2022 IEEE 15th Pacific Visualization Symposium (PacificVis) | 978-1-6654-2335-9/22/$31.00 ©2022 IEEE | DOI: 10.1109/PACIFICVIS53943.2022.00021

2022 IEEE 15th Pacific Visualization Symposium (PacificVis)

A Study of the Locality of Persistence-Based Queries and Its Implications
for the Efficiency of Localized Data Structures

Attila Gyulassy”
SCI Institute
University of Utah

Pavol Klacansky*
SCI Institute
University of Utah

ABSTRACT

Scientific datasets are often analyzed and visualized using isosur-
faces. The connected components at or above the isovalue defining
these isosurfaces are called superlevel-set components. The vertex
set of these superlevel-set components can be used to compute local
statistics, such as mean temperature or histogram per component, or
to segment the data. However, in datasets produced by acquisition
devices or simulations, noise induces many spurious components
that clutter the visualization and analysis results. Many of these spu-
rious components would disappear if the data values were slightly
adjusted. The notion of persistence captures the stability of a compo-
nent with respect to function value changes, and so we are interested
in computing persistence quickly. Locality of computation is crit-
ical for parallel scalability, minimization of communication in a
distributed environment, or an out-of-core processing. The recently
introduced merge forest attained high performance by exploiting
locality, thereby avoiding communication until needed to resolve a
feature query. We extend the merge forest to support persistence-
based queries and study the locality of these queries by evaluating
the traversals of regions of data during a query. We confirm that
the majority of evaluated datasets have the property that the noise
is mostly local, and thus can be efficiently eliminated without per-
forming a global analysis. Finally, we compare the query running
times with those of a triplet merge tree because a triplet merge tree
answers all proposed queries in constant time and can be constructed
from a merge tree in linear time.

Index Terms: Human-centered computing—Visualization—Visu-
alization application domains—Scientific visualization

1 INTRODUCTION

Topological analysis techniques enable robust extraction of fea-
tures from data. Alongside accelerating the extraction of connected
components above a threshold, these techniques enable removal
of components that are unstable under small function perturbation.
Examples of these noisy components may be artifacts in computed
tomography scans or insignificant clusters in cosmology simulations.
Furthermore, topological analysis can define the importance of a
component relative to its neighboring components and, for exam-
ple, capture vortices across scales [3]. The stability of components
and the choice of simplification threshold can be determined using
summaries, such as a persistence diagram or persistence curve.

On the one hand, we have general purpose topological data struc-
tures that support both simplification and ranking of components,
extraction of connected components, or computation of the relative
importance of components. Unfortunately, construction of these data
structures exhibits limited scalability [6, 10,22]. On the other hand,

*e-mail: klacansky @sci.utah.edu
Te-mail: jediati @sci.utah.edu
*e-mail: bremer5@1Inl.gov
Se-mail: pascucci@sci.utah.edu

2165-8773/22/$31.00 ©2022 IEEE
DOI 10.1109/PacificVis53943.2022.00021

121

Valerio Pascucci®
SCl Institute
University of Utah

Peer-Timo Bremer*
LLNL

specialized algorithms can exploit the locality of noise [15] but are
limited to noise elimination or construction of partial summaries. To
access the full capabilities, these specialized algorithms need to be
combined with nonscalable global topological data structures.

We are building a new set of scalable algorithms and data struc-
tures [12, 13] based on two concepts: i) formal topological queries,
and ii) localized topological data structures. In contrast to global
topological data structures, the localized merge forest is a collection
of local structures that are never assembled into a global data struc-
ture, i.e., a merge tree. When necessary, the global information is
resolved during a query. It is unclear if persistence-based queries
exhibit good locality and thus can be efficiently answered by local-
ized structures. We present persistence-based queries, and generic
algorithms for answering them. These algorithms rely only on a
modified component maximum query, and thus can be accelerated
by different data structures, such as a triplet merge tree, a merge
tree, or a merge forest. We compare the performance of two imple-
mentations of these queries, on a merge forest and on a triplet merge
tree, in a shared-memory setting. A triplet merge tree can answer all
persistence-based queries in constant time, at the cost of nonscalable
data structure construction [21].

If persistence-based queries can be resolved locally for common
analysis use cases, then the applicability of the localized approach is
broadened to more scientific use cases, which can benefit from the
parallel scalability and low memory overhead of the merge forest,
thus enabling more scientific applications of topological methods.
Furthermore, the locality study is important to inform design of
out-of-core and distributed-memory algorithms.

The contributions are:

* Three generic query algorithms for persistence-based analysis
and optimizations specific to the merge forest data structure.

¢ An empirical study of the locality of the proposed query al-
gorithms on a variety of datasets. The study explores the
implications of varying region size and query specializations
on locality of query traversal.

* A performance comparison of queries accelerated by a merge
forest and those on a triplet merge tree, which optimally returns
answers in constant time.

2 BACKGROUND

Let K be a simplicial complex and g a function defined by a
piecewise-linear extension of values at vertices. The function is
generic if no two vertices have the same value (enforced by sym-
bolic perturbation [8], e.g., by comparing memory addresses).

The upper star of a vertex v, St™(v), is the set of simplices that
contain v as the vertex with the lowest function value. An upper link,
Lk (v), is the boundary of a closure of an upper star disjoint from v.
We can build the complex by adding vertices and their upper stars in
an order defined by the values on the vertices vy, ,vi_1,Vi, -+ ,V,
with g(v;_1) > g(v;), creating an upper star filtration K; = K; | U
StT(v;), Ko = 0. Connected component C is a subset of complex
K;, where there is a path between all vertices of the component.

Authorized licensed use limited to: The University of Utah. Downloaded on July 28,2022 at 00:42:23 UTC from IEEE Xplore. Restrictions apply.

(a) Two regions and bridge set edges.

(b) Merge tree.

(c) Triplet merge tree.

(d) Merge forest with two local trees.

Figure 1: An example dataset consisting of two regions (red) connected by bridge set edges (dashed lines) that has four maxima 4, 7, 8, 9 and
three merge saddles 3, 5, 6. The vertex numbers denote function values. The merge tree has the maxima as its leaves, merge saddles as internal
nodes, and regular vertices as solid circles. For example, the component defined by maximum 7 merges with the component created at maximum
8 when they reach the merge saddle 6, and this behavior is captured by two arcs (8,6) and (7,6). The triplet merge tree is a directed graph of
maxima connected by edges recording the component merging with merge saddles as edge labels. In the previous example, this graph recorded
that the maximum 7 merges into the maximum 8 via the merge saddle 6. Obtaining this information from the merge tree requires additional
processing. For these global data structures, the bridge set edges are treated the same as the internal edges (solid lines). However, a localized
merge forest constructs a local merge tree for each region and uses a subset of bridge set edges to resolve connectivity across regions. In this
case, only the edge (6,7) is necessary to form a reduced bridge set. The merge saddle 6 is not represented as a node in the forest because
locally it is a regular vertex. Only during a query is it resolved to a merge saddle.

Components partition the complex K;, and we denote the partition
size by #CC. If the upper link is empty, Lk™ (v;) = 0, then the vertex
v; is a maximum. Otherwise, if the number of components in the
complex #CC(K; 1) differs from #CC(K;_{ USt™ (v;)), the vertex v;
is a merge saddle. All other vertices are regular vertices because we
ignore critical vertices where connectivity does not change during
upper star filtration, i.e., minima and other saddles.

The persistence pair (u,s) consists of a maximum « and a merge
saddle s, such that u is the highest vertex in the component C;_; but
not in the component C;_; USt™ (v;), v; = 5. The global maximum,
vertex vy, has no persistence pair. The persistence of a maximum
u is the function value difference of its persistence pair elements,
g(u) — g(s). The persistence of the global maximum is infinite.

The triplet (u,s,v) represents the nesting relationship of two con-
nected components that merge at the saddle s. The first component
has u as its highest valued maximum, and the maximum v is the high-
est in the second component. The component containing v subsumes
the other component at the saddle s because the value at v is greater
than at u. The persistence pair (u,s) captures that the component
containing the maximum u ceases to exist at the merge saddle s.

The ComponentMax(K ,g,v,h) function returns a maximum with
the highest function value in a connected component C that con-
tains v and C C K;, where g(v;) > h and g(v;+1) < h. If no such
component exists, the function returns the bottom.

We review data structures for the acceleration of superlevel-set
queries: merge tree, triplet merge tree, and merge forest (Fig. 1).

Merge Tree. A tree rooted at the global minimum that captures
the birth of components at maxima (leaves), and merging of these
components at merge saddles (internal nodes). Arcs represent inter-
vals without connectivity changes. A pair (arc, threshold) uniquely
identifies a connected component. This tree is often represented as a
set of arcs with pointers to children and a parent. The pointers to the
children of each arc are usually stored in an array or as a linked list.

Triplet Merge Tree. A set of triplets in the form of (u,s,v)
comprises a triplet merge tree, which is a directed graph with directed
edges from maximum u to maximum v with a merge saddle s as
an edge label. The component born at maximum u merges into the
component born at v. Handling of regular vertices and merge saddles
can be done via a triplet (u,u,v), and the global maximum has triplet
(u,u,u). In this work, we represent only triplets of local maxima. A
triplet merge tree is commonly implemented with a hash table that
maps the first triplet element u to the pair (s,v).

122

Merge Forest. We partition the vertex set of complex K into
regions My, -- ,M,,, where simplices with all of their vertices inside
aregion belong to that region and the rest forms the bridge set. A
subset of this bridge set that preserves component connectivity for
all complexes K; is called a reduced bridge set. A merge forest is a
set of local merge trees for each region and reduced bridge set edges
connecting those trees. The merge forest graph is the union of local
trees and reduced bridge set edges. A maximum corresponds to a
local merge tree leaf without an incident bridge-set edge that has a
higher end vertex. The set of local merge saddles forms a superset
of merge saddles. In general, the local merge trees do not form a
subset of a global merge tree if there are two or more regions.

3 RELATED WORK

We review merge trees, triplet merge trees, and merge forest data
structures, and their ties to persistence simplification.

3.1

A merge tree [5] captures the changes in superlevel-set connectivity
for all thresholds ranging from positive to negative infinity. As the
threshold is reduced, components are born at maxima and merge at
merge saddles. An augmented merge tree stores all vertices whereas
an unaugmented merge tree captures only critical vertices (maxima
and merge saddles).

A triplet merge tree [21] is a directed graph representing the
global merging behavior of components in terms of their maxima.
This triplet representation enables efficient serial construction from
an unordered stream of edges. The triplet merge tree can answer
persistence-based queries in constant time at the cost of limited paral-
lel scalability of the data structure construction, potentially forming
a bottleneck in data analysis. A merge tree can be augmented with
the triplet information in linear time by a post-order traversal.

A hyperstructure [6] representation of superlevel-set topology
is amenable to parallel processing compared to a standard branch
decomposition [20]. This branch decomposition pairs maxima to
corresponding merge saddles, and for analysis a branch is processed
before its parent, potentially leading to sequential processing. Par-
allel tree contraction operations on a merge tree produce its hyper-
structure and allow parallel computation of per-branch statistics.
Moreover, this structure allows for logarithmic time vertex-to-arc
lookups, important for data segmentation.

A merge forest [13] is a localized data structure that consists of a
set of local merge trees and a reduced bridge set edges connecting

Data Structures

Authorized licensed use limited to: The University of Utah. Downloaded on July 28,2022 at 00:42:23 UTC from IEEE Xplore. Restrictions apply.

these trees. Each local tree corresponds to a region in a domain de-
composition. The global information is resolved on demand during
a query by traversing the local trees and moving between regions via
reduced bridge set edges. The locality of the approach results in a
linear scaling of the data structure construction and reduced memory
overhead, and the queries are answered in comparable time to those
of a merge tree.

3.2 Simplification

A key property of these data structures is they enable simplifying a
function until noise is removed by capturing the lifetime of compo-
nents, called a persistence [7]. The persistence of a maximum is the
difference between the function value when its component appears
(birth), and the value when it merges into a component created at a
higher value (death). An appropriate simplification threshold can be
discovered by visualizing the birth-death pairs in a scatter plot, called
a persistence diagram. Alternatively, a persistence curve is formed
by counting persistence pairs for every simplification threshold.

The idea of performing local simplification has its roots in dis-
tributed merge tree and Morse-Smale complex algorithms, where
minimizing the size of communicated structures during the global re-
duction phase by sending only sparsified counterparts is paramount
because this global phase limits scalability of these algorithms. Ini-
tial approaches require a user-specified simplification threshold
while constructing the data structure [11], where components in-
ternal to a region are simplified if their persistence is below the
specified persistence threshold. Unfortunately, the choice of the a
priori threshold needs to be conservative to avoid oversimplifying
the data and losing important features. This issue is mitigated by
simplifying only components fully contained within a region of do-
main decomposition [14, 18, 19] and communicating only the parts
of the structure that interact with the region’s boundary. The small
size of these communicated sparsified trees suggests that a large
portion of maxima can be simplified locally.

A localized simplification algorithm [15] modifies the input data
by removing features below the specified persistence. The algorithm
exploits the locality of noise by terminating region growths started
at extrema (maxima or minima) when a user-specified simplification
threshold is reached. For a 1% simplification level, the algorithm
traverses only 2% of a dataset. The result of partial region growths
can then be used to build a persistence diagram or a persistence
curve up to the specified simplification threshold. We use this idea
of the partial growth to avoid excessive merge forest traversal during
one of the persistence queries.

4 PERSISTENCE-BASED QUERIES

We review and define queries that consider the lifespan of compo-
nents, and enable noise removal, exploration of functions at multiple
simplification scales, or studying hierarchical nesting of components
based on their importance. For example, we can filter all connected
components with low persistence out of a visualization to eliminate
noise or extract vortices of different intensities by computing their
relative importance to the other components [3].

4.1 Triplet Query

A triplet represents the component, born at a maximum and dead at
a merge saddle, and the component into which it merges. Moreover,
triplets enable the computation of persistence and relevance [17] in
constant time, and they are a representation of a branch decomposi-
tion [20]. This representation has been introduced as an alternative
data structure to a merge tree [21], and we follow the same definition
with a minor change of defining triplets neither for regular vertices
nor a global maximum.

Definition 1. We name Triplet(K,g,u) the function that outputs the
triplet (u,s,v) for the maximum u. If such a triplet does not exist,

123

the output is bottom L (the case of the maximum u being the global
maximumt).

The last element v in the triplet (u,s,v), the representative, is the
highest vertex in a component defined by maximum « and threshold
g(s), i.e., v = ComponentMax(K,g,u,g(s)). Moreover, the persis-
tence of a maximum u with a triplet (u,s,v) is the value g(u) — g(s).

The complexity of answering the Triplet query depends on the
underlying data structure. For example, the worst case time com-
plexity for a merge tree 7 is O(|T|), whereas for a triplet merge tree
itis O(1).

4.2 Persistence Query

Persistence captures the lifetime of a component, and therefore it
is useful to filter components with short lifetimes or to study the
stability of the input function by simplifying components at multiple
persistence thresholds. Furthermore, this query can be combined
with filtering the input maxima by isovalue. This query finds the
merge saddle for a given maximum, forming a persistence pair,
which is used to compute its persistence. The difference between
this query and the triplet query is that the last element of the triplet
(representative) is not needed.

Definition 2. We call PersistencePair(K, g, u) the function that re-

turns the pair (u,s) where u is the queried maximum and s is a merge
saddle. If the vertex u is a global maximum, it returns bottom 1.

The Persistence query can be implemented using the Persisten-
cePair query’s output (u,s) to compute the difference of function
values, g(u) — g(s).

Definition 3. We call Persistence(K,g,u) the function that returns
the persistence of the maximum u. If the vertex u is a global maxi-
mum, it returns oo.

Unfortunately, querying persistence pairs for all maxima amounts
to global analysis. Often, only the maxima of persistence greater
than or equal to a simplification threshold are of interest. Therefore,
we define an additional query that allows us to test if a maximum
has at least some persistence, and if not it returns the persistence
pair of that maximum. This latter property is useful for constructing
a persistence diagram or curve up to a certain simplification thresh-
old [15]. More importantly, the simplification threshold allows the
query to avoid unnecessary traversal, such as the global traversal of
Persistence query when a global maximum is queried.

Definition 4. We name PersistencePairBelow(K,g,u, p) the func-
tion that returns the persistence pair of the maximum u, if its persis-
tence is below the simplification threshold p. Otherwise, it returns
bottom L.

The PersistencePairBelow(K,g,u,0) query is equivalent to the
PersistencePair(K, g,u) query.

5 TRIPLET QUERY ALGORITHM

The Triplet query of a given maximum searches a topological data
structure to obtain the maximum’s merge saddle and representative
to form the output triplet.

The algorithm (Alg. 1) starts traversal at the queried maximum u,
and grows a connected component until « is no longer the highest
vertex in the component (Fig. 2). Since there could be multiple
ways to grow the component in a forest (a component can span
multiple regions), we use a priority queue to process the vertices
in order. This traversal is similar to that of the task-based merge
tree algorithm [10]; however, we need to recover the representa-
tive while the task-based growth terminates at a merge saddle. In
contrast to a merge forest, a merge tree has only one path toward
the root, and thus the priority queue contains at most one element.

Authorized licensed use limited to: The University of Utah. Downloaded on July 28,2022 at 00:42:23 UTC from IEEE Xplore. Restrictions apply.

8 o 8
° \ ./\,
7. . J/
©
4 (4)
N

2)
6 6
5 5

(a) First loop iteration.

(b) Second loop iteration.

Figure 2: An example of TRIPLET(u = 4) call that computes the triplet
(4, 3, 9) of a maximum 4, highlighting the expensive query in the
lower portion of the data values that traverses both local merge trees
(red). The query starts with the priority queue containing the queried
maximum 4 and an empty visited set. Then, it executes in two loop
iterations. In the first iteration, vertex 4 is dequeued and COMPO-
NENTMAX(u = 4, h = 4) returns 4 plus enqueues 3; the visited set
now contains 4. Since 4 is not above 4, the loop reaches the second
iteration. In the second iteration, vertex 3 is dequeued, and COMPO-
NENTMAX(u = 3, h = 3) traverses both regions and returns 9 (it skips
already visited 4, colored gray) and enqueues no vertex. Since 9 is
above 4, the triplet (4, 3, 9) is returned. At the end of the query, the
visited set contains all critical vertices, {3,4,5,6,7,8,9}.

Algorithm 1 The merge forest-accelerated algorithm for computing
the Triplet query that returns the (maximum, merge saddle, repre-
sentative) triplet, or bottom for a global maximum.

function TRIPLET(function g, forest F, maximum u)

: priority queue PQ + 0

visited set VS <— 0

ENQUEUE(PQ, g(u),u)

while PQ # 0 do
v <~ DEQUEUE(PQ)
V¥, VS, PQ < COMPONENTMAX(g, F, v, g(v), VS, PQ)
if v #L and g(v*) > g(u) then

return (u,v,v*)
return L

1:
2
3
4:
5:
6.
7
8
9

10: > Global maximum

The subroutine COMPONENTMAX is a modified ComponentMax
query that enqueues all crossed arcs and reduced bridge set edges
into the priority queue for further traversal. A crossed arc has its
highest value above the queried threshold and its parent is below the
threshold. A crossed reduced bridge set edge has one or both end
vertices below the threshold passed into COMPONENTMAX. Recall
that the COMPONENTMAX subroutine returns the bottom value if
the queried vertex is below the threshold (never the case here) or
the vertex was previously visited. The visited set contains all visited
vertices to avoid repeated traversal.

Correctness. A merge tree is the same as a merge forest when
the region size is equal to the domain size, and thus we first show
that the triplet query algorithm (Alg. 1) returns the correct triplet
when used with a merge tree. Then, we show the algorithm still
works for different region sizes, and thus the merge forest.

Lemma 1 (triplet query on a merge tree). The triplet query algo-
rithm computes a triplet of a given maximum u.

Proof. The algorithm processes an ordered sequence of vertices
V| =u,va,---,v,. We maintain the invariant that at the beginning
of each loop iteration (line 5), the maximum u is the highest vertex
in the connected component C;_| in a complex K;_j. The other
invariant is that all maxima in the connected component C;_; were
visited.

124

Base case. vi = u, C; = {u}, and thus u is the highest vertex
(pushed onto the priority queue on line 4).

Induction step. The component C;_ has the highest vertex of the
maximum u (invariant). The dequeued vertex v; is not in C;_1,
because g(v;—1) > g(v;) (line 6). Line 7 returns the highest
vertex in C;, where C;_; is a subset of C;. If the result of
the COMPONENTMAX call on C;, the vertex v*, differs from
the input maximum u, we return the triplet of the maximum,
(u,v,v*). Otherwise, the invariant holds because u is the high-
est vertex in C;. If the whole sequence is processed and no
higher maximum is found, the maximum u is the global maxi-
mum.

O

Lemma 2 (triplet query on a merge forest). The triplet query al-
gorithm computes the triplet of a given maximum u from a merge
forest.

Proof. The nodes in merge forest form a superset of nodes in a
merge tree. Since each node is tested in the inner loop, the nodes
form a superset of the sequence of vertices processed in the merge
tree, and they are processed in decreasing order (because of the
priority queue). We conclude the query returns the same triplet. We
rely on the property of reduced bridge set that guarantees unchanged
connected components compared to the input domain, and thus the
COMPONENTMAX calls return the same output. O

The triplet algorithm can be applied directly to the input complex
K and function g without any acceleration data structure, such as
a merge forest or merge tree, since a merge forest with a region
size 1° is equivalent to the input complex (assuming a reduced
bridge set is constructed pairwise between neighboring regions).
Moreover, any topological data structure implementing the modified
ComponentMax query can answer the triplet query. For example, for
a triplet merge tree, the crossed arc’s lower end vertex would be a
merge saddle s of a triplet (u,s,v).

In our implementation, the reduced bridge set end vertices do
not split arcs in local trees. Instead, we store an unordered list of
these edges per arc. This design allows us to avoid splitting an arc
segmentation and update the reduced bridge set without changing
the local trees. However, this choice may cause more reduced bridge
set edges enqueued onto the priority queue.

Time Complexity. In the worst case, when global maximum
u is queried, the COMPONENTMAX (line 7) returns v* = u every
time, and thus the if statement (line 8) is never true. Therefore, the
algorithm traverses the whole merge tree or merge forest. For a
merge tree, the priority queue PQ has at most one entry (a parent
arc), yielding overall time complexity O(|T|). For a merge forest,
the queue may contain O(|F|) entries, resulting in O(|F|log|F|)
time complexity. Similar worst-case analysis can be applied to the
Persistence and PersistenceBelow queries.

5.1 Optimizing Internal Query

In a merge tree, triplets can be precomputed in linear time, con-
structing a triplet merge tree, and thus rendering the triplet query in
constant time. A similar optimization, limited to components con-
tained inside a region, can be applied to a merge forest. Additionally,
the portions of noninternal queries may be accelerated, e.g., during
the ComponentMax query. We leave this form of query acceleration
for future work.

Definition 5. A rriplet (u,s,v) is an internal triplet if the component
CCKiNMj, s.t., s =v;and u,s,v € C, contains no reduced bridge
set edge (a,b) with its end vertices greater than or equal to the value
of the merge saddle s.

Authorized licensed use limited to: The University of Utah. Downloaded on July 28,2022 at 00:42:23 UTC from IEEE Xplore. Restrictions apply.

(=N

(a) First loop iteration.

(b) Second loop iteration.

Figure 3: Execution of PERSISTENCEQUERY(u = 4) for maximum 4
to compute its persistence of 1. The query starts with the priority
queue containing the queried maximum 4. Then it executes in two
loop iterations: 1) the vertex 4 is dequeued and COMPONENTMAXI-
MUMEARLY(maximum = 4, u = 4, h = 4) returns 4 plus enqueues 3
just like the first iteration of the TRIPLET query algorithm. Since 4 is
not above 4, the loop reaches the second iteration. 2) The vertex
3 is dequeued and COMPONENTMAXIMUMEARLY(maximum = 4, u
= 3, h = 3) returns 8 and enqueues nothing. Since 8 is above 4,
the query terminates. In contrast to the triplet query, the persistence
query traverses only one region, and the visited set contains only local
vertices {3,4,8}. Moreover, the arc 4 is internal, and thus its query is
computable in constant time, thereby avoiding forest traversal.

Internal triplets can be computed in a post-order traversal of a
local merge tree. For each arc, we track the representative (highest
vertex of its children) and the next reduced bridge set edge to be
processed. An arc, with a different representative than its parent’s
representative and merge saddle above the next bridge set edge, can
set its representative to this arc (merge saddle) and the parent arc’s
representative (representative).

Definition 6. A pair (u,s) is an internal persistence pair of the
component C C K; ﬂMj, s.t., s =vjand u,s € C, if there exists no re-
duced bridge set edge (a,b) with either end vertex in the component
C\ {s} while having their function values greater than the value of
the merge saddle s, and the component C contains vertex v with a
higher value than the maximum u, g(v) > g(u).

Similarly to the internal triplets, the internal persistence pairs
are constructed by a post-order traversal of each local merge tree.
However, the arc with a higher valued maximum may have reduced
bridge set edges to other regions because it is not necessary to
recover the actual representative.

The number of queries answered internally in a region depends on
the region size. Region size 13 has no internal queries, and the size
equal to the input dataset size has all queries answered internally.
On the one hand, smaller regions result in more parallelism during
forest construction [13]. On the other hand, larger regions render
more triplet queries internal and thus are constant time.

5.2 Persistence Query Specialization of Triplet Query

The triplet query needs to recover the component maximum into
which the queried maximum merges (representative). In contrast,
for the persistence query, it is sufficient to find the first two elements
of the triplet, the input maximum and its merge saddle, to calculate
the persistence of a maximum. To certify a vertex is a merge saddle
of the maximum, only a reachable vertex higher than the maximum
needs to be found (Fig. 3). The motivation for this query special-
ization is the assumption that, in many cases, this vertex shares the
same region with the maximum, rendering the query internal and
thus constant time.

Therefore, the TRIPLET subroutine (Alg. 1) is modified with two
changes to create the PERSISTENCE subroutine. First, the COMPO-
NENTMAX call (line 7) is replaced with the COMPMAXEARLY func-

125

(a) Simplification threshold 2. (b) Simplification threshold 4.

Figure 4: The PERSISTENCEBELOW query algorithm runs on all max-
ima for two simplification thresholds, 2 and 4. The closed intervals
highlight maxima with known persistence, and the open intervals de-
note maxima with persistence at or above the simplification threshold.
At threshold 2, this query is local for maxima 4, 8, and 9, and returns
persistence values 1, e, and . In contrast, the Persistence query
has only the maximum 4 local to a region, because it is internal as
the maximum 8 in the same region has a higher value. Threshold 4
requires traversal of both regions for maxima 7 and 8. Since maximum
9 has the next vertex to process 5, its persistence is at least 4, and
the query can terminate early.

tion that terminates when any vertex above the queried maximum
u is reached. This procedure follows a greedy depth-first traversal,
but other heuristics are possible, such as breadth-first traversal or the
use of a priority queue to always try the highest arc. The objective
is to find a vertex higher than the queried maximum quickly. The
second change is the query constructs only the persistence pair (u,v)
and then calculates the persistence using this pair. Moreover, for a
global maximum, it returns infinity instead of bottom (line 10).

5.3 Further Optimization to Persistence Below Query

We have seen that restricting the output of a query may reduce the
amount of work, such as not needing the last element of a triplet to
calculate the persistence using the Persistence query. However, some
maxima may still require traversal of large portions of a merge forest.
Take the example of a global maximum where both the TRIPLET
and PERSISTENCE query algorithms traverse all arcs in the forest.
Instead of adding a special case for the global maximum to address
this issue, we modify the query algorithm to limit the traversal.

The main use of persistence is to simplify noise. Therefore,
the query needed for such simplification must answer the question:
Does a given maximum exist at a specific persistence threshold?
An example would be to remove all maxima with a persistence
value less than 1% of a function range before using superlevel-set
components in visualization or analysis. Moreover, the query could
be progressively executed by lowering the simplification threshold
and keeping its internal state in memory (query inputs, priority
queue, and visited set). This iterative query execution could be used
to progressively build a persistence curve.

The PersistenceBelow query has the advantage of potentially
terminating the traversal after the function value difference between
the maximum and currently dequeued vertex from the priority queue
is above or equal to the simplification threshold (Fig. 4). This
early termination prevents traversal of many regions for long-lived
components, such as the component defined by a global maximum.

We find several changes compared to the triplet query algo-
rithm (Alg. 1). The algorithm (Alg. 2) traverses a sequence of
vertices of decreasing function values, but it can terminate if the
persistence of the component is known to be greater than or equal to
the simplification threshold (lines 7-8). The algorithm uses the same
helper function to early exit the ComponentMax query, COMPMAX-
EARLY, as does the PERSISTENCE subroutine. The input maximum
u is passed to this helper call to enable the early exit when the func-

Authorized licensed use limited to: The University of Utah. Downloaded on July 28,2022 at 00:42:23 UTC from IEEE Xplore. Restrictions apply.

Algorithm 2 The algorithm for answering the PersistenceBelow
query that computes the persistence of a maximum if its persistence
is below a simplification threshold. Otherwise, it returns infinity. The
queried maximum is passed into the subroutine COMPMAXEARLY
to allow for an early termination during a query’s traversal.

1: function PERSISTENCEBELOW(function g, forest F', maximum
u, persistence threshold p)
priority queue PQ < 0
visited set V.S < 0
ENQUEUE(PQ, g(u),u)
while PQ # 0 do
v <~ DEQUEUE(PQ)
if g(u) —g(v) > p then
return oo > Early exit for persistent maximum
9: V'« COMPMAXEARLY(g, F, u, v, g(v), VS, PQ)

o A U ol

10: if v/ #1 then
11: return g(u) —g(v)
12: return oo > Global maximum

tion encounters higher vertex, returned as v/ (which may be different
from v* returned by the COMPONENTMAX subroutine).

Correctness. The two changes compared to the triplet query
algorithm are an early exit if the persistence of the maximum is
greater than or equal to the simplification threshold (lines 7-8) and
early termination of COMPMAXEARLY (line 9). The former can
happen when dequeued vertex v is the merge saddle of the maximum
u, or v is some other merge saddle or a regular vertex. If v is the
merge saddle, then the persistence of u is g(u) — g(v) = p; otherwise,
it is greater than the persistence threshold. The latter always returns
a bottom or vertex v where g(v') > g(u). Since g(v') > g(u) and u
is a maximum, then v/ must belong to a component with a higher
maximum, and by Elder’s rule, the component defined by a lower
maximum merges into the component with a higher maximum.

6 RESULTS

The evaluation has two primary goals. The first is to empirically
measure the locality and running time of the triplet query algo-
rithm (Alg. 1), to test if internal query optimization is beneficial, and
to determine if specialization into the persistence and persistence
below algorithms (Alg. 2) reduces the number of visited regions and
running time. The second is to compare query execution times with
a triplet merge tree, which answers each query in constant time, and
thus provides an optimal baseline.

The datasets used for the tests (Table 1) consist of both simulation
data (Fuel, Cosmology subset [16], Duct [1], HCCI [2], JICF Q [9])
and acquired data (Foot). For all the datasets, we use superlevel-set
analysis that captures components useful for further processing. The
perturbation scheme is based on a local index and then a region
index, and it is the same for a merge forest and triplet merge tree.
Both data structures are constructed using the same six-subdivision
neighborhood. This subdivision may introduce artifacts [4].

The machine used to obtain the timings has AMD Threadripper
1950X (16 cores at 3.4 GHz) and 64 GB RAM. The tests were
compiled with MSVC 19.28.29912 (/O2). All tests are run once.

6.1 Locality Study of Triplet Queries

We start the evaluation with the most general query, the Triplet query,
which computes both the merge saddle and representative for a given
maximum. We run the query for all maxima in each dataset and
measure its running time and the number of visited regions, our
choice of locality unit. Since the locality depends on the region size,
we test three region sizes: 323 643, and 1283.

We inspect the locality of these queries by computing a histogram
of the number of visited regions (Fig. 5). All histograms have 20

126

Table 1: A list of acquisition and simulation datasets used for the
evaluation. In all datasets, the components of superlevel sets are of
interest. The datasets have different topological complexity. Datasets
with an integer data type are converted to the float32 type.

Dataset Resolution Data type # maxima
Fuel 64x64x64 uint8 65
Foot 256x256x256 uint8 192,375
Cosmology 256x256x256 float32 726,942
Duct 193x194x1000 float32 35,381
HCCI 560x560x560 float32 11,274
JICFQ 1408x1080x1100 float32 228,459

1w

ies
ies

60000 B
400000

=

10000
200000

o

Number of queries

Number of quer
Number of quer

0 25 50 0 0 25 50 0 0 100 200

Number of visited regions Number of visited regions Number of visited regions

(a) Foot dataset. (b) Cosmology dataset. (c) Duct dataset.
Figure 5: Histograms at region size 643 of triplet queries based on
the number of regions visited. Even though most datasets exhibit
a bimodal distribution, the shape is largely unpredictable and data
dependent. The Cosmology dataset has a majority of the queries
traversing the data background, and filtering maxima below threshold
5 reduces the number of queries from 726,942 to 38,761, bringing the
run-time from 66,172 to 121 seconds.

100000 100000

Number of queries
Number of queries
Number of queries

0 0 200 400 0 0 25 50 0 2.5 5.0 7.5

Number of visited regions Number of visited regions Number of visited regions

(a) Region 323, (b) Region 643. (c) Region 1283,

Figure 6: Histograms at region sizes 323, 643, and 1283 of triplet
queries based on the number of regions visited for the Foot dataset.
We observe a shift of the middle of the distribution into right. This shift
can happen, for example, for a feature that lies in the center of the

dataset, intersecting 8 regions regardless of the region size.

13

1
[

50000

100000 10000

Number of queries
Number of queries
Number of queries

0.02

Time (s) Time (s) Time (s)

(a) Foot dataset. (b) Cosmology dataset. (c) Duct dataset.

Figure 7: Triplet query running times histograms where a large portion
of the queries is near instant (region size 64°). However, for some
datasets, such as Cosmology, the majority of queries take at least 10
milliseconds, rendering aggregate analysis slow.

bins. The datasets exhibit bimodal distributions, with the majority
of triplet queries visiting only a few regions. The exception is the
noisy Foot and Cosmology datasets where a large portion of queries
traverses a large number of regions. Only the histograms of the Foot
dataset change significantly with the increasing region size (Fig. 6).

We shift our focus on the wall clock time of the queries (Fig. 7).
The prevalent time dependence is on the topological complexity
rather than the number of visited regions. For example, at 64> region

Authorized licensed use limited to: The University of Utah. Downloaded on July 28,2022 at 00:42:23 UTC from IEEE Xplore. Restrictions apply.

_010 .
. P

£

005 " IS

£
02 " oo
[
0.00 —_qlc‘ 0.0] s o0 - 0.00{ et @

0 20 10 60 0 20 10 60 0 100 200
Number of visited regions Number of visited regions Number of visited regions

Time (s

(a) Foot dataset. (b) Cosmology dataset. (c) Duct dataset.

Figure 8: Correlations between visited region count and the running
time of the triplet query (region size 643). We observe a sharp in-
crease in the running time when resolving queries that have the global
maximum as their representative or lie in the data background. The
dot in the top right corner of each plot is the global maximum, which
requires traversal of the whole merge forest. The large gap in the num-
ber of visited regions between the global maximum and other maxima
for the Duct dataset is caused by many components suddenly merging
into the global component. Other metrics such as number of traversed
arcs may be more suitable; however, we are primarily interested in
locality, and thus using regions is a reasonable compromise.

size, the slowest query for the Cosmology dataset takes 0.7 s and
visits all 64 regions, and the slowest query on JICF Q executes in
0.3 s and visits all 6,732 regions. A change in the region size yields
a small query time reduction.

The scatter plot of number of visited regions and the query
time (Fig. 8) shows that the unit of locality, visited regions, cor-
relates well only for some datasets. The Cosmology, Duct, and
JICF Q display a spike where the query time changes by an order of
magnitude suddenly, when a query visits a majority or all regions.
This result suggests that additional metrics such as the number of
traversed arcs or executed loop iterations may better correlate to a
query’s running time because even for the smallest region 327, the
visited count does not capture the running time spike for the global
queries (Cosmology).

Overall, the O(|F|log|F|) time complexity of the triplet query al-
gorithm (Alg. 1) makes these queries expensive, and we recommend
this algorithm only when few maxima need to be queried.

6.2 Evaluation of Internal Query Optimization

From the histograms in the previous section, we observe that many
queries traverse a single region and thus are internal to that region.
In general, around 20% of triplet queries are internal, and with the
increasing region size, a larger proportion becomes internal (Table 2).
Unfortunately, this optimization provides speed-up in a fraction of a
percent for the triplet queries because we are optimizing already fast
queries. After all, the expensive queries are ones that traverse many
regions and do not benefit from this optimization.

The memory overhead of this optimization is an extra index per
arc, each maximum stores an index of its merge saddle, and merge
saddles point to their representatives. The impact on the forest
construction time in the worst case is 1% (the Cosmology dataset at
region size 647).

We conclude that this optimization has a negligible impact on
the overall running time of triplet query. However, we revisit this
optimization for the persistence query algorithm in the next section.

6.3 Locality Study of Persistence Queries

The persistence query may traverse a smaller fraction of the dataset
compared to the triplet query because it needs to recover only the
merge saddle and not its representative. Finding the representative is
especially expensive for maxima appearing in the dark background
portions of the data (Fig. 8). Fortunately, the persistence query is
sufficient for many analysis tasks, such as noise removal by sim-
plifying components with low persistence or the construction of a
persistence diagram.

127

Table 2: Proportions of triplet queries performed internally inside a
region out of all queries. These queries can be answered in constant
time. The region size 64 is usually preferable for the forest construc-
tion, and only about 20% of triplet queries are internal. However, this
optimization does not translate into a noticeable speed-up (numbers
in parentheses) because the internal queries were fast in the first
place, and the overall time is dominated by the expensive queries.

Dataset Region 323 Region 64> Region 1283
Fuel 0.18 (1.03) - -
Foot 0.26 (1.00) 0.31 (1.00) 0.35 (1.00)
Cosmology ~ 0.18 (1.00) 0.21 (1.00) 0.22 (1.00)
Duct 0.29 (1.00) 0.40 (1.00) 0.47 (1.00)
HCCI 0.12(1.00) 0.18 (1.00) 0.22 (1.00)
JICFQ 0.38 (1.00) 0.47 (1.00) 0.53 (1.00)

W Triplet
[Persistence

ies

600000

200000

Number of queries
Number of queri
B
Number of queries
e

0

100 200
Number of visited regions

50 0

25 50 0
Number of visited regions

25
Number of visited regions

(a) Foot dataset. (b) Cosmology dataset. (c) Duct dataset.

Figure 9: Histograms of visited regions for persistence queries at
region size 64° overlaid on the triplet query histograms. The results
confirm that persistence query specialization significantly reduces the
number of regions traversed and renders many queries internal to a

region.

[Triplet
[N Persistence

600000

100000)000

Number of queries
2 o

Number of queries

Number of queries

200000 10000

0.0 0.1 0 0.0 0.5 []Uv(bli 0.02

Time (5) Time (s) Time (5)

0.04

(a) Foot dataset. (b) Cosmology dataset. (c) Duct dataset.

Figure 10: Histograms of query time for persistence queries at region
size 643 overlaid on the triplet query histograms. The reduced number
of visited regions of the persistence query directly translates to a
run-time improvement.

For each dataset, we run the persistence query for all maxima.
This scenario is common to determine what maxima belong to noise,
to rank maxima and extract components of the most stable ones,
or to study the function stability as the persistence changes in the
form of a persistence diagram or curve that is used to determine the
simplification threshold.

The majority of persistence queries traverse few regions (Fig. 9).
The difference between persistence and triplet query is striking;
by not recovering the representative, we gain locality. Recall that
the persistence query can terminate as early as it discovers a vertex
higher than the queried maximum. Moreover, this increase in locality
directly translates to running time improvements (Fig. 10), which
makes this query useful for more use cases.

We further investigate these results by computing the proportion
of internal persistence queries, which can be answered in constant
time. As expected, the proportion is greater than or equal to that
of triplet queries (Table 3). Unexpectedly, around 90% of queries
are internal compared to only 20% of triplets, resulting in 1.2 to 3x
speed-up (region size 64%) compared to queries without the internal
region optimization.

Authorized licensed use limited to: The University of Utah. Downloaded on July 28,2022 at 00:42:23 UTC from IEEE Xplore. Restrictions apply.

Table 3: The running times of persistence queries with and without internal query optimization and proportions of internal queries (answered in
constant time). Queries are run for all maxima in a dataset. The proportion is always greater than or equal to the proportion for triplet queries.
The run-time speed-ups compared to the query without optimization are in parentheses. Only the Duct dataset time exhibits smaller speed-up
at region size 128° than 64, where the larger proportion of the running time is dominated by the global queries. Furthermore, larger region
size does not imply lower aggregate running time because, as the region size increases, the COMPMAXEARLY procedure may visit more arcs
(it performs depth-first traversal of local trees), depending on the dataset. For example, for the Foot dataset, the persistence query without the
internal optimization takes longer for region size 1283 than for 64> whereas the optimized query takes the same time, resulting in seemingly greater
speed-up compared to other datasets. The locality results support the idea of sparsification during distributed merge tree construction [14,18,19]
and the reduced strong scaling with increasing core counts because the regions become smaller and fewer maxima can be internally sparsified,

increasing the communication cost during the reduction phase.

Dataset Region 323 Region 643 Region 1283
noopt(s) opt(s) internal noopt(s) opt(s) internal noopt(s) opt(s) internal

Fuel 0.00 0.00 0.55(1.44) 0.00 0.00 - - - -
Foot 0.58 0.35 0.86 (1.68) 0.98 0.31 094 (3.17) 343 0.29 0.98 (12.00)
Cosmology 2.09 1.37 0.89 (1.53) 2.54 1.42 0.95(1.79) 5.19 242 0.98 (2.14)
Duct 0.18 0.14 0.77 (1.26) 0.15 0.08 0.87(1.93) 0.10 0.05 0.93 (1.84)
HCCI 0.10 0.09 0.88 (1.13) 0.04 0.03 0.93(1.42) 0.03 0.02 0.96 (1.50)
JICF Q 1.72 1.54 0.81(1.11) 0.76 0.61 0.89(1.23) 1.32 0.64 0.94 (2.08)

[10

ima

\

10*
N

\

\

Number of maxima
Number of maxima
Number of maxi

10" 10% 107 10 10 10! 1071 10
Persistence Persistence Persistence

(a) Fuel dataset. (b) Foot dataset.

0? N

(c) Cosmology dataset.

}

Number of maxima

)

N

\

1071

N

N

\

\

N\

107! 10° 1077 107
Persistence Persistence

N
N

107! 10 00107
Persistence

Number of maxima
Number of maxima

(d) Duct dataset. (e) HCCI dataset. (f) JICF Q dataset.

Figure 11: Log-log persistence curve plots using region size 643, but
the persistence curve is virtually unchanged for other region sizes.
The orange lines indicate 0.1%, 1%, and 10% simplification thresholds.
The choice of fixed simplification percentages is due to the inability to
know the simplification threshold a priori without computing the curve.
Notice this issue with fixed thresholds on the Fuel and Foot datasets,
where a higher simplification threshold may be of interest.

6.4 Locality Study of Persistence Below Queries

The locality of persistence query improves significantly compared
to the triplet query. However, some of the queries still traverse
the whole forest, e.g., a global maximum. The most controllable
query, with potentially the fastest running time, is the persistence
below query because it can limit the traversal needed to compute
the result. We use three simplification thresholds, 0.1%, 1%, and
10% of the function range, by gleaning the persistence curve of each
dataset (Fig. 11).

We explore the effects of the simplification threshold on the query
locality (Table 4). At the threshold 0.1%, the queries visit between
1 and 910 regions. As the threshold increases to 1% and 10%,
more regions get traversed in most datasets because the algorithm
needs to visit larger portions of the components to determine if
their persistence is below the threshold. This reduction in traversal
directly translates into run-time improvements, and even at a large
10% simplification threshold, the queries are two to three times faster
than persistence queries.

128

Table 4: The proportion of queries visiting single region as the sim-
plification threshold increases. Ranges denote the minimum and
maximum number of visited regions at the given threshold. Region
size 64°. The JICF Q dataset contains a low persistence compo-
nent spanning a large portion of the domain, and its query visits 910
regions out of 6,732.

Dataset 0.1% 1% 10%
Fuel 1.000 [1,1] 1.000 [1,1] 1.000 [1,1]
Foot 0.997 [1,6] 0.984 [1,6] 0.938 [1,6]
Cosmology 0.950 [1,5] 0.949 [1,7] 0.948 [1,7]
Duct 0.914 [1,8] 0.878 [1,9] 0.874 [1,67]
HCCI 0.935[1,18] 0.932[1,37] 0.932[1,111]
JICFQ 0.897 [1,910] 0.894[1,910] 0.893 [1,910]

6.5 Comparison of Queries Accelerated by Triplet
Merge Tree and Merge Forest

How do these queries compare to those of a triplet merge tree? A
triplet merge tree can answer all presented queries in constant time,
and in our implementation that amounts to two memory accesses for
the triplet query (one for the maximum to get the merge saddle index,
and one for the merge saddle to obtain the representative index).

We compute the aggregate times to answer the Triplet, Persistence,
and PersistenceBelow queries for all maxima in each dataset. Even
though the Persistence and PersistenceBelow queries take the same
time for triplet merge trees, they differ for the merge forest due
to early traversal termination. All queries use the internal query
optimization.

In contrast to previous measurements of individual query times,
all comparison results with triplet merge tree are produced by timing
all queries at once because timing individual query skews the results
by penalizing the fast queries; the faster the query, the larger the
proportion of its time taken by computing the two timestamps to
calculate its running time. This penalty can change the time by an
order of magnitude for the triplet merge tree queries.

6.5.1

We look at the aggregate of all query running times for different
region sizes. The tests report significant slowdown compared to the
triplet merge tree (Table 5), even with the internal query optimization.
The need to recover the representative of a triplet often results in a
traversal of almost the whole forest, e.g., 76% of the maxima in the

Triplet Query

Authorized licensed use limited to: The University of Utah. Downloaded on July 28,2022 at 00:42:23 UTC from IEEE Xplore. Restrictions apply.

Table 5: Serial execution times for running the Triplet query on each
maximum in the dataset, region size 64, with internal query optimiza-
tion. Clearly, using the triplet query on the merge forest to build a
triplet merge tree is inefficient, and we observe quadratic scaling with
respect to the topological complexity.

Dataset Triplet merge tree (s) Merge forest (s)
Fuel 0.0000 0.0000
Foot 0.0074 3,613.8402
Cosmology 0.0293 66,171.5902
Duct 0.0018 145.7138
HCCI 0.0006 12.7924
JICF Q 0.0107 6,677.2230

Cosmology dataset has the global maximum as their representative
and merge saddle in the data background.

In the comparison with the global triplet merge tree, we observe
that if all maxima need to be queried, building the triplets directly
from the merge forest graph may be beneficial. However, this perfor-
mance is expected when a global analysis is needed. Querying the
triplet of each maximum is an inefficient approach to building the
triplet merge tree. After all, a triplet merge tree can be constructed in
O(nlogn) (n is number of edges in the domain) time [21] while the
forest is performing O(|F|*log|F|) operations. When the number of
queries is much smaller than the input size, the scalable construction
of the forest may absorb the less efficient triplet queries. We would
construct triplet merge tree from the merge forest graph directly if a
large number of global queries is going to be executed.

6.5.2 Persistence and Persistence Below Queries

As we did for the triplet query, we look at the aggregate running
times. The early termination and high proportion of internal queries
result in a much better performance compared to the triplet query (Ta-
ble 6). We observe a slowdown ranging from 1.4x (Fuel) to 39x
(Cosmology) in serial. The query algorithms share no mutable
state, and thus we can execute queries simultaneously in parallel.
Unfortunately, the scalability is limited by the slowest query, such
as the global maximum query taking 0.71 s, whereas running all
queries takes 0.79 s (Cosmology dataset). Moreover, the running
time of the global maximum and the next slowest query differs by
one to two orders of magnitude, and introducing a special handling
of this case may be worthwhile after all. Further improvement would
require parallel query algorithm, increasing the complexity of the
implementation.

Even though it may seem that the persistence query builds a
branch decomposition behind the scenes by finding persistence pairs
for all maxima, thinking so is misleading because additional work
would be needed to construct a map from a merge saddle to a branch
containing it. One approach could be to collect all vertices dequeued
from the priority queue during the query in a hash table.

Finally, we show aggregate results at various simplification thresh-
olds, because noise is mostly local (Table 4). The performance gap
narrowed, making forest a suitable data structure for noise elimi-
nation. At the simplification level 0.1% of the function range, the
queries accelerated by the triplet merge tree are about ten times
faster than those of the merge forest (Table 7). Increasing the simpli-
fication to 1% and 10% widens the gap due to more global queries.
Moreover, compared to presimplification [15], which takes 1.39 s to
perform 10% simplification of the Foot dataset, a merge forest has a
construction time of 0.29 s and a simplified components query time
of 0.03 s, for a total of 0.32 s analysis time.

129

Table 6: Serial and parallel execution times for running the Persistence
query for all maxima, region size 64°. The overall scalability is limited
by the slowest query for global maximum that traverses the whole
forest (the numbers in parentheses). The serial query times of Foot
and HCCI datasets are comparable with those of serial merge tree
construction from the merge forest graph, but without building a global
structure [13].

Dataset Triplet merge tree (s) Merge forest (s)
1 core 16 cores 1 core 16 cores

Fuel 0.0000 0.0000 0.0000 0.0003 (0.00)
Foot 0.0087 0.0026 0.3079 0.1485 (0.14)
Cosmology 0.0368 0.0081 1.4201 0.7925 (0.71)
Duct 0.0033 0.0007 0.0792 0.0423 (0.04)
HCCI 0.0011 0.0003 0.0313 0.0239 (0.02)
JICF Q 0.0313 0.0066 0.6124 0.3650 (0.32)

Table 7: Serial execution times for running the PersistenceBelow
query on each maximum in the dataset, region size 643. With an
increasing simplification threshold, fewer queries are internal, and the
gap between a triplet merge tree and a merge forest widens. The
Cosmology and HCCI datasets have similar running times regardless
of the threshold because the large portion of pairs is simplified already
at 0.1% threshold.

Dataset Triplet merge tree (s) Merge forest (s)
01% 1% 10% 01% 1% 10%
Fuel 0.00 0.00 0.00 0.00 0.00 0.00
Foot 0.01 0.01 0.01 0.01 0.03 0.12
Cosmology 0.04 0.04 0.04 077 067 0.72
Duct 0.00 0.00 0.00 0.01 0.02 0.04
HCCI 0.00 0.00 0.00 0.01 0.01 0.01
JICFQ 0.02 0.02 0.02 023 026 026

7 LIMITATIONS

The data values are symbolically perturbed by their local index and
then by the region index to guarantee no two critical vertices have
the same function value. Unfortunately, this perturbation scheme
depends on the region size parameter, and thus may produce dif-
ferent results as this parameter changes. For example, the tested
datasets (Table 1) have all triplets identical between region sizes 327
and 64 with the exception of the Foot dataset, where about half of
the triplets are mismatched. This dataset has 8-bit data values, and
thus many vertices have the same value, and their order is affected by
the changing perturbation scheme. The alternatives are to preprocess
datasets to remove equal values at the cost of changing the analysis
output, e.g., the persistence, to transform local and region indices
into a global index space that imposes run-time cost, or to specify an
offset array to break the ties at the cost of extra memory overhead.

The proposed query algorithms do not cache any intermediate
results of the ComponentMax query calls, which enables us to run
multiple queries in parallel, at the cost of duplicated work. In
essence, building a cache amounts to a lazy construction of a global
data structure, and it may be a better choice to use one of the available
algorithms to build this data structure directly from the merge forest.
Finally, a cached entry per merge forest graph vertex may be of a
size equal to the number of regions in the domain decomposition. In
contrast to a merge tree with one-to-one mapping between an arc
and a component, a component can have multiple corresponding
arcs in a merge forest, which requires the cache to contain not only
the query result but also the list of arcs to traverse next (Fig. 12).

Authorized licensed use limited to: The University of Utah. Downloaded on July 28,2022 at 00:42:23 UTC from IEEE Xplore. Restrictions apply.

(a) ComponentMaxCached(u = 6, h = 6) = 8. (b) ComponentMaxCached(u = 3, h = 3) = 8.

Figure 12: Caching the result of the ComponentMax query is insuf-
ficient for a merge forest because several ways may be available
to continue the traversal. For example, if we cache the result of
ComponentMaxCached(u = 6, h = 6) = 8, then the query Component-
MaxCached(u = 3, h = 3) would reach the cached value at vertex 6
and incorrectly return 8. For the cache to be correct, it must also store
two possible traversals toward the roots, from arc 3 and arc 5. Then,
the second call to the query would start traversing from arc 5 and
reach the correct maximum 9. Moreover, the cache would need to
store the list of children already visited to avoid repeated traversal.

8 CONCLUSION

‘We presented topological queries that depend on the persistence of
superlevel-set components, and described generic algorithms for
answering these queries. These algorithms can be accelerated by a
variety of data structures, such as a merge tree, a triplet merge tree,
or a merge forest. After the study of the locality of these queries,
we compared the performance impact on the query time between
the triplet merge tree and the merge forest. The conclusion from the
analysis results is that many datasets have mostly local noise, and
this noise can be removed by localized and scalable techniques. The
competitive performance of the Persistence query to the triplet merge
tree is surprising because we never precompute a global structure to
accelerate this query. The significantly worse locality of the Triplet
query suggests that relevance is largely global, and thus a global
data structure is more suitable than the merge forest. However, in
many analysis use cases only a subset of the triplet queries is of
interest, which may be local. For example, querying triplets of
maxima above analysis threshold in the JICF Q dataset takes 76 s
compared to the 6,677 s when computing a triplet for all maxima.
Therefore, we are working on creating a benchmark set consisting of
reproduced analysis use cases and also synthetic datasets to improve
evaluations of topological structures. Finally, we are investigating
the locality implications of persistence simplification for the Morse-
Smale complex.

ACKNOWLEDGMENTS

The authors wish to thank reviewers and Christine Pickett. This
work was supported in part by NSF OAC awards 2127548, 1941085,
2138811 NSF CMMI awards 1629660, DoE award DE-FE0031880,
and the Intel Graphics and Visualization Institute of XeLLENCE,
and oneAPI Center of Excellence.

REFERENCES

[1] M. Atzori, R. Vinuesa, A. Lozano-Durén, and P. Schlatter. Characteri-
zation of turbulent coherent structures in square duct flow. Journal of
Physics: Conference Series, 1001:012008, Apr. 2018.

[2] G. Bansal, A. Mascarenhas, and J. H. Chen. Direct numerical simula-
tions of autoignition in stratified dimethyl-ether (DME)/air turbulent
mixtures. Combustion and Flame, 162(3):688-702, 2015.

[3] P-T. Bremer, A. Gruber, J. C. Bennett, A. Gyulassy, H. Kolla, J. H.
Chen, and R. W. Grout. Identifying turbulent structures through topo-
logical segmentation. Commun. Appl. Math. Comput. Sci., 11(1):37-53,
2016.

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

H. Carr, T. Moller, and J. Snoeyink. Artifacts caused by simplicial sub-
division. IEEE Transactions on Visualization and Computer Graphics,
12(2):231-242, Mar. 2006.

H. Carr, J. Snoeyink, and U. Axen. Computing contour trees in all
dimensions. Computational Geometry, 24(2):75-94, 2003. Special
Issue on the Fourth CGC Workshop on Computational Geometry.

H. A. Carr, O. Riibel, G. H. Weber, and J. P. Ahrens. Optimization and
augmentation for data parallel contour trees. /EEE Transactions on
Visualization and Computer Graphics, pp. 1-1, 2021.

H. Edelsbrunner, D. Letscher, and A. Zomorodian. Topological per-
sistence and simplification. Discrete & Computational Geometry,
28(4):511-533, Nov. 2002.

H. Edelsbrunner and E. P. Miicke. Simulation of simplicity: A tech-
nique to cope with degenerate cases in geometric algorithms. ACM
Trans. Graph., 9(1):66-104, Jan. 1990.

R. W. Grout, A. Gruber, H. Kolla, P.--T. Bremer, J. C. Bennett, A. Gyu-
lassy, and J. H. Chen. A direct numerical simulation study of turbulence
and flame structure in transverse jets analysed in jet-trajectory based
coordinates. Journal of Fluid Mechanics, 706:351—383, July 2012.
C. Gueunet, P. Fortin, J. Jomier, and J. Tierny. Task-based augmented
merge trees with Fibonacci heaps. In 2017 IEEE 7th Symposium on
Large Data Analysis and Visualization (LDAV), pp. 6-15, Oct. 2017.
A. Gyulassy, V. Pascucci, T. Peterka, and R. Ross. The parallel compu-
tation of Morse-Smale complexes. In 2012 IEEE 26th International
Parallel and Distributed Processing Symposium, pp. 484-495, 2012.
X. Huang, P. Klacansky, S. Petruzza, A. Gyulassy, P.-T. Bremer, and
V. Pascucci. Distributed merge forest: a new fast and scalable approach
for topological analysis at scale. In ICS '21: 2021 International
Conference on Supercomputing, Virtual Event, USA, June 14-17, 2021,
pp. 367-377,2021.

P. Klacansky, A. Gyulassy, P.-T. Bremer, and V. Pascucci. Toward local-
ized topological data structures: Querying the forest for the tree. IEEE
Transactions on Visualization and Computer Graphics, 26(1):173-183,
Jan. 2020.

A. G. Landge, V. Pascucci, A. Gyulassy, J. C. Bennett, H. Kolla,
J. Chen, and P.-T. Bremer. In-situ feature extraction of large scale
combustion simulations using segmented merge trees. In Proceedings
of the International Conference for High Performance Computing,
Networking, Storage and Analysis, SC *14, pp. 1020-1031. IEEE Press,
Piscataway, NJ, USA, 2014.

J. Lukasczyk, C. Garth, R. Maciejewski, and J. Tierny. Localized
topological simplification of scalar data. /EEE Transactions on Visual-
ization and Computer Graphics, 27(2):572-582, 2021.

Z. Lukic. Nyx cosmological simulation data, 2019.

A. Mascarenhas, R. W. Grout, C. S. Yoo, and J. H. Chen. Tracking
flame base movement and interaction with ignition kernels using topo-
logical methods. Journal of Physics: Conference Series, 180:012086,
July 2009.

D. Morozov and G. H. Weber. Distributed merge trees. In Proceedings
of the 18th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, PPoPP *13, pp. 93-102. ACM, New York, NY,
USA, 2013.

A. Nigmetov and D. Morozov. Local-global merge tree computation
with local exchanges. In Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis,
SC’19. Association for Computing Machinery, New York, NY, USA,
2019.

V. Pascucci, K. Cole-McLaughlin, and G. Scorzelli. The TOPORRERY:
computation and presentation of multi-resolution topology, pp. 19-40.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2009.

D. Smirnov and D. Morozov. Triplet merge trees. In H. Carr, I. Fu-
jishiro, F. Sadlo, and S. Takahashi, eds., Topological Methods in Data
Analysis and Visualization V, pp. 19-36. Springer International Pub-
lishing, Cham, 2020.

K. Werner and C. Garth. Unordered task-parallel augmented merge
tree construction. /EEE Transactions on Visualization and Computer
Graphics, 27(8):3585-3596, Aug. 2021.

Authorized licensed use limited to: The University of Utah. Downloaded on July 28,2022 at 00:42:23 UTC from IEEE Xplore. Restrictions apply.

