Optimizing the Bruck Algorithm for Non-uniform
All-to-all Communication

Ke Fan
kefan@uab.edu

Birmingham, AL, USA

Xuan Huang
xuanhuang@sci.utah.edu
University of Utah
Salt Lake City, UT, USA

ABSTRACT

In MPJ, collective routines MPI_Alltoall and MPI_Alltoallv play
an important role in facilitating all-to-all inter-process data ex-
change. MPI_Alltoally is a generalization of MPI_Alltoall, sup-
porting the exchange of non-uniform distributions of data. Popular
implementations of MPI, such as MPICH and OpenMPI, imple-
ment MPI_Alltoall using a combination of techniques such as the
Spread-out algorithm and the Bruck algorithm. Spread-out has a
linear complexity in P, compared to Bruck’s logarithmic complexity
(P: process count); a selection between these two techniques is made
at runtime based on the data block size. However, MPI_Alltoallv
is typically implemented using only variants of the spread-out al-
gorithm, and therefore misses out on the performance benefits that
the log-time Bruck algorithm offers (especially for smaller data
loads).

In this paper, we first implement and empirically evaluate all ex-
isting variants of the Bruck algorithm for uniform and non-uniform
data loads— this forms the basis for our own Bruck-based non-
uniform all-to-all algorithms. In particular, we developed two open-
source implementations, padded Bruck and two-phase Bruck, that
efficiently generalize Bruck algorithm to non-uniform all-to-all
data exchange. We empirically validate the techniques on three su-
percomputers: Theta, Cori, and Stampede, using both microbench-
marks and two real-world applications: graph mining and pro-
gram analysis. We perform weak and strong scaling studies for a
range of average message sizes, degrees of imbalance, and distri-
bution schemes, and demonstrate that our techniques outperform
vendor-optimized Cray’s MPI_Alltoallv by as much as 50% for
some workloads and scales.

CCS CONCEPTS

« Theory of computation — Massively parallel algorithms; «
Computing methodologies — Massively parallel algorithms.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

HPDC °22, June 27-30, 2022, Minneapolis, MN, USA.

© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9199-3/22/06...$15.00
https://doi.org/10.1145/3502181.3531468

Thomas Gilray
gilray@uab.edu

University of Alabama at Birmingham University of Alabama at Birmingham

Birmingham, AL, USA

Kristopher Micinski
kkmicins@syr.edu
Syracuse University
Syracuse, NY, USA

Valerio Pascucci
pascucci@sci.utah.edu
University of Utah
Salt Lake City, UT, USA

Sidharth Kumar
sid14@uab.edu
University of Alabama at Birmingham
Birmingham, AL, USA

KEYWORDS

MPI, Alltoallv, Bruck algorithm, Collective communication

ACM Reference Format:

Ke Fan, Thomas Gilray, Valerio Pascucci, Xuan Huang, Kristopher Micinski,
and Sidharth Kumar. 2022. Optimizing the Bruck Algorithm for Non-uniform
All-to-all Communication . In Proceedings of the 31st International Sympo-
sium on High-Performance Parallel and Distributed Computing (HPDC °22),
June 27-30, 2022, Minneapolis, MN, USA. ACM, New York, NY, USA, 13 pages.
https://doi.org/10.1145/3502181.3531468

1 INTRODUCTION

Motivation: Message passing [22] has been the dominant program-
ming model in HPC for decades. There are three essential interfaces
for data exchange among processes: point-to-point [19, 21], one-
sided [11, 16], and collective communication [6, 32]. Point-to-point
is the most granular data-exchange method, and it is performed us-
ing variants of MPI_Send and MPI_Recv. One-sided communication
allows accessing the memory of a remote process by methods such
as MPI_Get and MPI_Put. Collective functions involve communica-
tion among all processes within an MPI communicator. Due to their
global nature, collective functions are the most difficult to scale
and optimize. The overall scalability of applications [12, 27, 37]
that rely on collective functions for their data exchange depends
significantly on the scalability of the collective routines themselves.

MPI_Alltoall is a commonly used collective routine that facil-
itates data exchange between every pair of processes, allowing a
process to send and receive a fixed amount of data from every other
process. Our work focuses on optimizing non-uniform all-to-all
communication, which is performed via MPI_Alltoallv, a more
general version of MPI_Alltoall where each process may send
and receive a variable amount of data. The state-of-the-art imple-
mentations of MPI, such as MPICH [2, 23] and openMPI [3, 15],
implement MPI_Alltoall using a cocktail of techniques, including
the Spread-out algorithm [26] and the Bruck algorithm [9]. Spread-
out has a linear complexity in P compared to Bruck, which has a
logarithmic complexity (P is the total number of processes). A selec-
tion between these two algorithms is made at runtime based on data
block size. However, MPI_Alltoallv is implemented within these
popular MPI implementations using only variants of the Spread-
out algorithm [26]. In this work, we develop open-source imple-
mentations of variants of the Bruck algorithm for non-uniform
all-to-all communication and demonstrate its efficacy for realistic

https://doi.org/10.1145/3502181.3531468
https://doi.org/10.1145/3502181.3531468

microbenchmarks and applications. Our open-source implementa-
tion can be directly adopted by applications that rely on the usage
of MPI_Alltoallv or by vendors that implement MPL
Limitation of state-of-art approaches The performance of com-
munication operations is a function of their latency and bandwidth
costs. Latency is the fixed cost per communication step, which
is independent of communication size, whereas bandwidth is the
transfer time per byte [43]. Typically, short-message communica-
tion is dominated by latency, while long-message communication is
dominated by bandwidth [38]. Short-message exchange, therefore,
yields better performance with fewer underlying communication
steps. The Bruck algorithm [9] is a well-known technique to re-
duce the total number of these internal communication steps in an
all-to-all exchange from P to log(P). This is achieved by transmit-
ting an overall larger amount of data, but over a smaller number
of iterations. The algorithm is therefore well suited for relatively
smaller-sized data messages. It is challenging to directly use the
Bruck algorithm for messages of varying sizes as it requires pro-
cesses to be aware of how much data to expect during each of the
intermediate log(P) iterations [39].

Bruck’s algorithm, in its original form, requires three phases:
local data rotation, log(P) communication steps, and a final rotation
(see Figure 1). Prior work [39] has modified Bruck to eliminate the
final rotation phase by organizing data in a different order in the
first two phases. This optimization has achieved incremental perfor-
mance improvement over the traditional Bruck algorithm, but is also
limited to uniform all-to-all data communication. Independently,
the SLOAV algorithm [44] has explored techniques for extending
Bruck’s algorithm to allow non-uniform all-to-all data communi-
cation. It presented a coupled two-phase method that involved a
meta-data-exchange phase followed by a data-exchange phase at
each internal communication step. A key drawback of SLOAV is
that it lacks an open-source implementation and has shown limited
empirical evaluation (up to 1K processes) — a probable cause that
has prevented it from getting adopted by popular MPI libraries.
We have also identified some limitations of the SLOAV method
from the paper: (a) an inefficient meta-data transmission scheme,
(b) complex internal buffer management, (c) a redundant rotation
phase, and (d) unnecessary final scan overhead (see Section 6.1).

Key insights and contributions In this paper, we survey and
implement all variants of the Bruck algorithm for uniform data
loads, to extract insights that can be used for developing techniques
for non-uniform all-to-all algorithms. In particular, we implement
the modified Bruck and zero-copy Bruck first presented in [39].
While the modified Bruck implementation gets rid of the final
rotation phase, the zero-copy Bruck uses MPI-derived datatypes
to eliminate explicit local memory copies. In addition to these two
techniques, we also present our implementation of a uniform Bruck
algorithm, Zero Rotation Bruck, which eliminates both the initial
and final rotation phases. The implementation derives ideas from
the modified Bruck to remove the final rotation and the usage of
rotation index buffers (from SLOAV) to remove the initial rotation.

We present two alternative techniques for extending the Bruck
algorithm to support non-uniform data distributions: padded Bruck
and two-phase Bruck. Both these algorithms are built on top of

the Zero Rotation Bruck. In padded Bruck, we convert the non-
uniform communication pattern into a uniform one by padding data
messages into equal-sized buffers, followed by the Bruck-style data
exchange and a scan to filter out the actual data from its padding.
The idea of padded Bruck was presented in [39] (section 3.5 of [39]).
However, the paper neither provided any implementation details
nor any empirical evaluations. Our other implementation, the two-
phase Bruck, uses a meta-data exchange phase and a monolithic
working buffer to facilitate non-uniform all-to-all data exchange.
The meta-data exchange phase prepares for actual data transfer,
and the monolithic buffer facilitates seamless movement of data
during the communication phases. It synthesizes the techniques of
SLOAV [44] (coupled two-phase IO, getting rid of the initial rotation
phase) and Modified-Bruck [39] (getting rid of the final rotation
phase), streamlining the algorithm and improving efficiency further
with the use of a monolithic working buffer. Our two-phase Bruck
technique also overcomes the shortcomings of the SLOAV approach
with an efficient meta-data and buffer management scheme and
by getting rid of all local rotation and scan phases. Additionally,
we have performed a thorough empirical evaluation and have an
open-source implementation. We make the following contributions:

(1) We survey and implement all variants of the Bruck algorithm
(for uniform all-to-all) and present our implementation Zero
Rotation Bruck, a synthesis of techniques that gets rid of rotation
and scan overheads. (Section 2)

(2) We present open-source, reproducible implementations of two
all-to-all communication algorithms for non-uniform data, suit-
able for small to moderate loads: padded Bruck and two-phase
Bruck. (Section 3)

(3) We perform a detailed evaluation of our techniques using scal-
ing (up to 32K processes) and sensitivity analysis using both
microbenchmarks and practical applications on the three super-
computers. (Section 4 and 5)

Compared to the vendor’s MPI_Alltoallv implementation (Cray’s
proprietary MPI, based on MPICH [1]), our approach is up to 50%
faster for some micro-benchmarks and up to 15% faster for more
practical graph-mining and program-analysis applications.

Experimental methodology and artifact availability A key
contribution of our work is an open-source implementation and
a thorough evaluation of our techniques. Our work tackles an im-
portant problem that has the potential to improve a range of appli-
cations, and therefore, we have performed a rigorous evaluation
of our algorithms. We have presented results for weak/data scal-
ing up to 32K processes. Additionally, we performed a sensitivity
analysis to study the subtle impact of distribution on performance.
We used three techniques to create our distributions: (a) uniform,
(b) Gaussian, and (c) power-law. Finally, we also created an empir-
ical performance model to carve out the parameter space where
our techniques perform better than the Spread-out algorithm. All
experiments are performed on the Theta Supercomputer and for
several iterations (mapping one MPI rank per core). To show the
generality of our approach across platforms, we also show a subset
of the results on the Cori and Stampede supercomputers (Section 7).

Limitations of the proposed approach Although we have per-
formed thorough experiments on the Theta supercomputer and

. [EIeme
ORI

[T T ol TR

12|03

(@ Initial Rotation @ Comm step 0 @ Comm step 1 @ Inverse Rotation

(a) Basic Bruck.

(T TRITIRTE-,
[T Tl TRI TR~

@ Comm step |

@ Initial Rotation

(b) Modified Bruck.

@ Comm step 0

Figure 1: Example of (a) Basic Bruck and (b) Modified Bruck
with 4 processes (PO, P1, P2 and P3), each with Send (S) and
Receive (R) buffers made of n (= 3) byte-sized P (= 4) data
blocks. Both R and § are used during the comms steps. Note,
the modified Bruck eliminates final rotation.

have conducted a small set of experiments on two other supercom-
puters, we believe that more work needs to be done to completely
generalize the usability of our techniques. Experiments must be
performed targeting multiple HPC systems, different workloads,
and more applications. Ultimately, all experiment results must be
used to develop a robust performance model. The model would
enable vendor implementations of MPI to use both the Spread-out
and the Bruck algorithms (two-phase and padded) for their im-
plementations of MPI_Alltoallv. We have also not explored the
applicability of our techniques for mixed datatypes, as used by
MPI_Alltoallw. Finally, all our experiments were performed using
the MPI-everywhere [45] programming model that maps a rank
per core; in the future, we plan to explore techniques for a hybrid
programming model [29].

2 IMPLEMENTATION OF UNIFORM BRUCK

The Bruck algorithm [38] is an efficient log-time implementation
of all-to-all communication that is suitable for latency-bound short
messages. Bruck’s algorithm is comprised of three major passes:
an initial data rotation, log(P) internal data transfer steps, and a
final data rotation. In this section, we review existing research on
variants of the Bruck algorithm in the context of uniform all-to-all
communication. We compare the performance of these algorithms
and study the underlying causes of their behavior to extract insights
that can be used for non-uniform all-to-all.

2.1 Variants of the Bruck algorithm

With P processes, a uniform all-to-all can be expressed as follows.
Every process has a send buffer (initialized with data), logically
made out of P data-blocks (S[0...P — 1]), each with n 1-byte el-
ements. Similarly, processes also have a receive buffer (initially
empty), logically made out of P data-blocks (R[0...P —1]) with n
1-byte elements. When implemented by MPI_Alltoall, both the
send buffer and the receive buffer are contiguous 1-D arrays of size
P x nbytes where all data-blocks S[0...P—1] and R[0...P—1] are
laid out in increasing block order. During communication, every

process with rank p (0 £ p < P — 1) transmits the data-block
S[i] (0 £ i £ P—1) to a process with rank i and receives a data-
block from rank i into the data-block R[i].

Basic Bruck [9] is a store-and-forward algorithm that takes
log(P) steps for collective communication. The algorithm has three
phases that are carried out in sequence:

(1) Local shift of data-blocks: R[i] = S[(p + i)%P]. Each data-block
(i.e., R[i], S[i]) is a fixed-length buffer of n bytes.

(2) Global communication with log(P) steps. In each step k (0 <
k < log(P)), process p sends to process ((p + 2K)%P) all the
data-blocks R[i] whose k' bit of i is 1, and receives data from
process ((p— 2K)%P) into S, and replaces R[i] (just sent) locally.

(3) Local inverse shift of data-blocks from R to R: R[i] = R[(p —
i)%P].

Note that buffers S and R are both involved in the communication
step because some received data-blocks will have to be resent in a
later communication step. An example of basic Bruck with all three
phases can be seen in Figure 1a.

Modified Bruck [39] improves upon the Basic Bruck algorithm
by eliminating the final rotation phase. The send and receive pro-
cesses are reversed and the initial rotation is modified to remove
the final rotation required in the Basic Bruck (Figure 1b). It consists
of the following phases:

(1) Local shift of data-blocks: R[i] = S[(2 * p — i)%P].

(2) Global Communication with log(P) steps. In each step k (0 <
k < log(P)), process p sends to process ((p — 2K)%P) all the
data-blocks R[i + p] whose k™ bit of i is 1, and receives data
from process ((p + 2k)%P) into S, and replaces R[i + p] locally.

Zero-copy Bruck [39] avoids copying the received data-blocks
from buffer S into R at the end of each communication step. This is
achieved by creating a temporary buffer T and using it alternately
with R to send and receive data (getting rid of the local copies
(dashed-arrows) in Figure 1b). Similar to R, T (initially empty), is
logically made up of P data-blocks (T[0...P — 1]) with n 1-byte
elements. It has two phases:

(1) Local shift of data-blocks: R[i] = S[(2 * p — i)%P].

(2) Global communication with log(P) steps. In each step k (0 <
k < log(P)), for all the data-blocks whose k™ bit of i is 1, we
calculate the number b of non-zero bits with index at least k.
If (b%2 == 0), process p sends the block T[i + p] to process
((p- 2K)%P) and receives data in R[i + p] from process ((p +
2K)%P), otherwise, p sends the block R[i + p] and receives data
into T[i + p].

Zero Rotation Bruck is our implementation, which is a synthe-
sis of two techniques: (a) modified Bruck to eliminate final rotation,
and (b) use of a rotation index array [44] to get rid of the initial
rotation. We create a rotation index array, I, to store the desired
order of data-blocks and use it to avoid actual shifting of data in
the initial rotation phase. The cost of creating the rotation index
array (I) is O(P), which is less than the cost of local copies O(Pn),
and I can also be cached for repeated use. It has two phases:

(1) Create local rotation array I: I[i] = (2 % p — i)%P

(2) Global communication with log(P) steps. In each step k (0 <
k < log(P)), process p sends to process (p — 25)%P all the data-
blocks R[I[i + p]] whose k™ bit of i is 1, and receives data from
process ((p + Zk)%P) into S, and replaces R[I[i + p]] locally.

This implementation avoids both rotation phases and forms the
basis for building our non-uniform Bruck algorithms.

2.2 Performance Comparison

The communication pattern of the Bruck algorithm and all its vari-
ants is inherently non-contiguous. Each communication step sends
(P +1)/2 data-blocks to other processes (except the last step, which
may send fewer blocks if the number of processes is not a power
of 2). These blocks are in non-contiguous segments of memory.
Variants of Bruck can be implemented with explicit buffer man-
agement (using memcpy) or by using MPI-derived datatypes [39].
MPI datatypes can implicitly pack and unpack non-contiguous
blocks that need to be sent and received in each communication
step. We therefore implemented two versions of the Basic Bruck
algorithm and the Modified Bruck algorithm, with MPI-derived
datatypes (ModifiedBruck-dt and BasicBruck-dt) and without them
(BasicBruck and ModifiedBruck). Similar to [39], we implemented
the Zero-copy Bruck algorithm using only MPI-derived datatypes
(MPI_Type_create_struct), which we refer to as ZeroCopyBruck-
dt. Our implementation, (ZeroRotationBruck) algorithm, is imple-
mented with explicit memory management.

—— BasicBruck
—
n 16 BasicBruck-dt

E g T ModifiedBruck

c —f— ModifiedBruck-dt

v 4

~

S92

(V]

E 1 - —f— ZeroRotationBruck
i —}— ZeroCopyBruck-dt

256 512 1024 2048 4096
Total number of process (P)

(a) Running time of all six variants.

-8 @@ FirstRotation

g I BasicBruck

‘C’6 I FinalReverseRotation

g @@ ModifiedBruck

© 4 I ZeroRotationBruck

g

Q

E2

- LI
256 512 1024 2048 4096

Total number of processes (P)

(b) Breakdown time of non-MPI datatype variants.
Figure 2: Performance of Bruck variants (N = 32 bytes)

We evaluated all six variants of the Bruck algorithm using the
Theta supercomputer [4]. All experiments were run for 20 iterations,
and we plotted the median along with the median absolute devia-
tion [24] as error bars in Figure 2a. We fixed the size of data-blocks
to 32 bytes while varying the number of processes from 256 to 4,096.
From the results, we observe three key trends: (a) ZeroRotationBruck
consistently yields the best performance; (b) ZeroCopyBruck-dt is

the least efficient; and (c) implementations with the MPI-derived
datatype consistently perform poorly compared to the ones with
explicit memory management (see red vs. green trendlines and or-
ange vs. blue trendlines). For example, with P = 256 and P = 4,096,
ZeroRotationBruck is 39.64% and 7.13% faster than BasicBruck, and
18.80% and 0.83% faster than ModifiedBruck.

ZeroRotationBruck reduces O(Pn) memory-copying time of the
first rotation phase, but incurs O(P) penalty in populating the
rotation array. Similar to Modified Bruck, it also eliminates the fi-
nal local rotation phase (cost O(Pn)). As a result, when compared
to BasicBruck, ZeroRotationBruck saves O(2Pn — P) cost. This im-
provement can be seen in Figure 2b, which shows the performance
breakdown of the three Bruck variants without MPI datatypes. The
pink portion at the bottom is the first rotation phase, and the red
portion at the top is the final rotation phase. The middle portion
with different colors is for global communication. The communica-
tion time for these three variants is roughly the same since they are
all implemented without an MPI datatype. From the figure (see bars
at 4,096 processes), it is evident that ZeroRotationBruck (green bar)
is the most efficient as it does not have any rotation phase (takes
little time to create the rotation indexes array). We also note that
the time percentages of the two rotation phases increase with the
number of processes.

The ZeroCopyBruck-dt does not perform well when using a de-
rived datatype to avoid copies at the end of each step. The over-
head of using MPI-derived datatypes was also observed by Traff, et
al. [39] where they found that ZeroCopyBruck-dt does not perform
well if the data-block size is less than 250 bytes. In general, for
all process counts, we found that MPI-derived datatype added an
additional overhead which led to sub-optimal performance. We use
these observations in designing our own optimized non-uniform
all-to-all algorithm based on ZeroRotationBruck, which avoids using
MPI-derived datatypes and eliminates both rotation phases.

3 IMPLEMENTATION OF NON-UNIFORM
BRUCK

The Bruck algorithm in its existing form cannot be directly ap-
plied to non-uniform all-to-all communication for two reasons: (1)
processes do not know the size of a data-block they will receive
during each of log(P) communication steps in the Bruck algorithm;
and (2) the receive buffer R or send buffer S cannot be reused as
intermediate storage buffers during the communication steps since
the intermediate received data can be larger than their capacity. To
address these issues, we propose two advanced Bruck algorithms:
padded Bruck (Section 3.1) and two-phased Bruck (Section 3.2).
Similar to uniform all-to-all, non-uniform all-to-all also has a
send buffer (S) and a receive buffer (R), both of which are logically
made up of P data-blocks. However, these data-blocks are of dif-
ferent sizes, and thus to differentiate them, we need explicit size
arrays (sendcounts[0...P —1] and recvcounts|[0... P —1]) to store
the size of data-blocks and offset arrays (sdispls[0...P — 1] and
rdispls[0...P — 1]) to store the starting positions of data-blocks.

3.1 Padded Bruck

Padded Bruck converts a non-uniform all-to-all problem into a uni-
form all-to-all problem through padding—a natural extension. There

are three main phases: (a) padding all non-uniform buffers to a
fixed-sized buffer, (b) invoking Bruck-style communication for the
uniform buffers, and (c) scanning the received buffers to extract
the actual data. The first step in the padding phase is to compute
the size of the largest data-block (N) across all P X P data-blocks (P
data-blocks for every P process). Every process first finds its largest
data-block size locally, and then uses MPI_Allreduce to find the
largest overall block size (N) across all processes. All processes
locally pad all of P local data-blocks to the maximum size (N). After
padding, the Bruck algorithm is used to perform uniform all-to-all
data exchanges. Finally, all processes perform a local scan to extract
the actual data from the padded buffer—this is accomplished using
the recvcounts array, which holds the actual size of the data-blocks.
For small-sized messages, the data-transfer time is dominated by
latency, not bandwidth. The Bruck algorithm significantly reduces
the latency from aP to alog(P), where « is the fixed cost of initiat-
ing an internal communication. Although our approach increases
the communication load, it does not increase the latency cost. The
approach is therefore potentially effective for exchanging small
data-blocks where the data exchange cost is dominated by latency.
We also note that we derived the idea of padded Bruck from [39]
(section 3.5), but the paper did not have any implementation details
nor any empirical evaluation.

3.2 Two-phase Bruck

The Two-phase Bruck algorithm addresses the challenges of extend-
ing the Bruck algorithm for non-uniform data loads by performing
a coupled two-phase data exchange (for all log(P) communication
steps) and by using a large monolithic buffer. The two-phase com-
munication involves a meta-data exchange followed by actual data
transfer, where the meta-data prepares processes for the actual
data-exchange. The monolithic working buffer facilitates seamless
intermediate data exchanges, pre-allocated to an upper bound on
overflow data. The approach requires more space in the transfer
phases to optimize communication time.

The two-phase Bruck is built on top of Zero Rotation Bruck al-
gorithm. It indirectly synthesizes techniques of the modified Bruck
(removing the final rotation) and SLOAV (removing the initial ro-
tation) and uses the idea of coupled metadata/data exchange first
proposed in SLOAV. In addition to synthesis of all these different
ideas, our work yields additional performance improvements by
using a monolithic buffer that streamlines and simplifies both meta-
data and data management.

Meta-data transmission. Each of the log(P) Bruck commu-
nication steps sends (P + 1)/2 data-blocks from each process to
another receiving process (except for the last step, which may send
fewer blocks if the number of processes is not a power of 2). At each
communication step, a process first sends meta-data containing
data-block sizes—a buffer of size (P + 1)/2 that holds the size of
each data-block that needs to be transmitted. We demonstrate this
step with an example in Figure 3, which shows the two (log, 4)
communication steps for four processes. In each step, a process
first exchanges the sizes of the two data-blocks it is sending. In the
example shown, for the first step k = 0, every process sends data-
blocks 1 and 3 to a specific send process. After meta-data exchange,
every process knows how many bytes it will receive. A process,

(Send Metadata
@ Send Data-blocks | Block 1 | Block3 | Actual data-blocks

Size of each block

Figure 3: log, (P = 4) comm steps with coupled meta-data and
data exchanges in our two-phase Bruck algorithm.

Algorithm 1 Two Phase Non-Uniform Bruck Algorithm

: Find maximum data-block length N with MPI_Allreduce;
: Allocate monolithic working buffer W with length (N P);
: fori € [0,P] do
I[i] = (2 % p — i) % P // initiate rotation array;
end for
: for step k € [0,log(P)] do
n=0;
for i € [2X, P] whose k™ bit is 1 do
sd[n++] = (p +1i) % P // find n send data-block indices;
10: end for
11: fori € [0,n] do
12: M{i] = sendcounts[I[sd[i]]] // prepare meta-data;
13: end for
14: sendrank = (p — Zk) % P;

15: recvrank = (p + Zk) % P;

W S

16: Send M to sendrank and receive updated M from recvrank;

17: fori € [0,n] do

18: if status[i] == 1 then

19: Copy data for data-block i from monolithic working buffer W [sd[i] * N|;
20: else

21: Copy data for data-block i from send buffer S[sdispls[I[sd[i]]]];
22: end if

23: end for

24: Send these reorganized blocks to sendrank;

25: fori € [0,n] do

26: if (sd[i] — p)%P < 2K*! then

27: Receive data-block i from recvrank into R|rdispls|sd[i]]];

28: else

29: Receive data-block i from recvrank into W [sd[i] * N'];

30: end if

31: status[I[sd[i]]] = 1;

32: sendcounts[I[sd[i]]] = M[i];

33: end for

34: end for

therefore, can send and receive the actual data-blocks successfully
in the subsequent data-transmission phase.

Data transmission. Each process transmits actual data after
meta-data transmission. With the Bruck algorithm, received inter-
mediate data-blocks are likely to be sent in future communication
steps and are typically put back in the corresponding segments of
the send buffer (basic Bruck and modified Bruck, see Figure 1b)
or in the temporary buffer (Zero-copy Bruck). For uniform Bruck,
this step is simple as the receive and send buffers are of the same
size, never resulting in memory overflow. It is a challenge for non-
uniform data communication where the sizes of received intermedi-
ate data-blocks can be larger than the sizes of the sent data-blocks
(which must temporarily hold the received data-block). We address
this challenge by allocating a large monolithic working buffer W to

hold all received data-blocks. The size of W must be P X N to ensure
sufficient space, where N is the global maximum size among all
data-blocks. All received data-blocks which will be transferred in
the future communication steps are stored in this buffer. We use a
boolean variable to track if a data-block was exchanged in previous
communication; if so, the block will be sent from the working buffer,
otherwise, from the send buffer.

Algorithm. Pseudocode is shown in Algorithm 1. We first find
the maximum size N among the data-blocks (line 1). This variable
is used to allocate the monolithic working buffer W (line 2). We
then initialize a rotation array I instead of shuffling the actual
data (lines 3-5). In each communication step k, we compute the
indices of the n data-blocks, sd, that need to be sent (lines 8-10)
and then prepare the meta-data M (lines 11-13). Each process sends
its meta-data to its particular receiving process (lines 14-16). With
this information, each process then conducts the data transmission
phase (lines 17-33). For the data transmission phase, we receive the
data-blocks into the receive buffer R if they will not be sent again
in the future communication steps, otherwise, into the monolithic
working buffer W[(i + p) * N], where i is data-block index and p
is the rank of the current process (lines 24-33). We use a Boolean
status array to track if a data-block has been exchanged before or
not (lines 17-23) and update it at each communication step (line 31).
A data-block will be drawn from the working buffer W if its status
is 1, otherwise, data will be fetched from the original send buffer S.

Figure 4 depicts all of the log(P) communication steps in the
two-phase Bruck with four processes. The first sub-figure shows
the initial state, where we color the data-blocks and meta-data that
will be transmitted in the first comm step. Note that the initial
state also shows the locally copied data-blocks sent by a process
to itself (i.e., send process rank = receive process rank). The next
three sub-figures show all buffers (data and meta-data) after the two
(log, 4) communication steps. The fourth sub-figure corresponds to
the final state, where each process has received data-blocks from
other processes in the correct order (omitting any rotation).

We further illustrate one coupled metadata and data exchanges
for communication step k = 0 between process 0 and process 1 in
Figure 5. The metadata and data exchanges are shown in yellow
and blue, respectively. As in the Zero Rotation Bruck, process 1 finds
out the indexes of data-blocks that need to send using the rotation
index array (I). The sent data-blocks are I[i + p], where i is 1, and
3 (as Bruck: k' bit of block index is 1) and p = 1 (process with
rank 1). Therefore, process 1 sends data-blocks I[(1 + 1)%4] = 0
and I[(3 + 1)%4] = 2 (shown by engraved black boxes). Once the
indexes of sent data-blocks are computed, we first transmit the
size of those blocks (using the sendcounts buffer (C)), as shown in
yellow, followed by actual data (S), as shown in blue. A similar index
computation is performed on process 0 to facilitate the receiving of
data-blocks from process 1. We can note that the data received by
process 0 is stored in both the receive buffer (R) and the working
buffer (W). The working buffer data can be transmitted in the future
communication steps.

3.3 Theoretical Performance model

We developed a simple model to estimate the cost of both algorithms
in terms of latency and bandwidth. Assume that the overhead for

exchanging a message between any two processes can be modeled
as a +nf}, where « is the latency cost per communication exchange,
independent of message size, f is the transfer time per bytes, and n
is the number of bytes transferred. For all Bruck variants, over all
log P communication steps, at most log P X ((P + 1)/2) blocks are
sent and received per process. In padded Bruck, all data-blocks are
the same size N. Each process therefore sends log PX ((P+1)/2) XN
bytes to others at each round. Communication time of a process in
padded Bruck is therefore:

alogP + flogP x ((P+1)/2) XN (1)
The two-phase Bruck algorithm has two transmission phases,
which doubles the latency cost to 2a log P. Meta-data sent during
the first transmission phase contains ((P + 1)/2) integers (4 bytes
each). Actual data sent during the second transmission phase is
N/2 xlogP x ((P + 1)/2), assuming data-blocks are distributed
uniformly (see Section 4.1) and the average size of the data-block
being transmitted is N/2. Communication time of a process in
two-phase Bruck is therefore:

(P+1) N

2alogP+4ﬁlogPT+?ﬂlogP (2)

Comparing the time of padded Bruck with the two-phase Bruck,
i.e. performing (1) < (2), we obtain:

(N-8)(P+1)f < 4a (3)

Padded Bruck outperforms two-phase Bruck when inequality (3)
holds true—this certainly happens when the N is less than 8 bytes.
This is expected as padded Bruck transmits on average twice the
amount of data compared to two-phase Bruck, and padded Bruck
will only outperform two-phase Bruck when the amount of data
transmitted is very small and the overall performance is bound by
latency rather than bandwidth. This observation is also confirmed
in our performance evaluation.

(P+1)
2

4 EVALUATION

We conduct a thorough evaluation of our algorithms using synthetic
microbenchmarks (this Section) and applications (Section 5) on the
Theta Supercomputer [4] of Argonne National Lab (ANL). Theta is
a Cray machine with a peak performance of 11.69 petaflops, 281,088
compute cores, 843.264 TiB of DDR4 RAM, 70.272 TiB of MCDRAM,
and 10 PiB of disk storage. We compare the performance of our
algorithms against vendor-optimized Cray MPI’'s MPI_Alltoallv,
which is a proprietary, closed-source implementation from Cray
based on the MPICH distribution [1]. We perform a series of ex-
periments where we vary the maximum per-process data load (N),
total number of processes (P), and data distribution types, resulting
in four scaling studies: data scaling (Section 4.1), weak scaling (Sec-
tion 4.1), sensitivity analysis (Section 4.2), and distribution study
(Section 4.3). All our experiments were performed for a minimum
of 20 iterations and used the MPI-everywhere programming model
that maps one rank per core.

4.1 Scaling Analysis

In non-uniform all-to-all communication involving P processes,
every process has P data-blocks of different sizes, where it transmits
one data-block to every other process. In our experiments, every
process generates data-blocks whose sizes follow the continuous

send

0]
[p1 | P2 T
PO P3
oo ool oo
10 CO SO ROWO 11 CI SI RIWI 12 C2 82 R2W2 I3 C3 S3 R3W3

e recv
PO S
(©NO, © 0 © 0
10 COSOROWO 11 CI SIRIWI 12 C2S2R2ZW2 13

C3 S3 R3 W3

0] 1 |]o00|o00 21|10 02]20 21|30

0] 1]oo|o0 211 23 20 2 |30]03

312|o1 112 |11 311]20 11231

312 |o1}|10 112 23 20 2 |31]03

211)01 0] 2 21121 02|31

2>

211101 012 21 30 2 |31

1] 2]o02 312 11222 312|8

1]1]o02 312 22 2|32

03 23 32

03 23 33

33

Initial state (Comm step 0: send)

SO RO WO

w2 S3

[:l Metadata-exchange
D Data-exchange

03 23 32 01

03 23 33 01

33

SO

RO WO R1I W1 12 C2 S2 C3 S3 R3 W3

00 | 00 1 23 30

00 | 00 0]1]2 30|03

01|10 2 23 31

01 32|20 31|03

01 2 30 31

>

01 | 20 21121 30 31

02 2 32

02 | 20 12|22 32

03 32 32 01

03 32 33 01

33|33

33

Comm step 1: send

(O metadata @ data

03 | 30 23 32|23 |01

03 23 33|23 |01

33|33

33

Final state (Comm step 1: receive)

Figure 4: An example of two-phase Bruck with P = 4, showing log, 4 comm steps (I: rotation index array, C: sendcounts array, S:
send buffer (data), R: receive buffer, W: working buffer.). Yellow shows the metadata and blue shows the data. The data-elements
in the send buffer (S) follow the format: ij, where i is the local rank and j is the target process rank.

I1 C1 SI RI W1 I1 Cl1 S1 R1 W1 I1 CI SI RI WI
20110 21|10 2|1 |10
1|21 12|11 12|
Pl of2 1|1 o2 [1|n o2 1|1
3|2]12|1 3|2 12|11 3|2]12|n
12 12 12
(D send metadata 3 s s
@ send data i s i
I[1+1,3+1]=[0,2] C[0,2]—>[1,2] S[0,2] =110, 12, 12]
Find index of send data-blocks Send metadata Send data-elements
10 CO SO RO WO 10 CO SO RO WO 10 CO SO RO WO
0|1]00]o00 0|1]oo|oo o] 1]o0]o00
3|2fot 3|2]o 3| 2]o01]10
Y 2|1 ot 2|1 o1 2101
PO
1202 1)1 o2 1|20
03 03 03
|:| Data-exchange 03 03 03
I:‘ Metadata-exchange - - i
12
1[1+0, 3+0] —>[3, 1] C[3,11=[1,2] R[1]=[10],W[3]=12,12]

Find receive offset Receive metadata Receive data-elements

Figure 5: Sending and receiving data-blocks at communica-
tion step k = 0.

uniform distribution [5]. This distribution ensures that data-block
sizes are randomly picked and uniformly sampled between 0 and

the maximum data-block size (N), thus yielding an average data-
block of size N/2. To further demonstrate the generality of our
approach, we also conducted experiments for data-blocks whose
sizes follow normal and power-law distributions (Section 4.3).

Data Scaling: We varied the maximum data-block size (N) from
16 to 2,048 bytes (generated using a double datatype), and process
counts (P) from 128 to 32,768. In addition to our two advanced Bruck
algorithms and Cray’s MPI_Alltoallv, we also implemented the
Spread-out and PaddedAlltoall algorithms. The spread-out algorithm
uses the non-blocking point-to-point functions, MPI_Isend and
MPI_Irecv. The PaddedAlltoall is similar to padded Bruck, where
we apply Cray’s MPI_Alltoall instead of our implementation of
Bruck after padding. We plotted the timings in Figure 6. From
these results, we made two key observations: (1) padded Bruck
outperforms two-phase Bruck and others only for small data-block
sizes and a narrow range of process counts; (2) two-phase Bruck
consistently outperforms MPI_Alltoallv and others for all process
counts (see red trend-line in all figures).

At most process counts, padded Bruck outperforms MPI_Alltoallv
and two-phase Bruck for N = 16 bytes. For example, at 1,024 pro-
cesses, padded Bruck is 28.7% faster than two-phase Bruck and
60.0% faster than MPI_Alltoallv. Its performance is also superior
to that of the other two schemes for message sizes of up to 128 bytes
for 128- and 256-process runs. However, its performance degrades
rapidly for larger message sizes and higher process counts, also

©
w
N

(=2}
H

—— MPlAlltoallv. P = 128

—— MPLAlltcallv P = 256 —— MPIAlltoallv. P = 512

g4 —1— SpreadOut w16 SpreadOut %32 SpreadOut
< | —— PaddedAlltoall é —F— paddedAlltoall §’16 —f— PaddedAlltoall
5 —— PaddedBruck c 8 . paddedBruck S
~ 2 —f— TwoPhaseBruck 3 —— TwoPhaseBruck g 8
© c 4 ©
- 8 - s,
o]) g
g E 4 IS 2 —f— PaddedBruck
= =1 1 —}— TwoPhaseBruck
16 32 64 128 256 512 10242048 16 32 64 128 256 512 10242048 16 32 64 128 256 512 10242048
Maximum block size (N) (bytes) Maximum block size (N) (bytes) Maximum block size (N) (bytes)
128 512 2048
— 64 —— MPLAIltealv P = 1024 _256 I MPLAltealv P = 2048 1024 P = 4096
u SpreadOut 2128 SpreadOut n 512
£ 32 Ea E 256
c c - 128
g 16 g 32 o 64
© 8 © 16 ® 32
Q4 —f— PaddedAlltoall o 8 —f— PaddedAlltoall o 1g —F— PaddedAlitoall
-E —I— PaddedBruck E 4 —f— PaddedBruck E 4 —f— MPI_Alltoallv —f— PaddedBruck
2 —— TwoPhaseBruck 2 —f— TwoPhaseBruck 2 SpreadOut —— TwoPhaseBruck
116 32 64 128 256 512 10242048 T16 32 64 128 256 512 10242048 Ti6 32 64 128 256 512 10242048
Maximum block size (N) (bytes) Maximum block size (N) (bytes) Maximum block size (N) (bytes)
4096 4096 4096
_ = = P = 32768
g1024 P=8192 01024 P 16384 £21024
= 256 = 256 - 256
Q [} 9]
X 64 —I— MPI_Alltoallv X 64 —— MPI_Alltoallv X 64 MPI_Alltoallv
E 16 SpreadOut 4?) 16 —— PaddedAlitoall *E 16 —— PaddedAlltoall
2 & | g pere — padddoruck
E 4 - Twophasesruck — 4 —f— TwoPhaseBruck ~F 4 —f— TwoPhaseBruck
116 32 64 128 256 512 10242048 178 16 32 64 128 256 512 1024 1g 16 32 64 128 256 512
Maximum block size (N) (bytes) Maximum block size (N) (bytes) Maximum block size (N) (bytes)

Figure 6: Data scaling (data block size (N) following the continuous uniform distribution)

in accordar}ce with the performance model (see Section 3.3). For 1024 “+ wpLaltoaly N = 64
example, with N = 512 and P = 4,096, the padded Bruck takes 202.9 @ 256 | spreadout
milliseconds compared to 91.6 milliseconds with two-phase Bruck. E 64 —1— PaddedAlltoall
This trend is observed because padded Bruck transmits nearly twice é 16
the total amount of data compared to others, and therefore only 8
) 4
works better for very small data loads or low process counts. €
The two-phase Bruck outperforms MPI_Alltoallv and other = i :addEdBka
woPhaseBruck

schemes consistently for small to moderately sized data loads. O 55517 To39 5045 9096 5197 TosarT6s
From process counts of 256 to 4,096, two-phase Bruck outper- Total number of process (P)

forms MPI_Alltoallv for data-block sizes of up to 1,024 bytes.

At N = 256, two-phase Bruck is 50.1%, 38.5%, 35.8% and 30.8% 4096 MPLAltoaly N = 512

faster than MPI_Alltoallv at P of 512, 1,024, 2,048, and 4,096. The 51024 Spreadout

data-block size (N) range where the two-phase Bruck outperforms E 256 1 Paddedalitoall

MPI_Alltoallv is reduced to 512, 256, and 128 bytes at process é 64

counts of 8,192, 16,384, and 32,768. In general, we observe that the o

data-block size range of two-phase Bruck reduces at higher process g 16

counts. This trend can be attributed to the nature of the algorithm, = 4 —I— PaddedBruck

—f— TwoPhaseBruck

as with Bruck, the total amount of data transferred is O (log P) times 1 i ! i ! i !
; ’ / 128 256 512 1024 2048 4096 8192 1638432768

more than the Spread-out algorithms. With the Bruck Algorithm, a Total number of process (P)
process on average transmits log P X (P +1)/2 X N bytes, whereas
MPI_Alltoallv only transmits N X P bytes. The performance of Figure 7: Weak scaling at N = 64 bytes (top) and N = 512 bytes
Bruck, therefore, starts to wane at higher core counts. (block sizes follow the continuous uniform distribution)

Weak Scaling: The efficiency of our algorithm is further demon-
strated by the weak-scaling results shown in Figure 7. Given the MPI_Alltoallv till 32,768 processes, and for N = 512, it out-
inherent quadratic nature of all-to-all, we observe an increase in performs MPI_Alltoallv till 8,192 processes. For example, for
execution time with increasing process counts. For example, at N = 64, we observe a 39.8% improvement in performance over
N = 64, the communication time for two-phase Bruck increases MPI_Alltoallv at 8,192 processes. The scaling experiments clearly
from 0.47 ms at 128 processes to 34.2 ms at 8, 192 processes. How- show a range of Ps and N's where the two-phase Bruck outperforms

ever, we observed that for N = 64, two-phase Bruck outperforms the vendor-optimized MPI_Alltoallv implementation.

400 —— 80-20 MPI_Alltoallv 400 —— 80-20 PaddedBruck 400 —— 80-20 TwoPhaseBruck

z 60-40 2 60-40 Z 60-40

=300 —— 40-60 =300 —— 40-60 =300 —— 40-60

g —— 20-80 g —— 20-80 < —— 20-80 72

200 . 5100 ©200 0-100 8200 0-100 4

g g g

£ 100 £ 100 £ 100
016 32 64 128 256 512 1024 0 3 64 128 256 512 1024 0 64 256 512 1024

Maximum block size (N) (bytes) Maximum block size (N) (bytes) Maximum block size (N) (bytes)
Figure 8: Sensitivity analysis at process count 4, 096.

~ 2000 —— PaddedBruck vs. TwoPhaseBruck Bruck, and (2) the time taken for both MPI_alltoallv and two-
2 i e phase Bruck reduces proportionally with data loads. Two-phase
© £1500 MPI_Alltoallv Bruck always out-performs others for N < 512 bytes, and for
8
o § N = 1024 it shows the same performance as MPI_alltoallv for
g2 1000 ranges 0 — 100 and 20 — 80. This can be attributed to the dominance
g8 500 TwoPhaseBruck of bandwidth costs associated with higher-r configurations, causing
X our algorithm to perform poorly compared to MPI_Alltoallv.
=

Pa
07128 256 512 1024 2048 4096 8192 1638432768
Total number of processes (P)

Figure 9: Empirical performance model.

Performance Model: We developed a simple, empirical perfor-
mance model that carves out the range for N and P where two-phase
Bruck outperforms MPI_Alltoallv. The model can be used to an-
swer questions such as, with P = 350 and N = 800, should one use
the two-phase Bruck, padded Bruck, or Cray’s MPI_Alltoallv?
We used data-scaling experiments in Figure 6 to identify, for each
process count P, the data-block-size threshold N where two-phase
Bruck ceases to perform better than MPI_Alltoallv. This can be
found by identifying the intersection points between two-phase
Bruck and MPI_Alltoallv in each of the 6 plots. We plotted these
(N,P) pairs in Figure 9— carving out the parameter space (orange
area) where two-phase Bruck performs the best. We also plotted
the polyline to delineate our two approaches (two-phase Bruck and
padded Bruck). As expected, we noticed two major trends: (a) the
efficacy of our algorithm starts to decline at high process counts,
and (b) the padded Bruck is effective only for small N's and small Ps.
Even with a high process count of 32,768, there are data-block sizes
(< 128) where our approach outperforms the vendor-optimized
MPI implementation.

4.2 Sensitivity Analysis

We conducted a series of experiments to examine how our algorithm
behaves with slight variations in data load. We used the continuous
uniform distribution (from Section 4.1), but instead of varying the
data-block sizes from 0 to N, we varied the sizes from (100 — r)%
of N to N. For example, with r = 50, the distribution of data-block
sizes would vary from N/2 to N. In Figure 8, we used the format
(100 — r) — r to indicate different variations. We varied the (N)
from 16 bytes to 1,024 bytes and r from 0 to 80, and performed these
experiments at process count ,4096. We circled the data points in
green where two-phased Bruck outperforms MPI_Alltoallv and
in red where padded Bruck outperforms two-phase Bruck.

We made two observations: (1) for a majority of configurations
used, two-phase Bruck outperforms MPI_alltoallv and padded

4.3 Standard distributions

In addition to the applications we explore in Section 5, and uniform
distribution in Section 4.1, we consider some standard distributions
as well. In this section, we look at two power-law (exponential) and
one normal (Gaussian) distributions.

Power-law: We generate P data-block sizes for every process
using two power-law distributions (see Figure 10f). Figure 10(a-c)
shows our results for P = 4,096 and P = 8,192. We observe three
trends: (1) for both distributions, two-phase Bruck outperforms
MPI_Alltoallv for all data-block sizes N < 1,024, (2) padded Bruck
performs poorly for all data-block sizes and process counts, and
(3) the absolute timings for the power-law distribution with an
exponent base of 0.99 are on an average less than those for the
other distributions. For P = 8192, we observe an average speedup
of 24.0% and 54.4% for the two distributions.

Normal: The Gaussian distribution is infinitely wide, so we
use a window on this distribution, one that goes from -3¢ to +30
(see Figure 10f). Figure 10(d-e) shows our results for P = 4,096
and P = 8,192. We observe a trend that differs from power-law
distributions. With the normal distribution, the intersection point
where MPI_Alltoallv outperforms two-phase Bruck is around
N =512, as opposed to N = 1,024 with the power-law. This can
be attributed to the overall larger workload associated with the
normal distribution. For example, the total data transmitted per
process with the power-law at 4,096 process count is 203,928 bytes
compared to 1,593,933 bytes with the normal distribution. With our
scheme, we observe an average speedup of 33.9% at P = 8,192.

5 APPLICATIONS

In this section, we apply and evaluate the two-phase Bruck us-
ing two core parallel algorithms that iterate non-uniform all-to-all
communication in computing an output database (relation or set of
relations). We implement these algorithms using an open-source im-
plementation of balanced parallel relational algebra (BPRA), taken
from previous literature, that maps database tuples to MPI processes
in a dynamically balanced manner [13, 17, 27, 28]. For communica-
tion, we use a single all-to-all comm phase for all relational data

2048] 4096 ys 4096

?10%121 —— MPI_Alltoallv _— 3%8‘2‘2 —— MPI_Alltoallv T G%S‘z‘ﬁ —I— MPI_Alltoallv _—
é 356 —+— PaddedBruck 1 — £ 7512 —+— PaddedBruck ~ g 512 —— PaddedBruck //////
c 128 —I— TwoPhaseBruck = %%g —}— TwoPhaseBruck — P %gg —}— TwoPhaseBruck —
< 9] < Tea — < “ea -
T 32 8 32 . 8 32

16
] o 16 o 16
£ 3§ E 8 E 8
[= 2 o3 Fo3

1 16 32 64 128 256 512 10242048 1 16 32 64 128 256 512 10242048 1 16 32 64 128 256 512 10242048

Maximum block size (N) (bytes) Maximum block size (N) (bytes) Maximum block size (N) (bytes)
a) P: , exp-base: 0. : , exp-base: 0. ¢c) P: , exp-base: 0.
P:4096 p-b 0.999 b) P:8192 p-b 0.999 P:8192 p-b 0.99
204 4096 g

1024 —— wpI_Alltoallv 73048 __— | %1000
£ g%% —}— PaddedBruck il E£7512 % 800
GCJ 1%2 i~ TwoPhaseBruck 5 %gg é —— exponent-base=0.99
% 32 % 64 § 600 exponent-base=0.999
; 16 ‘5 %% —— MPI_Alltoallv % 400 -30 to 30
c 8 £ '8 ~F— PaddedBruck S
F g = g’ —f TwoPhaseBruck =~ 9 200

1196 32 64 128 256 512 10242048 116 32 64 128 256 512 10242048 & 0§ 1000 2000 3000 4660

Maximum block size (N) (bytes)

(d) P:4096, —30 to +30

Maximum block size (N) (bytes)

(e) P:8192, —30 to +30

All 4096 data-blocks (bytes)

(f) Distributions

Figure 10: Results for power-law distributions and normal distributions.

Graph 1

[0
o
o

[l Communication (MPI_Alltoallv)
M Communication (Our Scheme)

-»- Total time (MPI_Alltoallv)
\ - Total time (Our Scheme)

o
o
%

Time (seconds)
T)
o
o

00 126
0 49 48 45 33 1 35 28 97 30
128 256 512 1024 2048
Total number of processes
Graph 2
800 2P

[l Communication (MPI_Alltoallv)
674 [Communication (Our Scheme)
-~ Total time (MPI_Alltoallv)
-~ Total time (Our Scheme)

o
o

622

Time (seconds)
T)
o
o

o
o

120

0 s i oty w0 106, % 598 ?f
128 256 512 1024 2048

Total number of processes

Figure 11: TC computation for Graph 1 (top-row) and Graph
2 (bottom-row) with MPI_Alltoallv and two-phase Bruck.

generated in parallel during a single round of parallel computation.
Applications built on top of BPRA, such as the ones presented in
the following subsections, make repeated all-to-all communication
calls for 1000s of iterations with varying workloads.

5.1 Graph Mining: Transitive Closure

Graph-pattern mining (GPM) [30, 35, 42] provides a rich source
of core problems that may be implemented using iterated all-to-
all comm. A classic application from this domain computes the
transitive closure (TC) [20, 31] of an input graph. Consider a relation

G C N2 encoding a graph where each point (a,b) € G encodes
the existence of an edge from vertex a to vertex b. Computing the
transitive closure of a graph G is a classic fixed-point algorithm that
may be implemented efficiently via MPI [28]. We can encapsulate a
single round of path inference in a function Fg, which takes a lower-
bound for the TC and improves it by finding additional paths. In the
general case, for any finite graph G, there exists some n € N such
that F" (L) encodes the transitive closure of G. The TC of G may
be computed by repeatedly applying Fs in a loop until reaching an
n where Fg™(1) = Fg™ (L) in a process of fixed-point iteration.
In this formulation, after a number of iterations equal to the length
of the longest path in G, iteration of Fg will stabilize. In an MPI-
based implementation, new paths found in every iteration must be
transmitted to the appropriate process using all-to-all comm for
the next iteration to continue. The number of paths created every
iteration and the total number of iterations required to attain a
fixed-point depend on the connectivity and topology of the graph.
Therefore, depending on the graph, we can see varying workloads
generated for all-to-all comm.

The MPI implementation for TC uses MPI_Alltoallv to perform
all-to-all data exchanges. We were easily able to add the option to
use our two-phase Bruck algorithm. This step was simple as our
algorithm has the same function signature as MPI_Alltoallv. We
performed strong scaling experiments and plotted our results in Fig-
ure 11. We use two graphs of different topologies and edge counts:
Graph 1(412,148 edges) and Graph 2 (1,014,951 edges), obtained from
the Suite Sparse Matrix collection [10]. For Graph 1, we observe a
nearly 10% (97 to 87 seconds) improvement in performance at 2,048
processes with two-phase Bruck over Cray’s MPI_Alltoallv. We
also observe that the rate of improvement in communication time
increases with increasing process counts. This trend is expected
with strong scaling, where the per-process data load decreases with
increasing process counts, making it more suited for our Bruck-
algorithm-based schemes. However, we observe a negative impact
on performance with our algorithm for Graph 2. This diverging

o
wn

« Comm time using MPI_Alltoallv
Comm time using Two-phase*Bruck

Time (seconds)
o o o
N w =

o©
-

0 1000 2000 3000 4000
All 4300 iterations

— 1600
1400
1200
1000
800
600
400
200

Maximum data-block size (N

0 1000 2000 3000 4000
All 4300 Iterations

Figure 12: Comm time (top) and N (bottom) for all iterations
for kCFA-8 (P = 4,096).

trend can be attributed to the difference in data load generated by
the two graphs. Graph 1 attained its fixed point after 2,933 iter-
ations, generating a total of 1,676,697,415 edges, whereas Graph
2 attained its fixed point after 89 iterations, generating a total of
508,931,041 edges. The number of paths generated per iteration in
Graph 2 is significantly (approx 10.0 times) higher than in Graph
1— also implies a significantly larger workload per iteration for
all-to-all comm. The Bruck algorithm is only effective for smaller
workloads, and therefore has a negative impact on performance for
Graph 2.

5.2 Program Analysis: kCFA

Program analysis attempts to develop an accurate, bounded model
of program behavior based only on the program’s source text. Many
practical models, as well as techniques for making them parallel,
have been investigated in the literature [7, 17]. Program analyses
are constructed using a variety of different theories and approaches,
but they are usually fixed-point algorithms in much the same spirit
as TC. Implemented via MPI, an all-to-all exchange propagates
analysis facts, produced by a set of rules, to their managing process.
One classic instance of static analysis is the k-call-sensitive control-
flow analysis (kCFA), a well-ordered hierarchy of analyses with
increasing precision and complexity as parameter k is increased. We
use the input generator presented in prior literature on kCFA [40]
to generate workloads for our experiments.

We perform a kCFA-8 experiment at 4,096 processes, using both
MPI_Alltoallv and the two-phased Bruck. The experiment took

4,300 iterations (involving 4,300 non-uniform all-to-all exchanges)

to converge while generating a total of 1,286,254,830 facts. The total

time taken by the experiment was 271 seconds using MPI_Alltoallv
compared to 235 seconds with two-phase Bruck—translating to a

1.15x speedup. The all-to-all time came down from 74 seconds

to 38 seconds. This overall improvement in performance can be

understood by tracking the amount of time spent during all-to-all

exchanges and by correlating that with the maximum data-block

size (N) generated by processes during every iteration. We plot

both communication time and maximum data-block size N in Fig-
ure 12. From the communication-time figures, we make two obser-
vations: (1) for a majority of iterations our scheme outperforms

MPI_Alltoallv (majority of the orange points are below the cor-
responding blue points), and (2) the communication time varies

significantly across iterations. The first trend can be understood by

looking at the other set of graphs where N is plotted for all itera-
tions. It can be seen that for a majority of iterations, N is smaller

than 1000—a data-block size range where our algorithm outper-
forms MPI_Alltoallv. The second trend can be attributed to the

inherent nature of the application where the underlying data load

varies significantly across iterations.

6 RELATED WORK

The influential paper [38] presented a suite of optimizations to
improve the performance of MPI collective functions. In particular,
it introduced the Bruck’s algorithm in the context of all-to-all data
exchanges implemented with MPICH. Although much research
work [9, 14, 39, 41] has been conducted on optimizing all-to-all
operations for uniform data, little research has been conducted for
all-to-all operations for non-uniform data loads. Sanjay et al. [34]
proposed a two-stage algorithm that decomposes many-to-many
communication with non-uniform messages into two all-to-all com-
munications with uniform messages. They showed good perfor-
mance when compared to a single-stage algorithm. However, their
evaluation was limited to small process counts. Goglin et al. [18]
proposed a hardware-independent kernel model (KNEM) that offers
efficient intra-node MPI communication by allowing direct copy-
ing between processes. This work showed improvements in MPI
collective operations by removing serialization at the root process.
However, this work was designed for optimizing point-to-point
send-receive instead of collective operations, and it is only effective
for long-messages.

There is a body of research that focuses on reducing the number
of processes involved in intra-node comm. Jackson et al. [25] pre-
sented a planned Alltoallv that transmits data from all processes
on the same node to a chosen master process before conducting
inter-node communication. This scheme reduces network conges-
tion by restricting the number of processes participating in the
all-to-all data exchange. They compared their work with standard
MPI_Alltoallv and showed a significant improvement with short-
message communication. However, the scheme is only effective
for shared-memory clusters and is best suited for tasks requir-
ing repeated executions with a fixed, non-uniform data load. On
similar lines, Plummer et al. [33] introduced an algorithm that par-
titions all processes into non-overlapping communication groups,
where only the leader process of a group participates in all-to-all

communication. Within a group, processes use MPI_Gatherv and
MPI_Scatterv to exchange data with the group leader process.
These approaches are suited for applications with a non-uniform
data load that is fixed across time.

6.1 SLOAV

SLOAV [44] was the first logarithmic running time algorithm pro-
posed for non-uniform all-to-all data exchanges. It used a coupled
two-phase communication method involving meta data exchange
followed by data exchange. Although our two-phase Bruck algo-
rithm is also based on this key idea, we identify some areas where
we were able to improve on the original SLOAV algorithm [44].

We present a detailed account of these improvements over SLOAV:

(1) Meta-data management: during the intermediate log(P) com-
munication steps, a process sends multiple data-blocks along with
a block-size-array that stores the sizes of the data-blocks. SLOAV
couples the meta-data (block-size-array) and the actual data (data-
blocks) into one single combined buffer. The meta-data phase first
transmits the size of the combined buffer, which is then followed by
the data-transfer phase. This scheme potentially requires an extra
pack step to combine the data-blocks and the block-size-array and
also requires an additional unpack on the receiving side to separate
the data from meta-data. Our approach instead transmits the block-
size-array in the meta-data exchange phase — decoupling meta-data
from data, and thus avoiding the computational cost associated with
the pack and unpack steps. (2) Buffer management: SLOAV uses a
two-layer data structure (size-array and pointer array) along with
a temporary buffer. It requires explicit buffer management, resizing
of the temporary buffer, and access to non-contiguous memory. Our
approach uses a large monolithic buffer that is always sufficient to
accommodate all intermediate data-blocks and therefore does not
require an additional pointer array and any explicit memory copy.
(3) Rotation overhead: SLOAV removes the initial rotation, but has
an explicit final rotation phase. Our method, built on top of the Zero
Rotation Bruck, eliminates both rotation phases. (4) Scan overhead:
SLOAV has a final scan phase that copies all the data-blocks from
send buffer and temporary buffer into the receive buffer. We get
rid of this scan phase by preempting the final location and directly
copying data into the output buffer.

Reproducibility and scaling: The empirical evaluation given
for the SLOAV approach is limited in both scale and load. Al-
though the paper compared the algorithm with MPI_Alltoallv
and showed improvements for short-messages, it lacks key imple-
mentation details and is not open-sourced, making it difficult to
reproduce. Our code is open-sourced ! and reproducible, with a
more rigorous evaluation (using synthetic benchmarks and real
applications).

7 CONCLUSION

MPI_Alltoallv is a commonly used collective primitive that per-
forms non-uniform all-to-all data exchanges. In this paper, we
demonstrate several instances where our two-phase and padded
Bruck outperforms the vendor-optimized version. Our techniques
can potentially improve a range of applications that rely on non-
uniform all-to-all comm. Our open-source code that can be easily

Uhttps://github.com/harp-lab/bruck-alltoally

64.0
—— MPI_Alltoallv

—— PaddedBruck
—f— TwoPhaseBruck

=W
onN
oo

8.0
4.0
2.0
1.0

0.6 Cori

03128 256 512 1024 2048 4096
Total number of process (P)

Time taken (ms)

128.0

o 64.0 —— MPI_Alltoallv

g 32.0 —— PaddedBruck

c 16.0 —— TwoPhaseBruck

2 8.0

S 4.0

o 2.0

E 10
0.6 Stampede
0.3

128 256 512 1024 2048 4096 8192
Total number of process (P)

Figure 13: Weak scaling results comparing two-phase
Bruck and padded bruck against vendor implementation
of MPI_Alltoallv for Normal distribution data with N = 64
on Cori (top) and Stampede (bottom).

adopted by applications and vendors will have the following imple-
mentations:

(1) Modified Bruck: A Bruck variant for uniform data loads (adapted
from [39]) Same function signature as MPI_Alltoall.

(2) Zero Rotation Bruck: Our implementation of Bruck for uniform
data loads gets rid of both rotation phases. (The same function
signature as MPI_Alltoall)

(3) Padded Bruck: Our extension of Bruck for non-uniform all-to-
all. (Same function signature as MPI_Alltoallv)

(4) two-phase Bruck: Our extension of Bruck for non-uniform data
loads. (Same function signature as MPI_Alltoallv)

To further show the generalizability of our algorithm, we also
conducted experiments on the Cori [8] (from ORNL) and Stam-
pede2 [36] (from TACC) supercomputers. We show a subset of our
results in Figure 13, where our algorithm outperforms the vendor-
optimized implementation on both machines.

We believe that more work needs to be done in order to com-
pletely generalize the usability of the two-phase Bruck algorithm,
targeting multiple HPC systems and different workloads—all lead-
ing to developing a more rigorous performance model. However,
with the results of our paper showing substantial speedups, we
can make a strong case for revisiting the Bruck Algorithm for non-
uniform all-to-all communication. Implementations of MPI can use
insights from this paper to directly optimize their MPI_Alltoallv.

8 ACKNOWLEDGEMENT

This work was funded in part by NSF RII Track-4 award 2132013. We
are thankful to the ALCF’s Director’s Discretionary (DD) program
for providing us with compute hours to run our experiments on the
Theta Supercomputer located at the Argonne National Laboratory.

https://github.com/harp-lab/bruck-alltoallv

REFERENCES

[9

=

[10]
[11]

=
&

[13]

[14]

[15

[16

[17

[18]

[19

[21]

[22

[23]

MPI on Theta. MPI on Theta. https://www.alcf.anl.gov/support-center/theta/mpi-
theta.

MPICH Home Page. https://www.mpich.org.

OpenMPI Home Page. https://www.open-mpi.org.

Theta ALCF Home Page. https://www.alcf.anl.gov/theta.

Uniform distribution. https://mathworld.wolfram.com/UniformDistribution.
html

George Almasi, Philip Heidelberger, Charles J Archer, Xavier Martorell, C Chris
Erway, José E Moreira, Burkhard Steinmacher-Burow, and Yili Zheng. 2005. Opti-
mization of MPI collective communication on BlueGene/L systems. In Proceedings
of the 19th annual international conference on Supercomputing. 253-262.

Tony Antoniadis, Konstantinos Triantafyllou, and Yannis Smaragdakis. 2017.
Porting doop to soufflé: a tale of inter-engine portability for datalog-based analy-
ses. In Proceedings of the 6th ACM SIGPLAN International Workshop on State Of
the Art in Program Analysis. ACM, 25-30.

Katie Antypas, Nicholas Wright, Nicholas P Cardo, Allison Andrews, and Matthew
Cordery. 2014. Cori: a cray xc pre-exascale system for nersc. Cray User Group
Proceedings. Cray 1 (2014).

Jehoshua Bruck, Ching-Tien Ho, Shlomo Kipnis, Eli Upfal, and Derrick Weath-
ersby. 1997. Efficient algorithms for all-to-all communications in multiport
message-passing systems. IEEE Transactions on parallel and distributed systems 8,
11 (1997), 1143-1156.

Timothy A. Davis and Yifan Hu. 2011. The University of Florida Sparse Matrix
Collection. ACM Trans. Math. Softw. 38, 1, Article 1 (Dec. 2011), 25 pages.
James Dinan, Pavan Balaji, Darius Buntinas, David Goodell, William Gropp, and
Rajeev Thakur. 2016. An implementation and evaluation of the MPI 3.0 one-sided
communication interface. Concurrency and Computation: Practice and Experience
28,17 (2016), 4385-4404.

Jun Doi and Yasushi Negishi. 2010. Overlapping methods of all-to-all communica-
tion and FFT algorithms for torus-connected massively parallel supercomputers.
In SC’10: Proceedings of the 2010 ACM/IEEE International Conference for High
Performance Computing, Networking, Storage and Analysis. IEEE, 1-9.

Ke Fan, Kristopher Micinski, Thomas Gilray, and Sidharth Kumar. 2021. Exploring
MPI Collective I/O and File-per-process I/O for Checkpointing a Logical Inference
Task. In 2021 IEEE International Parallel and Distributed Processing Symposium
Workshops (IPDPSW). IEEE, 965-972.

Ahmad Faraj and Xin Yuan. 2005. Automatic generation and tuning of MPI
collective communication routines. In Proceedings of the 19th annual international
conference on Supercomputing. 393-402.

Edgar Gabriel, Graham E Fagg, George Bosilca, Thara Angskun, Jack] Dongarra,
Jeffrey M Squyres, Vishal Sahay, Prabhanjan Kambadur, Brian Barrett, Andrew
Lumsdaine, et al. 2004. Open MPI: Goals, concept, and design of a next genera-
tion MPI implementation. In European Parallel Virtual Machine/Message Passing
Interface Users’ Group Meeting. Springer, 97-104.

Robert Gerstenberger, Maciej Besta, and Torsten Hoefler. 2013. Enabling highly-
scalable remote memory access programming with MPI-3 one sided. In Proceed-
ings of the International Conference on High Performance Computing, Networking,
Storage and Analysis. 1-12.

Thomas Gilray and Sidharth Kumar. 2021. Compiling Data-parallel Datalog. In
International Conference on Compiler Construction. IEEE.

Brice Goglin and Stephanie Moreaud. 2013. KNEM: A generic and scalable
kernel-assisted intra-node MPI communication framework. 7. Parallel and Distrib.
Comput. 73, 2 (2013), 176-188.

Richard L Graham, Brian W Barrett, Galen M Shipman, Timothy S Woodall, and
George Bosilca. 2007. Open mpi: A high performance, flexible implementation
of mpi point-to-point communications. Parallel Processing Letters 17, 01 (2007),
79-88.

Oded Green, Zhihui Du, Sanyamee Patel, Zehui Xie, Hang Liu, and David A Bader.
2021. Anti-Section Transitive Closure. In 2021 IEEE 28th International Conference
on High Performance Computing, Data, and Analytics (HiPC). IEEE, 192-201.
William Gropp. 2002. MPICH2: A new start for MPI implementations. In European
Parallel Virtual Machine/Message Passing Interface Users’ Group Meeting. Springer,
7-17.

William Gropp, William D Gropp, Ewing Lusk, Anthony Skjellum, and Argonne
Distinguished Fellow Emeritus Ewing Lusk. 1999. Using MPI: portable parallel
programming with the message-passing interface. Vol. 1. MIT press.

William Gropp and Ewing Lusk. 1996. User’s Guide for mpich, a Portable Imple-
mentation of MPL

[24

[25

[26

[27

[28

[29

@
=

[31

[32

[33

&
=

(35]

(36]

[37

[38

(39]

[40

[41

[42

[43

[44

[45

David C Howell. 2005. Median absolute deviation. Encyclopedia of statistics in
behavioral science (2005).

Adrian Jackson and Stephen Booth. 2004. Planned AlltoAllv a Cluster Approach.
(2004).

Qiao Kang, Robert Ross, Robert Latham, Sunwoo Lee, Ankit Agrawal, Alok Choud-
hary, and Wei-keng Liao. 2020. Improving all-to-many personalized communi-
cation in two-phase i/0. In SC20: International Conference for High Performance

Computirlzé, Networking, Storage and Analysis. IEEE, 1-13.
Sidharth Kumar and Thomas Gilray. 2019. Distributed Relational Algebra at Scale.

In International Conference on High Performance Computing, Data, and Analytics
(HiPC). IEEE.

Sidharth Kumar and Thomas Gilray. 2020. Load-balancing Parallel Relational
Algebra. In ISC High Performance. IEEE.

Ewing Lusk and Anthony Chan. 2008. Early experiments with the OpenMP/MPI
hybrid programming model. In International Workshop on OpenMP. Springer,
36-47.

Walaa Eldin Moustafa, Vicky Papavasileiou, Ken Yocum, and Alin Deutsch. 2016.
Datalography: Scaling datalog graph analytics on graph processing systems. In
2016 IEEE International Conference on Big Data (Big Data). IEEE, 56-65.

Sarthak Patel, Bhrugu Dave, Smit Kumbhani, Mihir Desai, Sidharth Kumar, and
Bhaskar Chaudhury. 2021. Scalable parallel algorithm for fast computation of
Transitive Closure of Graphs on Shared Memory Architectures. In 2021 IEEE/ACM
6th International Workshop on Extreme Scale Programming Models and Middleware
(ESPM2). IEEE, 1-9.

Jelena Pjesivac-Grbovi¢, Thara Angskun, George Bosilca, Graham E Fagg, Edgar
Gabriel, and Jack] Dongarra. 2007. Performance analysis of MPI collective
operations. Cluster Computing 10, 2 (2007), 127-143.

Martin Plummer and Keith Refson. 2004. An Ipar-customized mpi alltoallv for
the materials science code castep. Technical Report, EPCC (Edinburgh Parallel
Computing Centre) (2004).

Sanjay Ranka, Ravi V Shankar, and Khaled A Alsabti. 1995. Many-to-many
personalized communication with bounded traffic. In Proceedings Frontiers’ 95.
The Fifth Symposium on the Frontiers of Massively Parallel Computation. IEEE,
20-27.

Jiwon Seo, Jongsoo Park, Jaecho Shin, and Monica S Lam. 2013. Distributed
socialite: A datalog-based language for large-scale graph analysis. Proceedings of
the VLDB Endowment 6, 14 (2013), 1906-1917.

Dan Stanzione, Bill Barth, Niall Gaffney, Kelly Gaither, Chris Hempel, Tommy
Minyard, Susan Mehringer, Eric Wernert, H Tufo, D Panda, et al. 2017. Stampede
2: The evolution of an xsede supercomputer. In Proceedings of the Practice and
Experience in Advanced Research Computing 2017 on Sustainability, Success and
Impact. 1-8.

Hari Sundar, Dhairya Malhotra, and George Biros. 2013. Hyksort: a new variant
of hypercube quicksort on distributed memory architectures. In Proceedings of the
27th international ACM conference on international conference on supercomputing.
293-302.

Rajeev Thakur, Rolf Rabenseifner, and William Gropp. 2005. Optimization of
collective communication operations in MPICH. The International Journal of
High Performance Computing Applications 19, 1 (2005), 49-66.

Jesper Larsson Traff, Antoine Rougier, and Sascha Hunold. 2014. Implementing
a classic: Zero-copy all-to-all communication with MPI datatypes. In Proceedings
of the 28th ACM international conference on Supercomputing.

David Van Horn and Harry G Mairson. 2008. Deciding k CFA is complete for
EXPTIME. ACM Sigplan Notices 43, 9 (2008), 275-282.

Manjunath Gorentla Venkata, Richard L Graham, Joshua Ladd, and Pavel Shamis.
2012. Exploring the all-to-all collective optimization space with connectx core-
direct. In 2012 41st International Conference on Parallel Processing. IEEE.

Kai Wang, Zhiqiang Zuo, John Thorpe, Tien Quang Nguyen, and Guoqing Harry
Xu. 2018. RStream: marrying relational algebra with streaming for efficient graph
mining on a single machine. In 13th {USENIX} Symposium on Operating Systems
Design and Implementation ({OSDI} 18). 763-782.

Thomas Worsch, Ralf Reussner, and Werner Augustin. 2002. On benchmarking
collective MPI operations. In European Parallel Virtual Machine/Message Passing
Interface Users’ Group Meeting. Springer, 271-279.

Cong Xu, Manjunath Gorentla Venkata, Richard L Graham, Yandong Wang, Zhuo
Liu, and Weikuan Yu. 2013. Sloavx: Scalable logarithmic alltoallv algorithm for
hierarchical multicore systems. In 2013 13th IEEE/ACM International Symposium
on Cluster, Cloud, and Grid Computing. IEEE, 369-376.

Rohit Zambre, Aparna Chandramowliswharan, and Pavan Balaji. 2020. How i
learned to stop worrying about user-visible endpoints and love MPIL In Proceed-
ings of the 34th ACM International Conference on Supercomputing. 1-13.

https://www.alcf.anl.gov/theta.
https://mathworld.wolfram.com/UniformDistribution.html
https://mathworld.wolfram.com/UniformDistribution.html

	Abstract
	1 Introduction
	2 Implementation of Uniform Bruck
	2.1 Variants of the Bruck algorithm
	2.2 Performance Comparison

	3 Implementation of Non-uniform Bruck
	3.1 Padded Bruck
	3.2 Two-phase Bruck
	3.3 Theoretical Performance model

	4 Evaluation
	4.1 Scaling Analysis
	4.2 Sensitivity Analysis
	4.3 Standard distributions

	5 Applications
	5.1 Graph Mining: Transitive Closure
	5.2 Program Analysis: kCFA

	6 Related Work
	6.1 SLOAV

	7 Conclusion
	8 Acknowledgement
	References

