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Abstract: The refractory HEAs block material was prepared by powder sintering, using an equal
atomic proportion of mixed TiZrNbMoV and NbTiAlTaV metal powder raw materials. The phase was
analyzed, using an XRD. The microstructure of the specimen was observed, employing a scanning
electron microscope, and the compressive strength of the specimen was measured, using an electronic
universal testing machine. The results showed that the bulk cubic alloy structure was obtained
by sintering at 1300 ◦C and 30 MPa for 4 h, and a small amount of complex metal compounds
were contained. According to the pore distribution, the formed microstructure can be divided into
dense and porous zones. At a compression rate of 10−4s−1, the yield strengths of TiZrNbMoV and
NbTiAlTaV alloys are 1201 and 700 MPa, respectively.

Keywords: HEAs; hot pressing sintering; microstructure and mechanical behavior; dense and porous

1. Introduction

High-entropy alloys (HEAs) are alloys containing several elements that violate the
usual design constraints of one or two alloying components. They are distinguished by
multi-component and multi-principal components that combine to produce nanoscale
composite materials. [1] The lattice locations of multi-component HEAs are displaced to
varying degrees due to the size difference of multi-principal element atoms, resulting in
lattice distortion, which significantly enhances the microstructure and characteristics of the
alloys [2–4].

In recent years, the study of HEAs has progressed to a new and interesting stage.
The study emphasis of HEAs ranges from the crystal structures and mechanical character-
istics of HEAs [5], such as hardness, wear resistance, tensile and compressive strengths,
to magnetic properties, such as soft magnetic and hard magnetic behavior, magnetic re-
frigeration, and wave absorption, as well as HEAs film for photo-thermal conversion.
Furthermore, the related HEAs preparation technology has been continually improved
in response to meet the needs of alloys, and the preparation of eutectic HEAs, for hy-
drogen storage, high-entropy cemented carbides and coatings, refractory high-entropy
alloys (RHEAs), irradiation-resistant HEAs, corrosion-resistant HEAs, and other special
properties of HEAs [6–8]. The HEAs preparation and forming technology may also be
used to develop a new classification system for HEAs [9], which can be separated into
casting HEAs [10,11], thin-film HEAs [12–16], three-dimensionally (3D)-printed [17–19],
deformation HEAs [20], powder-metallurgy HEAs [21,22], and numbered based on their
phase type. Table 1 lists a few of the numbered alloys.

Vacuum arc melting is generally used to produce high entropy alloys. Although alloy
casting has been industrialized, issues such as shrinkage cavity and segregation must still
be addressed in the manufacturing and processing of alloys [23]. As a result, the study and
development of material preparation technology is equally critical to promoting material
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application. Powder metallurgy has recently been used in the preparation of high entropy
alloys [24].

The raw material powder is compacted by spark plasma sintering (SPS) and hot-
pressing sintering, and an alloy with uniform element distribution and no apparent seg-
regation is produced [21,22]. The general SPS method is utilized in powder metallurgy
to produce TaNbVTi series refractory HEAs. SPS with low temperature, short sintering
time, and quick cooling speed may produce an alloy with fine grain and uniform struc-
ture. Controlling the temperature of SPS improves the strength and form of the alloy, but
also limits the size of the produced alloy. Powder sintering can be used to produce the
desired form and size of the alloy. By hot pressing and sintering gas atomized powders,
Liu et al., [25] created densified FeCoCrNi high entropy alloy bars. The microstructure of
the alloy reveals compact, fine, and homogeneous grains, a tensile strength of 750 MPa, an
elongation of more than 50%, and mechanical characteristics superior to those of FeCoCrNi
HEAs formed by conventional melting [25]. Powder metallurgy typically gets fine powder
by mechanical alloying, and the chemical sequence of mechanical alloy is complicated and
time-consuming, with contaminants injected into the process.

Table 1. Sorting and numbering of our research group’s HEAs.

Number Alloy Composition References Phase

GS101 Al0.3CoCrFeNi [21] FCC

GS102 Fe28.5Co47.5Ni19Al1.6Si3.4 [26] FCC

GS201 AlCoCrFeNiTi0.2 [27] BCC + B2

GS202 W0.2Ta0.2FeCrV [12] BCC

GS203 Zr45Ti31.5Nb13.5Al10 [28] BCC

GS301 AlCo0.4CrFeNi2.7 [27] FCC + B2

Note: GS is the initial letter of high entropy Chinese; the first number defines the phase structure of the alloy, for
example, 1: FCC, 2: BCC, 3: duplex or polyphase; the final two digits reflect the alloy development sequence.
Example: the alloy first evolved inside the FCC structure group: GS101.

The benefit of sintering is evident for fcc alloys and elements with low melting points,
but it is difficult to produce powder by mechanical alloying and atomization for refractory
element powder, such as Ti, Zr, and so on. As a result, after combining high purity element
powder, we attempted to produce TiZrNbMoV and NbTiAlTaV HEAs by hot pressing
sintering and evaluated the microstructure and mechanical characteristics.

2. Experimental Procedures

Multi-component TiZrNbMoV and NbTiAlTaV HEAs with equal atomic ratio were
prepared by mixing high purity metal powder (the purity of 99.9%) with particle size of
10 microns (microstructure are depicted in Figure 1) homogeneously and hot pressing
sintering at 30 MPa for 4 h at 1300 ◦C in high purity argon environment. For all the samples,
densities of the sintered bulk alloys were measured by the Archimedes method [29]. The
phase composition of the synthesized alloys was investigated by X-ray diffraction (XRD)
(see Supplementary Materials) using a Ultima-IV 3 KW (Rigaku Corporation, Tokyo, Japan)
diffractometer with Cu Kα radiation. The microstructural investigation was with a Zeiss
SUPRA a55 scanning electron microscope (SEM) (Carl Zeiss Microscopy GmbH, Jena,
Germany) equipped with the energy-dispersive spectroscopy (EDS). Cylindrical specimens
for compressive tests were 5.0 mm in diameter and 10.0 mm in height, and were tested with
a WDW-200D electronic universal material testing machine at room temperature under
strain rate of 10−4s−1.
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Figure 1. SEM images showing the microstructure of elemental powder.

3. Results
3.1. Crystal Structure and Microstructure

Figure 2 depicts the X-ray diffraction patterns of hot-pressing samples for the TiZrNbMoV
and NbTiAlTaV alloys series. The major diffraction peaks are determined to be a typical
body centered cubic (BCC) phase. The peak contrast of the XRD diffraction pattern is
represented by the positions of the respective peaks of the elements, Ti, Nb, Mo, V, and Ta,
and includes several complicated compound peaks, such as AlTa, AlTi2, Mo9Ti4, Nb9Ti4,
and Mo2Zr, but their intensities are low.

Due to the small amount of metal compounds in the alloy, it cannot be fully detected
in the XRD spectrum, according to the analysis. As a result, we used EDS and SEM to
further investigate and observe the elemental distribution and microstructure morphology
in the alloy.

Figure 3 illustrates representative SEM images of the TiZrNbMoV and NbTiAlTaV
alloys, which presents the distribution of ingredients and the phase composition of alloys
The elements are not evenly distributed in these alloys, as can be seen, and there are dense
and pore zones in the alloy, which would be described by Figure 4.

The results of backscatter indicated that different shades of color represent different
element contents. As given in Figure 4a, the main component of Point 1 is the Ti6Zr2V
compound, the main component of Point 2 would be Nb, and the main component of
Point 3 is V. Figure 4b describes that Point 1 is mainly composed of AlTi2 intermetallic
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compounds, Point 2 is indeed mainly Nb, and the major element of point 3 is Ta. Point 4 is
an AlV4 intermetallic compound, and the composition is given in Table 2.

Table 2. Chemical composition of different points in TiZrNbMoV and NbTiAlTaV alloys.

Elements-(a) Ti-K V-K Zr-K Nb-L Mo-L

at.%

Point 1 62.26 10.11 19.80 7.84

Point 2 1.81 1.95 96.10

Point 3 0.50 97.75 1.26 0.49

Elements-(b) Al-K Ti-K V-K Nb-L Ta-L

at.%

Point-1 31.35 66.74 1.15 0.76

Point-2 0.57 98.16

Point-3 0.50 97.83

Point-4 17.01 5.06 72.80 3.10 2.04
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3.2. Determination of Porosity

The Archimedes drainage method is used to measure the density of the sample, shown
in Equation (1).

ρ =
ρlm

m − ma
(1)

where m is the mass of the sample in the air; ma is the mass measured by the Archimedes
drainage method [29]; ρ is the density measured by the Archimedes drainage method; and
ρl is the density of alcohol, which is 0.789 g/cm3. Due to the existence of pores in the mate-
rial structure, alcohol was used in the drainage method for density measurements, which
is easy to volatilize, and the sample drying is more convenient to reduce the measurement
error.

Before that, the theoretical densities of the samples were calculated as follows:
7.1660 g/cm3 and 7.8826 g/cm3, and then the porosity is calculated. The calculation
method of porosity is shown in Equation (2).

η =

(
1 − ρ

ρth

)
× 100% (2)

where η (%) is the porosity of the sintered HEAs, ρ (g/cm3) is the actual density of the
measured sample, and ρth (g/cm3) is the theoretical density of the sintered HEAs. The data
measured by the Archimedes drainage method are shown in Table 3.

Table 3. The density of samples measured by the Archimedes method.

Samples m/(g) ma/(g) ρ/(g/cm3) η(%)

TiZrNbMoV
6.5711
6.5714
6.5712

6.5712
5.8141
5.8140
5.8140

5.8140 6.8476 4.44

NbTiAlTaV
7.1121
7.1119
7.1115

7.1118
6.3582
6.3583
6.3582

6.3582 7.4459 5.54
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3.3. Compressive Properties

Figure 5 illustrates the compressive engineering stress–strain curve for alloys under a
strain rate 10−4s−1 at room temperature. Among them, the TiZrNbMoV alloy exhibits a
higher yield strength reaching 1201 MPa. In addition, the yield strength of the NbTiAlTaV
alloy is 700 MPa. The elastic modulus of these two alloys are 27 and 23 GPa, respectively.
Judging from the morphology of the compression fracture SEM images, which are shown
in the Figure 6, the compression fracture is a typical brittle fracture with “river-like” or
“stair-step” features. This trend is related to the crystal structures of the two alloys. The
crystal structures of the two alloys are typical bcc structures. In the bcc crystal structure,
the critical stress of the actuating slip system is larger and the number of slip systems is less
than FCC, thus it shows the performance characteristics of high strength and low plasticity.
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The strength of the alloy prepared by hot-pressing sintering is significantly lower
when compared to as-cast alloys [30,31]. The analysis of the strength of the hot-pressing
sintering state alloy is the main reason for the due to the low preparation temperature
of alloy, alloy body internal has not fully alloyed, causing the bonding force between the
atoms that make up the elements to be smaller. Furthermore, the scanned fracture surface
morphology images in Figure 6 shows that there are many macroscopic pores in the alloy,
which are primarily formed by the expansion of air during the sintering process. Figure 7
depicts a schematic representation of the hot-pressing process and the prepared alloy to
help you better understand the hot-pressing process. The computer creates the model of
Figure 7c using 3D drawing software, so that the alloy produced by hot pressing may be
seen more clearly. The real prepared sample is shown in Figure 7d; however, the form of
the test sample was supported due to the test need.
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4. Discussion

In the experimental results, we give the alloys. The phases of the two alloys are
mainly typical BCC and a small amount of other compound phases. There are porous
and compact areas in the surrounding structure of the alloy. The yield strengths of the
two alloys are 1201 and 700 MPa, respectively, and the elastic modulus are 27 and 23 GPa,
respectively. These findings contradict assertions that powder metallurgy may generate
dense and homogenous alloys. The majority of the refractory elements Ta, Nb, and Mo are
agglomerated in the form of elemental in the alloy sintered at 1300 ◦C. Ti occurs as a body-
centered cubic β-Ti phase and as a composite phase with Zr, Al. The goal of sintering metal
powder is to produce a solid solution and compound via diffusion. Because the majority
of the component elements are refractory elements with high melting points, and melting
point of Al is relatively low, and the diffusion ability and rate increase with increasing
sintering temperature, Ti-Al, Ta-Al compounds are produced preferentially. The property of
Zr, V, on the other hand, is comparable to that of Ti, and a little quantity of solid solution is
produced. It is believed that the solid solubility of Ti-Zr-V is low when sintered at 1300 ◦C,
and when cooled in vacuum with the furnace, Zr and V are β stable phases, Ti progressively
transforms to α -Ti in the cooling process, and the solid solubility in Ti declines, resulting
in a very few solid solution phases. Nevertheless, due to inadequate sintering temperature,
Nb, Mo, and Ta tends to produce elemental agglomeration. The microstructure also shows
that the majority of the dense regions are composed of compounds and solid solutions
generated by elements with low melting points and good diffusion capacity, whereas the
holes are composed of elements with high melting points.

An alloy fracture may be defined as the process of crack development, propagation,
and fracture. The fracture type of the two alloy groups in the experiment is the same, which
belongs to cleavage brittle fracture. The pore region at the surface of the alloy forms stress
concentration and microcracks when subjected to external force, and there is no strength
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response at the beginning of the stress–strain curve. When the load increases, the stress
concentration near the pore tip becomes easier, promoting the crack’s quick propagation.
Because pores and microcracks already exist throughout the material, when subjected to
external stress, the generated microcracks and pores rapidly grow and link from the surface
to the interior, resulting in material fracture. As a result, pores and fractures frequently
become the fracture source of stress concentration in the pore area, causing the material to
fracture at lower stress and reducing strength, plasticity, and toughness.

Our results differ from those achieved with dense, high-strength alloys that are hot-
pressed and sintered after the elements are mixed directly with us without prior mechanical
alloying. Therefore, the density and mechanical properties are moderate. However, our
findings shed some light on the synthesis of sintered high entropy alloys. We discovered
that the elastic modulus of the two alloys is similar to that of human bone, and TiZrNb has
good biocompatibility [32]. Matching with bone modulus is a required requirement, and
too much strength is present, which will prevent explants from adapting in vivo. Therefore,
the production of porous materials by hot pressing and sintering element mixture powder
opens the door to biomedical alloys. In addition, compared with mechanical alloying and
atomized powder metallurgy, hot pressing sintering saves mechanical alloying time, does
not introduce impurities in the process of hot pressing sintering, and avoids the danger of
atomized powder production.

5. Conclusions

In this article, HEAs of TiZrNbMoV and NbTiAlTaV were created by powder hot-
pressing sintering. Structures of bcc phases were discovered in these alloys. Furthermore,
alloys had a certain degree of strength, with porosity of 4.44% and 5.54%, respectively.
During the sintering process, areas with varying densities and components were pro-
duced due to the various spreading abilities of the elements. More research is needed
to explore the friction performance and applicability in biomedical materials and self-
lubricating materials.
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10.3390/met11111748/s1, Figure S1: Stress-strain curve of AlxTiNbMoV and TiZrNbMoVx alloys
(a) and variation of alloy plasticity with V atom ratio (b) [29,30].; Figure S2: XRD patterns of elements
labeled with diffraction peaks.; Figure S3: Details of X-ray diffraction spectra of Nb elements.;
Figure S4: Details of X-ray diffraction spectra of Ti elements.; Figure S5: Details of X-ray diffraction
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