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Abstract—Scientific phenomena are being simulated at ever-
increasing resolution and fidelity thanks to advances in modern
supercomputers. These simulations produce a deluge of data,
putting unprecedented demand on the end-to-end data-movement
pipeline that consists of parallel writes for checkpoint and
analysis dumps and parallel localized reads for exploratory
analysis and visualization tasks. Parallel I/O libraries are often
optimized for uniformly distributed large-sized accesses, whereas
reads for analysis and visualization benefit from data layouts
that enable random-access and multiresolution queries. While
multiresolution layouts enable interactive exploration of massive
datasets, efficiently writing such layouts in parallel is challenging,
and straightforward methods for creating a multiresolution
hierarchy can lead to inefficient memory and disk access.

In this paper, we propose a compressed, hierarchical layout
that facilitates efficient parallel writes, while being efficient at
serving random access, multiresolution read queries for post-hoc
analysis and visualization. To efficiently write data to such a
layout in parallel is challenging due to potential load-balancing
issues at both the data transformation and disk I/O steps. Data
is often not readily distributed in a way that facilitates efficient
transformations necessary for creating a multiresolution hierar-
chy. Further, when compression or data reduction is applied,
the compressed data chunks may end up with different sizes,
confounding efficient parallel I/O. To overcome both these issues,
we present a novel two-phase load-balancing strategy to optimize
both memory and disk access patterns unique to writing non-
uniform multiresolution data. We implement these strategies in
a parallel I/O library and evaluate the efficacy of our approach
by using real-world simulation data and a novel approach to
microbenchmarking on the Theta Supercomputer of Argonne
National Laboratory.

Index Terms—Parallel I/O, load-balancing, multiresolution,
precision, compression, data layout, aggregation.

I. INTRODUCTION

Effectively managing the deluge of data we expect at

exascale is critical in ensuring scientific progress across do-

mains. Thanks to massive hardware improvements and larger

clusters, scientists are performing more complex and accurate

simulations, generating enormous data sets in the process (now

hundreds of gigabytes per time step or more). At the same

time, post-hoc analyses of such datasets are often performed

with modest computational resources. This necessitates com-

pact data formats that support both low latency random-access

reads and progressive, multiresolution queries, so that users

can efficiently work with data by loading only the necessary

bits. In particular, progressive multiresolution data layouts

allow exploration of large volumes of data with low latency.

Coarser resolutions of a scientific dataset can be accessed

almost instantaneously while further details can be loaded

progressively (and asynchronously). Progressive data layout

thus enables interactive visualization and exploration of very

large volumes of data, and has been successfully used in

simulation-visualization pipelines [1]. However, writing tradi-

tional multiresolution data layouts directly from applications

in parallel is challenging, mainly due to the communication

overhead involved in gathering initial coarser resolution data

that is spread across the entire spatial domain. Previous studies

using multiresolution data layouts [2] have demonstrated that

parallel I/O performance is often limited by large collective

communication operations among processes (i.e., required to

collect coarse level resolution data).

We observe that a global multiresolution hierarchy can also

be implicitly constructed by having multiple independent local

hierarchies, one for each localized chunk of data, termed patch
in this paper. This approach avoids gathering coarse-resolution

data globally at write time because the patches can be writ-

ten independently instead. Furthermore, because each patch

has its own hierarchy, I/O schemes have complete freedom

in organizing patches for optimal I/O performance without

the risk of disturbing the global hierarchy. With the patch

resolution (size) being configurable and not being dependent

on global resolution or the number of processes, there is

additional flexibility in controlling the optimal file size (and

hence, I/O burst size) during parallel I/O. At query time, data

at any resolution level can be retrieved and assembled from

multiple patches. Based on these observations, we propose a

patch-based data layout, where multiresolution hierarchies are

created independently and locally within every patch, instead

of creating a global multiresolution hierarchy spanning the

entire spatial domain. This approach is more amenable to

parallel I/O than traditional hierarchical layouts while still

allowing for fast multiresolution access.

In practice, data is often transformed before being written

to relieve I/O stress, for example with filtering, feature reduc-

tion, and compression. In our framework, to achieve both a

multiresolution and compact layout, we employ the wavelet

transform, followed by compressing the wavelet coefficients

with ZFP [5]. Such transformations, interposed between sim-

ulation output and I/O, present a load-balancing problem:
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(a) S3D flame dataset [3]

(b) Turbulence dataset [4]

Fig. 1: Size of data held by processes after wavelet transform

and ZFP compression for two different datasets demonstrates

the imbalanced nature of data distribution. The S3D flame

data is spread across 512 processes and the turbulence dataset

across 32,768 processes. It can be seen that the degree of

imbalance is greater for the S3D (compared to turbulence).

some processes may need to do significantly more work than

others because they host more patches or more data-heavy

patches. We solve these problems through (i) an optimal patch

distribution phase that ensures processes end up with a similar

number of patches, and then (ii) performing a load-balancing

aggregation phase to balance the data load during I/O across

a small number of aggregator processes, while retaining some

coarse spatial locality.

The patch distribution phase addresses the problem of

balancing the number of patches per process, a mapping that

greedy approaches do poorly. After the patches are distributed

uniformly across processes, wavelet transformation and zfp

compression are applied independently to them. This further

creates a load-balancing problem, as reduction rates may (and

often do) vary widely across the simulation domain (see

Figure 1), creating uneven, non-uniform data loads across

processes. This imbalance in load percolates to the parallel

I/O layer, causing sub-optimal performance. We mitigate this

problem with our load-balancing aggregation scheme, which

distributes compressed patches across aggregators to be even

in terms of bytes. We use a relatively smaller number of ag-

gregators before final disk I/O to collect data from simulation

processes, while also preserving the spatial locality of the

patches. Spatial locality is important as nearby patches are

likely to be queried together at reading time, so storing them

close together on a disk typically reduces read latency. Besides

ensuring near-uniform data distribution across aggregators,

our scheme endeavors to assign nearby patches to the same

aggregator so that they are written to the same file on disk.

Load balancing at I/O time is a key problem to solve,

not only because data reduction techniques are becoming

increasingly universal, but also because certain simulation data

types are inherently imbalanced, such as AMR grids [6] or

particles [7]. Most I/O libraries today either are designed to

write near-uniform data distributions (e.g., raw regular grids)

or have not adequately addressed the balancing problem. As

such, except for proposing solutions to this problem in novel

distribution and aggregation phases, we also introduce an

I/O benchmark that simulates real-world non-uniform data

distribution patterns at large scales. We achieve this goal

by extrapolating post-compression patch sizes from relatively

small data sets to any scale. Our benchmark is useful for

testing and tuning parallel I/O libraries because it does not

rely on a computationally expensive simulation being run or

any large-scale extensional dataset to be used while retaining

important statistics of compressed patches originating from

real-world data. In summary, we make the following specific

contributions to the literature:

1) A compressed, patch-based, hierarchical data layout that

is amenable for parallel I/O while effectively supporting

random access, multiresolution queries.

2) A patch distribution phase that facilitates load balancing

for data transformation while minimizing data move-

ment. Empirical evaluation shows a 2.5× improvement

over a non-balancing approach.

3) An aggregation phase that balances non-uniform data.

Experiments show a 1.3× improvement over a non-

balancing approach.

4) A novel I/O benchmark that simulates non-uniform

patch size distributions found in scientific data at scale

and an experimental evaluation of different I/O pipelines,

including traditional I/O approaches.

Our patch distribution phase is specific to multi-resolution

data layouts and can be used by any parallel I/O library [8] that

supports such data. However, our load-balanced aggregation

technique is general-purpose and can be used for any non-

uniform data distribution (irrespective of its source), and thus

can also be adopted by existing parallel I/O libraries such as

PnetCDF [9], HDF5 [10] and ADIOS [11].

II. RELATED WORK

Parallel I/O for grid-based and structured datasets has been

widely explored. However, few studies [12] have focused on

parallel I/O for non-uniform load distributions and in particular

for compressed multiresolution data. It is partly due to the

challenges of working with non-uniform data distributions.

Developers of simulation runtimes and scientific applications

are generally more focused on load balancing the computation

workload and much less on improving the file I/O pipelines.

It shifts the challenge to parallel file systems, where there are
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few efforts to alleviate load imbalance on I/O servers [13].

Popular I/O libraries, such as PnetCDF [9], parallel HDF5 [10]

and ADIOS [11], are built on top of MPI collective I/O [14],

which uses two-phase I/O by default. The two-phase I/O in

MPI-I/O defaults to one shared file, which often results in

sub-optimal performance.

Parallel I/O libraries are often tunable, as some strategies

work better on different networks, file system configurations,

or levels of parallelism. State-of-the-art parallel I/O libraries

such as ADIOS, PnetCDF, Parallel HDF5, and PIDX use a

suite of I/O transformations to effectively translate distributed-

application data layouts to file-level bitstreams. Two factors are

key while writing data in parallel: how many processes are

accessing a file, and how many files are being written in total.

Common strategies used by these libraries are: file per process,

single shared file, two-phase I/O, and subfiling. In file-per-

process, every process writes its data to an independent file,

whereas with shared file I/O processes, they write data to a sin-

gle shared file. It is well-known in the parallel I/O community

that writing to a single shared file or using the file-per-process

mode will lead to sub-optimal performance [7]. While file-per-

process I/O suffers from metadata overhead due to the massive

number of files produced, shared-file I/O typically suffers from

file-locking contention when every process attempts to write

at once. Similarly, allowing every process to perform its own

I/O leads to sub-optimal performance [15].

The latter two strategies, two-phase I/O and subfiling,

balance between file per process and single shared file ap-

proaches, to provide portable, scalable, and tunable I/O strate-

gies. Two-phase I/O strategies [1], [14], [16], [17] begin

by assigning a configurable number of processes to be data

aggregators. The non-aggregator processes are assigned a data

aggregator to send their data to, forming a subgroup. The pro-

cesses then send their data over the network to their assigned

aggregator, which writes a single file out after it has received

data from the processes in its subgroup. This scheme restricts

the number of processes that need to access the parallel file

system. Subfiling [18], [19] works similarly, though it does

not necessarily aggregate the data over the network into an

aggregator process before writing it out. Subfiling strategies

group processes into subgroups, then perform single shared

file writes within the subgroups, outputting a file per subgroup.

Subfiling controls the number of files created while two-

phase I/O with data aggregation controls the total number

of processes that access the parallel file system. These two

schemes provide a set of portable, scalable, and tunable I/O

strategies.

Finally, in terms of performance assessment, several tools

exist to characterize the message passing capabilities of a

system [20] [21] and assess its peak performance. A few of

them, like MADBench2 [22], assess I/O performance using

application-driven I/O loads, for example, simulating Cosmic

Microwave Background data analysis. One of the most com-

mon tools used to perform I/O benchmarks is IOR [23], which

allows defining a per-process buffer size and various settings

to perform file I/O, ultimately relying on POSIX or MPI I/O

Fig. 2: A 16× 16 simulation domain, for example, is divided

into 16 patches of 4×4 each. Each of the four processes con-

tains four patches. Each patch’s grid samples are transformed

into three resolution levels (orange, green, and blue). When

four files are written in the global hierarchy (top right), the

first file contains coarse-level data samples from all patches,

forcing expensive global communication. Each file in our

layout, which consists of four local hierarchies (bottom right),

only gathers data locally from its own patches.

APIs. This allows for experiments using file-per-process and

collective I/O patterns for a uniform data distribution among

the ranks. The ability to create uneven data distribution across

processes is not supported.

III. COMPRESSED HIERARCHICAL LAYOUT

In this section, we introduce our compressed hierarchical

layout for scientific data and discuss how it is designed to

facilitate fast parallel writes. We start with the observation

that traditional hierarchical layouts [2] tend to require I/O

libraries to gather coarse-resolution data samples across the

whole simulation domain, which incurs very expensive global

communication at write time. To make parallel I/O scalable,

we designed our data layout to be patch based. The patch-

based layout avoids the collective communication overhead of

creating the global hierarchy at write time because patches

can be written independently. As each patch encapsulates its

own hierarchy, I/O schemes can flexibly organize the patches

for optimal I/O performance without the risk of disturbing the

global hierarchy. Furthermore, the ability to tune the patch

resolution helps meet the optimal file size (I/O burst size)

requirement with more flexibility. If the patch size is fixed

to the initial process load, then there is less room to control

the I/O burst size. This is because, typically, we will have

more patches of smaller sizes (compared to the total number

of processes), that can be packed more uniformly across

aggregators targeting an optimal I/O burst size.

A. Patch-based design

A patch is typically a localized chunk of data. In particular,

the simulation grid is partitioned into patches of dimensions

px × py × pz , where each dimension is a power of two.

Each patch is transformed independently to form a hierarchy

of L resolution levels (L = log2(min(px, py, pz)) + 1).

Data samples are assigned to files in units of patches (i.e.,

samples from the same patch are always written in the same

file). The order in which samples are written within each
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file is flexible. They can be stored in two ways: (i) sorted

by patch indices, then by resolution levels (coarse to fine),

or (ii) sorted by resolution levels (coarse to fine), then by

patch indices. The first scheme prioritizes random access over

progressive multiresolution access, while the second one pri-

oritizes multiresolution access over random access. px,y,z and

storage schemes are controlled by the user, with px,y,z being

a tunable parameter. Smaller px,y,z values result in a more

balanced data-load distribution during the aggregation phase,

which improves I/O performance. The patch-based layout also

explicitly facilitates efficient random access reads. For parallel

I/O, the layout itself does not enforce any policy for assigning

patches to files to give I/O libraries more opportunities for

optimization. As an example, our I/O library sorts the patches

in Morton order [24], enforces that patch indices in the same

file are contiguous in this order, and allows the user to choose

the number of files (F ). Figure 2 illustrates a 2D example of

such a layout with px = py = 4, L = 3 and F = 4; it clearly

shows that when compared to a global hierarchy approach,

our patch-based design allows I/O libraries to operate with

no collective communication overheads, resulting in more

scalable I/O.

A possible reason for concern with our patch-based scheme

is that since coarse resolution data samples are spread across

more files, a query for these samples across the whole domain

may require reading a large number of small chunks (one

from each file) instead of one big chunk from a single file

(as with the global hierarchy scheme). This process may be

very slow depending on the size of each chunk. However, it

is easy to appropriately choose reasonable values for px,y,z
and the number of files so that each I/O request is for a

sizable chunk (tens or hundreds of kilobytes). For example,

if px = py = pz = 64, L = 5, each patch contains

43 = 64 data samples at the coarsest resolution level (level-

5). If each sample is a float64 and a file contains at least

83 = 512 patches, then the coarsest level occupies a chunk of

512 × 64 × 8 = 256 KB in each file, which is large enough

for high throughput I/O.

Although not mandated by the data layout, in practice, data

is often transformed and compressed in some way before

being stored on the disk. Our I/O library, for example, per-

forms the wavelet transform followed by lossy compression

of the wavelet coefficients (Section IV-B). At write time, we

transform and compress each patch independently of one an-

other, and at read time, we decompress and inverse transform

each patch independently. Therefore, the patch dimensions

px,y,z must be chosen small enough to allow fine-grained

random access and to facilitate parallel transform and com-

pression/decompression. They must, however, be large enough

to avoid accumulating too much metadata in order to support

random access and adaptive refinement. Also, while the patch

resolution is independent of the global or the local per-process

resolution, a special case can occur when its resolution is

set to be the same as the initial per-process resolution. This

would avoid any communication cost in the patch distribution

phase (every process will have a patch), but, we will lose

the flexibility to control the optimal file-size when performing

parallel I/O. However, we have found that, in our experiments,

32 and 64 are good choices for px,y,z (323 or 643 samples

per patch). With such patch sizes, the metadata accounts for

only about 2% of the total compressed data, and there are

enough patches to distribute among processes so that they can

be transformed and compressed efficiently in parallel, resulting

in good parallel I/O performance.

B. Data access and reconstruction

In each file, we store the total number of patches it contains,

their patch indices, and offsets for all resolution levels of each

patch. We also compute for each file a bounding box of all

the patches in the file, and store these bounding boxes in a

metadata file. At read time, the user can issue a query for

data at a certain resolution level and for a certain region of

the domain (the region may also be the whole domain). Given

such a query, we can quickly intersect the queried region with

these bounding boxes to locate the files in which the possibly

relevant patches are stored. Since a bounding box for a file

may have holes (i.e., patches that are stored in another file),

we next intersect the queried region with the extents of the

patches themselves to filter out irrelevant patches. Once the

relevant patches have been identified, they are loaded from

their respective files. We know exactly where to load these

patches because their offsets are stored as metadata.

IV. PARALLEL I/O

Figure 3 illustrates our end-to-end pipeline. To create a

compressed multiresolution hierarchy, we apply the discrete

wavelet transform, then compress the wavelet coefficients for

each patch, following the approach taken by [25]. We have

also chosen the B-spline multilinear basis [26] because it is

fast to compute and offers great compression opportunities.

Each patch is a computational unit, which is independently

transformed and compressed. For efficient memory access

during these computations, it is important that each patch is

worked on by only one process: we want to avoid having a

patch shared by two or more processes that necessitate data

communication during transformation. The simulation code,

however, may distribute data in ways that result in many

shared patches – after all, the simulation in general does not

work with patches of the same dimensions as our layout.

Therefore, before wavelet transform and compression, we need

to distribute the patches so that each process contains non-

overlap patches.

Ideally, in a two-phase I/O system, the aggregation phase

can serve as a patch distribution phase as well, and subse-

quent transformation and compression are done on aggregator

processes. However, such an approach can severely limit the

parallelism of those computations, because the number of

aggregators is typically very small compared to the number

of processes. To leverage the computational power from all

processes involved in the simulation, we propose a separate

phase, called the patch-distribution phase, to distribute the

patches evenly among all processes so that the subsequent
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Fig. 3: The end-to-end pipeline of our parallel-I/O library. Local per process data is partitioned across a tunable number of

patches–this step takes place in the patch distribution phase (section IV-A). We then apply wavelet transform on each of the

patches, creating local multiresolution hierarchies (section IV-B). The wavelet coefficients are then compressed with zfp to

get rid of redundancies in the data (section IV-B). Finally, the compressed patches, are buffered on few chosen aggregator

processes which writes the data (and meta data) to files (section IV-C).

transformation and compression are well load-balanced. After

(lossy) compression, we face another balancing issue, this time

for disk I/O, which arises due to non-uniform load distributions

created by uneven compression ratios across processes. This is

because different regions of the domain may be compressed

to different sizes, depending on the data being compressed

(see Figure 1 for example). The process with the most data

after compression is likely to be the last one finishing file I/O

operations, degrading the overall performance. Even without

compression, scientists often perform data filtering or feature

extraction before disk I/O to reduce the amount of data

written, which also causes this balancing issue. We tackle this

challenge by devising a layout-aware balanced aggregation

strategy. In short, our parallel I/O pipeline consists of three

distinct phases:

1) Balanced patch distribution (Section IV-A)

2) Parallel wavelet transform and compression (Sec-

tion IV-B)

3) Balanced data aggregation and file I/O (Section IV-C)

A. Balanced patch distribution

We start by distinguishing between regular-patches and

shared-patches. A regular-patch is fully contained within a

process before distribution, while a shared-patch is shared by

two or more processes (i.e,. each process holds some portion

of the patch). For example, in Figure 4, out of the 9 patches,

4 are regular-patches (ids: 0, 2, 6 and 8) and 5 are shared-
patches (ids: 1, 3, 4, 5, and 7); shared-patch id 4 is shared by

all four processes. Regular-patches are not moved during the

patch distribution phase, hence reducing data movement costs.

Shared-patches, on the other hand, may need to be moved from

their original process to a new process for balancing purposes.

With a total of M patches to be distributed across N pro-

cesses, a perfectly balanced distribution of patches is ensured

when every process gets exactly �M/N� patches and the

remaining M mod N patches are spread-out uniformly across

all N processes. A process will therefore either hold �M/N�
or �M/N + 1� patches, and we call this the target patch
count. For example, in Figure 4 the target patch count for

processes, blue, green, pink, and yellow are 3, 2, 2 and 2. The

regular-patches are not moved and are thus assigned to their

host process itself. The shared-patches that are spread across

processes must be assigned to a target process. We go through

all of the shared patches, assigning each one a target process.

Again, to minimize data movement, we attempt to assign a

shared-patch to one of the processes that share that patch—

we choose the process that has currently been assigned fewer

patches than its target patch count, which is either �M/N� or

�M/N +1�. If there are multiple candidates, the process with

the smallest rank is chosen. If a target process for the shared-
patch is found this way, then at-least a chunk of the shared-
patch will be locally copied (instead of being sent across the

network), hence reducing data movement. Alternatively, if all

processes that share the shared-patch have already reached

their target patch count, we scan through all processes and

assign the patch to the first process that has not reached its

target patch count. As an example, the first shared-patch (id 1)

in Figure 4 will be assigned to the blue process, since both blue

and green processes have not met their target-patch-counts

yet, we chose the process with smaller rank (assuming rank

order: blue < green < pink < yellow). The scheme ensures a

perfectly uniform distribution of patches.

In our implementation, we divide the set of processes

sharing a patch into senders and receivers. The receiver is

the one process that the shared-patch is assigned to, and the

rest are senders. Each sender then sends the region of the

patch that it holds to the receiver. This algorithm is run on

every process, so each one knows exactly whether it is a

receiver or sender for each shared-patch and what data to

send or receive. MPI_Type_create_subarray is used to
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Fig. 4: A 2D example of our patch distribution scheme. 3× 3
patches (separated by dash lines and numbered) are distributed

among four processes (distinguished by colors). Before the

distribution, some patches are shared among processes, result-

ing in many sub-patch regions. After the distribution using

our scheme, the processes have exactly 3, 2, 2, 2 patches

respectively. In contrast, the greedy scheme distributes the

patches unevenly. Note that boundary patches (have smaller

dimensions) may also be padded to regular patches.

define these sub-patch regions that are sent and received over

the network, and MPI’s non-blocking point to point API is

used for data transfer. In Figure 4, we give a small example

where we number the patches and color the processes to help

to visualize them. After all the sub-patch regions are sent

and received, every process ends up with target-patch count
patches, each of which is stored in a separate contiguous

memory block, ready to be transformed.

Perhaps a more straightforward method for choosing the

receiver for a shared-patch is to pick the one with the largest

sub-patch region among the processes that share the patch

(i.e., the process that originally contains the most data from

the patch). Patch distribution using this greedy scheme has

been used, for example in [2], albeit not for balancing the data

transformation per patch, but to minimize interleaving of data

samples among processes in aggregation buffers. However,

in Figure 4 we show that the greedy scheme leads to a very

imbalanced patch distribution. In Section V we also show

through experiments that in practice, the greedy scheme does

indeed result in significantly longer computation time.

B. Wavelet transform and compression

Following patch distribution, the wavelet transform is ap-

plied to each patch independently. The transform updates and

divides the data samples in each patch into a set of resolution

levels, each of which captures information at a specific scale.

Because the patches are processed independently, once the

patch distribution is completed, there is no need to communi-

cate among processes, such as exchanging boundary data. This

deliberate design is intended to extract the most parallelism

from the machine for the transformation step. In all our studies,

we keep the patch resolution to be powers of two, ensuring that

wavelet coefficient at patch boundaries are computed correctly.

Linear and higher-order wavelets are not only useful for

low-pass filtering but also for lossy compression. One way to

compress is to treat the fine-scale wavelet coefficients as being

0 and do not store them. More sophisticated wavelet encoding

schemes such as SPIHT and JPEG2000 exist [27], [28], but

they tend to be slow. For performance reasons, we compress

wavelet coefficients at each resolution level independently

using ZFP [5], a fast compressor for floating-point arrays. Prior

work [25] has shown that ZFP in fixed accuracy mode can

be used very efficiently as a wavelet compressor. To allow

data retrieval of individual resolution levels, we compress

each resolution level independently. The compression accuracy

(or absolute error tolerance) is a parameter controlled by the

user. Because patches can be processed independently of one

another, it is possible for I/O libraries to achieve very high

degrees of parallelism when performing data transformation,

namely, wavelet transform and compression. In Section V, we

provide detailed timings of this step with our implementation.

C. Layout-aware balanced data aggregation

The next step is to write the compressed data to disk, in the

file layout described in Section III. Lossy data compression

may create load imbalance across processes, as different

regions of the spatial domains are compressed to different

sizes. This can be attributed to the nature of the dataset in

question, as some processes have regions with more coherent

data, which gets compressed more than processes with regions

of higher randomness. This imbalance in load percolates to the

I/O layer, causing sub-optimal performance. The problem is

more prominent with time-varying simulation datasets, where

the degree of imbalance changes over time, necessitating an

adaptive parallel I/O system. Figure 1 depicts this imbalance

for real-world scientific datasets, demonstrating that most of

the datasets show significant variation in load across processes.

We have designed our data layout in a manner that in-

herently supports writing to a tunable number of files (F ).
Although MPI has support for collective I/O that internally

does data aggregation, it explicitly does not support sub-filing.

Sub-filing allows one to use collective access within each

communicator group and also write data to a hierarchy of files.

This scheme of doing parallel I/O is popular and is widely

used by I/O libraries like parallel HDF5 [19]. However, this

method does not directly translate well for non-uniform data

distributions, as it leads to fewer aggregators writing more data

than others, causing sub-optimal performance. To extract the

maximum available bandwidth from the hardware, we must

have a uniform distribution of I/O load across aggregators.

To deal with load-balancing challenges, we have designed

a customized two-phase I/O strategy, that facilitates both sub-

filing and ensures that aggregators have similar I/O loads to

write. Our aggregation phase takes into account the global

view of data distribution across processes while assigning the

size and extent of each aggregator. Following are the steps

in the aggregation phase: 1) aggregator selection, 2) patch

assignment, and 3) patch transfer.

1) Aggregator selection: A key step in tailoring aggregation

is to select an appropriate number of aggregators. We allow

only one aggregator to write a file, so the aggregator count is

equal to the total number of files written. Given that we have

designed our data layout to support a flexible number of files,
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(a) Balanced aggregation

(b) Non-balanced aggregation

Fig. 5: Our balanced aggregation scheme vs. the non-balanced

scheme. Both approaches yield the same number of files

(same number of aggregators). However, balanced aggregation

generates files of similar size as opposed to the non-balanced

scheme where files have varying sizes but the same number

of patches. (A filled black circle represents 1M).

we keep that as a tunable parameter that is set by the user.

The only limitation is that the total number of files outputted

must be less than or equal to the total number of processes. In

practice, the number of files generated should be a fraction of

the total number of processes. For example, in our evaluation

section, we vary the number of files from nprocs (file-per-

process) to nprocs/16. This aggregator count and file count

configuration is in line with sub-filing, and also avoids any

file locking contention which can happen with processes that

make unaligned accesses to a file. To extract the maximum

I/O bandwidth, we place the aggregators uniformly across the

rank space. In Section V, we demonstrate the impact of the

number of aggregators/files.

2) Patch assignment.: To ensure a balanced I/O phase, we

need to assign patches to aggregators so that every aggregator

manages roughly the same volume of data. This step would be

trivial if processes had similar-sized data loads. However, as

our data patches are all of different sizes, a file must contain a

different number of patches to achieve a balanced amount of

data per-file. To attain similar-sized files, we allow aggregators

to receive data from a varying number of processes. We

keep the smallest unit of data exchange to be a patch (i.e.

a process can send its patches to multiple aggregators), and

in the extreme case, it can transmit to as many aggregators as

it has patches. This configuration facilitates creating a near-

uniform data load across the aggregators. Additionally, it also

provides extra flexibility in controlling the file-level layout.

For example, we write out patches in Morton order [24] to

preserve the spatial locality of patches in the file.

We begin by collecting patch sizes across processes using

MPI’s MPI_Allgather. This allows processes to construct

Dataset
Name Resolution Type

Size after
compression

(bytes)
PSNR

Synthetic data 1600 x 1600 x 1600 float 1540263880 37.7

S3D flame [3] 2025 x 1600 x 400 double 786616672 35.6

Turbulence data [4] 4096 x 4096 x 4096 float 38989451056 33.9

TABLE I: Datasets used in our experiments

a consistent global view of all patches, which is used to

independently identify the aggregators they need to send their

data to. As we intend to write out patches to files in Morton

order [24], we first sort all patches in Morton order, then

scan over this sorted list, allocating patches to aggregator

processes in a balanced manner. We keep a running total of

compressed patch sizes and progress to the next aggregator

process whenever this value exceeds a running average (the

remaining data divided by the number of remaining aggrega-

tors). When the running sum runs over our target aggregator

size, we assign the patches in the running sum to the current

aggregator and reset our running sum to 0, progressing to

the next aggregator. This approach yields a small dip in the

per-aggregator data at the very end as this average declines.

This does not create significant balancing problems but may

be remediated by undershooting the average at first, or by

alternating between going over the average and staying under

the average at each aggregator. We plan to experiment further

with such improvements in the future.

3) Patch transfer: The patch assignment step is executed

independently by every process, at the end of which every

patch is assigned to a target aggregator. Target aggregators use

the same step (patch assignment) to identify the patches and,

correspondingly, the ranks they are going to receive the data

from. This allows the aggregator processes to correctly allocate

buffers to accommodate the receiving patches. Processes then

transfer their patches to the aggregators using MPI’s non-

blocking point-to-point communication.

We show an example of our balanced aggregation scheme

in Figure 5(a). It can be seen that our scheme can support

both sub-filing and also perform uniform-sized I/O writes. We

compare our approach’s performance to that of a non-balanced
aggregation scheme (Figure 5(b)), which generates the same

number of files as the balanced aggregation scheme but writes

to non-uniform-sized files. In the non-balanced aggregated

scheme, every aggregator receives the same number of patches,

and since the patches have varying data loads, the aggregators

end up with a non-uniform load distribution.

V. EVALUATION

We begin by evaluating the efficacy of our balanced patch

distribution and aggregation phases. We have used a mix of

synthetic and real simulation datasets (see Table I) for our

experiments. All our experiments are performed on the Theta

Supercomputer [29] at the Argonne Leadership Computing

Facility (ALCF). Theta is a Cray machine with a peak per-

formance of 11.69 petaflops, 281,088 compute cores, 843.264
TiB of DDR4 RAM, 70.272 TiB of MCDRAM, and 10 PiB
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(a) With out scheme, patches are evenly dis-
tributed across the process ranks

(b) The balanced patch distribution results in
a significant speedup factor

(c) Our distribution scheme achieves near-
perfect strong scaling

Fig. 6: Compared to the greedy patch distribution scheme, ours reduces the total combined time of the distribution, wavelet

transform, and compression steps by more than half. It also exhibits near-perfect strong scaling behavior. (4, 096 ranks)

(a) Bandwidth (whole pipeline) for varying
aggregator counts. (FPP: File-Per-Process)

(b) Size of I/O load for all 4096-aggregators
run.

(c) Bandwidth (whole pipeline) for all 4096-
aggregators run.

Fig. 7: Results showing the impact of balanced data aggregation for writing turbulence [4] dataset. (32, 768 ranks)

(a) Bandwidth (whole pipeline) for varying
aggregator counts. (FPP: File-Per-Process)

(b) Size of I/O load for all 512-aggregators
run.

(c) Bandwidth (whole pipeline) for all 512-
aggregators run.

Fig. 8: Results showing the impact of balanced data aggregation for writing S3D flame [3] dataset. (4, 096 ranks)

of online disk storage. The supercomputer has a Dragonfly

network topology and a Lustre filesystem.

A. Patch distribution phase

In our I/O pipeline (Figure 3), patch distribution happens

first, followed by a wavelet-transformation and compression

(for each patch). Here we compare our balanced patch dis-

tribution scheme with the greedy scheme discussed in Sec-

tion IV-A. Patch distribution using the greedy scheme has been

used extensively in the past, for example, in [2]. In addition to

measuring the total time taken to perform patch redistribution,

we also time the wavelet-transformation and compression steps

to measure the real impact of the patch distribution phase. We

use a grid with a resolution 16003 and run a strong-scaling

experiment with a total number of processes ranging from 512
to 4,096. The patch dimensions are 643, resulting in a total of

16003/643 = 15,625 patches. We repeated each experiment

10 times, and plotted the medians in Figure 6.

At 4,096 ranks, our scheme distributes the patches more

uniformly (Figure 6a). With the greedy scheme, approximately

a quarter of the processes hold eight patches each while

a significant number of processes hold only one patch, as

opposed to our scheme, where every process holds either three

or four patches. The near perfect-balance not only makes the

data distribution phase fast, but it also directly impacts the fol-

lowing wavelet-transform and compression phases (Figure 6b).

With the greedy scheme, processes with patches must perform

more computation overall, causing performance degradation.

Figure 6c depicts the results for strong scaling. Our approach

takes 1.11s at 512 processes and 0.15s at 4,096 processes,

demonstrating near-perfect scaling efficiency, while the greedy

approach does not.
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B. Load-balanced data aggregation

In this section, we demonstrate the efficacy of the load-

balanced aggregation scheme. We compare our method with a

non-balanced aggregation approach in which each aggregator

is given an equal number of patches. Recall that our balanced
aggregation scheme ensures that aggregators have similar I/O

loads and so, as a result, files have similar sizes; this is not

true for non-balanced aggregation schemes.

We evaluate our scheme on the S3D flame and Turbulence

dataset listed in Table 1. The experiments are performed at

4,096 and 32,768 processes (n), respectively. For the S3D

flame experiments, we varied the total number of aggregators

(= files) from n (file-per-process) to n/8. For the Turbulence

experiments, we varied the total number of aggregators (=
files) from n (file-per-process) to n/64. We repeated each

experiment 10 times and plotted the bandwidth of the median

in Figure 7(a) and 8(a). For the 40963-resolution turbulence

dataset, our balanced aggregation approach yields a peak

throughput of 58.08 GiB/second, while the non-balanced
approach yields a peak throughput of 51.11 GiB/second.

File-per-process I/O mode yields a throughput of 33.01
GiB/second. These figures represent a 12% improvement in

performance over the non-balanced approach and a 43.16%
improvement over file-per-process I/O. For the S3D flame

dataset, we observe a maximum bandwidth of 9.97 GiB/second

with the balanced aggregation, and 7.5 GiB/second with the

non-balanced aggregation, while file-per-process I/O yields a

throughput of 5.14 GiB/second. These correspond to a 24.77%
improvement in performance over non-balanced aggregation

and around 2× improvement over file-per-process I/O. The

file-per-process I/O approach can be considered a baseline

for comparison with no communication overhead. This com-

parison demonstrates that although our optimizations have

an extra communication phase, they ultimately improve the

overall performance.

The improvement (%) in the flame dataset is more than

in the turbulence dataset. Figure 7(b-c) depicts the data load

and bandwidth of all 4,096-aggregators runs of the turbulence

dataset, and Figure 8(b-c) depicts a similar metric for the 256-

aggregators run of the S3D flame dataset. From these figures,

we observe that the degree of non-uniformity of data distribu-

tion varies between the two datasets. With the flame dataset,

the non-balanced scheme results in groups of aggregators

significantly much more data than the others. In the turbulence

data, however, the degree of imbalance in data distribution

across aggregators is more moderate, even using the non-
balanced scheme. This difference in load distribution across

aggregators for the two datasets can be directly attributed to the

initial load distribution across processes (as seen in Figure 1).

Clearly, the S3D flame dataset has more variance than the

turbulence dataset that percolates to the aggregation layer. This

inherent difference in the degree of non-uniformity between

the two datasets leads to the S3D data set benefiting more

from our balanced aggregation strategy than the turbulence

dataset (which has less inherent imbalance). Furthermore, the

Fig. 9: Strong scaling results for writing the S3D dataset

with both balanced and non-balanced aggregation schemes.

Balanced aggregation scheme consistently outperforms the

other scheme at all process counts.

differences between the two aggregation schemes becomes

less discernible for larger aggregator counts, mainly because

each aggregator gathers a smaller number of patches. This

trend is even more clear for datasets with near-uniform load

distribution, such as turbulence. Additionally, the patch assign-

ment overhead of the balanced aggregation scheme is slightly

higher than that of the non-balanced one because it must

calculate the running average size (Section IV-C2). As a result,

in Figure 7(a), the non-balanced aggregation scheme slightly

outperforms the balanced one.

We also observe that our balanced scheme achieves the best

performance at aggregator counts of 8,192 and 512 for the

two datasets. Finding the optimal number of aggregators is

a difficult problem, as it often depends on the scale of the

experiment, and in our case, the load distribution pattern.

However, we recognize that the Lustre filesystem is more

suited to writing data in file-per-process mode and is adept

at handling a large number of files. This is further seen in our

experiments in this section and in the following section. For

our experiments, we have therefore experimented with smaller

aggregation factors, leaning more towards the file-per-process

I/O spectrum. We believe that our system is flexible in its

design, and can be effectively tuned for different filesystems.

We also perform strong scaling experiments for the S3D

dataset and plot the results in Figure 9. Here, we also see our

load-balanced aggregation scheme consistently outperform the

imbalanced scheme at all process counts.

C. Micro-benchmarks

Traditional I/O benchmarks such as IOR [23] use static,

uniform, data distributions replicated across processes to as-

sess system I/O bandwidth. Generating a realistic non-uniform

data distribution at scale would require a real simulation to

be run (computation overhead), or would need an extensional

database (storage overhead). In this work, we introduce a

simple micro-benchmark that can mimic the non-uniform

data distribution pattern (across processes) of a real scientific

application at any arbitrary scale, without any computation

or storage overhead. The main idea is to extrapolate the per-
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(a) S3D flame dataset (P = 512).

(b) Generated data (P = 4096)

Fig. 10: Micro-benchmark load distributions. The generated

data preserves the load distribution patterns in the original

data, representing a good candidate for benchmarking at scale.

process data size instead of the actual data. We first consider

a scientific dataset and collect the data size that each rank

holds in the original 3D grid domain at a small scale (say, at

process count Px×Py×Pz). This data size is then stored in a

3D size-grid of dimensions Px, Py , Pz . With this information,

we launch our micro-benchmark at a larger scale (i.e., using a

larger number of processes) and assign a new data size to each

rank — computed on the fly using trilinear interpolation on

the original 3D size-grid. At this stage, each rank allocates a

buffer with the assigned new data size and runs an I/O pipeline.

This approach is inspired by common practices in simulation

design, where scientists first prototype small-scale simulation

runs using a coarse resolution grid and then increase the

resolution of each patch to perform large-scale simulations.

In Figure 10, we can see how the load distribution of the

S3D flame dataset (after parallel wavelet transform and com-

pression) using 512 ranks is very similar to our generated load

distribution using 4,096 ranks. These plots demonstrate how

our micro-benchmark technique preserves the load-distribution

patterns (in a 3D domain) of a scientific dataset at scale.

Using our micro-benchmark, we can perform weak-scaling

experiments to assess and compare our load-balanced aggre-

gation approach against traditional file I/O. In particular, we

ran our experiments at scale with five I/O pipelines: (i) file

per process I/O; (ii) MPI collective (parallel write to a single

file); (iii) MPI Group Collective (parallel write to a target

number of files); (iv) non-balanced aggregation; (v) balanced

Fig. 11: Weak scaling results of different I/O pipelines,

where the per-process workload is created using our micro-

benchmark following the distribution of S3D data (Figure 10).

The total size of the dataset starts at 1,024 ranks with 9.5GiB.

aggregation (our approach). We configure schemes (iii), (iv)

and (v) to generate nprocs/8 files. In this set of micro-

benchmarks, we allocate data buffers on each rank to mimic a

real scientific simulation load. For weak-scaling experiments,

we use our I/O simulator to simulate an S3D simulation

with 16 variables, resulting in a non-uniform load distribution

across processes, as shown in Figure 10(a). We vary the total

number of processes from 1, 024 to 16, 384, while the total I/O

load varies from 9.5 GiB to 153 GiB per timestep. We repeated

each experiment 10 times and plotted the median in Figure 11.

We observe that our balanced aggregation scheme out-

performs all other methods at 16, 384 cores. We report a

throughput of 72.75 GiB/second at 16, 384 processes, com-

pared to 59.65 GiB/second for file-per-process I/O. These

results demonstrate that our balanced aggregation strategy

outperforms other schemes at scale. In particular, the non-
balanced aggregation and MPI Group Collective I/O exper-

iments both perform a non-balanced two-phase I/O pipeline

producing the same number of files equal to nprocs/8. In the

non-balanced aggregation pipeline, the number of aggregators

is equal to the number of files, while the MPI Group Collective

manages the aggregators using an internal heuristic. From the

experimental result, we can see that the two approaches have

similar performance trends at scale. Unsurprisingly, the MPI

Collective I/O presents the worst performance at scale due to

the global communication overhead in the data aggregation

phase and also by having a large number of processes writing

to the same file. Finally, file-per-process I/O maintains overall

good performance but starts losing efficiency at scale due

to the increasingly higher number of files. That’s because

the Lustre file system can handle large numbers of files but

only achieves saturating performance at very high process

counts. As a result, aggregation strategies are expected to

be ineffective at lower process counts. It is important to

note that the tunability of the proposed I/O library permits

configuration, so it may perform file-per-process I/O and

achieve the best performance at a lower scale. Furthermore,

if we consider post-process analysis and visualization tasks

(typically run with a smaller set of computational resources),
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using a large number of files would probably reduce the I/O

read performance.

VI. CONCLUSION

We have presented a compressed hierarchical data layout

and efficient parallel I/O scheme suitable for a variety of HPC

applications. Hierarchical formats allow fast access to data at

different scales, making it favorable for interactive analysis

tasks. Writing traditional multi-resolution layouts that create

global hierarchies is challenging as it involves expensive syn-

chronization during the aggregation phase. Our layout solves

this problem by creating a grid of local hierarchies, called

patches, that can be processed and written in parallel without

any global synchronization. We identify two load-balancing

challenges associated with writing our data layout in parallel,

one for per-patch data transformation and compression, and the

other for parallel writing of compressed patches. We present

a technique to facilitate balanced patch distribution across

processes, and a novel aggregation strategy that incorporates

sub-filing and creates uniform I/O loads across aggregators.

We report an 8× improvement in performance over the default

MPI collective I/O at scale. Our proposed balanced aggrega-

tion technique can also be applied to other HPC applications

that produce non-uniform or sparse data loads. The presented

techniques are generic and so can also be integrated with

existing I/O libraries such as PnetCDF, parallel HDF5 and

ADIOS.
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