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ABSTRACT
Container-based network emulation provides an accurate, flexi-
ble, and cost-effective application design and evaluation testing
environment. Enabling virtual time to processes running inside
containers essentially improves the temporal fidelity of emulation
experiments. However, the lack of precise time management during
operations, such as disk I/O, network I/O, and GPU computation,
often leads to virtual time advancement errors observed in existing
virtual time systems. This paper proposes VT-IO, a lightweight
virtual time system that integrates precise I/O time for container-
based network emulation. We model and analyze the temporal error
during I/O operations and develop a barrier-based time compensa-
tion mechanism in the Linux kernel. VT-IO enables accurate virtual
time advancement with precise I/O time measurement and compen-
sation. The experimental results show that the temporal error can
be reduced from 87.31% to 3.6% and VT-IO only introduces around
2% overhead of the total execution time. Finally, we demonstrate
VT-IO’s usability and temporal fidelity improvement with a case
study of a Bitcoin mining application.

CCS CONCEPTS
• Computing methodologies → Modeling and simulation; •
Networks → Network performance evaluation; • Computer sys-
tems organization → Parallel architectures.
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1 INTRODUCTION
The networking industry is evolving day by day. Rapid innovation
highly relies on the successful transformation from early-stage re-
search ideas to real-world applications. A high-fidelity and flexible
testing environment is often an essential tool to realize such trans-
formation. Network simulation testbeds, on the one hand, provide
good flexibility and scalability but raise a concern about fidelity due
to model simplification and abstraction. Physical testbeds, on the
other hand, allow real-time and high-fidelity experiments on real
devices, but the scale is limited as it is often too expensive or even
infeasible to build the physical testbed. To balance the scalability
and fidelity, researchers also explore the container-based network
emulation testbed, which constructs tens or hundreds of containers
on a single physical machine. Each container represents a virtual
node (e.g., end-host, router, switch, or middlebox) and allows un-
modified code execution in the container to preserve fidelity.

Network emulators provide rapid prototyping of network appli-
cations by leveraging virtualization techniques, such as Xen [7],
OpenVZ [1], and Linux Containers (LXC) [16]. While executing
binaries instead of abstract models ensures functional fidelity, a
network emulator may still face temporal inaccuracy. It is because
containers are multiplexed on a single physical machine, and each
container uses the same system clock of the underlying machine.
Additionally, the execution time and order of the containers are
non-deterministic during an experiment as the scheduling is con-
trolled by the host machine’s operating system. Therefore, each
container’s perception of time reflects the serialization of execution
on the host machine, but not the execution of their tasks.

To address the temporal fidelity issue, people develop virtual
time systems for virtual machines (VM) and containers used in a
network emulation experiment [5, 7, 12, 13, 15, 17, 25, 27, 29]. Each
virtual node has an independent virtual clock that only advances
when the node is in the execution or waiting state. Unchained from
the system clock, the nodes can perceive their own virtual time
as running independently and concurrently on different physical
machines. TimeKeeper is a container-based virtual time system
that follows the aforementioned principle [17]. Each container has
an independent virtual clock and enables processes that run inside
it a notion of virtual time. It circumvents the scheduling of the
host machine’s operating system and provides a synchronization
mechanism to control each container’s execution order and dura-
tion. Therefore, each container’s clock can advance at the same rate.
TimeKeeper ensures that the perceived virtual time only advances
during the process execution on the CPU. However, the elapsed
time on processes should consist of the time elapsed during the
execution burst on the CPU as well as the time waiting for non-CPU
extensive tasks to complete (such as disk I/O, network I/O, and GPU
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computation). For simplicity, we use the term I/O to refer to the
tasks not running on CPU, including disk I/O, network I/O, and
GPU tasks in this paper. The absence of precise control of I/O time
leads to errors in virtual time advancement.

We first empirically demonstrate the limitations of the existing
virtual time systems (e.g., TimeKeeper) during I/O operations. We
then analyze the root cause by mathematically modeling the tempo-
ral error, and the analytical results matchwell with the experimental
results. To tackle this issue, we design and implement a virtual time
system, named VT-IO, that integrates precise time measurement
when a container yields the processor for I/O jobs to complete.
VT-IO controls containers’ execution and time synchronization on
both CPU and I/O activities. With a minimal modification to the
Linux kernel, VT-IO enables tracking of each process’s I/O states.
At the beginning of each cycle, VT-IO checks if an unattended I/O
exists and compensates the time elapsed during this I/O operation
to the virtual clock of the process. We evaluate the performance of
VT-IO in terms of accuracy during I/O operations, synchronization
overhead, and system scalability. We compare the results with mea-
surements from a physical testbed, TimeKeeper and VT-IO. The
temporal behaviors match the physical testbed measurements for
disk I/O, network I/O and GPU experiments conducted on VT-IO.
VT-IO significantly reduces the error of I/O time measurement to
3.6%, while the error is up to 87.31% in TimeKeeper. VT-IO is a
lightweight modification of Linux Kernel and introduces limited
synchronization overhead similar to TimeKeeper. For instance, the
synchronization overhead of 512 containers on 8 CPUs is less than
0.32 ms per cycle which is around 0.33% of the overall execution
time. The execution time of the same experiment linearly decreases
as the number of containers grows. Meanwhile, VT-IO maintains
a stable and high precision of I/O time even with a large number
of containers. For instance, VT-IO yields a mean absolute error of
around 6 ms regardless of the number of CPUs and containers. Fi-
nally, we present a case study of a blockchain application that runs
intensive GPU tasks and demonstrate the usability and temporal
fidelity improvement of VT-IO.

The remainder of the paper is organized as follows. Section 2
models and analyzes the temporal error of a virtual time system
during I/O operations. Section 3 describes the architecture of VT-IO,
a virtual time system that integrates precise I/O time management.
Section 4 illustrates the implementation details of VT-IO, including
synchronization and I/O time compensation. Section 5 evaluates VT-
IO in terms of accuracy, synchronization overhead, and scalability.
Section 6 demonstrates the usability of VT-IO through a blockchain
emulation application. Section 7 presents the related works. Section
8 concludes the paper with future work.

2 ERROR ANALYSIS OF VIRTUAL TIME
SYSTEM WITH I/O INTENSIVE TASKS

Existing works of virtual time systems in network emulation fall
into the following two categories: 1) timer-based approaches [7, 12,
13, 15, 17, 25, 27, 29] that rely on the operating system’s clock to con-
trol the execution of emulated processes and 2) instruction-count
based approaches [5, 6] that map the advancement of virtual time
to the number of assembly instructions executed by emulated pro-
cesses. Both designs enable each Linux container and the emulation

Figure 1: Virtual time advancement for CPU intensive pro-
cesses

Figure 2: Virtual time advancement with I/O operations in
Timekeeper. In this example, I/O time is 5 seconds and thus
LXC #1 should advance its virtual time for 5 seconds instead
of 3 seconds (tdf = 1), i.e., no integration of I/O time in Time-
Keeper causes a temporal error of 2 seconds.

processes to advance their clocks independently from the system
clock during the execution. This section explores the limitations of
the existing virtual time systems during intensive I/O operations. In
particular, the virtual time is not correctly computed when a Linux
container is waiting for non-CPU-intensive jobs to complete, such
as disk I/O, network I/O, or GPU computation. We use TimeKeeper
[17] as a demonstrative case since many recent works [5, 15, 26, 27],
including this work, are inspired by the design of TimeKeeper. We
mathematically model the temporal error caused by I/O operations
to illustrate the necessity of integrating precise I/O time control
into the virtual time system.

2.1 Virtual Time Advancement in TimeKeeper
TimeKeeper is a lightweight virtual time system for Linux container
(LXC) [16] based network emulation. While full virtualization (e.g.,
VMWare [23], VirtualBox [24]) and paravirtualization (e.g., Xen [7])
require a separate kernel for each virtual machine instance, LXC
takes a lightweight approach by allowing multiple Linux instances
running on a shared kernel. TimeKeeper assigns an individual
virtual clock to an LXC. The same virtual clock is shared by all the
processes and their child processes inside the LXC. Each virtual
clock is associated with a time dilation factor (TDF) [14], which
is defined as the ratio between the rate at which wall-clock time
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has passed to the emulated host’s perception of time. For instance,
a TDF of 2 means that processes in a time-dilated LXC perceive
the time advancement as one second for every two seconds of
wall-clock time. In other words, time is passed two times slower in
the LXC than in the real world. A TDF of 0.5, on the other hand,
indicates that the virtual time in the container advances two times
faster than the real-time.

TimeKeeper proposed a barrier-based conservative synchroniza-
tion mechanism [20] to synchronize the virtual time among the
containers. The advancement of an emulation experiment is divided
into many small execution cycles. Containers with different TDFs
get their proportional execution time in wall-clock time, while the
virtual clock of each container advances the same amount during
each cycle. In other words, TimeKeeper uses a barrier to control the
virtual time of each container to advance at the same rate. Contain-
ers are executed cycle by cycle, and their virtual time is adjusted
and synchronized at the barrier between the cycles. Each container
is assigned to a specific execution time when a cycle starts. TDF
and quanta determine the execution time. Quanta is a user-defined
parameter denoting the time granularity of one cycle. Theoreti-
cally, a smaller quanta offer better temporal accuracy despite the
additional overhead due to frequent synchronizations.

TimeKeeper enables the parallel execution of containers with
multiple CPUs. At the beginning of synchronization, each container
is designated to a CPU with a high priority, which guarantees that
the container is executed on the specific CPU and will not get
preempted by another process. Multiple containers can be assigned
to one CPU. For example, Figure 1 illustrates how two containers
with different TDFs are scheduled on one CPU and how their virtual
time is synchronized. LXC #1 has a TDF of 1, so its virtual clock
advances at the same speed as the wall-clock. The TDF of LXC #2
is 0.5, which means its clock advances two times faster than the
wall-clock. LXC #1 and LXC #2 are scheduled to be executed on the
CPU in turns. In each cycle, the execution time of LXC #1 is twice
longer than the one of LXC #2, so both virtual clocks can advance
at the same rate.

2.2 Demonstration of TimeKeeper Imprecision
with I/O Intensive Tasks

TimeKeeper and other timer-based virtual time systems [5, 15, 26,
27] well manage the virtual time advancement during CPU burst
cycles. However, the virtual time imprecision occurs when the CPU
waits for I/O operations (e.g., disk or network) or GPU computation
to complete. Figure 2 demonstrates how a temporal error is formed
in a container (LXC #1) after the execution of an I/O operation. We
simplify the scenario by setting the TDF of both containers to 1.
LXC #1 initiates an I/O operation at 3 in virtual time (i.e., at 5 in
wall-clock time). The I/O operation takes 5 seconds to complete
at 10 in wall clock time, while LXC #1 finishes the third cycle.
However, the elapsed virtual time in LXC #1’s perception is only 3
seconds instead of 5 seconds. Therefore, this I/O appears to have
finished at 6 in virtual time. The 2-second temporal error in LXC #1
is due to the lack of control of virtual time during I/O operations
in TimeKeeper. The I/O operations continue their execution even
if the corresponding container is paused for synchronization. The
container cannot observe the elapsed time for the ongoing I/O once

Figure 3: Demonstration of temporal error: Measurement of
the GPU task completion time in TimeKeeper

it is paused. As shown in Figure 2, from time 6 to 8, it is LXC#2’s
turn to be executed on CPU while LXC#1 is paused. As a result,
LXC#1’s clock does not advance during 2 seconds while the I/O
operation is executing. The missing I/O time is the temporal error
we need to address in this paper. If we set up more containers to
share the CPU in the experiment, we will have a larger temporal
error with an even lesser I/O time for LXC#1.

We empirically demonstrate the timing imprecision and show the
experimental result in Figure 3. Only one container conducts non-
CPU tasks in the experiment, while the others run CPU-intensive
applications. For demonstration purposes, the non-CPU task in this
experiment is matrix addition operations on GPU. The other types
of tasks, such as disk I/O and network I/O, are discussed in Section 5.
Figure 3 depicts the I/O completion time by varying the number of
containers. Task completion time is the virtual time elapsed during
an I/O operation. The dashed red line is the measurement on a
physical testbed as the ground truth. The difference between the
two lines is the temporal error. The error increases as the number
of containers grow. We discovered an interesting pattern that the
completion time drops when the number of containers increases by
four. In fact, four is also the number of CPUs used in the experiment.
The following section mathematically models the error to explain
the observed pattern.

2.3 Error Modeling
Suppose there are n containers denoted as li , where 0 < i ≤ n, in
an emulation experiment running on a machine withm available
CPUs denoted as c j , where 0 < j ≤ m. Containers are scheduled
on the CPUs in a round-robin fashion. Multiple containers can be
assigned to the same CPU if n > m. Each container li is associ-
ated with a time dilated factor (TDF), td fi . The container with the
largest TDF is called the leader, and its TDF is denoted as td f ′.
TimeKeeper uses conservative synchronization to keep all the con-
tainers’ virtual time advancing at the same pace. At the beginning
of each execution cycle, the system calculates the execution time in
wall-clock, δi , for each container li based on td fi and a quanta ϵ .
Quanta is a predefined constant representing the granularity of time
synchronization in emulation. δi is calculated with the following
equation.

δi =
ϵ × td fi
td f ′

(1)
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Figure 4: Measurement of disk write operation completion
time in TimeKeeper. n is the number of containers.m is the
number of CPUs. ∆t is measurement of time elapsed during
write operation in wall clock. TDF of all containers in this
scenario is 1.

Equation 1 ensures the containers’ virtual clocks are synchronized
at each cycle. The execution time, α j , of all containers assigned to
each c j in one cycle is calculated as follows.

α j =
∑

∀i ∈F (c j )
δi (2)

The total wall-clock time elapsed in one cycle is

T = max {α j |0 < j ≤ m} + µ (3)

where µ is the synchronization overhead time between cycles.
Assume a container li initiates a request for an I/O operation, and

the time to complete the I/O is ∆t in wall-clock time. Equivalently, it
takes ∆t/td fi for li to complete the task in virtual time. If ∆t/td fi
is small enough for the I/O to complete within δi , the resulting
virtual time is accurate, and otherwise, the error occurs. Because li
is still waiting for I/O even though li is paused for synchronization
(i.e., the virtual clock of li is frozen). The I/O operation time can be
modeled as follows.

t =
ϵ × ∆t

td f ′ ×T
(4)

Given a constant and unified TDF, we can further simplify Equation
4 and deduce the following relation to explain the observation in
Figure 3.

t ∝
∆t

⌈n/m⌉
(5)

To further validate Equation 5, we conducted another experiment
in TimeKeeper running on two CPUs. TDFs are set to 1 for all
containers. One container initiates a disk I/O while the others run
a CPU-intensive application. Figure 4 depicts the elapsed virtual
time during the disk write operation, and the result well matches
the relation shown in Equation 5.

2.4 I/O Temporal Error Mitigation
Containers are executed in cycles for virtual time synchronization.
T is the total execution time in each cycle (see Equation 3). Each
container is executed on a CPU for δi time (see Equation 1). δi is
usually less than T since multiple containers share the CPU. There-
fore, the containers are paused forT −δi in each cycle, during which

the containers yield their CPU, and the virtual clock is stopped.
However, if an I/O operation cannot complete in δi , the remaining
I/O time will not be counted while the virtual clock is stopped.
As a result, the recorded I/O time seen by the container is shorter
than the actual time. Such error in each cycle is upper bounded by
(T − δi )/td fi and the error accumulates over cycles. For instance,
if an I/O takes k cycles to finish, the total error is k × (T − δi )/td fi .
Since k ≃ ∆t/T , the total error is modeled as follows.

E ≃
∆t

T
× (T − δi ) (6)

To mitigate the temporal error during I/O, we design a new
module called I/O Time Compensator. The compensator checks
each container’s state at the end of its execution cycle. If an ongoing
I/O operation is detected, an active I/O flag is set for the container.
At the beginning of the next execution cycle, the compensator
calculates the I/O time and adds it back to the virtual clock of the
container whose active I/O flag is true. How to precisely calculate
and compensate I/O time is discussed in detail in Section 3.3 and
Section 4.1.

Synchronization Controller is designed to synchronize virtual
time among the containers (see Section 3.2 for details). In particular,
it determines the execution time of each container and the execu-
tion order at the beginning of each cycle. The execution time is
defined in Equation 1. However, once the I/O time compensator is
triggered, certain containers’ virtual clocks may be ahead of the oth-
ers, affecting the system’s temporal fidelity and emulation causality.
Therefore, we propose an adaptive scheduler doing dynamic exe-
cution time calculations to synchronize the virtual time gradually.
The details of the scheduler are described in Section 4.2.

Figure 5: Architecture design of VT-IO
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3 ARCHITECTURE
We design a virtual time system named VT-IO that integrates pre-
cise time measurement when a container yields the processor and
waits for jobs such as disk I/O, network I/O, or GPU computation
to complete. VT-IO has two layers: 1) Container-based Middleware
that offers each container a perception of virtual time, and 2) Virtual
Time Coordinator that controls the execution and time synchro-
nization of containers on CPU and I/O activities. The architecture
design of VT-IO is illustrated in Figure 5.

3.1 Container-based Middleware
The container-based middleware consists of lightweight Linux con-
tainers and a unified virtual time interface. A container in VT-IO
is a predefined template that offers an OS-level virtualization envi-
ronment and encapsulates virtual-time-related variables, such as
TDF and execution time, for processes running inside the container.
New containers instances are initiated when a network emulation
experiment starts, and each container emulates an individual phys-
ical host. Each container maintains its own virtual clock, and time
dilates the processes and their child processes running inside the
container. No application code modification is necessary to enable
virtual time for the processes.

The virtual time interface intercepts and handles the time-related
functions, such as gettimeofday and nanosleep. If a process inside
a container invokes a time-related system call, the default system
call is circumvented, and the call is redirected to a modified function
whose return value is based on the container’s virtual clock.

The middleware and virtual time interface collaboratively offer
the emulation processes a notion of virtual time. Their implemen-
tation details are discussed in Section 4.

3.2 Virtual Time Coordinator with I/O Time
Compensator

It’s challenging to keep all the containers advancing the virtual
time with the same amount each cycle. By default, the operating
system schedules the execution of each process. The order and
the execution time are both non-deterministic. It is impossible to
distribute the CPU time among all the containers evenly. Therefore,
the processes running in the container have to face temporal fidelity
issues, especially when the resources (e.g., available CPUs, network
bandwidth) on the physical machine are insufficient to support a
large number of containers [27].

To address this problem, researchers have explored the virtual
machine scheduling mechanism [25, 29], based on which existing
works have proposed various designs for Xen [12–14] and Linux
Container [5, 17, 29]. In this work, we design the Virtual Time
Coordinator to handle the synchronization of containers for CPU
execution and I/O operation. Virtual Time Coordinator contains
two barrier-based modules: Synchronization Controller and Time
Compensator, as shown in Figure 5.

Synchronization Controller is invoked at the beginning of
each execution cycle. The controller interacts with the virtual time
interface to extract the current state of each container and calculates
the expected running time of each container in the next cycle. The
controller then assigns each container to a designated CPU and

chart.png

Figure 6:Workflow of I/O time compensator in an execution
cycle

schedules the execution of processes inside the container in a round-
robin style. A hill-climbing algorithm is used for scheduling. For
each container, the scheduling algorithm selects a CPU core that
has minimal workload at the moment and assigns the container
to it. It yields an overhead bounded by O(m × n), wherem is the
number of designated CPU cores and n is the number of containers.
While exploring an efficient scheduling algorithm for emulation
containers is not a focus of this work, it is worth mentioning that
the current scheduling algorithm is fast but may not always yield
the optimal solution. One approach is to use a fine-tuned scheduling
algorithm [28], but it inevitably introduces more overhead due to
the increasing time and space complexity of the algorithm. We
will leave the design and analysis of efficient container scheduling
algorithms as future works.

Time Compensator is invoked at the end of each execution
cycle to compensate for the missing virtual time during I/O opera-
tions. The I/O operations keep running even though the associated
container yields the CPU. The virtual time is stopped at the end
of its execution, but the container may not complete the I/O task
by the end of the container’s assigned execution time. Temporal
errors arise as the remaining I/O time should have been included.

Figure 6 shows the workflow of the Time Compensator to handle
the above issue. Two loops are presented in Figure 6. The left loop
describes the workflow when an LXC is not blocked for I/O at the
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end of a cycle. The right loop describes how Time Compensator
updates the virtual clock of a container with an uncompleted I/O as
well as collaborates with the Synchronization Controller to adjust
the scheduling for the next cycle since the virtual clock of the
updated container may be ahead of the other containers due to the
compensation.

Figure 7 demonstrates an example of how the Time Compensator
adjusts the container’s virtual clock to include the I/O time. There
are three containers, all with a TDF of 1 in the scenario. LXC #1
initiates an I/O operation at time 1, which is the beginning of the
second cycle. This operation takes 3 units in wall-clock time to
finish. At time 2, LXC #1 finishes its execution time for the second
cycle, but the I/O is not yet completed. Therefore, LXC #1 is blocked.
The compensator detects this blocking state and sets a flag and a
timestamp t1 to LXC#1 (i.e., 4 in wall-clock time). After that, the I/O
operation continues while LXC#2 and LXC#3 run for their second
cycle. The I/O completes at the end of the second cycle t2 (i.e., 6
in wall-clock time). Before the third cycle starts, the compensator
checks the flag of containers and update LXC#1 ’s virtual clock by
adding (t2 − t1)/td f1, i.e., (6-4)/1 = 2. Therefore, the virtual time of
LXC#1 elapsed during the I/O operation is compensated. Since the
clock of LXC#1 is ahead of the other two containers, LXC#1 will
yield the execution cycles until the other containers catch up.

Figure 7: Virtual time advancement with I/O operations in
VT-IO

4 IMPLEMENTATION
We modify the Linux kernel to implement a virtual time system
called VT-IO based on the architecture design shown in Figure 5.
Container-based Middleware intercepts the timing-related system
calls in Linux to enable virtual time of the containers. Similar to the
existing container-based virtual systems [5, 17], we modify the data
structure task_struct, which is a process descriptor containing
every relevant information about a process [18]. We develop a
lightweight container with a virtual clock by adding 7 new fields
to the task_struct with 40 bytes in total.

• isVirtual : a boolean variable indicating whether a pro-
cess is a normal process using the system clock or a dilated
process using the virtual clock

• TDF: time dilation factor of a process
• virtualTime: the elapsed virtual time since the most recent
virtual clock update

• timeToUpdate: the corresponding wall clock time when the
virtual clock is updated most recently

• compensationFlag: a boolean variable indicating whether
a process is blocked for an ongoing I/O operation

• falseStart: the amount of virtual time that a process is
ahead of the expected time due to I/O compensation

• ioCompleteTime: the completion time of an I/O operation
in wall-clock time

Virtual Time Interface circumvents the default time-related sys-
tem calls and redirects them to our modified functions. The function
updateVirtualTime() in Algorithm 1 defines the virtual clock up-
date procedure. The function new_gettimeofday() is an example
of system hijacking that distinguishes the time-related system call
between normal and dilated processes.

We use signaling technology, such as SIGSTOP and SIGCONT,
and hrtimers [11], and a high-resolution timer provided by the
mainstream Linux kernel, to control the process execution in the
containers. Algorithm 2 illustrates the time compensation proce-
dure. The pause() and resume() functions describe how to pause
and resume a process on CPU and how to update its virtual clock.
Different from TimeKeeper [17], we define new fields and func-
tions to enable a container to track the state of its I/O operations
and update its virtual clock for those operations. We design a new
barrier to check the I/O state when a process is paused. Based on
the state, the field compensationFlag in the process descriptor
is also updated. When the process is ready to resume, we check
the compensationFlag to determine whether the I/O operation
overshoots the expected execution time. If so, we adjust the virtual
clock to compensate for the elapsed time during the I/O operation.

Algorithm 1: Virtual Time Interface
Function updateVirtualTime (struct task_struct p)

if p → isV irtual == 1 then
wallClockTime = now();
runninдTime = wallClockTime − p →

timeToUpdate;
dilatedRunninдTime = runninдTime/p → TDF ;
p → virtualTime += dilatedRunninдTime;
p → timeToUpdate =wallClockTime;

end
end
Function new_gettimeofday (struct timeval tv)

if current → isV irtual == 1 then
updateVirtualTime(current);
tv = ns_to_timeval(current → virtualTime);

else
дettimeof day(tv);

end
end
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4.1 Precise I/O Time Compensation
One straightforward approach to calculating the I/O time is based
on the I/O state of a process. We can calculate the total execution
time T in each cycle based on Equation 3 and the execution time
δi of each container based on Equation 1. Since the I/O error only
occurs when a container is paused, i.e., (T − δi )/td fi . Therefore, if
an ongoing I/O operation is detected at the beginning of each cycle,
the compensator can simply add (T − δi )/td fi to the container’s
virtual clock. However, since the I/O may finish during the pause,
this design leads to a statistical inaccuracy, bounded by (T−δi )/td fi .
This bound reflects the granularity of the virtual time system. It is
proportional to ϵ × n/m, where ϵ is the timescale, n is the number
of containers, andm is the number of CPUs.

Our analysis shows that an I/O operation may cross multiple
execution cycles, and the inaccuracy only occurs in the last cycle.
Based on this observation, we improve the precision of I/O time
compensation with the following design. For the cycles before the
last one, we compensate the I/O time in the aforementioned ap-
proach. In the last cycle, there are two scenarios. If the I/O finishes
within the container’s execution burst, no update is needed since
the virtual clock has already resumed. Otherwise, we track the I/O
completion time in the wall-clock time by modifying the system
calls, such as dio_bio_end_io (a block I/O completion handler).
The compensator now computes the exact I/O time elapsed in the
last cycle and adds the time to the container’s clock at the beginning
of the next cycle. The detailed implementation is illustrated in Al-
gorithm 2, and the evaluation results on VT-IO’s ability to precisely
control the virtual time during I/O are presented in Section 5.

4.2 Precise Virtual Time Synchronization
Applying the I/O time compensator may lead to the inconsistency of
virtual time between the containers with and without the compen-
sation mechanism. The processes that trigger an I/O time compen-
sation may have a ’false start’ in the next execution cycle because
their virtual clocks are ahead of the clocks of other CPU-intensive
processes. The inconsistency may lead to causality issues among
the events generated by the processes in different containers. To
fix this issue, we implement an execution time adapter that dynam-
ically adjusts the length of the execution time of each container
with a false start. At the beginning of each execution cycle, the
synchronization controller checks the virtual clock for each con-
tainer. If one is ahead of the others, the synchronization controller
adjusts the scheduling of the next cycle by reducing the execution
burst of the false-started container. Therefore, the virtual clock
of other processes can gradually catch up over cycles. As shown
in executionTimeAdapter() in Algorithm 2, the adapter dynami-
cally updates the execution time in each cycle. Once the adapter
finds a ’false start’ process, the process’s execution time is reduced
during the following cycles until falseStart reaches zero.

5 SYSTEM EVALUATION
We evaluate the performance of VT-IO in terms of accuracy during
I/O operations, synchronization overhead, and system scalability.
The experiments are conducted on a 64-bit Linux platform (Ubuntu
14.04 with a modified Linux Kernel). The machine has two 64-Core
processors, 1 TB RAM, a 12-TB hard disk drive with a sustained

Algorithm 2: Time Compensator
Function compensateIOTime (struct task_struct p)

if p → compensationFlaд == 1 then
// Compensation I/O time and reset flag

wallClockTime = now();
if p → ioCompleteTime > 0 then

IORunninдTime = p → ioCompleteTime − p →

timeToUpdate;
else

IORunninдTime = wallClockTime − p →

timeToUpdate;
end
compensationTime = IORunninдTime/p → TDF ;
p → compensationFlaд = 0;
p → ioCompleteTime = 0;
p → timeToUpdate = wallClockTime;

end
end
Function executionTimeAdapter (struct task_struct p)

// Execution time as it is defined in

Equation 1

execTime = QUANTA × (p → td f )/(leader → td f );
if p → f alseStart > 0 then

// Reduce the execution time to mitigate

the effect of false start

if p → f alseStart > execTime then
execTime = 0;
p → f alseStart −= execTime;

else
execTime −= p → f alseStart ;
p → f alseStart = 0;

end
end
return execTime;

end
Function resume (struct task_struct p)

if p → compensationFlaд == 1 then
compensateIOTime(p);

else
p → timeToUpdate = now();

end
// Start execution on CPU

kill(p, SIGCONT );
end
Function pause (struct task_struct p)

updateVirtualTime(p);
// Set flag if I/O not finished

if isBlockedForIO(p) then
compensationFlaд = 1;

end
kill(p, SIGSTOP);

end
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data transfer rate of 248 MB/s, and Nvidia Quadro P400 GPUs. Each
experiment is repeated at least 10 times.

5.1 I/O Temporal Accuracy
The ability to precisely advance the virtual clocks during I/O oper-
ations and GPU computation distinguishes VT-IO from the other
container-based virtual time system. We perform three experiments
with GPU tasks, network I/O, and disk I/O and compare the tem-
poral accuracy of VT-IO with TimeKeeper. We measure the virtual
time elapsed for each scenario: (a) time to perform 10,000 iterations
of matrix additions on GPU, (b) round-trip time of a UDP com-
munication with 1-second link delay, and (c) time to write 100MB
data to disk. In order to limit the influence of resource completion,
only one container conducts the I/O operations while the other
processes are running CPU-intensive applications like sysbench [4].
Thus, the wall clock time elapsed during the I/O remains the same
regardless of the number of the containers. We plot the physical
testbed measurements, which serve as the ground truth, as well as
the results of TimeKeeper and VT-IO in Figure 8 for all three sets
of experiments.

We observe in all three scenarios (GPU, network I/O, and disk
I/O), the virtual time in TimeKeper decays when the number of
containers increases bym, wherem is the number of cores. The
cause of such error is modeled and analyzed in Section 2.2 and 2.3.
On the other hand, VT-IO successfully maintains the correct virtual
time as the number of containers increases. The results are very
close to the physical testbed measurements, as shown in Figure 8.
Without the time compensation mechanism, the error of I/O can
be significant. For instance, in the experiment with 30 containers,
the error caused by a network I/O operation is up to 87.31% in
TimeKeeper compared with the physical testbed, while the error
is less than 3.6% in VT-IO. Note that the standard deviations of
measurement in Figure 8a and Figure 8b are ranged from 0.0012
seconds to 0.0028 seconds, which are hard to observe on the plots.

5.2 Scalability
To study the scalability of VT-IO, we first fix the number of CPUs
to 2, 8, and 16 and measure the execution time per cycle with vari-
ous numbers of containers. The results are plotted in Figure 9. We
observe that the execution time linearly increases as the number of
containers grows. The overhead introduced by VT-IO is minimal,
e.g., approximately 2% for 512 containers on 64 CPUs. We then fix
the number of containers to 64, 256, and 512 and measure the execu-
tion time per cycle with various numbers of CPUs. The results are
plotted in Figure 10.We observe that the parallel execution of con-
tainers is efficient since the execution time dramatically decreases
as the number of CPUs increases. The standard deviations in Figure
9 and Figure 10 are two orders of magnitude less than the mean
value and thus are hard to be observed on the plots.

VT-IO maintains a high and stable time precision even with
a large number of containers. We write 10M data to a disk and
measure the I/O time in TimeKeeper, VT-IO, as well as a physical
machine as the ground truth. We evaluate the virtual time systems
using Mean Absolute Error (MAE), defined as the time difference
between the virtual time system and the physical testbed. As shown
in Figure 11, VT-IO maintains a much lower MAE of 6 ms while

(a)

(b)

(c)

Figure 8:Measurement of virtual time elapsed during (a)ma-
trix additions on GPU, (b) round-trip time of socket commu-
nication, and (c) diskwrite on a physical testbed (i.e., ground-
truth measurement), Timekeeper and VT-IO

TimeKeeper introduces an error of up to 61.5 mswith 512 containers
on 4 CPUs. The error introduced by VT-IO is bounded by a mean
error of 5.19 ms and is relatively stable regardless of the number of
containers and CPUs. However, the error introduced by TimeKeeper
increases significantly with the growing number of containers,
which varies from 1.23 ms up to 61.90 ms. In addition, emulation
using fewer CPUs yields more significant errors in TimeKeeper.
For instance, the emulation of 64 containers with 16 CPUs yields
an average error of around 41.99 ms in disk write I/O, while the
emulation with 4 CPUs has an error of around 59.12 ms, which is
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Figure 9: Execution time per cycle vs. number of LXCs

Figure 10: Execution time per cycle vs. number of CPUs

Figure 11: Mean absolute error (MAE) for disk write opera-
tion time

40.79% more. The root cause has been explained in Section 2.2 and
Section 2.3.

5.3 Synchronization Overhead
Similar to Timekeeper and other virtual time systems, VT-IO in-
troduces the synchronization overhead due to the following two
reasons: 1) the time spent to wake up kernel threads to start syn-
chronization; note that each CPU is associated with a kernel thread,
and 2) the computational time for each kernel thread to complete
task scheduling (e.g., exectuionTimeAdapter in Algorithm 2). We
conduct experiments to measure the synchronization overhead for
each execution cycle and compare the overhead with TimeKeeper.

We compute the ratio of synchronization overhead in Time-
Keeper and VT-IO by varying the number of CPUs and containers.
The ratio of synchronization overhead is defined as the synchro-
nization time over the execution time in one cycle. The results are
plotted in Figure 12 and Figure 13 respectively. We observe that the
overhead introduced by our I/O time compensator is very minimal
compared with TimeKeepr as shown in Figure 12 and Figure 13.
For instance, the overhead ratio of 512 containers on 64 CPUs is
2.026% on TimeKeeper and 2.011% on VT-IO.

Figure 14 shows the relation between the time of synchronization
overhead and the number of CPUs. The synchronization overhead
decreases as the number of CPUs increases from 2 to 8 because
of the reduced workload on each thread. As the number of CPUs
keeps increasing from 8 to 64, the cost of controlling the kernel
threads now dominates the overhead. As shown in Figure 14, the
synchronization overhead of TimeKeeper and VT-IO are close. For
instance, the overhead to emulate 64 containers on 32 CPUs in
TimeKeeper is 0.474 ms in each cycle, while the overhead is 0.477
ms in VT-IO. The difference is only 0.003 ms.

Figure 15 shows the relation between the time of synchronization
overhead and the number of containers. The overhead increases
linearly as the number of containers grows, and more containers
lead to an increased workload of task scheduling. However, Figure
13 shows that the ratio of synchronization overhead drops even if
the number of containers increases. It is because the execution time
increases linearly as the number of containers grows (see Figure
9), and the improvement in execution time is more significant than
the cost of the increased overhead, and thus results in performance
gain with the increasing number of containers. VT-IO experiences
a similar synchronization overhead compared with TimeKeeper.
As shown in Figure 15, to emulate 256 containers on 8 CPUs, the
overhead introduced by TimeKeeper is 0.1163 ms, while the over-
head is 0.1167 ms in VT-IO. The difference is about four orders of
magnitude less than the measurement.

Figure 12: Ratio of synchronization overhead vs. number of
CPUs

6 CASE STUDY
Nowadays, GPU is no longer just a configurable graphics processor
but a programmable parallel processor. Applications are increas-
ingly using GPU to solve intensive computing tasks in parallel,
such as high-performance computing, deep learning, and cryp-
tocurrency mining. Container-based emulation provides a flexible
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Figure 13: Ratio of synchronization overhead vs. number of
LXCs

Figure 14: Synchronization overhead time vs. number of
CPUs

Figure 15: Synchronization overhead time vs. number of
LXCs

and cost-effective way to test the design and implementation of
those applications on a large scale. In this section, we demonstrate
the usability of VT-IO through a case study of a Bitcoin mining
application that demands massive GPU computational resources.
We also perform a comparative evaluation on VT-IO, TimeKeeper,
and a physical testbed to show the improvement of temporal fidelity
in the virtual time system despite the intensive GPU computation.

6.1 Bitcoin Mining Experiment Setup
Bitcoin miners use powerful computing resources (e.g., GPU) to
mine blocks, verify transactions, and record them on the blockchain
[19]. The mining process is computing complex mathematical hash
functions. Bitcoin network adjusts the difficulty ofmining by raising
or lowering the target hash to preserve a constant interval between
new blocks. The difficulty, Di in Equation 7, is defined as a measure
of how difficult it is tomine Bitcoin blocks, i.e., finding a nonce of the
first valid ith block whose hashed value is less than a target value.
The difficulty is calculated using the following equation, where
Tarдet0 is the target used in the Genesis Block and represents the
initialized difficulty, and Tarдeti is the current target.

Di =
Tarдet0
Tarдeti

(7)

Bitcoin’s target value adjustment algorithm is expressed in Equa-
tion 8, where Texpect is a configurable constant that defines the
expected time to complete mining of each block andTi is the actual
completion time.

Tarдeti+1 = Tarдeti ×
Ti

Texpect
(8)

In the traditional Bitcoin system, Texpect is set to be 10 minutes.
As shown in Equation 9. Bitcoin system dynamically adjusts the
difficulty based on the previous block’s difficulty and computational
time to regress toTexpect . Therefore, the speed of block generation
is approximately 10 minutes regardless of the number of miners all
over the world [22].

Di+1 = Di ×
Texpect

Ti
(9)

We conduct a set of emulation experiments of a Bitcoin mining
application in VT-IO, TimeKeeper, and a physical testbed, respec-
tively. The experiments are performed on a machine with 8 CPU
cores and Nvidia Quadro P400 GPUs. There are 4 containers in
each experiment, and the number of CPUs in use is 2. Only one
of the containers runs the blockchain mining application on GPU,
while the other containers run CPU-intensive applications (i.e., Sys-
Bench). Bitcoin difficulty changes every 2016 blocks in practice
[9]. For demonstration purposes, we update the difficulty every 32
blocks to speed up the convergence in the experiment. Texpect is
set to 0.5 seconds and the initialTarдet0 is a random 256-bit integer,
where the first 8 bits are zeros. The total number of blocks mined
in the experiment is 2048.

6.2 Experimental Results
We conduct the experiments and observe that the difficulty con-
verges for the physical testbed when the total number of mined
blocks is 2048. We then plot the Bitcoin difficulty adjustment over
time until 2048 mined blocks on all three testbeds in Figure 16. The
x-axis is the index of each mined block in chronological order, and
the y-axis is the difficulty value. The red dotted line presents the
mean of the difficulty.

Bitcoin mining requires massive GPU calculations to add trans-
actions to a blockchain. Due to the lack of virtual time management
during GPU computation, the time spent on mining blocks in Time-
Keeper appears to be less than the time in the physical testbed.
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Figure 16: Bitcoin difficulty adjustment over time for TimeKeeper, VT-IO, and a physical testbed

Because of the precise virtual time control during GPU computa-
tion, with the same initial difficulty (i.e., target value) and block
expected time, the difficulty adjustment in VT-IO matches well with
the behavior in the physical testbed. VT-IO has a difficulty mean
value of 1.54, which is close to the mean value of 1.56 in the physical
testbed. However, Timekeeper has a much higher difficulty value of
2.18. The difficulty in TimeKeeper also fluctuates more than VT-IO
and the physical testbed, i.e., the range is between 0.6 and 2.7 in
VT-IO and the physical testbed, while the range is between 1.0 to
4.6 in TimeKeeper.

Please note that the hashes of blocks are randomly generated in
our experiments, just like a real Bitcoin network. Therefore, it is
reasonable not to have the same difficulty adjustment results across
multiple runs as the mining time of each block is random. However,
the computational power is stable in our experiments, and thus, the
time to mine blocks converges eventually, while in a real Bitcoin
network, more and more computers join to the mining, and hence
the total computational power keeps growing [9].

Figure 17: Accumulatively completed tasks over time

Figure 17 plots the percentage of the accumulatively completed
tasks over time for all three testbeds. We observe that the perfor-
mance of VT-IO is very close to the physical testbed. It takes 1142.46
seconds in the physical testbed and 1134.78 seconds in VT-IO to
complete all the tasks. Meanwhile, TimeKeeper only spends 931.40
seconds. At 1000 seconds, the physical testbed accomplishes 83.01%
of the tasks, and VT-IO accomplishes 84.48% of the tasks, while
TimeKeeper has already accomplished 100% of the tasks.

7 RELATEDWORK
7.1 Timer-based virtual time system
The timer-based virtual time system was proposed in [14]. The
original idea was motivated by improving the scalability of OS
virtualization in Xen [7]. Gupta et al. tried to slow down the clocks
of VMs to mimic more powerful devices than what the underlying
physical resources can offer (e.g., CPU, network bandwidth). The
term Time Dilation Factor (TDF) indicates the relation between
the wall clock time in the host machine and the virtual clock in
the virtual machine, which is a key parameter of timer-based vir-
tual time systems. Testbeds built on Xen, such as DieCast [13] and
SVEET [10], are inspired by the design. For example, DieCast is
a TDF-based approach to scale the performance of hardware, in-
cluding CPU, network, and disk of virtual machines. It enables us
to create a network emulation experiment on a physical machine
with limited resources. However, the scheduling of VMs is man-
aged by the VM hypervisor rather than the virtual time system in
those approaches [10, 13, 14]. Although the VMs appears to run
concurrently at a coarse time scale, the actual execution order and
length are non-deterministic. Besides, the heavy-weight VMs limit
the scale of a network that one can emulate. To address those limi-
tations, Zheng et al. proposed a container-based network emulator
[29]. By modifying the Linux kernel and leveraging a container-
based virtualization technique, OpenVZ [1], they enabled precise
and flexible control of the virtual clock’s advancement. Jin et al.
extended this work by developing a synchronization algorithm to
integrate the container-based emulation, and a parallel network
simulator [21]. Later, Lamps et al. proposed a Linux container-based
virtual time system, TimeKeeper, which consists of fewer than 100
lines of code modification to the Linux Kernel [17]. It successfully
emulated 45,000 containers on a machine with 32 CPUs, whose
scale was two orders of magnitude larger than what OpenVZ can
offer. More research work including VT-Mininet [27], Minichain
[26], DSSNet [15] are inspired by TimeKeeper. However, due to the
lack of precise time control over I/O operations, TimeKeeper suffers
temporal inaccuracy when a process is waiting for tasks like disk
I/O, network I/O and GPU computation to complete. To tackle this
issue, we design and implement VT-IO to precisely compensate the
I/O time in the virtual clock.

7.2 Instruction-based virtual time system
While most existing approaches derive the virtual time based on the
system clock of host machines, Badu et al. proposed a new method
to advance virtual time based on CPU instructions [5, 6]. Instead
of controlling how long processes can be executed on the CPU
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using hrtimer [11] and signaling techniques [8], Kronos controls
processes’ virtual time based on the binary instruction counts mea-
sured by ptrace [3], and perf [2]. Compared with the timer-based
virtual time systems, Kronos enhances the scalability and temporal
fidelity of the emulation system. Kronos also enables the precise
quantification of the computational power of containers. Each con-
tainer is specified with a variable called relative CPU speed, which
indicates the number of instructions that processes can complete
per second. For instance, a relative CPU speed of one million in-
dicates that the process advances for one second if one million
instructions have been executed. Kronos leverages relative CPU
speed to translate the instruction counts to virtual time. However,
our analysis shows that Kronos also suffers from the same temporal
error due to the lack of precise time control over I/O operations.
Therefore, this motivates us to explore means to obtain the I/O
operation time accurately and include that in the virtual time of
each container.

8 CONCLUSIONS AND FUTURE WORK
In this paper, we discover and analyze the virtual time advancement
error in existing virtual time systems because of I/O operations
and develop VT-IO that provides the precise time advancement
control during operations, including disk I/O, network I/O, and
GPU computation. We then conduct a comparative evaluation with
TimeKeeper and a physical testbed to show that VT-IO is capa-
ble of maintaining high temporal fidelity during I/O operations
with limited synchronization overhead. Finally, we demonstrate the
usability and performance of VT-IO with a Bitcoin mining based
network application and compare the results with TimeKeeper.

While VT-IO is capable of precisely measuring the time elapsed
during I/O operations, the resources on the host machine, such as
disk bandwidth, network bandwidth, and GPU, are distributed and
shared among all the processes. If a large number of virtual hosts
are simultaneously performing I/O operations, it may lead to an
extensive resource competition that influences temporal fidelity.
Our next step is to minimize the impact by adaptively adjusting the
I/O time measurement based on the dynamic system load. Another
direction is integrating the virtual time enabled emulator with
simulators through efficient synchronization algorithms to create a
high-fidelity and scalable testbed.
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