which is free of rank two over &.

For every positive integer ¢, let K. be the ring class field of K of conductor ¢, so
Gal(K./K) ~ Pic(O,) by class field theory, where O, = Z + cOx is the order of K of
conductor c. For every ¢ > 0 prime to N and every ideal a of O, we consider the CM point
Xq € X1 (N)(fCC) constructed in [19, §2.3], where I~CC is the compositum of &, and the ray
class field of IC of conductor 91. Let A, be the class of the degree 0 divisor (x,) — (00) in
J1(N) =Jac(X(N)), and denote by z, = §(A,) its image under the Kummer map

8 1 JIN)(Ke) — H' (K¢, Ty J1 (N)).

Fix a parametrization 7w : J1(N) — Ay, and let yr 4 € H! (I~CC, T A y) be the image of
Ya under the natural projection

H' (K., T,J1(N)) =5 H (K., T,Ap) — H' (K., TpA ).

For the ease of notation, we set yr . = yr o for a = O,. A standard calculation shows
that if p £ ¢, then for every n > 0 we have

a() n—l—S()' =2 1fn>1,
Corg i Ofepr) = ’ilf VS PP Ve @.1)
ep /K pn—1 u; (ap(f) — 0y — gv) Vi ifn =1,
where u, 1= [O): O:p] and o, oy € Gal(fCC/ IC) are Frobenius elements at the primes of

K above p (see [19, Prop. 4.4]).
Let o be the P-adic unit root of x> — a p(f)x + er(p)p, and for any positive integer ¢
prime to N define the «-stabilized Heegner class yr ¢ o by

Ve i Yie—er(Pa™ yresp ifp|ec,

,C, 00 T — — — .
ucl(l—ava ' o 1)-yf,c if pte.

This definition is motivated by the following result.

Lemma 2.1 For all positive integers c prime to N, we have

Corfcvp/fcl_ (yf,cp,oc) =a-Yfca-

Proof This follows immediately from (2.1). ]

2.3 Heegner point main conjecture

Fix a positive integer ¢ prime to Np, and put INCCpoo = Unso I~Ccpm. The Galois group
G, = Gal(INCCpoo /K) decomposes as

Ge = A x T,

where I" is the maximal torsion-free quotient of G, giving the Galois group of the anticyclo-
tomic Zp-extension Koo //C, and A, is a finite abelian group.

Let x be a finite order Hecke character of I with x|y« = s; and of conductor dividing
. Upon enlarging F is necessary, assume that ® contains the values of x. For each n, take
m > 0 so that I~Ccpm D K, and set

1
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p°°-Selmer groups and rational points on CM elliptic curves

Zfyni=a " Z X)) YF cpm o (2.2)
oeGal(Kepm /Kn)

In view of Lemma 2.1, the definition of z 7, , does not depend on the choice of m. Moreover,
letting A 7 , be the Serre tensor Ay ® x, we see that z ¢ , , defines a class

Zf yn € Hl(’Cn, TpAyg o).
Let
Ag=0[l], A=Ao®s @ (2.3)

be the anticyclotomic Iwasawa algebras. From their construction, the classes zy  , are
contained in the pro-P3 Selmer group Sy (A 7, /KC) C HY(K,, TpAy y),and by Lemma 2.1
they are norm-compatible, hence defining a class zf , = {Zf y »}, in the compact Ap-adic
Selmer group

FL(Af y/Keo) 1= 1<£n Sp(Ar /Kn).
n
On the other hand set,
X (Ar /Koo i= Homzp <h_r)n Selmoo (A /1K), @/ﬁ),

where Selg (A 7.5 /KCy) C H' (K, A g [B™]) is the P>°-Selmer groups of A ;. Set also
S(Af x/Koo) = S (Af x[Ko) @ @, X(Af y/Koo) = Z(Af yx/K) @ P,

which are finitely generated A-modules.
The following conjecture in a natural extension of Perrin-Riou’s Heegner point main
conjecture [40, Conj. B].

Conjecture 2.2 The modules S(Af y /Koo) and X(Ay y /Koo) have both A-rank one, and

2
charp (X(A 7,y /Koo) A-tors) = chara (S(A 7y /Koo) /A - 2f,5)",
where the subscript A-tors denotes the maximal A-torsion submodule.

In [12] a conjecture similar to Conjecture 2.2 is formulated in terms of a A-adic Heegner
class deduced from work of Disegni [22] (see [12, Conj. 2.2]). Similarly as in [12],' our
proof of Theorem A is based on a study of Conjecture 2.2. The novelty in our approach is in
the proof of cases of this conjecture.

3 Selmer groups

In this section we introduce the different Selmer groups entering in our arguments. In partic-
ular, the decomposition in Proposition 3.4 will play a key role.

I As well as in other results on the p-converse theorem in rank 1 without a finiteness condition on the
Tate—Shafarevich group that appeared after [49]: [18, 21, 51], etc.
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3.1 Selmer groups of certain Rankin-Selberg convolutions

Asin Sect. 2.2, let f € S2(I'1 (N)) be a ‘B-ordinary newform with nebentypus ¢ ¢, and let K
be an imaginary quadratic field satisfying (Heeg) and (spl).

Let ¢ > 0 be a positive integer prime to N. Similarly as in [6, Def. 3.10], we say that a
Hecke character & of infinity type (2 + j, —j), with j € Z, has finite type (c, N, e ) if it
satisfies:

(a) wg - ey =1, where wg is the central character of &;
() fe=c- 9, where 9N’ is the unique divisor of 91 with norm equal to the conductor of & f;
(c) the local sign €, (f, &) is +1 for all finite primes ¢q.

Condition (a) implies that the Rankin—Selberg L-function L(f, &, s) is self-dual, with
s = 0 as the central critical point, and by (c) the sign in the functional equation is 41 (resp.
—1) when j > 0 (resp. j < 0). Denote by Z¢c(c, M, £ ) the set of such characters &, and
put

5O, Mes) = (€ € Teele, Moep) | j <0},
SP(c. M ef) = (& € Teele. Moeg) | j > 0}

Denote by pr : Gg — Aute(Vy) the B-adic Galois representation associated to f, so
that

Vf(l) ~ 0 Ry quAf.

Let x be a finite order character of I such that )(N,E1 S Eéé) (c,M, &5), and consider the
conjugate self-dual G ic-representation

Viy =ViDlge ® x- (3.1)

For any Ag-module M, let MY = Homgs(M, Qp/Zp) be the Pontryagin dual. Fix a
Gc-stable lattice Ty, C Vy ,, and define the G g-module

Wiy =Try Qo AE)/, 3.2)

where the tensor product is endowed with the diagonal Galois action, with Gk acting on A
via the inverse of the tautological character ¥ : Gx — Gal(Koo /K) — Ag.

Definition 3.1 Fix a finite set X of places of K containing co and the primes dividing Np,
and denote by K the maximal extension of K unramified outside . The Selmer group
(W y) is defined by

yv(Wf’X)IZkCI:Hl(KE/IC,Wf,X)—)HI(ICF,W]",X)X ]_[ Hl(ij,Wf,X)}-

weXT, wip

We also set
Xo(f, x) = HomCtS(‘VU(Wf,X)s Qp/Zp) Qo @,
which is independent of the lattice Ty .

Note that X, (f, x) and the Selmer group X(A ¢ ,/K) defined in Sect. 2.3 differ only
in their defining local conditions at the primes above p. More precisely, by 3-ordinarity, for
every prime w of /C above p there is a G, -module exact sequence

0— FiTry — Tpy— FpTry —0 (3.3)
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with ZL Ty , free of rank one over &, and the quotient .%#,, T , affording an unramified
action of G, . Put

egj):Wf,X =FF5Tr 4. @Ay -
Then the Selmer group .%,.4(W ¢, ) defined by

Ford(Wy ) o = ker{H](IC):/IC, W) = [[H K. 7 Wy

wlp
< ] Hl(le,Wf,X)} (3.4)
weX, wip
satisfies
ryord(vvf,)() Qp @ >~ (h_r>n Sfﬂfpw (Af-x/lcn)> Qo @,
n
and so

KXord (fs x) == Homcts(yord(wf,)()» Qp/Zp) Qo P >~ X(Af,x/lcoo)- (3.5)
Letting Ty, = Ty ®¢ Ao with Gi-action via py ® W, and defining jord(Tf,x) -
HY(K* /K, T ,) in the same manner as in (3.4), we similarly have
Sora(f+ ) = Ford(Tf.5) @ ® = S(A .y /Koo) (3.6)
(seee.g. [17, §4]).

3.2 Selmer groups of characters

We keep the hypothesis that the imaginary quadratic field /C satisfies (spl), and let £ be a
Hecke character of K of conductor f¢. Let F be a number field containing the values of §.
Let @ be the completion of F at the prime ‘B of F above p induced by 1), and let & be the
ring of integers of ®. Denote by T the free &-module of rank one on which G acts via
é —1 and consider the G x-module

Wg = Tg Ko A(\)/,
where as before the Galois action on Ag is given by the character W1,

Definition 3.2 Let X be a finite set of places of K containing co and the primes dividing p
or f¢. The Selmer group .#,(W¢) is defined by

&";)(Wg):=ker:H1(lCZ//C,Wg)—>HI(ICU,WE)>< I Hl(le,Wg)}.

weX, wip

We also set X, (&) = 2,(Wg) ®g ©.

Remark 3.3 Suppose & has infinity type (—1, 0), and denote by £* the composition of & with
the non-trivial automorphism of /C/Q, so £* has infinity type (0, —1). Then from e.g. [1,
§1.1] we see that X, (&) corresponds to the Bloch—Kato Selmer group of & over Ko /KC,
whereas X, (§*) corresponds to the Selmer group obtained by reversing the local conditions
at the primes above p in the corresponding Bloch—Kato Selmer group of £*.
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3.3 Decomposition

We now specialize the set-up in Sect. 3.1 to the case where f = 0y is the theta series of
a Hecke character ¥ of IC of infinity type (-1, 0). Then f has level N = Dy - N(f,,) and
nebentypus & r = 1 - @y, where 5y is the quadratic character associated to /C/Q.

One easily checks (see [6, Lem. 3.14]) that if f,, is a cyclic ideal of norm N(f,,) prime to
Dy, then IC satisfies the Heegner hypothesis (Heeg) relative to N, and one may take

N =0k - fy, wheredg = (v/—Dg). 3.7

In the following, we assume that f,, satisfies the above condition, and take 91 as in (3.7).
Fix an integer ¢ > O prime to Np, and let x be a finite order character such that )(N,E1 €
2@, M, £f).

The following decomposition will play an important role later.

Proposition 3.4 Let { and y be as above. There is a A-module isomorphism
XoOy, x) = X" ™) & X (Y x ™).
Proof Put f = 6y, and note that there is a G x-module decomposition
Vix = Vyryx @ Vyyr. (3.3)

Since the module X,(f, x) ¢ H'(K¥/K, Wy ) ®p ® does not depend on the lattice
Ty y C Vg y chosento define Wy ,, by (3.8) we may assume that Ty , > Ty« y+ @ Ty y+ as
G rc-modules, and so

Wf,X ~ Wl//*X* D WI//X*

as G-modules. The result thus follows immediately by comparing the defining local con-
ditions of the three Selmer groups involved at all places. O

4 p-Adic L-functions

In this section we introduce the two p-adic L-functions needed for our arguments, and prove
Proposition 4.5 relating the two.

4.1 The BDP p-adic L-function

Let f =Y 02, an(f)q" € S2(T1(N)) be an eigenform with p { N and nebentypus & ¢, let
K be an imaginary quadratic field satisfying (Heeg) and (spl), and fix an ideal 91 C Oy with
cyclic quotient of order N. Let ¢ be a positive integer prime to Np, and let x be a finite order
Hecke character of K such that )(N,E1 € Eéé) (c, M, ep).

Let F be a number field containing /C, the Fourier coefficients of f, and the values of
X, and let @ be the completion of F at the prime of F' above p induced by 1, with ring of
integers &. Let Ag and A be the anticyclotomic Iwasawa algebras as in (2.3), and set

AY = Ao®z,Zy ~ O[], AY = Af Q0 @,
where Zj) is the completion of the ring of integers of the maximal unramified extension of

Qp-
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The p-adic L-function in the next theorem was first constructed in [7] as a continuous
function on characters of I'. Its realization as a measure in A" was given in [19] following an
approach introduced in [9]. As it will suffice for our purposes, we describe below a multiple
of that p-adic L-function by an element in ®*.

Asin [19, §2.3], define ¥ € K by

D'+ /—Dg Dy if2 t Dy,

2

, where D' =
Dy /2 else,

VN

and let 2, and Qx be CM periods attached to K as in [op. cit., §2.5].

Theorem 4.1 There exists an element £,(f, x) € A" such that for every character & of
[ crystalline at both v and v and corresponding to a Hecke character of K of infinity type
(n, —n) withn € Z>1, we have

Q4n r r | mfl
Ly(f )R E) = . T+ DEOT )

Qé]tcn ' 4(271)2”+1(Im 19)2”71

+er(PXE@2p N LIS, XE D).

(I=ap(HxE@p!

Proof Let 1 be an anticyclotomic Hecke character of C of infinity type (1, —1) and conductor
dividing ¢cOy, and define £, ,(f, x) € Ay’ by

Conlf 0@ = Y. mx@N@™! /Z mno@llal) dpe o

[a]lePic(O.) P
for all continuous characters ¢ : I' — @;, where:

= > pta @n(f)g" is the p-depletion of f,
* Uy is the measure on Z; corresponding (under the Amice transform) to the power series
a

= —1
fb(ty(a)cv Dk ) c ﬁur[[ta _ 1]]

with #, the Serre-Tate coordinate of the reduction of the point x, on the Igusa tower of
tame level N constructed in [19, (2.5)],

Ny (x) := n(recy(x)) with recy : Q; =K — G';‘Cb —» T the local reciprocity map at v,
olla] : Z; — @: is defined by (¢|[a])(x) = ¢ (rec, (x)aa_l) with o, the Artin symbol
of a.

The same calculation as in [19, Prop. 3.8] then shows that the element .%,(f, x) € A"
defined by

Lo(f s )E) = Loy (f, x)(7'E)

has, in view of the explicit Waldspurger formula in [29, Thm. 3.14], the stated interpolation
property up to fixed element in ®*. The result follows. O

Remark 4.2 We our later use, we note that the complex period Qx € C* in Theorem 4.1
(which also agrees with that in [7, (5.1.16)]) is different from the complex period Q,, € C*
defined in [23, p.66] and [30, (4.4b)]. In fact, one has

Qoo =27i - Q.
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In terms of Q4, the interpolation formula in Theorem 7.1 reads

Q)" T@r@+ M)
L0 = G Joy i )2

Fer(PXE@2p N - LIS, XE D).

(1=ap(fHxE@p™!

Specialized to the range of critical values for the representation Vg ,, the Iwasawa—
Greenberg main conjecture [26] predicts the following.

Conjecture 4.3 The module X, (f, x) is A-torsion, and
chary (X, (f, X)) = (Zu(f, ).

In Theorem 5.2, we will explain the close link between Conjectures 2.2 and 4.3.

4.2 Katz p-adic L-functions

We continue to assume that K satisfies (spl). Let ¢ C Ok be an ideal prime to p, and let
K(cp®) be the ray class field of K of conductor ¢p°°.
We say that a Hecke character ¢ of K is self-dual if it satisfies

$¢* = Ng.

Note that the infinity type of such ¢ is necessarily of the form (—1+ j, —j) for some j € Z.
The p-adic L-function in the next theorem follows from the work of Katz [32], as extended
by Hida-Tilouine [30] (see also [23]). Here we shall use the construction in [28], and similarly
as in Theorem 4.1, it will suffice for our purposes to describe a fixed ®*-multiple of the
integral measure constructed in op. cit..
For any Hecke character & of IC, we denote by L (&, s) the Hecke L-function L(&, s) with
the Euler factors at the primes [|c¢ removed.

Theorem 4.4 Let ¢ be a character of Gal(K(cp®>)/K) corresponding to a self-dual Hecke
character of infinity type (—1+ j, —j), with j € Zxo. Then there exists an element £, (¢) €
A" such that for every character & of T crystalline at both v and v and corresponding to a
Hecke character of infinity type (n, —n) with n > j, we have

2n—2j+1

2m)"I
L) = by T+ 1)) 1)

S (1—-9¢'E@)? L9 g, 0).
am 9y (1—9¢7§(@)" - Lo '§,0)
Proof Let £, be the integral p-adic measure on Gal(X(cp®)/K) constructed in [28, §4.8],
so for every character x of Gal(fC(¢p®°)/K) corresponding to a Hecke character of K of
infinity type (k + ¢, —¢) with k > £ > 0 we have

0= a0 L0 wr T — x6) - L, 0
! QkF2t (Im )¢ e

Setting
Ly(@)(E) = Ly (¢ - 7*E)

for all characters & of I', where 7*& is the pullback of & under the projection
Gal(K(cp™>)/K) — T, the result follows immediately from [28, Prop. 4.9], noting that
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the condition n > j assures that the infinity type of ¢~'&, namely (1 +n — j, j — n), is of
the form (1 + ¢, —¢) with £ > 0, and the p-adic multiplier that appears is

(1= p™H — ¢ 'e@) = (1 — ¢~ 'E(0))%,

since ¢ is self-dual and £ is anticyclotomic. m}

4.3 Factorization

As in Sect. 3.3, we now specialize to the case where f = 6y for a Hecke character ¢ of K
of infinity type (—1, 0) and conductor f,, with cyclic quotient of norm prime to Dy, so that
K satisfies hypothesis (Heeg) relative to N = Dx - N (Fy)-

Fix an integer ¢ > O prime to Np, and let x be a finite order Hecke character of K such
that )(N,E1 € Eéé)(c, N, e7). Then we have a G x-module decomposition

Vi = Vyrys @ Vg, 4.1)

where V¢, is asin (3.1). Note that each of the characters v x and * x are self-dual (see [6,
Rem. 3.7]).

For the rest of this paper, we shall write .Z, (¢) for the p-adic L-function in Theorem 4.4
constructed with the auxiliary tame conductor ¢ = ¢t used in the proof.

The following result is a manifestation of the Artin formalism arising from the decompo-
sition (4.1). A similar result in shown in [6, Thm. 3.17]. As we shall see in Sect. 7, this is a
counterpart on the analytic side of the Selmer group decomposition in Proposition 3.4.

Proposition 4.5 Suppose that f = 0y and x are as above. Then
Lo(f 0 =u- LX) - LX),

where u is a unit in (A")*.

Proof This will follow by comparing the values interpolated by each side of the desired
equality, using that an element in A"" is uniquely determined by its values at infinitely many
characters.

Let & be a character of I" of infinity type (n, —n) with n € Zx; as in the statement of
Theorem 4.1. The decomposition (4.1) yields

L(f, x& 1) = L(yxEN, 0)- L(y*x&NL', 0)
= L((* ") 'E,0) - Ly x*) '€, 0), 4.2)

using that ¥ x and ¥ * x are self-dual. The factors in (4.2) are interpolated by .2, (¥ * x *) (&)
and .Z, (Y x ™) (&), respectively. Noting that

(=@ D e@) - A - @xH'e@) = (1 —ap(HxE@p " +ep(px&@*p"),

in light of Theorem 4.4 for .2, (Y* x*) and ., (¥ x ™) (with j = 1 and j = 0, respectively),
we thus find

Q2n—1 QZn—H (27‘[)n_1 (27‘[)"
p p . . .
PO+ D =T Im o)

x (1= a,(NHxE@p~ " +er(Mxe@p ") - L(f, xE, D).

The result now follows from Theorem 4.1 and Remark 4.2. O

LW x)E) - LW E) =

9%71 Qgg+l
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Remark 4.6 Note that the trivial character is in the range of interpolation for .%, (¥ x *), but
lies outside the range of interpolation for both .Z, (V¥ * x*) and .Z, (f, x).

5 Explicit reciprocity law

In this section we explain a variant of the explicit reciprocity law proved in [19] relating the
A-adic Heegnerclass zy , to the p-adic L-function %, (f, x) viaaPerrin-Riou big logarithm
map, and record a key consequence. We let f = 60y and x be as in Sect. 3.3.

For every w/|p, the natural map H! (IC,,, Z,f Tf ;) — H'(Ky, T y) induced by (3.3) is
injective, since its kernel is HY(K,, 5 T r.x) = 0. Therefore, in view of (3.6) the image of
zy y under the restriction map

loc,, : H'(IC, Ty ) — H' (KCyy, T )
is naturally contained in H' (KC,y, #,[ T, ). Let ®“F the compositum of ¢ and Q-

Theorem 5.1 There is a A" -linear isomorphism Log,, : H(C,, varTf,x) Q@ AY — AW
such that

Log, (locy(zf,5)) = ¢ Z,(f, x)

for some ¢ € (P)*.

Proof The existence of the map Log, (with coefficients in Ay, rather than A") follows
from the two-variable extension by Loeffler—Zerbes [33] of Perrin-Riou’s big logarithm map
[41], and the proof of the explicit reciprocity law (integrally) is given in [19, §5.3]. That
the A" -linear map Log, is injective follows from [33, Prop. 4.11], and so it becomes an
isomorphism after extending scalars to A" = Aff ®¢ P. O

Similarly as observed in [15, 51], the equivalence between Conjectures 2.2 and 4.3 can
be deduced from Theorem 5.1 using Poitou—Tate global duality.

Theorem 5.2 Assume that the class z ¢, is not A-torsion. Then the following are equivalent:

(a) rank A Sorg(f, x) = rankp Xora (f, x) =1,
@) X,(f, x) is A-torsion;

and the following are equivalent:

(b) char (Xowa(f, x) a-tors) C chara (Sora(f5 X)/A - 25.4)’,
() chara (X, (f, X)) C (L(fs 0)?),

and similarly for the opposite divisibilities. In particular, Conjectures 2.2 and 4.3 are equiv-
alent.

Remark 5.3 Note that for the last claim in the theorem we are using the isomorphisms (3.5)
and (3.6).

Proof of Theorem 5.2 This can be extracted from the arguments in [16, App. A], but since our
setting is slightly different (in particular, E(K)[p] is reducible) we provide the necessary
details for the convenience of the reader. We explain the implications (a) = (a’) and (b") =
(b) (the only implication we will need later), and note that the other implication follows from
the same ideas.
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Following [16, §2.1], below we denote by Sgrrel(f, x) (resp. Sord.rel(f, x), etc.) the
Selmer group defined as in Sect. 3.1 but with the strict at v and relaxed at v (resp. ordinary
at v and relaxed at v, etc.) local conditions, so in particular Sord,ord (f, X) = Sord(f, x) by
definition.

Assume (a), and consider the exact sequence from global duality

loc,

0 — Sstr,ord(f> X) = Sord(fs x) — Hl(lcv» <ngf,x) — Xeelord (f5 X)
— Xowa(f, x) — 0. (5.1

Since zy , is not A-torsion by hypothesis, by Theorem 5.1 it follows from (5.4) that
Xrel.ord (f, x) has A-rank one and Sgr ord (f, x) is A-torsion. Since

rank o Xel,ord (f, X) = 1 + rank s Xord,see (f5 %)

(cf. [16, Lem. 2.3]), we conclude that Xorq st (f, x) is A-torsion, and from the exact sequence

loc,
0 — Sstrret (s X) — Sord,ret (f X) Rl HI(K:U, ylj—Tf,x) — Xel,see (f5 X)
— Xowd,ste (5 x) = 0 (5.2)

we conclude that Xep o (f, x) = Xy (f, x) is A-torsion, i.e., (a’) holds.

Now, in addition to (a), assume (b’). Then Sgr re1 (f, x) is A-torsion (since sois Xy, (f, x),
as we just showed), and since H' (KZ/K, Ty ) is A-torsion free as a consequence of (3.8)
and [1, Prop. 1.1.6], it follows that in fact

Sstr,rel(f, x)=0. (5.3)

Thus (5.2) reduces to the exact sequence

0 — Sord,re1(f X) LN H' (Ko, ZTf ) = X0(f. x) = Xorse(f. x) = 0. (5.4)
Since H' (KC,, ﬁ]*Tf,X ) has A-rank one, the assumption thatz s , isnot A-torsion together
with Theorem 5.1 implies that Serq,re1(f, x) has A-rank one. Since z¢ , € Sora(f, x) C
Sordrel (f, ), it follows that Sorq(f, x) also has A-rank one, and by [16, Lem. 2.3(1)] so
does Xora (f, X)-

Hence the quotient Sordrel(f, X)/Sord(f, x) is A-torsion, and since it injects in
H! (K5, 5 Ty ) whichis A-torsion-free, this shows the equality Sora (f, x) = Sord,ret (f» X)-
Therefore the first two terms in the exact sequence (5.4) agree with the first two terms in the
exact sequence

loc,

0— Sond(f, x) — Hl(’CUa ﬂ;_Tf,x) i Xrel,ord(f’ xX) = Xod(f, x) = 0 (5.5)
(note that Sgr.ord (f, x) as a consequence of (5.3)), and this yields

N Sord(f, X) loc, H](Icv”g;_qux)

0 —
A-zypy A -locy(zy y)

— coker(loc,) — 0.

In view of Theorem 5.1, it follows that

(Sord(f, x)
charp | ——%=
"Zfx

Next, from (5.4) and (5.5) we can extract the short exact sequences

) - char (coker(loc,)) A" = (L, (f, x))- (5.6)

0 — coker(locy) — Xy (f, x) = Xordsu(f> x) = 0,
0 — coker(loc,) — Xrel,ord(fv xX) = Xowd(f, x) = 0,

@ Springer



A.Burungale et al.

from which we readily obtain (taking A-torsion in the first exact sequence and using a
straightforward variant of [16, Lem. 2.3]) the relations

chary (Xv(f, X)) charp (Xord,str(f, X)) - charp (Coker(locv))

= chara (Xet,0rd (f X) A-tors) - chara (coker(loc,))

= char (Xora (f, X) A-tors) - char a (coker(loc,))?.

Combined with (5.6), we thus obtain

Sord (f %)

2
chary (Xy(f, x)) -charA( Aoz ) A" = charp (Xora(f. X) A-tors) * (Lo (£ X)7).
JsX

The result follows. m]

6 Twisted anticyclotomic main conjectures for /C

Let IC be an imaginary quadratic field satisfying (spl). The Iwasawa main conjecture for
was proved by Rubin [43] under some restrictions on p (including p 1 O ;é) that were removed
in subsequent work by Johnson-Leung—Kings [31] and Oukhaba—Viguié [39]. In this section
we record a consequence of these results for the anticyclotomic Z ,-extension.

Note that if & is a self-dual Hecke character in the sense of Sect. 4.2, then the Hecke
L-function L(~!, s) is self-dual, with a functional equation relating its values at s and —s.
In the following, by the sign of & we refer to the sign appearing in the functional equation
for L(71, 5).

Theorem 6.1 Let v be a Hecke character of IC of infinity type (—1, 0), and let x be a finite
order of character of such that the product \ x is self-dual. Assume that * x has sign +1.
Then:

1) Xy(Yx*) is A-torsion and the following equality holds:

chara (X, (¥ x™)) = (LW x ™).
(ii) The following divisibility holds:

char 5 (Xv (W*X*)) - (gv (W*X*))

Proof As noted in Remark 3.3, the Iwasawa module X, (1 x*) recovers the Bloch—-Kato
Selmer group for ¥ x* over the anticyclotomic Z,-extension K, /K, and so the result of
part (i) follows from [1, Thm. 2.4.17], as extended in [2, Thm. 3.9]. (In these references,
the hypothesis p > 3 arises from their appearance in [43], but as already mentioned this
restriction can be removed thanks to [31, 39].) _

_ For (ii), put Ag = O[Gal(K(cp®)/K)], A = Ao ®; ®, and define X, (y*x*) and
Xy (Y x*) similarly as X, (¥ *x*) and X, (¥ x*) in Sect. 3.2 but with 7\0 in place of Ag. By
the Iwasawa main conjecture for /C, the module X, (¥ x *) is Ko—torsion, with

chary (X, (¥ x*) = (S,(¥x™)), 6.1)

where £, is the integral p-adic measure £, appearing in the proof of Theorem 4.4, and
L£,(* x) denotes its twist by ¥* x. Noting that X, (¥ * x*) is the twist (in the sense of [46,
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§6.1]) of jfv (W x™) by ww*:l, from Corq!lary 6.2.2 and Lemma 6.1.2 in loc. cit. we deduce
from (6.1) that the module X, (y* x*) is Ag-torsion, with

charg (X, (¥* 1) = (L.(* X)) (6.2)
The divisibility in (ii) now follows from (6.2) after descent. O

7 The main results

Recall that /C is an imaginary quadratic field of discriminant —Dx < 0 satisfying (spl), with
v the prime of K above p induced by our fixed embedding .

Theorem 7.1 Let v be a Hecke character of K of infinity type (—1, 0) and conductor f,, with
cyclic quotient of norm prime to Dy, and set

f =6y, N=Dr-NG,), N=0c i,

Let ¢ be a positive integer prime to Np, and let x be a finite order character such that
)(N,E1 € Eéé)(c, N, 7). Assume that  x_has sign —1. Then:

(i) The class zy y is not A-torsion.
(1) The module X, (f, x) is A-torsion, and
char (X, (f, X))AY C (ZLo(f, x)?).

Proof Part (i) follows from [5, Thm. 1.1], so we focus on (ii). By the Gross—Zagier formula,
the non-triviality of z s , implies that for all but finitely many finite order characters & : I' —
M poo We have

ords—1 L(f, x&,5) = 1. (7.1)
Fix any such &, and note that L( f, x&, s) factors as
L(f, x& s) = L(yx&, s) - LY x&,s) (7.2)

and has sign —1, since (Heeg) holds in our setting (see Sect. 4.3). By our sign assumption
on vy, it follows that L(y* x, s) has sign +1 and from (7.1) and (7.2) we conclude

ordy—1 L(¥x§,5) =1, LY x§ 1) #0.
By an application of the Gross-Zagier formula [53] and [36, Thm. 3.2] we have
ords— L(Yx&,5) =1 — corankf/Htl- (I, Wysysgx) =1,
and by [37, Thm. B] we have
L(W*xE, 1) #0 = corankyH} (I, Wy y#g+) = 0,

where H} (K, Wy yxgx) and H} (K, Wy +£+) are the Bloch—Kato Selmer groups for y/*  *£*
and Y x *&*, respectively, whose definition is recalled in Sect. 8 below.

By the analogue of the decomposition (8.1) below, it follows that H} (K, Wy y¢) has O-
corank one, and therefore so does Sels:poo (Af 4e/K). Varying &, by a variant of Mazur’s
control theorem it follows that X(A ¢ , /Ko) (or equivalently, Sora(f, x) and Xora(f, X))
has A-rank one, and so by Theorem 5.2 we conclude that X, (f, x) is A-torsion.

Finally, by the decomposition in Proposition 3.4 and the factorization in Proposition 4.5,
the divisibility in part (ii) of the theorem follows from Theorem 6.1. O
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Corollary 7.2 Let f = 0y and x be an in Theorem 7.1, and assume that \ x has sign —1.
Then the modules S(Ay , /Ko) and X(A ¢ , /Koo) have both A-rank one, and

char (XA .y /Koo) acors) © chara (S(A 7., /Koo) /A - 27.)7.

Proof That S(Af , /Kso) and X(Ay ,/Ks) have both A-rank one has been shown in the
course of the proof of Theorem 7.1, and the divisibility in the statement of Corollary 7.2
follows from Theorem 5.2 and the divisibility in part (ii) of Theorem 7.1. O

8 The p-converse

In this section we deduce from our main results the proof of Theorem A in the Introduction.
Let A be a self-dual Hecke character of infinity type (—1, 0) and conductor f,,, and suppose
that:

(a) X hassign —1;
(b) X has central character w; = ny;
(©) clifa

Note that f, is divisible by 0x = (+/—Djx) by condition (b). Since A is self-dual, f; is
invariant under complex conjugation, so by condition (c) we can write f; = (c)0k for a
unique ¢ > 0.

We shall apply Corollary 7.2 for a pair (¥, x) which is good for X in the following sense:

(G1) ¢ has infinity type (—1, 0) and conductor f,, with cyclic quotient of norm prime to
pDx;

(G2) x is a finite order character such that )(N,E1 € Zéé)(c, N, er), where f = 6y and
N = fy o3

(G3) ¥x =M

(G4 Ly*x71,0) #0.

The existence of good pairs for A is shown in [6, Lem. 3.29] building on the non-vanishing
results of Greenberg [25] and Rohrlich [42].

Fix a good pair (¢, x) for A, and let F' be a number field of containing the values of ¢
and yx. Let 33 be the prime of F" above p induced by our fixed embedding 1, let ® be the
completion of F at ’P3, and let & be the ring of integers of ®. Similarly as in (3.2), for any
Hecke character & put

We =T: Qv

where 2 = ®/0. Let X a finite set of places of X containing co, p, and the primes of
IC dividing the conductor of A. Denote by H} (K, Wy ) the Bloch—Kato Selmer group for
w.*x *:
H (I, Wy y+
H}(IC, W‘/’*X*) = ker{Hl(lCE/lC, WW*X*) — %
H (KU» Wl//*x*)div

XHI(,CIM WW*X*) X 1_[ Hl(lcli];, W‘//*X*)}’
weT, wip
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where H! (K, Wy )iy C H' (K, Wy»y+) is the maximal divisible submodule and K%
denotes the maximal unramified extension of K,,. Similarly, let

H(Cy, Wy y#)

H (K, Wy, :ker{Hl KZ/IC, Wy ) — HY (K, Wy yr) X ——n VX2
f( vx ) ( / vx ) (Ks X ) Hl(Kle//X*)div

X 1_[ H](IC‘;;,WW*)}
weX, wip

be the Bloch—Kato Selmer group for v x * (see also [1, §1.1]). Finally, let V¢ , be asin (3.1).

Lemma 8.1 In the above setting, we have
corank g Selpoe (A7 5 /K) = corankfthl- (K, Wy ys) + corank//H% (K, Wy ).
Proof Tt is a standard fact (see e.g. [8]), Selgpoo (Ay x/ KC) agrees with the Bloch—-Kato Selmer
group
H} (K, Wy ) C HU(IC, Wy ),

where Wy :=Tr , ®¢ 2 for the Gc-stable O-lattice Tr ,, C Vy , coming from TipAf.
In turn (see e.g. [27, Prop. 2.2]), the local conditions defining Ht1 (K, Wp ) at the primes w
of IC above p can be described in terms of the filtration (3.3), namely:

H (K, Wy )
H (K, Wr,) = ker{Hl(lCE/lC, Wr,) — X
! S = HJHI(KW7g$Wf,X)diV
x ]‘[ H (o, Wf,x),}

weX, wip
where Z,f Wy, = F1Tr , ®¢ 2. Note that since f = 0y, we have
H' (Ko, 7, Wp ) =H' (Ko, Wyye), H' Ky, Zf Wy ) = H (Ko, Wyoy).

Since different lattices Ty , give rise to Selmer groups H} (K, W ) having the same
O-corank, taking Ty , so that Wy, o Wy«,+ @ Wy, +, comparing the local conditions we
thus find

HE (IC, W) 2= HE(IC, Wy ) @ HE(KC, Wy y0) (8.1)
and the result follows. ]

The following recovers Theorem A in the introduction as a special case.

Theorem 8.2 Let A be a self-dual Hecke character of IC of infinity type (—1, 0) with central
character w) = ni. and whose conductor f, satisfies 0xc||f. Then

corankg Selp= (B, /K) =1 = ords=1L(A,s) = 1.

Proof By the p-parity conjecture [35], if corank s Selype (B /K) = 1 then A has sign —1.
Let (¢, x) be a good pair for 1, i.e., satisfying conditions (G1)—-(G4) above, so in particular

Ly*'x71,0) #£0. (8.2)
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By Theorem 4.4, the nonvanishing (8.2) implies that the p-adic L-function .Z, (¥ x*) does
not vanish at trivial character, so by Theorem 4.4 it follows that

#( 2 xH/(y = D2 (W x™)) < oo,

where y € I is any topological generator. Since .2, (¥ x*) corresponds to the Bloch—Kato
Selmer group for ¥ x * over Koo /K (see Remark 3.3), it follows that corank » Hf1 (K, Wy ) =
0. Since Selgpo (B,/K) ~ Hf1 (K, Wy y+), from Lemma 8.1 we thus obtain

corank g Selp (B;, /K) =1 == corankgSelpo (A, /K) = 1. (8.3)

Now, Corollary 7.2 together with a variant of Mazur’s control theorem immediately yields
the implication

corankgSelpo (Af x /K) =1 == z5,0#0€ Sp(Ar /K) @ P. (8.4)

wherez s, o is theimage of z 7, under the specializationmap S(A 7 /Koo) — H (K, V/ 5)
at the trivial character. By definition, the class z¢ , ¢ is a nonzero multiple of

> x©@) ¥

oeGal(K.)/K

where yr . is the Heegner class introduced in Sect. 2.2, and so
Zfx0#0 = ordi= L(f, x,5) =1 (8.5)

by virtue of the general Gross—Zagier formula [20, 53]. Finally, we note once more that (3.8)
yields the factorization

L(f7 X S) = L(WX7 S) : L(W*Xa S)'
Combining (8.3), (8.4), and (8.5) we thus obtain

corankﬁSelmw (B,,/JK)=1= ords—1L(f,x,s)=1
= ordg— L(Yx,s) =1,

using (8.2) and the above factorization for the last implication. Since ¥ x = A, this concludes
the proof. O
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