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A B S T R A C T   

The purposes of the present work are to evaluate the prediction accuracy of characteristic cycle on 
creep-fatigue life prediction and to analyze the advantages and disadvantages of various models 
in tensile strain-dwell tests. The parameters of the first cycle, the 10% life, the half-life, and the 
characteristic cycle that we proposed (a turning point between the initial rapid softening and 
subsequent slight softening/hardening) are employed to linear-damage-summation (LDS) and 
energy-life prediction models based on the creep-fatigue data of directionally-solidified Nickel- 
based superalloy, DZ445, at 900 ◦C. It is found that the characteristic cycle parameters with clear 
physical significance have the highest life prediction accuracy. Moreover, the optimal critical 
value of fatigue and creep damage (the coordinate of the creep-fatigue envelope intersection) in 
the LDS is also determined. The prediction accuracy of creep damage based on the time-fraction, 
the simple ductility-exhaustion, and the strain-energy- density-exhaustion models is sequentially 
improved in the LDS rule. In the energy-life model, the life prediction accuracy based on damage 
mechanism and frequency correction is higher than the value without any correction. This 
investigation provides a new method of the parameter-selection for the creep-fatigue life pre
diction, which is accurate and convenient. It provides the theoretical-guidance for creep-fatigue 
life prediction in both laboratory experiment and actual components.   

1. Introduction 

With the development of high-temperature equipment in gas turbine, aero engine, thermal power, and nuclear power, their 
components usually suffer from the creep-fatigue interaction failures during start-up, operation, and shut-down process. Thus, the 
investigations of creep-fatigue behavior as well as the life-prediction becomes particularly important [1,2]. 

Researchers have been devoted to the development of fatigue-life prediction models [3,4]. The earliest research on the develop
ment of fatigue-life prediction models could be traced back to 1855. Wöhler [5] studied the stress-life curve of high-cycle fatigue and 
established the famous S - N curve (where S represents the stress while N represents the life cycles, respectively). In 1910, Basquin [6] 
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described the stress-life data in the form of power-law for the first time. In the 1950s, Coffin [7] and Manson [8] independently re
ported the strain-life relationship in the low-cycle fatigue, namely, the famous Masson-Coffin formula, which initiated the study of 
creep-fatigue life-prediction models. Over the past 60 years, the creep-fatigue life-prediction models have been extensively developed, 
among which Halford [9], Chen [10], Korsunsky [11], Sabour [12], Takahashi [13], Yuan [14], Zhang [15,16], Wong [17], and others 
successively reviewed the creep-fatigue life-prediction methods of different system materials. Researchers have developed hundreds of 
creep-fatigue life-prediction models [18]. However, with the development of those models, the linear-damage-summation (LDS) rule 
could better predict the fatigue life and meet the requirements of remaining-life assessment [19]. Researchers usually use the tradi
tional parameter methods to calculate the fatigue damage in LDS model [20]. In LDS model, the creep damage is usually calculated by 
the time-fraction (TF) method, the simple ductility-exhaustion (DE) method [21] as well as its evolution [22], and the strain-energy- 
density-exhaustion (SEDE) [23]. The energy-based life models not only consider the effects of temperature and total strain amplitude, 
but also the effects of internal defects, such as carbides and micro-voids, on the fatigue life [24]. It could combine the accuracy of life 
prediction with clear physical mechanisms [25,26]. 

The calculations of creep-fatigue damage in the above-mentioned life-prediction models require the parameters, such as stress, 
strain, and strain energy, which are required by the addition of damage cycle-by-cycle. Nevertheless, the cyclic-life in the creep-fatigue 
experiment is usually from hundreds to thousands or even tens of thousands of cycles in fact. It is obviously impractical to calculate the 
damage cycle-by-cycle. Therefore, some approximate values of the damage calculations are required. But the selection of parameters in 
different cycles is a very controversial issue in creep-fatigue deformation, which is directly related to the prediction accuracy. 

Nomenclature 

Df total fatigue damage (–) 
Dc total creep damage (–) 
ni creep-fatigue cycles at a certain level of fatigue load (–) 
Nfi cyclic life at a certain level of fatigue load (–) 
tj creep-fatigue rupture time at a certain level of creep load (h) 
trj pure creep-rupture time at a certain level of creep load (h) 
df fatigue damage at a single cycle (–) 
dc creep damage at a single cycle (–) 
(Df, Dc) coordinate of intersection between the creep-fatigue failure envelopes (–) 
a fitting constant (–) 
b fitting constant (–) 
c fitting constant (–) 
tR(σ,T) function of the applied stress at a constant temperature (h) 
k related constant of material and temperature (–) 
α related constant of material and temperature (–) 
Np

f predicted life (–) 
Nm

f measured life (–) 
n number of data points (–) 
˙Îµin inelastic strain rate (%) 

E elastic modulus (GPa) 
Î ́((

_Îµin,Tabs) ultimate creep strain (%) 
E elastic modulus (MPa) 
ẇin inelastic-strain energy density rate (MJ/m3 s− 1) 
wf inelastic strain energy density (MJ/m3) 
wt inelastic tensile strain energy (MJ/m3) 
2Nf failure reversals (–) 
n′ cyclic strain-hardening index (–) 
σT maximum tensile stress (MPa) 
Δεin inelastic strain (%) 
β constant (–) 
R2 coefficient of determination (–) 
Tc time in pure low-cycle fatigue (s) 
ΔÎµin inelastic strain range (%) 
ΔÎµpp plastic strain range (%) 

ΔÎµcp creep strain range (%) 
Δσr relaxed stress (MPa) 
ΔÎµcp creep strain range component (%)  
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Campbell calculated the creep-fatigue damage under the mid-life cycle for the 304 stainless steel at 650 ◦C with different strain-ranges, 
assuming that the total-damage is equal to the product of the damage (including the relaxation history, the maximum stress, the strain 
range, and the creep damage during dwell period) at 1/2 Nf and the cyclic-life. Since the cyclic-stress remains stable with 1.0% total 
strain-range at 650 ◦C in Campbell’s research with tensile-dwell period, so this damage-calculation method should be effective [27]. 
This kind of calculation criterion is considered reasonable in the stress stability-state during deformation, such as for the creep-fatigue 
deformation of 709 Alloy [28]. However, with the appearance of cyclic softening/hardening in the deformation of most materials, the 
damage at the mid-life may not accurately represent the entire deformation behavior [28,29]. Therefore, some scholars select several 
representative cycles to calculate the total creep-fatigue damage for high prediction precision [30]. In order to balance the prediction 
accuracy and convenience of the creep-damage calculation, Chen [31] uses the parameter at every 10% creep-fatigue life as the 
representative damage to predict the life of Alloy 617 and HAYNES 230 alloy. The prediction showed the promising results as the 
difference between the predicted and experimental creep-fatigue life of Inconel 617 and Haynes 230 is less than 30% in the frequency- 
modified tensile hysteresis-energy model. However, in the first cycle during deformation, the calculated damage is much smaller than 
the value calculated based on the parameters at the half-life cycle [32]. In the creep-fatigue deformation of 9Cr-0.5Mo-1.8W-V-Nb 
heat-resistant steel, the parameter value under the first-cycle also shows more damage of stress relaxation compared with that in 
the half-life cycle [33]. Therefore, the predicted life using the parameters under the first cycle will lead to the large value. The concept 
of the cycle-by-cycle damage calculation is used in the creep-fatigue life prediction of GH4169 in a tensile-strain-dwell test with 
different total strain-ranges, which has good prediction accuracy within a scatter factor of 1.5 and can evaluate the remaining-life of 
material [32]. A new numerical procedure based on a cycle-by-cycle analysis was constructed for creep-fatigue behavior and life 
prediction of high-temperature structures under multi-axial stress states [34]. In general, the accuracy of life prediction cycle-by-cycle 
is the best. Certain creep-fatigue equipment [such as MTS (Mechanical Testing & Simulation Co., Ltd., Minnesota, U.S.A.), etc.] can 
record the plastic-strain and other parameters in each cycle directly. However, for some equipment [such as the RPL series (Changchun 
Research Institute for Mechanical Science Co., Ltd., Changchun, C.N.), etc.] that cannot record these parameters cycle-by-cycle, 
resulting in the calculation of damage for each cycle is extremely cumbersome [35]. Therefore, it is particularly important to select 
the convenient and accurate parameters during deformation to estimate the damage. 

Our research suggests the use of parameters in the “characteristic cycle” to predict the life. The characteristic cycle is defined as the 
“turning point” between the initial rapid-softening and the subsequent slight-softening/hardening of the maximum tensile stress, 
which represents the transition from the unstable-state (the rapid generation of dislocations) to the steady-state (the dynamic equi
librium of the generation and annihilation of dislocations) during deformation [Fig. 4 (a) for details]. It could reflect the deformation 
behavior of material throughout the entire process. In order to evaluate its impact on the accuracy of the life-prediction, based on the 
creep-fatigue data of the DZ445 superalloy under different total strain ranges and dwell times at 900 ◦C, we compared the prediction 
accuracy calculated by the parameters at the characteristic cycle, the first cycle, the 10%-life, and the half-life. The linear-damage- 
summation and energy-life models are employed to evaluate their accuracy. The calculation of fatigue and creep damage are 
required in the LDS. The traditional parametric methods are used to calculate the fatigue damage. The time-fraction, the simple- 
ductility-exhaustion, and the strain-energy-density-exhaustion models are employed to calculate the creep damage. The results 
show that the creep-fatigue life prediction using the parameters under the characteristic cycle has good accuracy. This research work 
provides a new method of parameter selection in life prediction. This kind of prediction method is accurate and convenient, which 
provides the guidance for creep-fatigue life-prediction of the experiment both in laboratory and practical components. 

2. Experimental process and flow chart of life-prediction 

2.1. Experimental process 

The main chemical composition of the first-generation directionally-solidified Nickel-based superalloy, DZ445, selected in this 
investigation is: 0.072 C, 13.10 Cr, 9.99 Co, 4.53 W, 1.75 Mo, 4.07 Al, 2.38 Ti, 4.80 Ta, 0.024 B, and Ni is the balance (Weight 
percentage, %). The detailed microstructure of this superalloy could be found in our previous investigation [36]. All the strain- 
controlled creep-fatigue experiments were performed on the RPL series electronic creep-fatigue testing machine (RPL is a testing 
machine model, produced by Changchun Research Institute for Mechanical Science Co., Ltd., Changchun, C.N.). The strain loading/ 
unloading rate keeps a constant at 5 × 10− 3 s− 1 with or without dwell time. Different dwell times are introduced at the maximum 
tensile-strain of the triangular-wave to form a trapezoidal-wave. The strain ratio, R (R = Îµmin/̂Iµmax) is − 1. Other detailed experi
mental processes could be seen in our previous study [37]. The data used in the creep-fatigue life prediction of this investigation are 
shown in Table 1. Each set of the experiments is repeated 2–3 times until the sample is broken. The fracture position is regarded as an 
effective fracture within the range of the gauge length. The creep-fatigue life is defined as the number of cycles (Nf) when the sample is 
broken. 

Table 1 
Creep-fatigue experiment parameters at 900 ◦C for the DZ445 superalloy.  

Temperature (◦C) Strain (%) Dwell time (min.) 

900  0.6 0, 2, 3, 5, 8  
1.0 0, 2, 3, 8  
1.6 0, 2, 3, 5, 8,  
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2.2. Overall flow chart of life prediction 

The overall flow chart used to predict the creep-fatigue life of DZ445 superalloy in our investigation is shown in Fig. 1. The first 
purpose of our study is to determine which cycle parameter selected as the reference damage has the highest life prediction accuracy? 
The second purpose is to determine which the optimal model is by comparing the life prediction accuracy of different models. We select 
the parameters at the first cycle, the 10% life, the half-life, and the characteristic cycle to predict the life in the LDS and energy-life 
model. In the linear-damage-accumulation rule, we aim to determine the optimal intersection coordinates in the creep-fatigue en
velope first. Then we calculate the fatigue-damage and creep-damage separately. In the creep-damage calculation, we select the time 
fraction, the simple ductility-exhaustion, and the strain-energy-density exhaustion rules, respectively. In the energy-life model, we 
select the uncorrected model, the damage-mechanism-modified model and the frequency-modified model, respectively. Finally, the 
accuracy of the life prediction model is calculated by the deviation between the predicted life and the measured life. So as to determine 
which cycle parameter selected and which life-prediction model has the best prediction accuracy. The corresponding calculation 
method of life-prediction will be introduced in detail below. 

3. Evaluation using a linear-damage-summation (LDS) model 

3.1. Description of the LDS model 

The time-independent fatigue damage and time-dependent creep damage are simply added in the linear-damage-summation model 
[38], 

Df + Dc =
∑ ni

Nfi
+
∑ tj

trj
= 1 (1)  

where Df , Dc, ni, Nf i, tj, and trj stand for the total fatigue damage, the total creep damage, the cycles at a certain level of fatigue load, the 
corresponding cyclic life, the rupture time at a certain level of creep load, and the corresponding creep rupture time, respectively. 

In the creep-fatigue interaction deformation, when the summation of fatigue and creep damage reaches the set critical value, the 
material failure is considered to occur. In the case of the failure criterion for the bilinear relationship in the creep-fatigue interaction 
diagram (Fig. 2), the creep-fatigue cyclic life could be estimated by the following formula [24], 

Fig. 1. Step-by-step image of the experiments and the life prediction.  
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Nc− f =
Dc

(
1 − Df

)
dc + Dc

df

(
ifdf /dc ≥ Df /Dc

)
(2)  

Nc− f =
Df(

1 − Dc

)
df + Df

dc

(
ifdf /dc < Df /Dc

)
(3)  

where df and dc represent fatigue and creep damage at a single cycle, respectively. The Df and Dc are the coordinates of intersections 
between the two failure envelopes. 

For the creep-fatigue design codes of different materials, the selection of intersection coordinates for the two failure envelopes is 
different. For example, the following values are used for the P91 steel in the current design code, Df = 0.1, Dc = 0.01[39]; Df = Dc =

0.3 [40]. The bilinear intersection of the “L” shape is defined as (0.1, 0.1) [41]. For other alloys, such as 304, 316, 316L, 316L(N), 
316H, Alloy 800, and so on, the bilinear intersection in the RCC design rule is also set to (0.3, 0.3). For the 21

4Cr1Mo steel and low-alloy 
ferritic steel, there is no available design rule currently [42]. Because the design rule for the DZ445 superalloy is also not clear yet, in 
order to obtain the optimal design criteria, the coordinates of the intersections for creep-fatigue failure envelopes as (0.5, 0.5), (0.3, 
0.3), (0.1, 0.1), and (0.1, 0.01) are selected for life-prediction, respectively. 

3.2. Determination of the critical-value in LDS model (intersection of the creep-fatigue envelope) 

The determination of the critical value in linear-damage-summation requires the calculation of fatigue- and creep- damage, 
respectively. The traditional parametric methods are usually used to calculate the fatigue damage. The time-fraction, the simple- 
ductility-exhaustion, and the strain-energy-density-exhaustion models are employed to calculate the creep-damage. 

3.2.1. Calculation of fatigue-damage 
The fatigue-damage (df) of each cycle in creep-fatigue deformation could be simply estimated as the reciprocal of the cyclic life at 

the same Δεt and ˙̂Iµ in pure-fatigue experiments [20], which could be expressed as a function of the total strain range (Δεt) in the 
Manson-Coffin form [43], 

df =
1

Nf
=

1
aΔε− b

t
(4)  

where a and b are the fitting constants. 
The pure fatigue test data and corresponding fitting results of the DZ445 superalloy with different total-strain-ranges at 900 ◦C are 

listed in Table 2 and Fig. 3, respectively. The functional relationship between the fatigue-damage and total-strain-range is, 

df =
1

Nf
=

1
aΔε− b

t
=

1
1633.18Δε(− 4.97)

t
(5)  

3.2.2. Calculation of creep-damage 
In the time-fractional model, the relationship between the creep damage (dc) under the dwell time (th) in a single creep-fatigue 

cycle and the creep rupture time (tR) under the equal stress conditions is: 

Fig. 2. Creep-fatigue interaction diagram in the linear-damage-summation rule.  
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Table 2 
The pure fatigue experimental results with different total strain ranges at 900 ◦C for the DZ445 superalloy 
(Statistical results are the average value).  

Total strain range (%) Dwell time (min.) Cyclic life (Nf)  

0.6 0 20,681  
1.0 0 1,552  
1.6 0 595  

Fig. 3. Relationship between the total strain range and cyclic life at 900 ◦C for the DZ445 superalloy.  

Fig. 4. Maximum tensile stress response with fatigue life (a) and stress-relaxation response with dwell time in a dwell-period at the characteristic 
cycle (b) of creep-fatigue tests for the DZ445 superalloy with a 1.6% total strain range at 900 ◦C. 

Table 3 
Experimental results of pure creep under different stress at 900 ◦C for the DZ445 superalloy.  

Temperature/◦C Stress/MPa Rupture time/h Elongation /% 

900 300 313  11.2 
900 320 278  24.9 
900 350 126  21.0 
900 375 76  19.8  
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dc =
ti

tR(σi)
=

th

tR
=

∫ th

0

dt
tR(σ,T)

(6)  

where ti represents the creep-rupture time under a stress, σi, and tR(σ,T) is a function of the applied stress at a constant temperature, 

tR(σ,T) = k ⋅ σ− α (7)  

where k and α are the related constants of material and temperature. Some researchers use the initial value, the average value, the 
golden section value, or the ending value of the stress-relaxation stage as the reference stress in Eq. (6) to calculate the creep damage 
[Fig. 4(b)] [44]. In fact, the stress in the dwell-period is constantly relaxed. In order to accurately represent the stress, different ex
pressions have been proposed to describe the stress relaxation behavior [24,45–47]. 

The pure-creep test results of the DZ445 superalloy under different stress levels at 900 ◦C are listed in Table 3. The stress and the 
corresponding rupture time are fitted in Fig. 5. 

The creep-fatigue relaxation stress of the DZ445 superalloy at the characteristic cycle could be expressed as a function of the dwell 
time, 

σ = a − bIn(t + c) (8)  

where σ and t represent the stress and the time during the dwell period, respectively. The a, b, and c are the fitting parameters, whose 
values are listed in Table 4. Combining the above equations and data, the creep-damage expression in the time-fraction rule is, 

dc =

∫ th

0

dt
tR(σ,T)

=

∫ th

0

dt
1020.93σ − 6.7025

=

∫ th

0

dt
1020.93[a − bIn(t + c)] − 6.7025

(9)  

3.2.3. Calculation of the optimal critical-value 
In order to select the optimal design rule and cycle parameters, the coordinates of the intersections for the two failure envelopes as 

(0.5, 0.5), (0.3, 0.3), (0.1, 0.1), and (0.1, 0.01) were selected, respectively. Combined with the creep-fatigue data at the first cycle, the 
10% life, the half-life, and the characteristic cycle of the DZ445 superalloy at 900 ◦C, Eq. (2) is employed to predict the creep-fatigue 
cyclic life. Since there are the same trends in the calculation results in different cycles, thus, only the results at a characteristic cycle 
would be analyzed as the representative. When the stress-integral value at a characteristic cycle is used as the reference damage, both 
the cyclic life predicted by the time-fraction method and the value measured are shown in Fig. 6. When the coordinates of the in
tersections of the two failure envelopes are (0.5, 0.5) and (0.3, 0.3), the predicted life is mostly high, and the overall predicted life 
deviation is within the 4 - times deviation band. When the coordinates are taken as (0.1, 0.01), the predicted life is basically low. The 
prediction accuracy is about 8 times deviation, whose accuracy is the worst. When the coordinate is (0.1, 0.1), the life prediction 
accuracy is the highest, which is within the deviation band of 3 - times. 

The above results indicate that for the prediction of the creep-fatigue cyclic life of the DZ445 superalloy at 900 ◦C, the design rule 
for choosing the coordinate of (0.1, 0.1) has the highest life accuracy. Therefore, when using the LDS method to predict the cyclic-life 
in this investigation, we all choose the design rule that the intersection of the two failure envelopes is (0.1, 0.1). 

3.3. Evaluation criteria of life prediction accuracy 

The ability of a life prediction model is usually determined by standard deviation (SD), which indicates the degree to which a group 
of data is close to the average value. The smaller value represents the better life prediction ability of the model. The standard deviation 
is defined as follows [48]: 

Fig. 5. Relationship between the applied-stress and the creep-rupture time (unit, minute) at 900 ◦C for the DZ445 superalloy.  
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SD =

[∑n
1(lgNp

f − Nm
f )

2

n − 1

]1/2

(10)  

where Np
f , Nm

f , and n represent the predicted life, the measured life, and the number of data points, respectively. 

3.4. Evaluation of the creep-damage in LDS using the time-fraction method 

Based on the stress-integral value at the dwell-period under different cycles as the reference damage, the predicted life of creep- 

Table 4 
Stress-relaxation fitting parameters in a dwell period under different creep-fatigue test conditions for the DZ445 superalloy at 900 ◦C.  

εt (%) Th (min.) a b c  

0.6 2  151.37  1.72 − 0.02  
0.6 3  153.74  0.88 − 0.01  
0.6 5  140.34  1.57 − 0.01  
0.6 8  101.49  1.69 0.01  
1.0 2  191.98  7.27 − 0.01  
1.0 3  192.47  4.31 − 0.07  
1.0 8  194.15  2.01 − 0.07  
1.6 2  256.91  15.91 − 0.01  
1.6 3  349.32  27.75 0.08  
1.6 5  259.05  13.57 0.01  
1.6 8  240.95  11.96 0.01  
1.6 16  230.45  12.54 0.02  
1.6 32  225.34  13.54 − 0.01  
1.6 64  207.89  11.45 0.01  
1.6 128  201.98  10.34 0.02  

Fig. 6. Predicted cyclic life (Np
f ) and measured cyclic life (Nm

f ) for DZ445 superalloy at 900 ◦C using a time-fraction method under integral stress 
values at a characteristic cycle with different design rules. 
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damage calculated by the time-fraction method, the measured life and its standard deviations are shown in Fig. 7. The degree of 
correlation between the measured and predicted life in the selected characteristic cycle is the best with the SD of 0.2998 [Fig. 7(d)]. 
The prediction accuracy is the worst in the first cycle, with the SD of 0.4615 [Fig. 7(a)]. The prediction correlation between the values 
at 10% and half-life is slightly inferior to that in the characteristic cycle, with the SD of 0.3199 and 0.3250, respectively [Fig. 7(b) and 
(c)]. 

Fig. 7. Predicted cyclic life (Np
f ) and measured cyclic life (Nm

f ) of the DZ445 superalloy at 900 ◦C using the time-fraction method under stress- 
relaxation integral values at different cycles. (a) The first; (b) the 10%; (c) the half-life; (d) the characteristic cycle. 

Fig. 8. Relationship between the inelastic-strain rate and the creep-rupture elongation under different stresses of the DZ445 superalloy at 900 ◦C.  
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3.5. Evaluation of the creep-damage in LDS using the simple ductility-exhaustion method 

The relationship between the inelastic strain rate ( ˙Îµin) and the stress (σ) during the stress relaxation of the material is [49], 

ε̇in =
dεin

dt
= −

1
E

dσ
dt

(11)  

where E is the elastic modulus. In the simple-ductility-exhaustion model, Goldhoff [50] and Oding [51] assume that the material has an 
ultimate creep strain, δ( ˙εin,Tabs), which is a function of strain rate and temperature. The rate of inelastic-strain is considered to be the 
main parameter for controlling the creep-damage [21], which has been replaced by the stress-integral-value expression in Section 3.1, 
the creep-damage at per cycle is simply expressed by: 

dc =

∫ th

0

ε̇in

δ( ˙εin,Tabs)
dt =

∫ th

0

1
E

b
(t+c)

δ( ˙εin,Tabs)
dt (12)  

where th and E are the dwell time of a single cycle and elastic modulus, respectively, and E ≈ 94.7 GPa is for the DZ445 superalloy at 
900 ◦C [52]. In the pure creep test, ˙εin is calculated by dividing the strain limit (δ) of the “enduring plasticity” by the rupture time. The 
relationship between them is approximately: 

δ = d ⋅ ε̇in
β (13) 

The constants in the above models could be obtained by the data fitting or the creep tests at same temperature. The relationship 
between the inelastic-strain rate and the creep-strain limit as well as the corresponding fitting formula are presented in Fig. 8. 

Combining the above data and Eq. (2), predicted and measured life of the DZ445 superalloy at 900 ◦C using a simple ductility- 
exhaustion method with different cycles are presented in Fig. 9. Compared with the life-prediction accuracy of using the time- 
fractional model (the prediction deviation is mostly within 3 times), the application of the simple ductile-exhaustion method has a 
higher prediction accuracy (within the deviation of 2 times). As shown in Fig. 9(a), the life predicted using the data at first cycle is 
larger than the measured life. Therefore, the predicted life is non-conservative. While as shown in Fig. 9(b-d), some predicted lives are 

Fig. 9. Predicted cyclic life (Np
f ) and measured cyclic life (Nm

f ) of the DZ445 superalloy at 900 ◦C using a simple ductility-exhaustion method at 
different cycles. (a) the first; (b) the 10% life; (c) the half-life; (d) the characteristic cycle. 
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larger/smaller than the measured life. Thus, the life predicted using the data at the 10% life, the half-life, and the characteristic cycle 
are distributed on both sides of the measured life line. This is because with the development of deformation, the plastic strain range at 
each cycle continues to increase [32,33]. Therefore, compared with the 10% life, the half-life, and the characteristic cycle, the plastic 
strain range under the first cycle is the smallest. Thus, the calculated inelastic strain rate is also the smallest with first cycle. The 
corresponding fracture elongation is large. Thus, the creep damage is small, resulting in the large predicted life. The Chaboche cyclic 
constitutive equation considering the time-recovery effect shows that with the increase of the fatigue life, the plastic deformation 
gradually increases and tends to be stable finally [53]. Therefore, the predicted lives calculated by using the parameters under 10% 
life, the half-life, and the characteristic cycle gradually decrease and are distributed on both sides of the actual measurement line. 

Further analysis of Fig. 9 shows that the prediction accuracy is the highest under the selected characteristic cycle (the SD is 0.1475) 
[Fig. 9(d)], and the first cycle is the worst (the SD is 0.1688) [Fig. 9(a)]. The prediction accuracy of the 10% life and half-life is in the 
second place, with the SD of 0.1583 [Fig. 9(b)] and 0.1524 [Fig. 9(c)], respectively. It shows that when the simple ductility-exhaustion 
model is used to calculate the creep-damage in the LDS rule, and the life prediction accuracy is the highest when the characteristic 
cycle parameters are selected as the reference damage. 

3.6. Evaluation of the creep-damage in LDS using the strain-energy-density exhaustion 

In Fig. 8, the rupture elongation of the DZ445 superalloy at 900 ◦C may deviate from the inelastic-strain rate, and the corresponding 
mechanism of this behavior has not been clearly explained. Therefore, the rupture elongation may not be an ideal index of the material 
ductility. It may be a better choice to use the inelastic-strain energy of the comprehensive stress and strain factors as the parameter to 
control creep-fatigue damage. Combined with the stress relaxation, Eq. (8), the expression of creep-damage under a single creep- 
fatigue cycle in the SEDE model is: 

dc =

∫ th

0

ẇin

Wf ( ˙win,Tabs)
dt =

∫ th

0

σ ⋅ ε̇in
∫ tR

0 ẇindt
dt =

∫ th

0

[a − bIn(t + c)] ⋅ 1
E

b
(t+c)

σ ⋅ δ
dt (14)  

where th, tR, σ, and δ are the dwell time of a single cycle, the rupture time of the creep test, the stress level, and the elongation under the 

Fig. 10. Predicted cyclic life (Np
f ) and measured cyclic life (Nm

f ) of the DZ445 superalloy at 900 ◦C using SEDE methods with different cycles. (a) the 
first; (b) the 10% life; (c) the half-life; (d) the characteristic cycle. 
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Fig. 11. The energy with different cycles as a function of cyclic life of creep-fatigue tests for the DZ445 superalloy at 900 ◦C and predicted cyclic life 
(Np

f ) as a function of the measured cyclic life (Nm
f ). (a and a′) first; (b and b′) 10%-life; (c and c′) half-life; (d and d′) characteristic cycle. 

B. Ding et al.                                                                                                                                                                                                            



Engineering Fracture Mechanics 255 (2021) 107955

13

Fig. 12. The modified energy as a function of cyclic life of creep-fatigue tests with different cycles for DZ445 at 900 ◦C and predicted cyclic life (Np
f ) 

as a function of measured cyclic life (Nm
f ). (a and a′) the first; (b and b′) the 10%-life; (c and c′) the half-life; (d and d′) the characteristic cycle. 
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stress level, respectively. ẇin is the inelastic-strain energy density rate, 

ẇin = σ ⋅ ε̇in (15)  

where wf is the inelastic strain energy density accumulated to material failure, 

wf =

∫ tR

0
ẇindt = σ ⋅ δ (16) 

The constants in the above models could be obtained by the data fitting or the pure creep tests at the same temperature. 
Combining the data in the above equations and Eq. (2), the relationship between the measured and the predicted lives using the 

SEDE model at different cycles are shown in Fig. 10. After applying the SEDE method, the overall prediction accuracy is relatively high 
(the prediction deviations of most data points are within ±1.5 times). The cyclic life predicted by using the first-cycle data is slightly 
larger. While some data points in the predicted life using the data under 10% life, half-life, and characteristic cycle are conservative. 
This is because compared with the 10% life, the half-life, and the characteristic cycle, the plastic strain range under the first cycle is the 
smallest. Thus, the inelastic-strain energy consumed in the initial stage of creep-fatigue loading is small, and the calculated inelastic- 
strain energy-density rate is also small [32,33]. The corresponding creep-damage is too small, yielding a larger predicted life. With the 
development of deformation, the inelastic strain energy gradually increases and tends to be steady [32]. Thus, the corresponding creep 
damage is increased, which results in the decreased predicted life. Therefore, the data of predicted life is distributed on both sides of 
the measured life line. 

The highest life-prediction accuracy (the SD is 0.1072) is present when the data at the characteristic cycle is used as the damage 
parameter [Fig. 10(d)]. The prediction accuracy using the first cycle is the worst (the SD reaches 0.1558) [Fig. 10(a)]. The prediction 
precision with 10% and half-life cycles is the second, with the SD of 0.1319 [Fig. 10(b)] and 0.1126 [Fig. 10(c)], respectively. The 
above analysis shows that when the SEDE model is used to calculate creep damage, the life-prediction accuracy of selecting charac
teristic cycle parameters as reference damage is also the highest. Additionally, the prediction accuracy for the SEDE model is better 
than that using the TF and DE models. 

4. Evaluation based on the energy-life prediction model 

In addition to the linear-damage-summation method, the inelastic-strain-energy could be used as a damage function to predict the 
fatigue life, which can characterize the internal damage of materials caused by cyclic deformation [54]. The application of this method 
in creep-fatigue deformation would be introduced as follows. 

4.1. Evaluation based on the energy-life law 

The relationship between the inelastic tensile strain energy (wt) and the failure reversals (2Nf) are as follows, 

wt(2Nf )
β

= C (17) 

The expression of wt is, 

wt =
1 − n’
1 + n’

σTΔεin (18)  

where n′, σT, Δεin, β, and C are the cyclic strain-hardening index, the maximum tensile stress, the inelastic strain, and the constants, 
respectively. The n′ of the DZ445 superalloy is 0.2688 at 900 ◦C [52]. The statistical results of the inelastic-strain range and the 
maximum tensile stress with different cycles of the DZ445 superalloy at 900 ◦C could be obtained from our previous study [52]. 

Substituting the above data into Eqs.17 and 18, the relationship between Wt and 2Nf under different cycles is fitted and shown in 
Fig. 11. The fitting parameters and coefficients of determination (R2) are also listed in the figure. There is the same trend between Wt 
and 2Nf, and the prediction equation shows a good correlation. The correlation of fitting under the selected characteristic cycle is the 
highest, the R2 is 0.9052. The prediction correlation under the first cycle is the lowest (the R2 is 0.8359). The values for 10% life and 
half-life cycles are the second, the R2 is 0.8719 and 0.8687, respectively. Fig. 11(a′, b′, c′, and d′) shows the relationship between the 
predicted and measured lives under different cycles in Fig. 11(a, b, c, and d). It is found that most data of the predicted life fall within 2 
times of the scattering band. The standard deviations of the predicted and measured lives are the same as the corresponding fitting 
correlation trend between Wt and 2Nf in Fig. 11(a, b, c and d). That is, the life accuracy of prediction under the selected characteristic 
cycle is the highest (the SD = 0.1965). The worst precision is in the first cycle (the SD = 0.2685), followed by 10%-life and half-life 
cycles, with the SD being 0.2325 and 0.2356, respectively. 

4.2. Evaluation of modified energy-life law based on damage mechanisms 

According to the research results in our previous study [55], the modified energy-life prediction model based on the damage 
mechanism were used to predict the creep-fatigue cyclic-life of the DZ445 superalloy [55], 
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Fig. 13. Uncorrected (a, b, c, and d) and frequency corrected (a′, b′, c′, and d′) energy and as a function of cyclic life at 900 ◦C for the DZ445 
superalloy of creep-fatigue tests (a and a′) the first; (b and b′) the 10%-life; (c and c′) the half-life; (d and d′) the characteristic cycle. 
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Wm = 2/3

(
1 − n’

1 + n’σt,maxΔεp,DE +
σ2

0 − σ(t)2

2E

)

+1/3(2
1 − n’
1 + n’

K’ψ(th)
(Δεp,BE

2

)n’+1
= Cm

(
2Nf
)− βm (19)  

the calculation method of the parameters in this formula is given in Reference [56]. The creep-fatigue data of the DZ445 superalloy 
comes from our previous experimental results [26,27]. 

The fitting relationship between the modified energy (Wm) and fatigue life of the DZ445 superalloy at different cycles and 900 ◦C is 
shown in Fig. 12(a, b, c and d). The R2 between Wm and 2Nf are 0.9245, 0.8525, 0.9151, and 0.9193 with the first cycle, the 10%-life, 
the half-life, and the characteristic cycle, respectively. That is, the life prediction accuracy based on the characteristic cycle parameters 
is the highest, and that of the first cycle is the worst. The life-prediction accuracy after corrections is higher than that before modi
fication. The errors between the measured and predicted lives under different cycles all fall within the 1.5–2 times scattering band 
[Fig. 12(a′, b′, c′, and d′)]. The prediction accuracy of the parameter under the selected characteristic cycle is the highest (SD =
0.1736), and that of the first cycle is the worst (SD = 0.2512). The precision of predictions at 10%-life and half-life cycles are the 
second, and the corresponding SD is 0.1829 and 0.1801, respectively. 

4.3. Evaluation based on the frequency-corrected energy-life law 

In the energy-based life-prediction models, there is also a kind method of the frequency correction. The deviation between the 
fitting line of creep-fatigue data with dwell time and pure fatigue data may because the influence of the related damage caused by 
oxidation on the cyclic life is not calculated in Eq. (16) [Fig. 13(a, b, c and d)]. The contribution of oxidation factors to the failure of 
alloy with dwell time cannot be ignored [57]. We need to add the frequency correction term, V(k-1), in Eq. (16) to introduce the in
fluence of oxidation. Hence, all the corrected data points fall on a straight line as much as possible. The relationship between the 
frequency-correction energy (Wt) and 2Nf is expressed as [44], 

Wt(2Nf V(k− 1))
β

= C2 (20)  

where k and C2 are the constants of the material, and V is the cyclic frequency in Hz, 

V =
1

Tc + Th
(21)  

where Tc and Th are the dwell time introduced by a single cycle in pure low-cycle fatigue and creep-fatigue, respectively. The frequency 
of creep-fatigue under different dwell times is presented in Table 5. 

Comparing with the Eqs. (17) and (20), the β value before and after the correction are found to be the same. By calculating the 
creep-fatigue data under different loading conditions, k = 0.83 is obtained in the frequency-correction term. The value is then 
substituted into Eq. (20). The frequency-corrected energy (Wt) as a function of cyclic life (2Nf) at 900 ◦C for the DZ445 superalloy 
under the first cycle, the 10%-life, the half-life, and the characteristic cycles are shown in Fig. 13(a′, b′, c′, and d′). The fitting equation 
and determination coefficient are also shown in this figure. Most of the data points with or without dwell time conform to the same 
linear relationship. Based on the characteristic-cycle data, the degree of correlation between the frequency-corrected Wt and 2Nf is the 
highest (R2 is 0.9213). The R2 is 0.8758, 0.9067, and 0.8886 at the first cycle, the 10%-life, and the half life cycles, respectively. They 
are all higher than the uncorrected determination coefficient between Wt and 2Nf in the corresponding cycle of Fig. 13(a, b, c, and d). 

The cyclic life is predicted, based on the mechanical-response data under different creep-fatigue conditions at 900 ◦C. In the creep- 
fatigue deformation, the inelastic strain range (Δεin) consists of the plastic strain range (Δεpp) and the creep strain range (Δεcp) 
constitute, that is, 

Δεin = Δεpp + Δεcp (22)  

according to Eq. (8), the stress value at any time during the relaxation-process can be obtained. The corresponding stress value at the 
end of the dwell-period could also be estimated. The stress value at the beginning of the dwell period could be approximated by the 
maximum tensile stress in the pure low-cycle fatigue test under the same total strain-range. Thus, the relaxed stress (Δσr) during the 
dwell-period can be estimated. The creep-strain range component (Δεcp) is, 

Δεcp = Δσr/E (23)  

where E is the elasticity modulus, and Δεpp can be obtained by a pure low-cycle fatigue test. Based on this arrangement, the inelastic 
tensile strain energy with dwell time can be estimated. Therefore, the creep-fatigue cyclic life would be predicted according to Eqs. (6)– 
(20). 

Table 5 
Loading frequency with different dwell times in the creep-fatigue deformation.  

Dt (s) 0 120 180 300 480 960 1920 3840 7680 

V  0.08  0.0079  0.0054  0.0033  0.0021  0.0010  0.0006  0.0003  0.0001  
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Based on the parameters of the first cycle, the 10%-life, the half-life, and the characteristic cycles, most of the deviations between 
the predicted and measured lives using the frequency-correction energy method fall within the 2-times line [Fig. 14(a, b, c, and d)]. 
The predicted accuracy by selecting characteristic cycle parameter is the best (SD is 0.1776). The forecasting accuracy for the first cycle 
is the worst (SD is 0.2554), followed by the value at 10%-life and half- life cycles, with the SD of 0.1947 and 0.2148, respectively. They 
are all higher than the prediction accuracy without any frequency correction [Fig. 11(a, b, c, and d)], indicating that the frequency- 
corrected energy could be used as the damage function to predict the creep-fatigue life well. 

5. Discussion of the obtained results 

5.1. Comparison of prediction accuracy in the parameters of different cycles 

The linear-damage-summation and energy-based life rules are used to predict the creep-fatigue life in this investigation. We 
compared the prediction accuracy calculated by the parameters at the characteristic cycle, the first cycle, the 10%-life cycle, and the 
half-life cycle in both two models. It is found that the accuracy of life-prediction based on characteristic-cycle parameter with clear 
physical meaning is the highest (Figs. 7–14). The prediction precision of 10% life and half-life cycle is slightly second. This is because 
with the development of deformation, the plastic strain range at each cycle continues to increase [32,33]. Therefore, compared with 
the 10% life, the half-life, and the characteristic cycle, the plastic strain range under the first cycle is the smallest. Thus, the calculated 
inelastic strain rate is also the smallest with first cycle. The corresponding fracture elongation is large. Thus, the creep damage is small, 
resulting in the large predicted life. In our study, the stress responses at 10%-life and half-life cycles are similar. Thus, their life- 
prediction accuracies are similar. However, the characteristic cycle is defined as the “turning point” between the initial rapid- 
softening and the subsequent slight-softening/hardening of the maximum tensile stress, which represents the transition from the 
unstable-state (the rapid generation of dislocations) to the steady-state (the dynamic equilibrium of the generation and annihilation of 
dislocations) during deformation. The parameter with the highest prediction accuracy at the characteristic cycle may be related to the 
movement of the dislocation and the change of the microstructure during creep-fatigue deformation, which needs to be further studied 
in the future. This investigation provides a new creep-fatigue life-prediction method both in laboratory experiment and engineering 
components, which is convenient and accurate. 

Fig. 14. Measured life (Nm
f ) and predicted life (Np

f ) by the frequency-modified inelastic-strain energy method for the DZ445 superalloy at 900 ◦C of 
creep-fatigues (a) the first; (b) the 10%-life; (c) the characteristic; (d) the half-life cycles. 
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5.2. Comparison of prediction accuracy in the evaluation of different creep damage in LDS 

The linear-damage-accumulation model has clear physical significance and simple operation [58,59]. In the linear-damage- 
summation rule, the fatigue damage is usually calculated by traditional-parameter method of Coffin-Manson law [60]. The time- 
fractional model is used to calculate the creep-damage whose deviation between the predicted and measured life is 3 times 
(Fig. 7). The advantage of this model is that the expression form is simple and only fewer standard experiments are needed to 
determine the parameters [61]. However, it does not consider the damage caused by the interaction between creep and fatigue. Only a 
simple accumulation of fatigue and creep damage is made in this model. In practice, the interaction between creep and fatigue cannot 
be ignored. The life calculated by this method is often conservative, mainly because the mutual damage is not considered. Therefore, 
this method is not suitable for the design and the life prediction of some important and precision components [61]. 

When calculating the creep-damage using the simple ductility-exhaustion model, all the predicted creep-fatigue cyclic-life is within 
the scattering factor of 2 times (Fig. 9). However, the application of this model to predict creep-damage is sometimes over-evaluated, 
resulting in the short predicted life [24]. In this model, the damage caused by creep and fatigue is described separately. The damage 
caused by the conditions that have a great impact on the interaction is not considered. This method is suitable for the life prediction of 
materials under the condition of single damage dominated by creep or fatigue [62]. 

Compared with the simple ductility-exhaustion model, the strain-energy-density-exhaustion model gives a more reasonable pre
diction result, whose predicted life deviation is 1.5 times (Fig. 10). The model considers the influence of two factors for the stress and 
the strain parameters, and has higher prediction accuracy [54]. However, the main disadvantage of this model is that more standard 
experiments are required to determine the parameters in the model. Zhang [63] believes that the model may produce more conser
vative results for the predicted life under a lower total strain-range. Zhu [64] once modified the calculation of the inelastic-strain 
energy part of this model to improve the life-prediction accuracy. According to the evolution of the damage parameters (plastic 
strain range, peak stress, and plastic-strain-energy-density) in 429EM stainless steel, the change of plastic-strain-energy-density in the 
whole fatigue process is relatively small. Therefore, it is best to use the plastic-strain-energy as the damage parameter for life prediction 
[65]. In general, the life-prediction accuracy of the creep-damage based on the time-fraction, the simple ductility-exhaustion, and the 
strain-energy-density exhaustion model is sequentially improved in the linear-damage-summation rule. 

5.3. Comparison of prediction accuracy in the evaluation of different energy-life laws 

In creep-fatigue deformation, the material will gradually consume a certain amount of energy. The more accumulated damage 
results in the more dissipated energy. Once the critical energy is reached, the fracture occurs [66]. Under the cyclic load, the movement 
of dislocation is described by cyclic plastic strain, and the resistance of its movement is described by cyclic stress. The plastic strain 
energy of comprehensive stress and strain parameters under each cycle is considered to be a measure of creep-fatigue damage under 
this cycle [67]. Therefore, the energy perspective can be used to quantify this relationship [68]. Under high temperature creep-fatigue 
deformation, researchers use energy parameters to evaluate the life of materials under different loading conditions through the 
hysteresis loop [26]. These methods are usually called as the energy-based life prediction models. However, most of these models 
ignore the effect of mean strain or stress in creep-fatigue on fatigue life [48]. For example, the prediction accuracy deviation of energy- 
life model shown in Fig. 11 is relatively large. In general, the accuracy of energy-based life prediction model needs to be further 
improved. 

Many studies believe that the area of tensile stress in hysteresis loop is the driving force for fatigue crack initiation and propagation 
[54,68–71]. Shi [25] selected the total area of hysteresis loop as the measure of material damage. It is considered that the contribution 
of tensile and compressive stress to material damage is equivalent. Since the elastic deformation can be recovered, the plastic 
deformation will lead to the accumulation of material damage. Thus, Zhu [72] believed that the area above the elastic-plastic 
intersection of the tensile part should be selected as the damage measure. We reviewed the expression of energy-based life model: w ⋅ 
(2Nf)

β
= C. We found that the selection of damage (W) is phenomenological. In essence, the exponent of β and constant of C are only 

the parameter in the fitted expression. They cannot reflect the contribution of tensile and compressive stresses to cyclic damage in 
creep-fatigue deformation. Compared with the unmodified energy-life model, as shown in Fig. 12, we found that after the creep-fatigue 
life prediction model modified based on the tensile- and compressive- stress damage mechanism, the life prediction accuracy was 
improved [55]. 

Based on the energy principle, some attempts have been made to explain the effects of creep and mean strain/stress in life pre
diction. However, the applicability of these models was found to be limited because the time-dependent factors of creep/oxidation 
were not fully considered in these models. The damage model based on creep-fatigue-oxidation has also been tried to reveal by re
searchers [73–76]. In the energy-life prediction model modified by frequency factor (as shown in Fig. 13) [77], the life prediction 
accuracy is also improved. In summary, compared with the linear- damage-accumulation rule, the life-prediction model based on 
energy can not only take into account the prediction accuracy, but also has clear physical significance. The overall life prediction 
accuracy is also greater than that of LDS rule. 

5.4. Summary and comparison of different life prediction models 

In order to better compare the advantages and limitations of different creep-fatigue life predictions, we summarize the advantage 
and disadvantages of each life-prediction model in a separate Table 6. 
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Table 6 
The advantage and disadvantages of each creep-fatigue life-prediction model.  

Models/Test 
conditions 

Time-fraction Simple ductility-exhaustion Strain-energy-density exhaustion Energy-life Damage mechanisms- 
correction 

Frequency-correction 

Advantages Simple form and few 
parameters are required 

Improved prediction accuracy Clear physical meaning and 
improved prediction accuracy 

Considering physical 
mechanism and 
prediction accuracy 

Considering contributions of 
tensile and compressive stress 
to damage 

Considering time factor 
related to oxidation and 
creep damage 

Disadvantages Negligence of interaction 
between creep and fatigue 
and poor prediction accuracy 

Negligence of interaction between 
creep and fatigue and more 
standard experiments are needed 

Negligence of interaction between 
creep and fatigue and more 
standard experiments are needed 

Negligence of oxidation 
and mean stress 

More standard experiments 
are needed to determine the 
required parameters 

More standard experiments 
are needed to determine the 
required parameters 

Scope of 
application 

Simple life- prediction of non- 
important and non-precision 
parts 

Creep or fatigue single damage- 
dominated 

Accurate life prediction of 
important components 

Little influence of mean 
stress and oxidation 

Obvious mean stress Long dwell and experiment 
time  
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6. Conclusions 

The creep-fatigue data of the DZ445 superalloy at 900 ◦C are introduced in this manuscript. Compared the characteristic cycle, the 
first cycle, the 10%-life, and the half-life cycles parameters are applied to the linear-damage-summation rule and the energy-based life 
prediction model, respectively. The parameter with the highest prediction accuracy at the characteristic cycle may be related to the 
movement of the dislocation and the change of the microstructure during creep-fatigue deformation, which needs to be further studied 
in the future. Some conclusions could be found as follow:  

(1) The optimal critical-value of fatigue and creep damage in the linear-damage-summation method, that is, the coordinates of the 
intersection of the creep-fatigue envelope are determined. Compared with the coordinates of (0.5, 0.5), (0.3, 0.3), and (0.1, 
0.01), there is the highest life prediction accuracy with the value of (0.1, 0.1).  

(2) To evaluate the accuracy of predicted life by the linear-damage-summation method and energy-life model, it is obtained that the 
prediction accuracy of parameters at the characteristic cycle with clear physical meaning is the highest. The accuracy of 
predication based on first cycle is the worst, and that for the 10%-life cycle as well as the half-life cycle are the second.  

(3) In the linear-damage-summation rule, the life-prediction accuracy of the creep- damage based on the time-fraction, the simple 
ductility-exhaustion, and the strain-energy-density exhaustion model is sequentially improved.  

(4) The life-prediction accuracy based on damage mechanisms and frequency-correction energy is higher than the value without 
any correction. 
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