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Modern machine learning has achieved impressive prediction perfor-
mance, but often sacrifices interpretability, a critical consideration
in high-stakes domains such as medicine. In such settings, practi-
tioners often use highly interpretable decision tree models, but these
suffer from inductive bias against additive structure. To overcome
this bias, we propose Fast Interpretable Greedy-Tree Sums (FIGS),
which generalizes the CART algorithm to simultaneously grow a flexi-
ble number of trees in summation. By combining logical rules with
addition, FIGS is able to adapt to additive structure while remaining
highly interpretable. Extensive experiments on real-world datasets
show that FIGS achieves state-of-the-art prediction performance. To
demonstrate the usefulness of FIGS in high-stakes domains, we adapt
FIGS to learn clinical decision instruments (CDIs), which are tools
for guiding clinical decision-making. Specifically, we introduce a vari-
ant of FIGS known as G-FIGS that accounts for the heterogeneity in
medical data. G-FIGS derives CDIs that reflect domain knowledge
and enjoy improved specificity (by up to 20% over CART) without
sacrificing sensitivity or interpretability. To provide further insight
into FIGS, we prove that FIGS learns components of additive models,
a property we refer to as disentanglement. Further, we show (un-
der oracle conditions) that unconstrained tree-sum models leverage
disentanglement to generalize more efficiently than single decision
tree models when fitted to additive regression functions. Finally, to
avoid overfitting with an unconstrained number of splits, we develop
Bagging-FIGS, an ensemble version of FIGS that borrows the variance
reduction techniques of random forests. Bagging-FIGS enjoys com-
petitive performance with random forests and XGBoost on real-world
datasets.
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1. Introduction1

Modern machine learning methods such as random forests (1),2

gradient boosting (2, 3), and deep learning (4) display impres-3

sive predictive performance, but are complex and opaque, leading4

many to call them “black-box” models. Model interpretability is crit-5

ical in many applications (5, 6), particularly in high-stakes settings6

such as clinical decision instrument (CDI) modeling. Interpretability7

allows models to be audited for general validation, errors, or biases,8

and therefore also more amenable to improvement by domain experts.9

Interpretability also facilitates counterfactual reasoning, which is the10

foundation of scientific insight, and it instills trust/distrust in a model11

when warranted. As an added benefit, interpretable models tend to be12

faster and more computationally efficient than black-box models.*13

Decision trees are a prime example of interpretable models (2, 7–14

10). They can be easily visualized, memorized, and emulated by15

hand, even by non-experts, and thus fit naturally into high-stakes16

use-cases, such as decision-making in medicine (e.g. the emergency17

*FIGS is integrated into the imodels package �github.com/csinva/imodels (7) with an sklearn-
compatible API. Experiments for reproducing the results here can be found at �github.com/Yu-
Group/imodels-experiments.

department†), law, and public policy. While decision trees have the 18

potential to adapt to complex data, they are often outperformed by 19

black-box models in terms of prediction performance. However, there 20

is evidence that this performance gap is not intrinsic to interpretable 21

models, e.g., see examples in (7, 10–12). In this paper, we identify an 22

inductive bias of decision trees that causes its prediction performance 23

to suffer in some instances, and design a new tree-based algorithm 24

that overcomes this bias while preserving interpretability. 25

Our starting point is the observation that decision trees can be
statistically inefficient at fitting regression functions with additive
components (13). To illustrate this, consider the following toy exam-
ple: y = X1>0 + X2>0 · X3>0.‡ The two components of this
function can be individually implemented by trees with 1 split and
2 splits respectively. However, fitting their sum with a single tree
requires at least 5 splits, as we are forced to make duplicate subtrees:
a copy of the second tree has to be grown out of every leaf node of
the first tree (see Fig 1). Indeed, given independent tree functions
f1, . . . , fk, in order for a single tree f to implement their sum, we
would generally need

#leaves(f) Ø
KŸ

k=1

#leaves(fk).

This need to grow a deep tree to capture additive structure im- 26

plies two statistical weaknesses of decision trees when fitting them 27

to additive data-generating mechanisms. First, growing a deep tree 28

†For example, in the popular tool mdcalc, over 90% of available CDIs take the form of a decision tree.
‡This toy model is an instance of a Local Spiky and Sparse (LSS) model (14), which is grounded in real
biological mechanisms whereby an outcome is driven by interactions of inputs (e.g. bio-molecules)
which display thresholding behavior.
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Fig. 1. FIGS algorithm overview for learning the toy function y = X1>0 + X2>0 · X3>0. FIGS greedily adds one node at a time, considering splits not just in an
individual tree but within a collection of trees in a sum. This can lead to much more compact models, as it reduces repeated splits (e.g., in the final CART model shown in the
top-right).

greatly increases the probability of splitting on noisy features. Sec-29

ond, leaves in a deep tree contain fewer samples, implying that the30

predictions suffer from higher variance. These weaknesses could be31

mitigated if we fit a separate tree to each additive component of the32

generative mechanism and present the tree-sum as our fitted model.33

While existing ensemble methods such as random forests (1) and34

gradient boosting (2, 3) comprise tree-sums, they either fit each tree35

independently (random forests) or sequentially (gradient boosting),36

and are hence unable to disentangle the separate additive components.37

To address these weaknesses of decision trees, we propose Fast38

Interpretable Greedy-Tree Sums (FIGS), a novel yet natural algorithm39

that is able to grow a flexible number of trees simultaneously. FIGS40

is based on a simple yet effective modification to Classification and41

Regression Trees (CART) (8), allowing it to adapt to additive structure42

(if present) by starting new trees, while still maintaining the ability of43

CART to adapt to higher-order interaction terms. By capping the total44

number of splits allowed, FIGS produces a model that is also easily45

visualized, memorized, and emulated by hand.46

We performed extensive experiments across a wide array of real-47

world datasets to demonstrate the practical efficacy of FIGS. We48

compared FIGS with popular algorithms used to construct decision49

rule models (15). Taking the number of rules (splits in the case of50

trees) as a common measure of interpretability for this model class,51

we used the different algorithms to construct decision rule models52

of a prescribed level of interpretability, and found that FIGS often53

produced the model with the best prediction performance. An im-54

portant use case for decision trees and other decision rule algorithms55

is the construction of CDIs. CDIs are models for predicting patient56

risk and are widely used by healthcare professionals to make rapid57

decisions in a clinical setting such as the emergency room. To ap-58

ply FIGS to the medical domain, it is crucial that FIGS is able to59

adapt to heterogeneous data from diverse groups of patients. Tailor-60

ing models to various groups is often necessary since various groups61

of patients may differ dramatically and require distinct features for62

high predictive performance on the same outcome. While a naive63

solution is to fit a unique model to each group of patients, this is64

sample-inefficient and sacrifices valuable information that can be65

shared across groups. To mitigate this issue, we introduce a variant of66

FIGS, called Group Probability-Weighted Tree Sums, G-FIGS, which67

accounts for this heterogeneity while using all the samples available.68

Specifically, G-FIGS first fits a classifier (e.g., logistic regression)69

to predict group membership probabilities for each sample. Then, it70

uses these estimates as instance weights in FIGS to output a model71

for each group.72

We used both FIGS and G-FIGS to construct CDIs for three pe-73

diatric emergency care datasets, and found that both have up to 10% 74

higher specificity than CART while maintaining the same level of 75

sensitivity. Further, G-FIGS improves performance over FIGS by 76

over 3% for fixed levels of sensitivities. The features used in the fitted 77

models agrees with medical domain knowledge. Moreover, G-FIGS 78

learns a tree-sum model where each tree in the model represents a 79

distinct clinical domain, providing a clear and organized framework 80

for clinicians to use when assessing and treating patients. Next, we 81

investigate the stability of G-FIGS to data perturbations. Stability 82

to “reasonable” data perturbations is a key tenet of the Predictability, 83

Computability, and Stability (PCS) framework (6, 16, 17), and a nec- 84

essary prerequisite for the application of ML techniques in high-stakes 85

domains. We show that G-FIGS learns a similar tree-sum model (i.e., 86

a similar set of features) across data perturbations (e.g., introducing 87

noise by randomly permuting labels). 88

Next, we investigate tree-sum models and FIGS theoretically. We 89

prove generalization upper bounds for tree-sum models when given 90

oracle access to the optimal tree structures. Whenever additive struc- 91

ture is present, this upper bound has a faster rate in the sample size 92

n compared to the generalization lower bound for any decision tree 93

proved in (13). Further, we establish in the large-sample limit that 94

FIGS disentangles the additive components of the generative model, 95

with each tree in the sum fitting a separate additive component. 96

Lastly, similarly to CART, FIGS overfits when allowed too many 97

splits. Hence, we develop an ensemble version, called Bagging-FIGS, 98

that borrows the bootstrap and feature subsetting strategies of random 99

forests. We compare the prediction performance of Bagging-FIGS 100

against random forests, XGBoost, and generalized additive models 101

(GAMs) across a wide range of real-world datasets. Bagging-FIGS 102

always maintains competitive performance with all other methods, 103

further enjoying the best performance on several datasets. 104

In what follows, Sec 2 introduces FIGS and Sec 3 covers related 105

work. Sec 4 contains our experimental results on real-world datasets 106

showing that FIGS predicts well with very few splits. Sec 5 covers 107

three CDI case studies using FIGS and G-FIGS. Sec 6 investigates the 108

theoretical performance of tree-sum models and FIGS. Finally, Sec 7 109

introduces Bagging-FIGS and compares its prediction performance to 110

other algorithms on real-world datasets. 111

2. FIGS: Algorithm description and run-time 112

Suppose we are given training data Dn = {(xi, yi)}n
i=1. When

growing a tree, CART chooses for each leaf node t the split s that
maximizes the impurity decrease in the responses y. For a given node

2 | www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX Tan et al.
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t, the impurity decrease has the expression

�̂(s, t, y) :=
ÿ

xiœt

(yi ≠ ȳt)2 ≠
ÿ

xiœtL

(yi ≠ ȳtL )2

≠
ÿ

xiœtR

(yi ≠ ȳtR )2
,

where tL and tR denote the left and right child nodes of t respectively,113

and ȳt, ȳtL , ȳtR denote the mean responses in each of the nodes. We114

call such a split s a potential split, and note that for each iteration115

of the algorithm, CART chooses the potential split with the largest116

impurity decrease.§117

FIGS extends CART to greedily grow a tree-sum (see Algorithm 1).118

That is, at each iteration of FIGS, the algorithm chooses either to119

make a split on one of the current K trees f̂1, . . . , f̂K in the sum, or120

to add a new stump to the sum. To make this decision, it still applies121

the CART splitting criterion detailed above to identify a potential122

split in each leaf of each tree. However, to compute the impurity123

decrease for a given split, it substitutes the vector of residuals ri :=124

y ≠
qK

k=1 f̂k(xi) for the vector of responses y. FIGS makes only125

one split among the K + 1 trees: the one corresponding to the largest126

impurity decrease. The value of each of the new leaf nodes is then127

defined to be the mean residual for the samples it contains, added to128

the value of its parent node. If a new stump is created, the value at the129

root is defined to be zero. At inference time, we predict the response130

of an example by dropping it down each tree and summing the values131

of each leaf node containing it.132

Algorithm 1 FIGS fitting algorithm.
1: FIGS(X: features, y: outcomes, stopping_threshold)
2: trees = []
3: while count_total_splits(trees) < stopping_threshold:
4: all_trees = join(trees, build_new_tree()) # add new tree
5: potential_splits = []
6: for tree in all_trees:
7: y_residuals = y – predict(all_trees)
8: for leaf in tree:
9: potential_split = split(X, y_residuals, leaf )

10: potential_splits.append(potential_split)
11: best_split = split_with_min_impurity(potential_splits)
12: trees.insert(best_split)

Selecting the model’s stopping threshold. Choosing a threshold133

on the total number of splits can be done similarly to CART: using134

a combination of the model’s predictive performance (i.e., cross-135

validation) and domain knowledge on how interpretable the model136

needs to be. Alternatively, the threshold can be selected using an137

impurity decrease threshold (8) rather than a hard threshold on the138

number of splits. We discuss potential data-driven choices of the139

threshold in the Discussion (Sec 8).140

Run-time analysis. The run-time complexity for FIGS to grow a141

model with m splits in total is O(dm
2
n

2), where d the number of142

features, and n the number of samples (see derivation in Appendix S1).143

In contrast, CART has a run-time of O(dmn
2). Both of these worst-144

case run-times given above are quite fast, and the gap between them145

is relatively benign as we usually make a small number of splits to146

ensure interpretability.147

§This corresponds to greedily minimizing the mean-squared-error criterion in regression and Gini
impurity in classification.

Extensions. FIGS supports many natural modifications that are 148

used in CART trees. For example, different impurity measures can be 149

used; here we use Gini impurity for classification and mean-squared- 150

error for regression. Additionally, FIGS could benefit from pruning, 151

shrinkage (18), or by being used as part of an ensemble model (e.g., 152

Bagging-FIGS). We discuss other extensions in Appendix S1. 153

3. Related work and its connections to FIGS 154

There is a long history of greedy methods for learning individual trees, 155

e.g., C4.5 (9), CART (8), and ID3 (19). Recent work has proposed 156

global optimization procedures rather than greedy algorithms for trees. 157

These can improve performance given a fixed split budget but incur 158

a high computational cost (20–22). However, due to the limitations 159

of a single tree, all these methods have an inductive bias against 160

additive structure (13, 23). Besides trees, there are a variety of other 161

interpretable methods such as rule lists (24, 25), rule sets (26, 27), 162

or generalized additive models (28); for an overview and Python 163

implementation, see (7). 164

FIGS is related to backfitting (29), but differs crucially because 165

it does not assume a fixed number of component features, nor does 166

it require knowledge on which features are used by each component. 167

Furthermore, FIGS does not update its component trees in a cyclic 168

manner, but instead trees “compete for splits” at each iteration. 169

Similar to the work here are methods that learn an additive model 170

of splits, where a split is defined to be an axis-aligned, rectangular 171

region in the input space. RuleFit (30) is a popular method that learns 172

a model by first extracting splits from multiple greedy decision trees 173

fit to the data and then learning a linear model using those splits as 174

features. FIGS is able to improve upon RuleFit by greedily selecting 175

higher-order interactions when needed, rather than simply using all 176

splits from some pre-specified tree depth. MARS (31) greedily learns 177

an additive model of splines in a manner similar to FIGS, but loses 178

some interpretability as a result of using splines rather than splits. 179

Also related to this work are tree ensembles, such as random 180

forest (1), gradient-boosted trees (32), BART (33) and AddTree (34), 181

all of which use ensembling as a way to boost predictive accuracy 182

without focusing on finding an interpretable model. Loosely related 183

are post-hoc methods which aim to help understand a black-box 184

model (2, 35, 36), but these can display lack of fidelity to the original 185

model, and also suffer from other problems (37). 186

4. FIGS results on real-world benchmark datasets 187

This section shows that FIGS enjoys strong prediction performance 188

on several real-world benchmark datasets compared to popular algo- 189

rithms for fitting decision rule models. 190

Benchmark datasets. For classification, we study four large 191

datasets previously used to evaluate rule-based models (18, 38) 192

along with the two largest UCI binary classification datasets used in 193

Breiman’s original paper introducing random forests (1, 39) (overview 194

in Table 1). For regression, we study all datasets used in the random 195

forest paper with at least 200 samples along with three of the largest 196

non-redundant datasets from the PMLB benchmark (40). 80% of the 197

data is used for training/3-fold cross-validation and 20% of the data is 198

used for testing. 199

Baseline methods. For both classification and regression, FIGS 200

is compared to CART, RuleFit, and Boosted Stumps (CART stumps 201

learned via gradient-boosting). Furthermore, for classification we 202

additionally compare against C4.5 and for regression we additionally 203

compare against a CART model fitted using the mean-absolute-error 204

Tan et al. PNAS | July 7, 2023 | vol. XXX | no. XX | 3
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Name Samples Features Majority class
C

la
ss

ifi
ca

tio
n Readmission 101763 150 53.9%

Credit (41) 30000 33 77.9%
Recidivism 6172 20 51.6%
Juvenile (42) 3640 286 86.6%
German credit 1000 20 70.0%
Diabetes (43) 768 8 65.1%

Name Samples Features Mean

R
eg

re
ss

io
n

Breast tumor (40) 116640 9 62.0
CA housing (44) 20640 8 5.0
Echo months (40) 17496 9 74.6
Satellite image (40) 6435 36 7.0
Abalone (45) 4177 8 29.0
Diabetes (46) 442 10 346.0
Friedman1 (31) 200 10 26.5
Friedman2 (31) 200 4 1657.0
Friedman3 (31) 200 4 1.6

Table 1. Real-world datasets analyzed here: classification (top panel),
regression (bottom panel).

(MAE) splitting-criterion. We finally also add a black-box baseline205

comprising a Random Forest with 100 trees, which thus uses many206

more splits than all the other models.¶207

FIGS predicts well with few splits. Fig 2 shows the models’ perfor-208

mance results (on test data) as a function of the number of splits in the209

fitted model.|| We treat the number of splits as a common metric for210

the level of interpretability of each model. In practice, interpretabil-211

ity is context-dependent. However, the goal of this experiment is212

to sweep across a range of interpretability levels, and show the test213

performance had that level been selected.214

The top two rows of Fig 2 show results for classification (measured215

using the area under the receiver operating characteristic (ROC) curve,216

i.e. AUC), and the bottom three rows show results for regression217

(measured using the coefficient of determination, denoted by R
2).218

On average, FIGS outperforms baseline models when the number219

of splits is very low. The performance gain from FIGS over other220

baselines is larger for the datasets with more samples (e.g., the top row221

of Fig 2), matching the intuition that FIGS performs better because222

of its increased flexibility. For two of the larger datasets (Credit and223

Recidivism), FIGS even outperforms the black-box Random Forest224

baseline, despite using less than 15 splits. For the smallest classifica-225

tion dataset (Diabetes), FIGS performs extremely well with very few226

(less than 10) splits but starts to overfit as more splits are added.227

5. Learning CDIs via FIGS228

A key domain problem involving interpretable models is the develop-229

ment of CDIs, which can assist clinicians in improving the accuracy,230

consistency, and efficiency of diagnostic strategies for sick and injured231

patients. Recent works have developed and validated CDIs using in-232

terpretable models, particularly in emergency medicine (47–50). As233

discussed earlier, applying machine learning models to the medical234

domain must account for the heterogeneity in the data that arises235

from the presence of diverse groups of patients (e.g., age groups, sex,236

treatment sites). Typically, this heterogeneity is dealt by fitting a237

¶We also compare against Gradient-boosting with decision trees of depth 2, but find that it is
outperformed by CART in this limited-split regime, so we omit these results for clarity. We also
attempt to compare to optimal tree methods, such as GOSDT (20), but find that they are unable to
fit the dataset sizes here.

||For RuleFit, each term in the linear model is counted as one split.

separate model on each group. However, this strategy comes at the 238

cost of losing samples, and discarding valuable information that can 239

be shared amongst various groups. To mitigate this loss of power, we 240

introduce a variant of FIGS, called group-probability weighted FIGS, 241

or G-FIGS as follows. 242

G-FIGS: Fitting FIGS to multiple groups. As before, we assume a 243

supervised learning setting with features X , outcome Y , and a group 244

label G (e.g., treatment site or age group). G-FIGS is a two-step 245

algorithm: (i) For a given group label g, G-FIGS first estimates group 246

membership probabilities for each example (e.g., by fitting a logistic 247

regression model to predict group-membership)** That is, it estimates 248

P(G = g | X). (ii) For a given group g, G-FIGS then uses the group 249

probabilities P(G = g | X) as sample weights when fitting FIGS to 250

the whole dataset. This results in a group-specific model, but borrows 251

information from samples in other groups. See Appendix S4 for more 252

details, and a visual representation. 253

Datasets and data cleaning. Table 2 shows the CDI datasets under 254

consideration here. They each constitute a large-scale multi-site data 255

aggregation by the Pediatric Emergency Care Applied Research Net- 256

work (PECARN), with a relevant clinical outcome (e.g., presence of 257

traumatic brain injury). For each of these datasets, we group patients 258

into two natural groups: patients with age <2 years and Ø2 years. 259

This age-based threshold is commonly used for emergency-based 260

diagnostic strategies (51), because it follows a natural stage of devel- 261

opment, including a child’s ability to participate in their care (e.g., 262

ability to verbally communicate with their doctor). At the same time, 263

the natural variability in early childhood development also creates op- 264

portunities to share information across this threshold. These datasets 265

are non-standard for machine learning; as such, we spend consider- 266

able time cleaning, curating, and preprocessing these features along 267

with medical expertise included in the authorship team.†† We use 60% 268

of the data for training, 20% for tuning hyperparameters (including 269

estimation of each patient’s group-membership P(age <2 years | X)), 270

and 20% for evaluating test performance. 271

Prediction metrics. Prediction performance is measured by com- 272

paring the specificity of a model when sensitivity is constrained to 273

be above a given threshold, chosen to be {92%, 94%, 96%, 98%}. 274

We opt for this metric because high levels of sensitivity are crucial 275

for CDIs so as to avoid potentially life threatening false negatives 276

(i.e., missing a diagnosis). For a given threshold, we would like to 277

maximize specificity as false positives lead to unncessary resource 278

utilization and can needlessly expose patients to the harmful effects 279

of medical procedures such as radiation from a computed tomography 280

(CT) scan. 281

Baseline methods. We compare FIGS and G-FIGS to two baselines: 282

CART (8) and Tree-Alternating Optimization TAO (52)). For each 283

baseline, we either (i) fit one model to all the training data or (ii) 284

fit a separate model to each group (denoted with -SEP) – one to the 285

patients with age <2 years and one for the patients with age Ø2 years. 286

Additionally, for CART, we also fit a model in the style of G-FIGS, 287

denoted as G-CART. Limits on the total number of splits for each 288

model are varied over a range which yields interpretable models, from 289

2 to 16 maximum splits‡‡ (full details of this and selection of other 290

hyperparameters are inAppendix S5). 291

**This is methodologically analogous to a propensity score in the causal inference literature.
††Details, along with the openly released clean data can be found in Appendix S5.
‡‡The choice of 16 splits is somewhat arbitrary, but we find that amongst 643 popular CDIs on mdcalc,

93% contain no more than 16 splits and 95% contain no more than 20 splits.

4 | www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX Tan et al.
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Fig. 2. FIGS performs extremely well on the test-set using very few splits, particularly when the dataset is large. Top two rows show results for classification datasets (measured
by AUC of the ROC curve) and the bottom three rows show results for regression datasets (measured by R2). Errors bars show standard error of the mean, computed over 6
random data splits.

Tan et al. PNAS | July 7, 2023 | vol. XXX | no. XX | 5
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Name Patients Features Outcome (count) Outcome (%)

TBI 42428 61 376 0.9%
IAI 12044 21 203 1.7%
CSI 3313 34 540 16.3%

Table 2. Clinical decision datasets for traumatic brain injury (TBI) (51),
intra-abdominal injury (IAI) (50), and cervical spine injury (CSI) (53).

FIGS and G-FIGS predict well. Table 3 shows the prediction perfor-292

mance of FIGS, G-FIGS , and baseline methods. Further, we report293

the prediction performance of all methods for each age group sepa-294

rately (i.e, age <2 years and age Ø2 years) in Table S2 and Table S3295

respectively. For high levels of sensitivity, G-FIGS generally improves296

the model’s specificity against the baselines. Further, G-FIGS also297

improves specificity for each age group, often outperforming both298

the models that fit all the data as well as the model that fits data for299

each group separately. This suggests that using a different model for300

each group while sharing information across groups can lead to better301

prediction in a heterogeneous population.302

Fig. 3. Visualizes the G-FIGS and G-CART models fitted to CSI dataset for the
age Æ2 years group. Both G-FIGS and G-CART use features that match medical
knowledge. However, unlike G-CART, G-FIGS disentangles risk factors, with each
tree representing a distinct clinical domain.

Features used by G-FIGS match medical knowledge. Fig 3 shows303

the G-FIGS model on the cervical spinal injury (CSI) dataset for304

patients with age <2 years, while Appendix S5 shows G-FIGS models305

for patients with age Ø2 years, and the other two datasets. The306

features used by the learned model match medical domain knowledge307

and partially agree with previous work (53); e.g., features such as308

focal neurologic signs, altered mental status, and torticollis are all309

known to increase the risk of CSI. Further, features unique to each310

group largely relate to the age cutoff; the <2 years age group features311

include those that clinicians can assess without asking the patient (e.g.,312

substantial torso injury), while that of the Ø2 years age group features313

(visualized in Fig S3) require verbal responses (neck pain, head pain).314

This matches the medical intuition that non-verbal features should be315

more reliable features in the <2 years age group.316

G-FIGS disentangles clinical risk factors. Fig 3 visualizes the G-317

FIGS and G-CART model for the <2 years age group on the CSI318

dataset. Both G-FIGS and G-CART utilize almost all the same fea-319

tures (apart from Axial load to head). However, unlike G-CART,320

G-FIGS disentangles risk factors with each tree representing a clin-321

ical domain: the top tree identifies signs and symptoms, the middle322

tree corresponds to the mode of injury and how the patient arrived 323

at the hospital, and the bottom tree assesses the overall severity of 324

the patient’s injury patterns and any associated injuries that may be 325

present. By disentangling clinical domains, the fitted G-FIGS model 326

not only has stronger prediction performance than a single-tree model 327

(see Table 2), but also provides a more medically intuitive framework 328

for clinicians to use when assessing and treating patients. We provide 329

another example of the ability of FIGS to disentangle risk factors on 330

a diabetes classification dataset in Appendix S6. We note that there is 331

no a priori reason that tree-sum models are more reflective of the true 332

data generating process than single tree models. Instead, trust in the 333

veracity of such a model should be based on good prediction perfor- 334

mance as well as coherence with domain knowledge. In more detail, 335

we recommend that practitioners follow the predictive, descriptive, 336

and relevance (PDR) framework for investigating real-world scientific 337

problems using interpretable machine learning models (6). 338

Stability Analysis of Learnt CDI. As discussed earlier, the PCS 339

framework argues that stability to “reasonable” data perturbations 340

is a key prerequisite for interpretability and deployment of machine 341

learning methods in high-stakes domains. Here, we investigate the 342

stability of G-FIGS on the CSI dataset. Specifically, we introduce 343

noise by randomly swapping a percentage p of labels y. We vary p 344

between {1%, 2.5%, 5%}. For each value of p, we measure stability 345

by comparing the similarity of the features selected in the model 346

trained on the perturbed data to the model displayed in Fig 3. In par- 347

ticular, the similarity of features is measured via the Jaccard distance. 348

Further details of our experiments, and our results can be found in 349

Appendix S5. Our results show that G-FIGS learns a similar model 350

for each age group even for high values of p, indicating its stability. 351

6. Theoretical Investigations 352

We perform theoretical investigations to better understand the prop- 353

erties of FIGS and tree-sum models. Specifically, we show (under 354

some oracle conditions) that if the regression function has an additive 355

decomposition, then tree-sum models and FIGS are able to achieve 356

optimal generalization upper bounds and disentangle additive com- 357

ponents. In this section, we summarize these theoretical results, and 358

defer the formal statements and proof details to Appendix S6. 359

Oracle generalization upper bounds. As discussed, all single-tree 360

models have a squared error generalization error lower bound of 361

�(n≠2/(d+2)) when fitted to smooth additive models (13). To demon- 362

strate the utility of tree-sum models in capturing additive structure, we 363

provide generalization upper bounds of tree-sum models when their 364

structure is chosen by an oracle. Specifically, we consider the typical 365

supervised learning set-up y = f(x)+‘, where x is a random variable 366

on [0, 1]d and E{‘ | x} = 0. We assume f(x) =
qK

k=1 fk(xIk ), 367

where I1 . . . IK are disjoint blocks of features, and xIk denotes the 368

sub-vector of x comprising coordinates in Ik. Under this set-up, we 369

show that if each component function fk is smooth, and blocks of 370

features are independent (i.e., xIj ‹‹ xIk for j ”= k), then there ex- 371

ists a tree-sum model such that its squared error generalization upper 372

bound scales as O(Kn
≠2/(dmax+2)) where dmax = maxk|Ik|. It 373

is instructive to consider two extreme cases: If |Ik| = 1 for each k, 374

the upper bound scales as O
!
dn

≠2/3"
. On the other hand if K = 1, 375

we have an upper bound of O
!
n

≠2/(d+2)". Both bounds match the 376

well-known minimax rates for their respective inference problems 377

(54). See Theorem 2 for the formal statement. 378

FIGS performs disentanglement. One potential reason for the suc- 379

cess of FIGS is its ability to disentangle additive structure. We show 380
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Traumatic brain injury Cervical spine injury Intra-abdominal injury

Sensitivity level: 92% 94% 96% 98% 92% 94% 96% 98% 92% 94% 96% 98%

TAO 6.2 6.2 0.4 0.4 41.5 21.2 0.2 0.2 0.2 0.2 0.0 0.0
TAO-SEP 26.7 13.9 10.4 2.4 32.5 7.0 5.4 2.5 12.1 8.5 2.0 0.0
CART 20.9 14.8 7.8 2.1 38.6 13.7 1.5 1.1 11.8 2.7 1.6 1.4
CART-SEP 26.6 13.8 10.3 2.4 32.1 7.8 5.4 2.5 11.0 9.3 2.8 0.0
G-CART 15.5 13.5 6.4 3.0 38.5 15.2 4.9 3.9 11.7 10.1 3.8 0.7
FIGS 23.8 18.2 12.1 0.4 39.1 33.8 24.2 16.7 32.1 13.7 1.4 0.0
FIGS-SEP 39.9 19.7 17.5 2.6 38.7 33.1 20.1 3.9 18.8 9.2 2.6 0.9
G-FIGS 42.0 23.0 14.7 6.4 42.2 36.2 28.4 15.7 29.7 18.8 11.7 3.0

Table 3. Best test-set specificity when sensitivity is constrained to be above a given level. G-FIGS provides the best performance overall in
the high-sensitivity regime. -SEP models fit a separate model to each group, and generally outperform fitting a model to the entire dataset.
G-CART follows the same approach as G-FIGS but uses weighted CART instead of FIGS for each final group model. Averaged over 10 random
data splits into training, validation, and test sets, with hyperparameters chosen independently for each split.

that under the generative model discussed above, if FIGS splits nodes381

using population quantities (i.e., in the large-sample limit), then the382

set of features split upon in each fitted tree f̂k is contained within Ik.383

The precise theorem statement be found in Theorem 1 in Appendix384

Appendix S6. By disentangling additive components, FIGS is able to385

avoid duplicate subtrees, leading to a more parsimonious model with386

better performance. We provide (partial) empirical justification of387

this in real-world datasets, by showing that FIGS helps to reduce the388

number of possibly redundant and repeated splits often observed in389

CART models (see Appendix S2.) As discussed earlier, we emphasize390

that disentanglement does not necessarily reflect the underlying data391

generating process. We refer the reader to Sec 5 for a larger discussion392

regarding interpreting disentanglement.393

7. Bagging-FIGS394

Growing deeper decision trees reduces bias but increases variance.395

Allowing more splits in a FIGS model has the same effect. In order396

to reduce variance, random forests averages the predictions from an397

ensemble of decision trees that are each grown in a slightly different398

manner (1). Bagging-FIGS averages the predictions from an ensem-399

ble of FIGS models, and makes use of the same variance reduction400

strategies as random forests: (i) Each FIGS model fit on a bootstrap re-401

sampled dataset. (ii) At each iteration of each FIGS model, a random402

subset of the original features is chosen, and the algorithm chooses the403

next split only from this subset of features. The effect of both these404

strategies have been studied empirically and theoretically (55–58).405

Baseline methods and settings. In the remainder of this section,406

we will compare the prediction performance of FIGS and Bagging-407

FIGS against that of four other algorithms: random forest, XGBoost,408

and penalized iteratively reweighted least squares (PIRLS) on the409

log-likelihood of a generative additive model. All algorithms are fit410

using default settings§§. The number of features subsetted is a tuning411

parameter for random forest and Bagging-FIGS. For both algorithms,412

we set this to be d/3 for regression datasets and
Ô

d for classification413

datasets. These are the default choices for RF. We fit Bagging-FIGS414

with 100 FIGS estimators.415

Bagging-FIGS performs comparably to Random Forest and XGBoost416

Fig 4 shows the generalization performance of all the methods on the417

various real-world datasets introduced in Sec 4 and Sec 5. It shows418

that the performance of FIGS, measured by AUC can be improved via419

bagging and feature subsetting (Bagging-FIGS). In addition, Bagging-420

FIGS achieves comparable AUC to both XGBoost and random forest421

§§We use the implementation of PIRLS in pygam (59), with 20 splines term for each feature.

(on average improving over XGBoost by 0.015 and random forest by 422

0.013). For some datasets (e.g. IAI pecarn, Recidivism), Bagging- 423

FIGS outperforms both baselines. 424

8. Discussion 425

FIGS is a powerful and natural extension to CART which achieves 426

improved predictive performance over popular baseline tree-based 427

methods across a wide array of datasets while maintaining inter- 428

pretability by using very few splits. Furthermore, when the number of 429

splits is unconstrained, an ensemble version of FIGS has prediction 430

performance that compares favorably to random forest and XGBoost. 431

As a case study, we have shown how FIGS and G-FIGS can make 432

an important step towards interpretable modeling of heterogeneous 433

data in the context of high-stakes clinical decision-making. The fitted 434

CDI models here show promise, but require external clinical vali- 435

dation before potential use. While our current work only explores 436

age-based grouping, the behavior of G-FIGS with temporal, geograph- 437

ical, or demographic splits could be studied as well. Additionally, 438

there are many methodological extensions to explore, such as data- 439

driven identification of input data groups and schemes for feature 440

weighting in addition to instance weighting. FIGS has many other 441

natural extensions, some of which we detail below. 442

Optimization. Instead of using a greedy approach, one may perform 443

global optimization algorithm over the class of tree-sum models. FIGS 444

could include other moves such as pruning in addition to just adding 445

more splits. This could also be embedded in a Bayesian framework, 446

similar to Bayesian Additive Regression Trees (33). 447

Regularization. Using cross-validation (CV) to select the number 448

of splits tends to select larger models. Future work can use criteria 449

related to BIC (60) or stability in combination with CV (61) for 450

selecting this threshold based on data. In future work, one could 451

also vary the total number of splits and number of trees separately, 452

helping to build prior knowledge into the fitting process. FIGS could 453

be penalized via novel regularization techniques, such as regularizing 454

individual leaves or regularizing a linear model formed from the splits 455

extracted by FIGS (18). 456

Learning interactions. Interactions are known to be prevalent in 457

biology and other fields, and therefore of key scientific interest (62). 458

There has been recent interest in using random forests to learn inter- 459

actions (14, 63, 64). However, since single decision trees are unable 460

to disentangle additive structure, using random forests for interac- 461

tion discovery might lead to a high false discovery rate. As a result, 462

Tan et al. PNAS | July 7, 2023 | vol. XXX | no. XX | 7
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Fig. 4. Generalization performance across various real-world datasets with no constraints on the number of splits. (A) The performance of FIGS can usually be improved by fitting
an ensemble of FIGS models using bagging and feature subsetting (Bagging-FIGS). The performance of Bagging-FIGS is comparable that of a GAM. (B) Bagging-FIGS achieves
comparable performance to both XGBoost and random forest. Error bars show standard error of the mean, computed over 5 random data splits.

using FIGS in lieu of single decision trees might lead to improved463

interaction discovery. We leave this investigation to future work.464

Model class. The class of FIGS models could be further extended465

to include linear terms or allow for summations of trees to be present466

at split nodes, rather than just at the root.467

We hope FIGS and G-FIGS can pave the way towards more trans-468

parent and interpretable modeling that can improve machine-learning469

practice, particularly in high-stakes domains such as medicine, law,470

and policy making.471
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Supplement625

The supplement contains further details of our investigation into FIGS. In Appendix S1, we discuss computational issues, and further626

possible extensions of the FIGS algorithm. In Appendix S2, we perform a number of synthetic simulations that examine how FIGS and627

Bagging-FIGS can adapt to a number of data generating processes in comparison to other methods. In Appendix S3, we provide empirical628

evidence of disentanglement by showing FIGS avoids repeated splits on a number of datasets. In Appendix S4, we provide an extended629

description of G-FIGS. Appendix S5 shows the CDIs learnt by G-FIGS for the IAI, TBI, and CSI datasets. Appendix S5 provides extended630

details on data cleaning for the the IAI, TBI, and CSI datasets, hyper-parameter selection for G-FIGS, as well as extended results for G-FIGS.631

Further, Appendix S5 includes a stability analysis of G-FIGS on the CSI dataset. Finally, Appendix S6 includes theoretical investigations into632

FIGS and tree-sum models.633

S1. FIGS run-time analysis and extensions634

FIGS run-time analysis. The run time complexity for FIGS to grow a model with m splits in total is O(dm
2
n

2), where d the number of635

features, and n the number of samples.636

Proof. Each iteration of the outer loop adds exactly one split, so it suffices to bound the running time for each iteration, where it is clear that
the cost is dominated by the operation split in Algorithm 1 line 9, which takes O(n2

d), since there are at most nd possible splits, and it
takes O(n) time to compute the impurity decrease for each of these. Consider iteration s, in which we have a FIGS model f with s splits.
Suppose f comprises k trees in total, with tree i having si splits, and so that s = s1 + . . . + sk. The total number of potential splits is equal to
l + 1, where l is the total number of leaves in the model. The number of leaves on each tree is si + 1, so the total number of leaves in f is

l =
kÿ

i=1

(si + 1) = s + k.

Since each tree has at least one split, we have k Æ s, so that the number of potential splits is at most 2s + 1 The total time complexity is
therefore

mÿ

s=1

(2s + 1) · O(n2
d) = O(m2

n
2
d).

637

FIGS extensions: Updating leaf values after tree structures are fixed. We can continue to update the leaf values of trees in the FIGS model638

after the stopping condition has been reached and the tree structures are fixed. To do this, we perform backfitting, i.e. we cycle through the639

trees in the model several times, and at each iteration, update the leaf values of a given tree to minimize the sum of squared residuals of the full640

model. This can be seen to be equivalent to block coordinate descent on a linear system, and so converges linearly, under regularity conditions,641

to the empirical risk minimizer among all functions that can be represented as sum of component functions which are each implementable by642

one of the tree structures.¶¶ In our simulations, this postprocessing step usually does not seem to change the leaf values too much, probably643

because at the moment the leaves are created, their initial values are already chosen to minimize the mean-squared-error. Hence, we keep the644

step optional in our implementation of FIGS.645

S2. FIGS Simulation Results.646

We perform simulations to examine how well FIGS and Bagging-FIGS adapt to different data generating processes in comparison to four other647

methods: CART, random forests (RF), XGBoost (XGB), and generalized additive models (GAMs).648

Generative models. Let x be a random variable with distribution fi on [0, 1]d. Here, we set d = 50, let ‘ ≥ N(0, 0.01), with fi uniform on649

[0, 1]50 and investigate each of the following four regression functions:650

651

(A) Linear model:652

f(x) =
q20

k=1 xk + ‘653

(B) Single Boolean interaction model:654

f(x) =
r8

k=1 1{xk > 0.1} + ‘655

(C) Sum of polynomial interactions model:656

f(x) =
q5

k=1 x3k≠2x3k≠1x3k + ‘657

(D) Local spiky sparse model (14):658

f(x) =
q5

k=1 1{x3k≠2, x3k≠1, x3k > 0.5} + ‘659

Performance metrics. For each choice of regression function, we vary the training set size in a geometrically-spaced grid between 100 and660

2500. For each training set, we fit all five algorithms, and compute their noiseless test MSEs on a common test set of size 500. The entire661

experiment is repeated 10 times, and the results averaged across the replicates.662

¶¶We say that a function is implementable by a tree structure if it is constant on each of the leaves of the tree.
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Simulation results. FIGS and Bagging-FIGS predicts well across all four generative models, either performing best or very close to the best 663

amongst all methods compared in moderate sample sizes (Fig S1). All other models suffer from weaknesses: PIRLS performs best for the 664

linear generative model (A), but performs poorly whenever there are interactions present, i.e. for (B), (C) and (D). Tree ensembles (XGBoost 665

and RF) perform well when there are interactions but fail to fit the linear generative model. 666

(A) Linear model (B) Single interaction (C) Sum of polynomial interactions (D) Local spiky sparse model

Fig. S1. FIGS is able to adapt to generative models, handling both additive structure and interactions gracefully. In both (A) and (B), the generative model for X is uniform
with 50 features. Noise is Gaussian with mean zero and standard deviation 0.1 for training but no noise for testing. (A) Y is generated as linear model with sparsity 20 and
coefficient 1. (B) Y is generated from a single Boolean interaction model of order 8. (C) Y is generated from a sum of 5 three-way polynomial interactions. (D) Y is generated
from a sum of 5 three-way Boolean interactions. All results are averaged over 10 runs.

S3. Empirically learned number of trees and repeated splits for FIGS 667

Next, Fig S1 investigates whether FIGS avoids the issue of repeated splits. It shows the fraction of splits which are repeated within a learned 668

model as a function of the total number of splits in the model. We define a split to be repeated if the model contains another split using the 669

same feature and a threshold whose value is within 0.01 of the original split’s threshold.*** FIGS consistently learns fewer repeated splits than 670

CART, one signal that it is avoiding learning redundant subtrees by separately modeling additive components. Fig S1 shows he largest three 671

datasets studied. Finally, Fig S2 shows the number of trees fitted by FIGS for each dataset. 672

Fig. S1. FIGS learns less redundant models than CART. As a function of the number of splits in the learned model, we plot the fraction of splits repeated for the three largest
datasets (all datasets studied show the same pattern). Error bars show standard error of the mean, computed over 6 random splits.

Fig. S2. Number of trees learned as a function of the total number of splits in FIGS for different classification datasets.

***This result is stable to reasonable variation in the choice of this threshold.
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S4. G-FIGS Extended Description673

Group probability-weighted FIGS (G-FIGS) aims to tackle two challenges: (1) sharing data across heterogenous groups in the input data and674

(2) ensuring the interpretability of the final output.675

X
yCLASS

p≥2 yrs

A Fit to group labels; obtain group probabilities

FIGS

X
yCLASS

1 - p≥2 yrs

FIGS

Model for
≥2 yrs group 

Model for 
<2 yrs group 

B Fit to class labels, using group probabilities as instance weights

yGROUP

X GROUP = ≥2 yrs

fGROUPX GROUP = <2 yrs p≥2 yrs

+

Fig. S1. Overview of G-FIGS. (A) First, the covariates of each instance in a dataset are used to estimate an instance-specific probability of membership in each of the
pre-specified groups in the data (e.g., patients of age <2 years and Ø2 years). (B) Next, these membership probabilities are used as instance weights when fitting an
interpretable model for each group.

Setup. We assume a supervised learning setting (classification or regression) with features X (e.g., blood pressure, signs of vomiting), and676

an outcome Y (e.g., cervical spine injury). We are also given a group label G, which is specified using the context of the problem and domain677

knowledge; for example, G may correspond to different sites at which data is collected, different demographic groups which are known to678

require different predictive models, or data before/after a key temporal event. G should be discrete, as G-FIGS will produce a separate model679

for each unique value of G, but may be a discretized continuous or count feature.680

Fitting group membership probabilities. The first stage of G-FIGS fits a classifier to predict group membership probabilities P(G|X)681

(Fig S1A).††† Intuitively, these probabilities inform the degree to which a given instance is representative of a particular group; the larger682

the group membership probability, the more the instances should contribute to the model for that group. Any classifier can be used; we find683

that logistic regression and gradient-boosted decision trees perform best. The group membership probability classifier can be selected using684

cross-validation, either via group-label classification metrics or downstream performance of the weighted prediction model; we take the latter685

approach.686

Fitting group probability-weighted FIGS. In the second stage (Fig S1B), for each group G = g, G-FIGS uses the estimated group membership687

probabilities, P(G = g|X), as instance weights in the loss function of a ML model for each group P(Y |X, G = g). Intuitively, this allows the688

outcome model for each group to use information from out-of-group instances when their covariates are sufficiently similar. While the choice689

of outcome model is flexible, we find that FIGS performs best when both interpretability and high predictive performance are required.‡‡‡ By690

greedily fitting a sum of trees, FIGS effectively allocates a small budget of splits to different types of structure in data.691

S5. CDI Results692

A. Fitted clinical-decision instruments. The fitted clinical-decision instruments (CDIs) for the IAI, TBI, and CSI datasets from PECARN693

are shown in Fig S1, Fig S2, and Fig S3 respectively.694

††† In estimating P(G = g|X), we exclude features that trivially identify G (e.g., we exclude age when values of G are age ranges).
‡‡‡When interpretability is not critical, the same weighting procedure could also be applied to black-box models, such as Random Forest (1).
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No Yes

Abdominal trauma
5/1060 (0.5%) IAI ΔRisk = .74

2/92
(2.2%) IAI

No Yes

GCS below 11
10/1167 (0.9%) IAI ΔRisk = .88

5/107
(4.7%) IAI

No Yes or unclear

Thoracic
tenderness

3/968 (0.3%) IAI

No Yes

Costal margin 
tenderness

3/248 (1.2%) IAI ΔRisk = .79
2/26

(7.7%) IAI

No Yes

Abd. tenderness
1/222 (0.5%) IAI ΔRisk = .98

1/2
(50%) IAI

Unclear Yes

Thoracic
tenderness

0/220 (0%) IAI ΔRisk = .94
0/3

(0.0%) IAI

ΔRisk = .15
0/720 (0.0%) IAI

ΔRisk = .01
0/217 (0%) IAI

No Yes

Full GCS score
28/6298 (0.4%) IAI ΔRisk = .55

10/466
(2.1%) IAI

No Yes

Abdominal pain
193/10877 (1.8%) IAI ΔRisk = .67

165/4579
(3.6%) IAI

No Yes

Abdominal 
distention or pain

18/5832 (0.3%) IAI ΔRisk = .58
5/219

(2.3%) IAI

Yes or no Unclear

Thoracic 
tenderness

13/5613 (0.2%) IAI ΔRisk = .49
2/122

(1.6%) IAI

ΔRisk = .10
11/5491 (0.2%) IAI

+

No Yes

Abdominal trauma
193/10877 (1.8%) IAI ΔRisk = .15

109/1817
(6.0%) IAI

No Yes

ΔRisk = –.36
19/2355 (0.8%) IAI

No Yes

ΔRisk = .13
16/240

(6.7%) IAI

Severe abdominal 
tenderness

35/2595 (1.3%) IAI

Abdominal pain
84/9060 (0.9%) IAI

ΔRisk = –.06
19/6073 (0.3%) IAI

No Yes

GCS below 11
49/6465 (0.8%) IAI ΔRisk = .14

30/392
(7.6%) IAI

Model for <2 years

Model for ≥2 years

Fig. S1. G-FIGS model fitted to the IAI dataset. Note that the younger group only uses tenderness, which can evaluated without verbal input from the patient, whereas the older
group uses pain, which requires a verbal response. Achieves 95.1% sensitivity and 50.8% specificity (training).

Model for <2 years

No Yes

Focal neuro. signs
27/218 (12.4%) CSI ΔRisk = .85

7/11
(63.6%) CSI

No Yes

Altered mental
status

20/207 (9.7%) CSI ΔRisk = .52
15/70

(21.4%) CSI

No Yes

Predisposed
5/137 (3.6%) CSI ΔRisk = .76

1/4
(25%) CSI

No Yes

Torticollis
4/133 (3.0%) CSI ΔRisk = .72

2/4
(50%) CSI

2/129 (1.5%) CSI
ΔRisk = .10

No Yes

Motor vehicle 
collision

27/218 (12.4%) CSI ΔRisk = .20
9/34

(26.5%) CSI

No Yes

Arrived by EMS
18/184 (9.8%) CSI ΔRisk = –.12

10/121
(8.3%) CSI

ΔRisk = .11
8/50 (16%) CSI

No Yes

Axial load to head
8/63 (12.7%) CSI ΔRisk = –.13

0/13
(0.0%) CSI

No Yes

Substantial injury, 
torso/trunk

27/218 (12.4%) CSI ΔRisk = .22
5/11

(45.4%) CSI

ΔRisk = –.02
22/207 (10.6%) CSI

+

No Yes

Focal neuro. signs
513/3095 (16.6%) CSI ΔRisk = .82

206/475
(43.4%) CSI

No Yes

Neck pain
307/2620 (11.7%) CSI ΔRisk = .57

182/1013
(18.0%) CSI

No Yes

Altered mental
status

125/1607 (7.8%) CSI ΔRisk = .55
89/547

(16.3%) CSI

No Yes

Torticollis
36/1060 (3.4%) CSI ΔRisk = .77

6/19
(31.6%) CSI

No Yes

Age over 5
30/1041 (2.9%) CSI ΔRisk = .18

27/826
(3.3%) CSI

ΔRisk = .05
3/215 (1.4%) CSI

No Yes

Head pain
513/3095 (16.6%) CSI ΔRisk = –.1

110/960 
(11.5%) CSI

No Yes

Arrived by EMS
403/2135 (18.9%) CSI ΔRisk = 0

268/1641 
(16.3%) CSI

ΔRisk = .12
135/494 (27.3%) CSI

No Yes

Motor vehicle 
collision

513/3095 (16.6%) CSI ΔRisk = .13
99/454

(21.8%) CSI

ΔRisk = –.03
414/2641 (15.7%) CSI

+ +

+

Model for ≥2 years

Fig. S3. G-FIGS model fitted to the CSI dataset. Achieves 97.0% sensitivity and 33.9% specificity (training). The left tree for <2 years gives large � Risk to active features,
and on its own provides sensitivity of 99%. Counterintuitively, the middle tree assigns � Risk < 0 for patients arriving by ambulance (EMS) or with head injuries that affect the
spine (axial load). However, adding this second tree results in boosted specificity (increase of 8.7%) with a tiny reduction in sensitivity (decrease of 0.4%), indicating that
G-FIGS adaptively tunes the sensitivity-specificity tradeoff.

B. Interpreting the group-membership model. Recall that fitting G-FIGS requires two steps (see Appendix S4): (1) fitting a group- 695

membership model to obtain sample weights and then (2) using these sample weights to fit a FIGS model. In this section, we interpret the fitted 696

group-membership models. In the clinical context, we begin by fitting several logistic regression and gradient-boosted decision tree group 697

membership models to each of the training datasets (Table 2) to predict whether a patient is in the <2 years or Ø2 years age group. For the 698

instance-weighted methods, we treat the choice of group membership model as a hyperparameter, and select the best model according to the 699

downstream performance of the final decision instrument on the validation set. 700

Table S1 shows the coefficients of the most important features for each logistic regression group membership model when predicting 701

whether a patient is in the Ø2 years age group. The coefficients reflect existing medical expertise. For example, the presence of verbal response 702

features (e.g., Amnesia, Headache) increases the probability of being in the Ø2 years group, as does the presence of activities not typical for 703

the <2 years age group (e.g. Bike injury). 704
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No Yes

Altered mental
status

98/10721 (0.9%) TBI ΔRisk = .83 
50/1211 (4.1%) 

TBI

No Yes

Parietal/temporal 
hematoma

48/9510 (0.5%) TBI ΔRisk = .72 
22/877 

(2.5%) TBI

Severity of injury 
mechanism

26/8633 (0.3%) TBI

Low High

No Yes

Occipital hema.
14/1731 (0.81%) TBI ΔRisk = .79

5/135
(3.7%) TBI

ΔRisk = .21
1/1077 (0.09%) TBI

No Yes

Age: 6mo or less
9/1596 (0.56%) TBI ΔRisk = .60 

8/519
(1.5%) TBI

No Yes

Seizure
8/6891 (0.12%) TBI ΔRisk = .74

3/59
(5.1%) TBI

No Yes

Basilar skull frac.
5/6832 (0.07%) TBI ΔRisk = .87 

1/17
(5.9%) TBI

ΔRisk = .05 
4/6815 (0.06%) TBI

No Yes

Depressed skull 
fracture

12/6902 (0.2%) TBI ΔRisk = .97 
4/11

(36.4%) TBI

Model for <2 years Model for ≥2 years

No Yes

Altered mental
status

278/31707 (0.9%) TBI ΔRisk = .83 
174/4285 
(4.1%) TBI

No Yes

Basilar skull frac.
104/27422 (0.4%) TBI ΔRisk = .94 

19/167
(11.4%) TBI

Low High

Severity of injury 
mechanism

85/27255 (0.3%) TBI ΔRisk = .58 
37/3227 
(1.1%) TBI

Amnesia
23/3543 (0.6%) TBI

Loss of 
consciousness

48/24028 (0.2%) TBI

No Yes

No Yes

ΔRisk = .55 
19/1881 (1.0%) 

TBI

No Yes

Vomiting
25/20485 (0.1%) TBI

No Yes

Depressed skull 
fracture

12/18498 (0.06%) TBI ΔRisk = .94 
1/21

(4.8%) TBI

ΔRisk = .10 
0/946 (0%) TBI

No Yes

Headache 
13/1987 (0.6%) TBI ΔRisk = .59 

13/1041 (1.2%) 
TBINo Yes

Substantial injury, 
torso/trunk/flank
11/18477 (0.06%) TBI ΔRisk = .52 

1/245
(0.4%) TBI

No Yes

Severe headache
10/18232 (0.05%) TBI ΔRisk = .51 

2/220
(0.9%) TBI

ΔRisk = .05
7/17984 (0.04%) TBI

ΔRisk = .07 
1/1543 (0.06%) TBI

No Yes

Bike collision
4/1662 (0.2%) TBI ΔRisk = .74 

3/119
(2.5%) TBI

No Yes

Neuro. deficit: 
cranial nerves

8/18012 (0.04%) TBI ΔRisk = .80 
1/28

(3.6%) TBI

Fig. S2. G-FIGS model fitted to the TBI dataset. Interestingly, in this case G-FIGS learns only a single tree for each group. Note that the model for the older group utilizes the
Headache and Severe Headache features, which require a verbal response. Achieves 97.1% sensitivity and 58.9% specificity (training).

C. Extended clinical-decision results. In Table S2 and Table S3, we report the results of G-FIGS and other baselines for all data-sets705

for the < 2 and > 2 years age group separately. As seen in the results, we see that G-FIGS improve upon the baseline methods and FIGS706

particularly at high levels of sensitivities. Additionally, in Table S4, we include the results from above with their standard errors, as well as707

additional metrics (AUC and F1 score) for each dataset.708

Traumatic brain injury Cervical spine injury Intra-abdominal injury

Variable Coefficient Variable Coefficient Variable Coefficient

No fontanelle bulging 3.62 Neck tenderness 2.44 Bike injury 2.01
Amnesia 2.07 Neck pain 2.18 Abdomen pain 1.66
Pedestrian struck by vehicle 1.44 Motor vehicle injury: other 1.54 Thoracic tenderness 1.43
Headache 1.39 Hit by car 1.47 Hypotension 1.23
Bike injury 1.26 Substantial injury: extremity 1.35 No abdomen pain 0.98

Table S1. Logistic regression coefficients for features that contribute to high P(age Ø2 years | X) reflect known medical knowledge. For
example, features with large coefficients require verbal responses (e.g., Amnesia, Headache, Pain), relate to activities not typical for the <2
years age group (Bike injury), or are specific to older children, e.g., older children should have No fontanelle bulging, as cranial soft spots
typically close by 2 to 3 months after birth.
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Cervical spine injury Traumatic Brain Injury Intra-abdominal injury

Sensitivity level: 92% 94% 96% 98% 92% 94% 96% 98% 92% 94% 96% 98%

TAO 45.8 45.8 45.8 45.8 7.7 7.7 0.0 0.0 33.3 33.3 33.3 6.7
TAO-SEP 0.0 0.0 0.0 0.0 20.6 14.3 8.3 8.3 0.0 0.0 0.0 0.0
CART 45.8 45.8 45.8 45.8 19.0 19.0 7.1 1.2 29.6 29.6 29.6 29.6
CART-SEP 0.0 0.0 0.0 0.0 20.6 14.3 8.3 8.3 0.0 0.0 0.0 0.0
G-CART 36.4 36.4 36.4 36.4 16.1 15.6 8.7 8.7 4.4 4.4 4.4 4.4
FIGS 56.1 56.1 56.1 56.1 36.3 30.3 5.9 0.1 39.4 39.4 39.4 39.4
FIGS-SEP 6.9 6.9 6.9 6.9 31.1 25.1 13.0 6.7 9.0 9.0 9.0 9.0
G-FIGS 65.9 65.9 65.9 65.9 17.2 17.2 13.7 7.5 24.3 24.3 24.3 24.3

Table S2. < 2 years age group test set prediction results averaged over 10 random data splits. Values in columns labeled with a sensitivity
percentage (e.g. 92%) are best specificity achieved at the given level of sensitivity or greater.

Cervical spine injury Traumatic Brain Injury Intra-abdominal injury

Sensitivity level: 92% 94% 96% 98% 92% 94% 96% 98% 92% 94% 96% 98%

TAO 39.5 20.1 0.2 0.2 12.2 6.1 6.1 0.3 0.3 0.3 0.0 0.0
TAO-SEP 33.6 17.9 3.5 1.4 19.8 13.4 7.4 0.5 10.2 5.5 4.2 1.3
CART 22.0 15.4 14.8 2.1 19.0 19.0 7.1 1.2 7.6 2.8 1.6 1.3
CART-SEP 33.0 17.3 2.8 1.4 19.7 13.4 7.3 0.8 9.0 4.2 4.2 1.3
G-CART 37.3 16.2 1.9 1.7 19.6 7.2 7.2 0.8 14.7 10.5 3.9 0.7
FIGS 37.8 33.6 25.5 14.1 24.5 18.1 18.1 0.5 24.9 14.6 1.4 0.0
FIGS-SEP 39.5 33.8 22.0 11.6 25.3 20.3 18.7 6.3 28.0 19.0 9.2 0.5
G-FIGS 40.7 33.5 23.8 13.5 44.1 31.5 19.5 5.3 27.9 22.1 13.8 2.4

Table S3. > 2 years age group test set prediction results averaged over 10 random data splits. Values in columns labeled with a sensitivity
percentage (e.g. 92%) are best specificity achieved at the given level of sensitivity or greater.

Traumatic brain injury Cervical spine injury

92% 94% 96% 98% ROC AUC F1 92% 94% 96%

TAO 6.2 (5.9) 6.2 (5.9) 0.4 (0.4) 0.4 (0.4) .294 (.05) 5.2 (.00) 41.5 (0.9) 21.2 (6.6) 0.2 (0.2)
TAO-SEP 26.7 (6.4) 13.9 (5.4) 10.4 (5.5) 2.4 (1.5) .748 (.02) 5.8 (.00) 32.5 (4.9) 7.0 (1.6) 5.4 (0.7)
CART 20.9 (8.8) 14.8 (7.6) 7.8 (5.8) 2.1 (0.6) .702 (.06) 5.7 (.00) 38.6 (3.6) 13.7 (5.7) 1.5 (0.6)
CART-SEP 26.6 (6.4) 13.8 (5.4) 10.3 (5.5) 2.4 (1.5) .753 (.02) 5.6 (.00) 32.1 (5.1) 7.8 (1.5) 5.4 (0.7)
G-CART 15.5 (5.5) 13.5 (5.7) 6.4 (2.2) 3.0 (1.5) .758 (.01) 5.5 (.00) 38.5 (3.4) 15.2 (4.8) 4.9 (1.0)
FIGS 23.8 (9.0) 18.2 (8.5) 12.1 (7.3) 0.4 (0.3) .380 (.07) 4.8 (.00) 39.1 (3.0) 33.8 (2.4) 24.2 (3.2)
FIGS-SEP 39.9 (7.9) 19.7 (6.8) 17.5 (7.0) 2.6 (1.6) .619 (.05) 5.1 (.00) 38.7 (1.6) 33.1 (2.0) 20.1 (2.6)
G-FIGS 42.0 (6.6) 23.0 (7.8) 14.7 (6.5) 6.4 (2.8) .696 (.04) 4.7 (.00) 42.2 (1.3) 36.2 (2.3) 28.4 (3.8)

Cervical spine injury (cont.) Intra-abdominal injury

98% ROC AUC F1 92% 94% 96% 98% ROC AUC F1

TAO 0.2 (0.2) .422 (.04) 44.5 (.01) 0.2 (0.2) 0.2 (0.2) 0.0 (0.0) 0.0 (0.0) .372 (.04) 13.9 (.01)
TAO-SEP 2.5 (1.0) .702 (.01) 44.4 (.01) 12.1 (1.7) 8.5 (2.0) 2.0 (1.3) 0.0 (0.0) .675 (.01) 12.9 (.00)
CART 1.1 (0.4) .617 (.06) 45.8 (.01) 11.8 (5.0) 2.7 (1.0) 1.6 (0.5) 1.4 (0.5) .688 (.06) 13.4 (.00)
CART-SEP 2.5 (1.0) .707 (.00) 44.2 (.01) 11.0 (1.6) 9.3 (1.8) 2.8 (1.4) 0.0 (0.0) .688 (.01) 13.0 (.01)
G-CART 3.9 (1.1) .751 (.01) 45.2 (.01) 11.7 (1.3) 10.1 (1.6) 3.8 (1.3) 0.7 (0.4) .732 (.02) 12.5 (.01)
FIGS 16.7 (3.9) .664 (.03) 43.0 (.01) 32.1 (5.5) 13.7 (6.0) 1.4 (0.8) 0.0 (0.0) .541 (.04) 9.4 (.01)
FIGS-SEP 3.9 (2.2) .643 (.02) 41.4 (.01) 18.8 (4.4) 9.2 (2.2) 2.6 (1.7) 0.9 (0.8) .653 (.02) 8.0 (.00)
G-FIGS 15.7 (3.9) .700 (.01) 42.6 (.01) 29.7 (6.9) 18.8 (6.6) 11.7 (5.1) 3.0 (1.3) .671 (.03) 9.1 (.01)

Table S4. Test set prediction results averaged over 10 random data splits, with corresponding standard error in parentheses. Values in columns
labeled with a sensitivity percentage (e.g. 92%) are best specificity achieved at the given level of sensitivity or greater. G-FIGS provides the
best performance overall in the high-sensitivity regime. G-CART attains the best ROC curves, while TAO is strongest in terms of F1 score.

D. Clinical data-preprocessing details. 709

Traumatic brain injury (TBI) To screen patients, we follow the inclusion and exclusion criteria from previous work (51), which excludes 710

patients with Glasgow Coma Scale (GCS) scores under 14 or no signs or symptoms of head trauma, among other disqualifying factors. No 711
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patients were dropped due to missing values: the majority of patients have about 1% of features missing, and are at maximum still under 20%.712

We utilize the same set of features as a previous study (51).713

Our strategy for imputing missing values differed between features according to clinical guidance. For features that are unlikely to be left714

unrecorded if present, such as paralysis, missing values were assumed to be negative. For other features that could be unnoticed by clinicians715

or guardians, such as loss of consciousness, missing values are assumed to be positive. For features that did not fit into either of these groups or716

were numeric, missing values are imputed with the median.717

Cervical spine injury (CSI) (53) engineered a set of 22 expert features from 609 raw features; we utilize this set but add back features that718

provide information on the following:719

• Patient position after injury720

• Clinical intervention received by patients prior to arrival (immobilization, intubation)721

• Pain and tenderness of the head, face, torso/trunk, and extremities722

• Age and gender723

• Whether the patient arrived by emergency medical service (EMS)724

We follow the same imputation strategy described in the TBI paragraph above. Features that are assumed to be negative if missing725

include focal neurological findings, motor vehicle collision, and torticollis, while the only feature assumed to be positive if missing is loss of726

consciousness.727

Intra-abdominal injury (IAI) We follow the data preprocessing steps described in (65) and (49). In particular, all features of which at least 5%728

of values are missing are removed, and variables that exhibit insufficient inter-rater agreement (lower bound of 95% CI under 0.4) are removed.729

The remaining missing values are imputed with the median. In addition to the 18 original variables, we engineered three additional features:730

• Full GCS score: True when GCS is equal to the maximum score of 15731

• Abd. Distention or abd. pain: Either abdominal distention or abdominal pain732

• Abd. trauma or seatbelt sign: Either abdominal trauma or seatbelt sign733

Data for predicting group membership probabilities The data preprocessing steps for the group membership models in the first step of734

G-FIGS are identical to that above, except that missing values are not imputed at all for categorical features, such that “missing", or NaN, is735

allowed as one of the feature labels in the data. We find that this results in more accurate group membership probabilities, since for some736

features, such as those requiring a verbal response, missing values are predictive of age group.737

Unprocessed data is available at https://pecarn.org/datasets/ and clean data is available on github at https://github.com/csinva/imodels-data738

(easily accessibly through the imodels package (7)).739
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Traumatic brain injury

Feature Name % Missing % Nonzero

Altered Mental Status 0.74 12.95
Altered Mental Status: Agitated 87.05 1.79
Altered Mental Status: Other 87.05 1.82
Altered Mental Status: Repetitive 87.05 1.04
Altered Mental Status: Sleepy 87.05 6.67
Altered Mental Status: Slow to respond 87.05 3.22
Acting normally per parents 7.09 85.38
Age (months) 0.00 N/A
Verbal amnesia 38.41 10.45
Trauma above clavicles 0.30 64.38
Trauma above clavicles: Face 35.92 29.99
Trauma above clavicles: Scalp-frontal 35.92 20.48
Trauma above clavicles: Neck 35.92 1.38
Trauma above clavicles: Scalp-occipital 35.92 9.62
Trauma above clavicles: Scalp-parietal 35.92 7.79
Trauma above clavicles: Scalp-temporal 35.92 3.39
Drugs suspected 4.19 0.87
Fontanelle bulging 0.37 0.06
Sex 0.01 N/A
Headache severity 2.38 N/A
Headache start time 3.09 N/A
Headache 32.76 29.94
Hematoma 0.69 39.42
Hematoma location 0.47 N/A
Hematoma size 1.67 N/A
Severity of injury mechanism 0.74 N/A
Injury mechanism 0.67 N/A
Intubated 0.73 0.01
Loss of consciousness 4.05 10.37
Length of loss of consciousness 5.39 N/A
Neurological deficit 0.85 1.3
Neurological deficit: Cranial 98.70 0.18
Neurological deficit: Motor 98.70 0.28
Neurological deficit: Other 98.70 0.71
Neurological deficit: Reflex 98.70 0.03
Neurological deficit: Sensory 98.70 0.26
Other substantial injury 0.43 10.07
Other substantial injury: Abdomen 89.93 1.25
Other substantial injury: Cervical spine 89.93 1.37
Other substantial injury: Cut 89.93 0.12
Other substantial injury: Extremity 89.93 5.49
Other substantial injury: Flank 89.93 1.56
Other substantial injury: Other 89.93 1.65
Other substantial injury: Pelvis 89.93 0.44
Paralyzed 0.75 0.01
Basilar skull fracture 0.99 0.68
Basilar skull fracture: Hemotympanum 99.32 0.35
Basilar skull fracture: CSF otorrhea 99.32 0.04
Basilar skull fracture: Periorbital 99.32 0.19
Basilar skull fracture: Retroauricular 99.32 0.08
Basilar skull fracture: CSF rhinorrhea 99.32 0.03
Skull fracture: Palpable 0.24 0.38
Skull fracture: Palpable and depressed 99.69 0.18
Sedated 0.76 0.08
Seizure 1.70 1.17
Length of seizure 0.18 N/A
Time of seizure 0.12 N/A
Vomiting 0.71 13.1
Time of last vomit 89.04 N/A

Number of times vomited 0.60 N/A
Vomit start time 0.87 N/A

Intra-abdominal injury

Abdominal distention 4.38 2.3
Abdominal distention or pain 0.00 4.93
Degree of abdominal tenderness 70.13 N/A
Abdominal trauma 0.56 15.48
Abdominal trauma or seat belt sign 0.00 16.3
Abdomen pain 15.38 30.06
Age (years) 0.00 N/A
Costal margin tenderness 0.00 11.33
Decreased breath sound 1.93 2.13
Distracting pain 7.38 23.29
Glasgow Coma Scale (GCS) score 0.00 N/A
Full GCS score 0.00 86.21
Hypotension 0.00 1.44
Left costal margin tenderness 0.00 N/A
Method of injury 3.95 N/A
Right costal margin tenderness 0.00 N/A
Seat belt sign 3.30 4.93
Sex 0.00 N/A
Thoracic tenderness 9.99 15.96
Thoracic trauma 0.63 16.95
Vomiting 3.92 9.57

Cervical spine injury

Age (years) 0.00 N/A
Altered mental status 2.05 24.72
Axial load to head 0.00 24.0
Clotheslining 3.38 0.94
Focal neurological findings 9.84 14.67
Method of injury: Diving 0.03 1.3
Method of injury: Fall 2.44 3.83
Method of injury: Hanging 0.03 0.15
Method of injury: Hit by car 0.03 15.09
Method of injury: Auto collision 7.73 14.73
Method of injury: Other auto 0.03 3.11
Arrived by EMS 0.00 77.24
Loss of consciousness 8.03 42.68
Neck pain 5.25 38.42
Posterior midline neck tenderness 2.57 29.88
Patient position on arrival 61.52 N/A
Predisposed 0.00 0.66
Pain: Extremity 18.35 25.87
Pain: Face 18.35 7.58
Pain: Head 18.35 29.04
Pain: Torso/trunk 18.35 28.95
Tenderness: Extremity 20.37 15.15
Tenderness: Face 20.37 3.83
Tenderness: Head 20.37 7.79
Tenderness: Torso/trunk 20.37 25.87
Substantial injury: Extremity 1.03 10.87
Substantial injury: Face 1.06 5.67
Substantial injury: Head 1.00 15.88
Substantial injury: Torso/trunk 1.03 7.3
Neck tenderness 2.48 39.3
Torticollis 7.03 5.77
Ambulatory 5.77 21.46
Axial load to top of head 0.00 2.35
Sex 0.00 N/A

Table S5. Final features used for fitting the outcome models. Features include information about patient history (i.e. mechanism of injury),
physical examination (i.e. Abdominal trauma), and mental condition (i.e. Altered mental status). Percentage of nonzero values is marked N/A

for non-binary features.
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E. Clinical-data hyperparameter selection.740

Data splitting We use 10 random training/validation/test splits for each dataset, performing hyperparameter selection separately on each.741

There are two reasons we choose not to use a fixed test set. First, the small number of positive instances in our datasets makes our primary742

metrics (specificity at high sensitivity levels) noisy, so averaging across multiple splits makes the results more stable. Second, the works that743

introduced the TBI, IAI, and CSI datasets did not publish their test sets, as it is not as common to do so in the medical field as it is in machine744

learning, making the choice of test set unclear. For TBI and CSI, we simply use the random seeds 0 through 10. For IAI, some filtering of745

seeds is required due to the low number of positive examples; we reject seeds that do not allocate positive examples evenly enough between746

each split (a ratio of negative to positive outcomes over 200 in any split).747

Class weights Due to the importance of achieving high sensitivity, we upweight positive instances in the loss by the inverse proportion of748

positive instances in the dataset. This results in class weights of about 7:1 for CSI, 112:1 for TBI, and 60:1 for IAI. These weights are fixed for749

all methods.750

Hyperparameter settings Due to the relatively small number of positive examples in all datasets, we keep the hyperparameter search space751

small to avoid overfitting. We vary the maximum number of tree splits from 8 to 16 for all methods and the maximum number of update752

iterations from 1 to 5 for TAO. The options of group membership model are logistic regression with L2 regularization and gradient-boosted753

trees (2). For both models, we simply include two hyperparameter settings: a less-regularized version and a more-regularized version, by754

varying the inverse regularization strength (C) for logistic regression and the number of trees (N ) for gradient-boosted trees. We initially755

experimented with random forests and CART, but found them to lead to poor downstream performance. Random forests tended to separate the756

groups too well in terms of estimated probabilities, leading to little information sharing between groups, while CART did not provide unique757

enough membership probabilities, since CART probability estimates are simply within-node class proportions.758

Validation metrics We use the highest specificity achieved when sensitivity is at or above 94% as the metric for validation. If this metric is759

tied between different hyperparameter settings of the same model, specificity at 90% sensitivity is used as the tiebreaker. For the IAI dataset,760

only specificity at 90% sensitivity is used, since the relatively small number of positive examples makes high sensitivity metrics noisier than761

usual. If there is still a tie at 90% sensitivity, the smaller model in terms of number of tree splits is chosen.762

Validation of group membership model Hyperparameter selection for G-FIGS and G-CART is done in two stages due to the need to select the763

best group membership model. First, the best-performing maximum of tree splits is selected for each combination of method and membership764

model. This is done separately for each data group. Next, the best membership model is selected using the overall performance of the best765

models across both data groups. The two-stage validation process ensures that the <2 years and Ø2 years age groups use the same group766

membership probabilities, which we have found performs better than allowing different sub-models of G-FIGS to use different membership767

models.768
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<2 years group Ø2 years group

Maximum tree splits: 8 12 16 8 12 16

TAO (1 iter) 15.1 (6.7) 15.1 (6.7) 14.4 (6.1) 14.1 (7.8) 14.1 (7.8) 8.9 (5.9)
TAO (5 iter) 14.4 (6.1) 0.0 (0.0) 0.0 (0.0) 8.9 (5.9) 3.1 (0.9) 1.5 (0.7)
CART-SEP 15.1 (6.7) 14.4 (6.1) 0.0 (0.0) 14.0 (7.8) 8.9 (5.9) 3.1 (0.9)
FIGS-SEP 13.7 (5.9) 0.0 (0.0) 0.0 (0.0) 23.1 (8.8) 13.0 (7.4) 7.8 (5.6)
G-CART w/ LR (C = 2.8) 7.9 (6.7) 3.1 (2.1) 3.5 (1.7) 19.0 (8.8) 21.8 (8.4) 2.1 (0.6)
G-CART w/ LR (C = 0.1) 20.4 (8.6) 8.3 (6.6) 10.1 (6.7) 12.7 (7.6) 14.9 (7.1) 3.6 (0.9)
G-CART w/ GB (N = 100) 19.8 (8.3) 7.2 (6.3) 7.6 (6.1) 13.3 (8.0) 21.4 (8.5) 9.0 (5.6)
G-CART w/ GB (N = 50) 26.8 (9.7) 8.1 (6.3) 8.4 (6.1) 13.3 (8.0) 21.4 (8.5) 9.7 (5.6)
G-FIGS w/ LR (C = 2.8) 14.9 (8.5) 7.5 (5.4) 8.1 (6.9) 41.0 (8.7) 48.1 (8.2) 35.6 (8.9)
G-FIGS w/ LR (C = 0.1) 31.0 (9.4) 23.1 (9.1) 25.9 (9.7) 46.9 (8.4) 48.2 (8.4) 33.7 (8.9)
G-FIGS w/ GB (N = 100) 24.5 (8.6) 24.0 (9.3) 21.2 (8.7) 47.5 (8.5) 47.5 (8.2) 27.9 (8.6)
G-FIGS w/ GB (N = 50) 32.1 (9.6) 18.3 (8.2) 12.7 (6.9) 47.5 (8.5) 53.2 (7.3) 28.4 (8.3)

(a)

Group membership model: LR (C = 2.8) LR (C = 0.1) GB (N = 100) GB (N = 50)

G-CART (<2 years, Ø2 years models combined) 27.8 (6.0) 21.5 (5.9) 19.0 (5.7) 27.1 (6.5)
G-FIGS (<2 years, Ø2 years models combined) 51.3 (5.8) 54.5 (6.2) 57.4 (5.6) 44.6 (7.4)

(b)
Table S6. Hyperparameter selection table for the TBI dataset; the metric shown is specificity at 94% sensitivity on the validation set, with
corresponding standard error in parentheses. First, the best-performing maximum of tree splits is selected for each method or combination of
method and membership model (a). This is done separately for each data group. Next, the best membership model is selected for G-CART and
G-FIGS using the overall performance of the best models from (a) across both data groups (b). The two-stage validation process ensures that
the <2 years and Ø2 years age groups use the same group membership probabilities, which we have found leads to better performance than
allowing them to use different membership models. Metrics shown are averages across the 10 validation sets, but hyperparameter selection
was done independently for each of the 10 data splits.

F. PCS analysis of CSI G-FIGS model. In this section, we perform a stability analysis of the G-FIGS fitted on the CSI dataset. As discussed 769

earlier, stability is a crucial pre-requisite for using ML models to interpret real-world scientific problems. To measure the stability of G-FIGS, 770

we artificially introduce noise by randomly swapping a percentage p of labels y. We vary p between {1%, 2.5%, 5%}. For each value of p, we 771

measure stability by comparing the similarity of the feature sets selected in the model trained on the perturbed data to the model displayed in 772

Fig 3. The similarity of feature sets is measured via the Jaccard distance. That is, let f̂ denote the FIGS model fitted on the unperturbed data. 773

Further, define Ŝ as the features split on in f̂ . Similarly, let f̂
p denote the FIGS fitted on the perturbed data. Note that f̂

p does not necessarily 774

need to consist of the same number of trees as f̂ . Moreover, we define Ŝ
p as the features split on in f̂

p. Then, we define the stability score of f̂ 775

as follows 776

Sta(f̂) = Ŝ fl Ŝp

Ŝ fi Ŝp
[1] 777

For G-FIGS we compute the stability score of the model fitted on each age group. We measure the stability score of G-FIGS over 5 repetitions, 778

and display the results in Table S7. 779

percentage of labels swapped p: 1% 2.5% 5%
Sta(G-FIGS (<2 years)) 1.0 0.98 0.93
Sta(G-FIGS (>2 years)) 0.86 0.64 0.64

Table S7. Stability analysis results for G-FIGS fitted on the CSI dataset when a percentage p of labels are flipped. We vary p betweem
{1%, 2.5%, 5%}. The stability of G-FIGS is measured via Eq. (1), and we average our results over over 5 repetitions. The results indicate
G-FIGS is stable to perturbations, in particular for the <2 years age group.

S6. Theoretical Results 780

In this section, we discuss our theoretical results relating to FIGS and tree-sum models. 781

A. CART as local orthogonal greedy procedure. In this section, we build on recent work which shows that CART can be thought of as a 782

“local orthogonal greedy procedure” (66). To see this, consider a tree model f̂ , and a leaf node t in the tree. Given a potential split s of t into 783
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children tL and tR, we may associate the normalized decision stump784

Ât,s(x) = N(tR)1{x œ tL} ≠ N(tL){x œ tR}
N(t)N(tL)N(tR)

, [2]785

where N(≠) is used to denote the number of samples in a given node. We use �t,s to denote the vector in Rn comprising its values on the786

training set, noticing that it has unit norm. If t is an interior node, then there is already a designated split s(t), and we drop the second part of787

the subscript. It is easy to see that the collection {�t}tœf̂ is orthogonal to each other, and also to all decision stumps associated to potential788

splits. This gives the second equality in the following chain789

�̂(s, t) = (yT
�t,s)2 = (rT

�t,s)2
, [3]790

with the first being a straightforward calculation. As such, the CART splitting condition is equivalent to selecting a feature vector from an791

admissible set that best reduces the residual variance. The CART update rule adds this feature to the model, and sets its coefficient to minimize792

the 1-dimensional least squares equation. Given orthogonality of all the features, this also updates the linear model to the best fit linear model793

on the new feature set.794

Concatenating the decision stumps together yields a feature map � : Rd æ Rp, and we let � denote the n by m transformed data matrix.795

Let —̂ denote the solution to the least squares problem796

min
—

Î�— ≠ yÎ2
2. [4]797

We have just argued that we have functional equality798

f̂(x) = —̂
T �(x). [5]799

These calculations can be found in more detail in Lemma 3.2 in (66).800

B. Modifications for FIGS. With a collection of trees T1, . . . , TK , we may still associate a normalized decision stump Eq. (2) to every node
and every potential split. The impurity decrease used to determine splits can still be written as a squared correlation with a potential split vector,

�̂(s, t, r) = (r(≠k)T
�t,s)2

.

and so the FIGS splitting rule can also be thought of as selecting a feature vector from an admissible set that best reduces the residual variance,801

while its update rule adds this feature to the model, and sets its coefficient to minimize the 1-dimensional least squares equation. The difference802

to CART lies in the fact that the admissible set is now larger, comprising potential splits from multiple trees, and furthermore, the node803

vectors from different trees are no longer orthogonal to each other, and so the update rule, while solving the 1-dimensional problem, no longer804

minimizes the full least squares loss. Nonetheless, as discussed in the main paper, a simple backfitting procedure after the tree structures are805

fixed is equivalent to block coordinate descent on this linear system, and converges to the minimizer, and furthermore, we observed in our806

examples that the resulting coefficients do not change too much from their initial values, meaning that the FIGS solution is already close to a807

best fit linear model.808

C. FIGS disentangles the additive components of additive generative models.809

Generative model. Let x be a random variable with distribution fi on [0, 1]d. Suppose that we have disjoint blocks of features I1, . . . , IK , of810

sizes d1, . . . , dK , with d =
qK

k=1 dk, and suppose the blocks of features are mutually independent, i.e. xIj ‹‹ xIk for j ”= k, where for any811

index set I , xI denotes the subvector of x comprising coordinates in I . Let y = f(x) + ‘ where E{‘ | x} = 0 and812

f(x) =
Kÿ

k=1

fk(xIk ). [6]813

Suppose further that each component function has mean zero with respect to fi.814

For a given tree structure T , let J(T ) denote the set of features that it splits upon. We say that a tree-sum model with tree structures815

{T1, . . . , TM } completely (respectively partially) disentangles the additive components of an additive generative model Eq. (6) if M = K and,816

after re-indexing if necessary, J(Tk) = Ik (respectively J(Tk) µ Ik) for k = 1, . . . , K.817

In this section, we argue that FIGS is able to achieve disentanglement and learn additive components of additive generative models.818

To the best of our knowledge, this property is unique to FIGS and is not shared by any other tree ensemble algorithm. As argued in the819

introduction, disentanglement helps to avoid duplicate subtrees, leading to a more parsimonious model with better generalization performance820

(see Theorem 2 for a precise statement) . Note that even when the generative model is not additive, FIGS helps to reduce the number of821

possibly redundant often observed in CART models (see Appendix S2.)822

Theorem 1 (Partial disentanglement in large sample limit). Consider the generative model Eq. (6), and recall the notation from Sec 2.823

Suppose we run Algorithm 1 with the following oracle modifications when splitting a node t.824

825

1. Splits are selected using the population impurity decrease

�(s, t, r) := fi(t)Var{r | x œ t} [7]
≠ fi(tL)Var{r | x œ tL} ≠ fi(tR)Var{r | x œ tR},
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instead of the finite sample impurity decrease �̂(s, t, r). 826

827

2. Values of the new children nodes tL and tR are obtained by adding, to the value of t, the population means Efi{r | tL} and 828

Efi{r | tR} respectively, instead of the sample means r̄tL and r̄tR respectively. 829

830

Then for each fitted tree f̂k, the set of features split upon is contained within a single index set Ik for some k. 831

The proof for this theorem is deferred to Appendix S6. Note that for any generative model h(x, y), the finite-sample impurity decrease 832

converges to the population impurity decrease as the sample size goes to infinity: n
≠1�̂(s, t, h) æ �(s, t, h) and h̄t æ E{h | t} as n æ Œ. 833

This justifies our claim that the modified algorithm is equivalent to running FIGS in the large sample limit. Note that the number of terms in the 834

fitted model need not be equal to the number of additive components K. 835

Real-world example. We now show how disentanglement could lead to a more scientific accurate and interpretable models for a Diabetes 836

classification dataset (43, 67). In this dataset, eight risk factors were collected and used to predict the onset of diabetes within five years. The 837

dataset consists of 768 female subjects from the Pima Native American population near Phoenix, AZ, USA. 268 of the subjects developed 838

diabetes, which is treated as a binary label. 839

Fig S1 shows two models, one learned by FIGS and one learned by CART. In both models, the prediction corresponds to the risk of diabetes 840

onset withing five years (a higher prediction corresponds to a higher risk). Both achieve roughly the same performance (FIGS yields an AUC of 841

0.820 whereas CART yields an AUC of 0.817), but the models have some key differences. The FIGS model includes fewer features and fewer 842

total splits than the CART model, making it easier to understand in its entirety. Moreover, the FIGS model has no interactions between features, 843

making it clear that each of the features contributes independently of one another, something which any single-tree model is unable to do. 844
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Fig. S1. Comparison between FIGS and CART on the diabetes dataset. FIGS learns a simpler model, which disentangles interactions between features. Both models achieve
the same generalization performance (FIGS yields an AUC of 0.820 whereas CART yields 0.817.)

D. Proof of Theorem 1. 845

Proof of Theorem 1. We prove this by induction on the total number of splits, with the base case being trivial. By the induction hypothesis, we 846

may assume WLOG that f̂1 only has splits on features in I1. Consider a candidate split s on a leaf t œ f̂1 based on a feature m œ I2. Let tÕ 847

denote the projection of t onto I1. As sets in Rd, we may then write 848

t = tÕ ◊ R[d]\I1
, [8] 849

850

tL = tÕ ◊ (≠Œ, · ] ◊ R[d]\I1fi{m}
, [9] 851

and 852

tR = tÕ ◊ (·, Œ) ◊ R[d]\I1fi{m}
. [10] 853
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Recall that we work with the residual r = f(x) ≠
qK

k=1 f̂k. Now using the law of total variance, we can rewrite the weighted impurity854

decrease in a more convenient form:855

�(s, t, r) = fi(tL)fi(tR)
fi(t) (E{r | x œ tL} ≠ E{r | x œ tR})2

. [11]856

We may assume WLOG that this quantity is strictly positive. By the induction hypothesis, we can divide the set of component trees into two
collections, one of which only splits on features in I2, and those which only split on features in [d]\I2. Denoting the function associated with
the second collection of trees by g2, we observe that

E{r | x œ tL} ≠ E{r | x œ tR} = E{f ≠ g | x œ tL} ≠ E{f ≠ g | x œ tR}
= E{f2 ≠ g2 | x œ tL} ≠ E{f2 ≠ g2 | x œ tR}.

Since f2 and g2 do not depend on features in I1, we can then further rewrite this quantity as857

E{f2 ≠ g2 | xm Æ ·} ≠ E{f2 ≠ g2 | xm > ·}. [12]858

Meanwhile, using Eq. (8), Eq. (9), and Eq. (10), we may rewrite859

fi(tL)fi(tR)
fi(t) = fi1(tÕ)fi2(xm Æ ·)fi2(xm > ·). [13]860

Plugging Eq. (12) and Eq. (13) back into Eq. (11), we get861

�(s, t, r) = fi1(tÕ)fi2(xm Æ ·)fi2(xm > ·)(E{f2 ≠ g | xm Æ ·} ≠ E{f2 ≠ g | xm > ·})2
. [14]862

In contrast, if we split a new root node t0 on m at the same threshold and call this split s
Õ, we can run through a similar set of calculations863

to get864

�(sÕ
, t0, r) = fi2(xm Æ ·)fi2(xm > ·)(E{f2 ≠ g | xm Æ ·} ≠ E{f2 ≠ g | xm > ·})2

. [15]865

Comparing Eq. (14) and Eq. (15), we see that
�(s, t, r

(≠1)) = fi1(tÕ)�(sÕ
, t0, r),

and as such, split s
Õ will be chosen in favor of s.866

E. Theoretical generalization upper bounds. We shall prove a generalization upper bound showing that disentangled tree-sum models867

enjoy better prediction performance that single-tree models when fitted to data with additive structure. When the data is generated from a fully868

additive model with C
1 component functions (i.e. the generative model Eq. (6) with blocks of size dk = 1, and fk œ C

k([0, 1]) for each k), it869

was recently shown that any single decision tree model has a squared error generalization lower bound of �(n≠2/(d+2)). This is significantly870

worse than the minimax rate of Õ
!
dn

≠2/3"
for this problem (13). Tight generalization upper bounds have proved elusive for CART due to the871

complexity of analyzing the tree growing procedure, and are difficult for FIGS for the same reason. Nonetheless, we can prove a partial result872

that shows that a disentangled tree-sum representation is more effective than a single tree model. To formalize this, let C = {T1, . . . , TM } be873

the collection of tree structures learnt by FIGS. We say that a function is a tree-sum implementable with C if it can be represented as a sum874

of component functions, each of which is implementable by one of the tree structures Tk (i.e. constant on each leaf of Tk). We use F(C) to875

denote the collection of all tree-sum implementable with C. As discussed in Sec 2, FIGS essentially fits an empirical risk minimizer from876

F(C). In the following theorem, we prove that when C is instead chosen by an oracle, an empirical risk minimizer with respect to F(C) has877

good generalization properties.878

Theorem 2 (Generalization upper bounds using oracle tree structures). Consider the generative model Eq. (6), and further suppose the
distribution fik of each independent block xIk has a continuous density, each fk is C

1, with ÎÒfkÎ2 Æ —k, and that ‘ is homoskedastic with
variance E

)
‘

2 | x

*
= ‡

2. For any sample size n, there exists an oracle collection of trees C = {T1, . . . , TK} disentangling Eq. (6) such that
for a training set Dn of size n, any empirical risk minimizer f̃ of F(C) satisfies the following squared error generalization upper bound:

EDn,x
)

(f̃(x) ≠ f(x))2
1{Ec}

*
Æ

Kÿ

k=1

ck

3
‡

2

n

4 2
dk+2

. [16]

Here, E is an event with vanishing probability P{E} = O(n≠2/(dmax+2)) where dmax = maxk dk is the size of the largest feature block in879

Eq. (6), while ck := 8
!
dk—

2
kÎfikÎŒ

" dk
dk+2 .§§§

880

The proof of Theorem 2 can be found in Appendix D, and builds on recent work (66) which shows how to interpret decision trees as linear881

models on a set of engineered features corresponding to internal nodes in the tree. This interpretation has a natural extension to FIGS. It is882

instructive to consider two extreme cases: If dk = 1 for each k, then we have an upper bound of O
!
dn

≠2/3"
. If on the other hand K = 1, we883

have an upper bound of O
!
n

≠2/(d+2)". Both (partially oracle) bounds match the well-known minimax rates for their respective inference884

problems (54).885

§§§We note that the error event E is due to the query point possibly landing in leaf nodes containing very few or even zero training samples, which can be thus be detected and avoided in practice by imputing a
default value.
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F. Proof of Theorem 2. 886

Proof of Theorem 2. To construct C, for each k, construct a tree Tk that partitions [0, 1]dk into cubes of side length hk, where hk is a parameter 887

to be determined later. Let pk denote the number of internal nodes in Tk. Recall that we use f̃ to denote the empirical risk minimizer among all 888

functions in F(C). Let g denote an ¸2 risk minimizer in F(C). For any event E , we then apply Cauchy-Schwarz to get 889

EDn,x≥fi

Ó!
f̃(x) ≠ f(x)

"2
1{Ec}

Ô
Æ 2E

)
(f(x) ≠ g(x))2*

+ 2E
Ó!

g(x) ≠ f̃(x)
"2

1{Ec}
Ô

. [17] 890

The first term represents bias, and quantifies the error incurred when attempting to approximate f with the function class F(C), while the 891

second term represents variance, and quantifies the error incurred because of sampling uncertainty. We will bound the first term using 892

smoothness properties of the fk’s, while for the second term, we will rewrite f̃ and g as linear functions in an engineered feature space, which 893

would allow us to use calculations from linear modeling theory to obtain a bound. 894

We begin by bounding the second term, and assume WLOG that Efik {fk} = 0 for each k. Let �k be the feature mapping associated with Tk

as described earlier in this section, and concatenate them for k = 1, . . . , K to get the mapping �. There is a one-to-one correspondence between
F(C) (tree-sum functions implementable with C) and linear function with respect to the representation � (i.e. of the form x ‘æ ◊T �(x) for
some vector ◊). As such, f̃ , the empirical risk minimizer in F(C), can be written as f̃(x) = ◊̃

T �(x), where ◊̃ is the solution to the least
squares problem

min
◊

nÿ

i=1

!
◊T �(xi) ≠ yi

"2
.

Furthermore, one can check that the ¸2 risk minimizer g can be written as g(x) = ◊úT �(x), where 895

◊ú(t) :=


N(tL)N(tR)
N(t) (E{y | tL} ≠ E{y | tR}) [18] 896

for each node t. This gives the formula g(x) =
qK

k=1 gk(xIk ), where for each k,

gk(xIk ) := E
)

fk(xÕ
Ik

) | x
Õ
Ik

œ tk(xIk )
*

.

Here, tk(xIk ) is the leaf in Tk containing xIk , and x
Õ
Ik

an independent copy of xIk . 897

Meanwhile, note that we have the equation
y = ◊úT �(x) + ÷ + ‘

where ÷ := f(x) ≠ g(x) satisfies

E{÷ | �(x)} = E

I
Kÿ

k=1

(fk(xIk ) ≠ gk(xIk )) | �(x)

J

=
Kÿ

k=1

E{fk(xIk ) ≠ gk(xIk ) | �k(xIk )}

= 0.

As such, we may apply Theorem 7 with the event E given in the statement of the theorem to get

E
Ó!

g(x) ≠ f̃(x)
"2

1{Ec}
Ô

Æ 2
3

p‡
2

n + 1 + 2E
)

(f(x) ≠ g(x))2*4
.

Plugging this into Eq. (17), we get 898

EDn,x≥fi

Ó!
f̃(x) ≠ f(x)

"2
1{Ec}

Ô
Æ 10E

)
(f(x) ≠ g(x))2*

+ 4p‡
2

n + 1 . [19] 899

By independence, and the fact that E{gk(xIk )} = 0 for each k, we can decompose the first term as

E
)

(f(x) ≠ g(x))2*
=

Kÿ

k=1

E
)

(fk(x) ≠ gk(x))2*
.

This allows us to decompose the right hand side of Eq. (19) into the sum 900

Kÿ

k=1

3
10E

)
(fk(xIk ) ≠ gk(xIk ))2*

+ 4pk‡
2

n + 1

4
. [20] 901
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We reduce to the case of uniform distribution µ, via the inequality

Efik

)
(fk(xIk ) ≠ gk(xIk ))2*

Æ ÎfikÎŒEµ

)
(fk(xIk ) ≠ gk(xIk ))2*

,

and from now work with this distribution, dropping the subscript for conciseness. Next, observe that

E
)

(fk(xIk ) ≠ gk(xIk ))2*
= E{Var{fk(xIk ) | tk(xIk )}}.

Using Lemma 4, we have that

Var{fk(xIk ) | tk(xIk )} Æ —
2
kdkh

2
k

6 .

Meanwhile, a volumetric argument gives
pk Æ h

≠dk
k .

We use these to bound each term of Eq. (20) as902

10ÎfikÎŒE
)

(fk(xIk ) ≠ gk(xIk ))2*
+ 4pk‡

2

n + 1 Æ 2ÎfikÎŒ—
2
kdkh

2
k + 4h

≠dk
k ‡

2

n + 1 . [21]903

Pick

hk =
3

2‡
2

ÎfikÎŒ—2
kdk(n + 1)

4 1
dk+2

,

which sets both terms on the right hand side to be equal, in which case the right hand of Eq. (21) has the value

4
!
2ÎfikÎŒ—

2
kdk

" dk
dk+2

3
‡

2

n + 1

4 2
dk+2

.

Summing these quantities up over all k gives the bound Eq. (16), with the error probability obtained by computing 2p/n.904

Corollary 3. Assume a sparse additive model, i.e. in Eq. (6), assume Ik = {k} for k = 1, . . . , K. Then we have

EDn,x≥fi

Ó!
f̃(x) ≠ f(x)

"2
1{Ec}

Ô
Æ 8K max

k

!
ÎfikÎŒ—

2
k

"1/3
3

‡
2

n

4 2
3

.

Lemma 4 (Variance and side lengths). Let µ be the uniform measure on [0, 1]d. Let C µ [0, 1]d be a cell. Let f be any differentiable function905

such that ÎÒf(x)Î2
2 Æ —

2. Then we have906

Varµ{f(x) | x œ C} Æ —
2

6

dÿ

j=1

(bj ≠ aj)2
. [22]907

Proof. For any x, x
Õ œ C, we may write

!
f(x) ≠ f(xÕ)

"2 =
+
Òf(xÕÕ), x ≠ x

Õ,2 Æ —
2Îx ≠ x

ÕÎ2
2.

Next, note that

E
)

Îx ≠ x
ÕÎ2

2 | x, x
Õ œ C

*2 = 1
3

dÿ

j=1

(bj ≠ aj)2
.

As such, we have

Varµ{f(x) | x œ C} = 1
2E

Ó!
f(x) ≠ f(xÕ)

"2 | x, x
Õ œ c¸

Ô

Æ —
2

6

dÿ

j=1

(bj ≠ aj)2
.

908
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G. Helper lemmas on linear regression. We consider the case of possibly under-determined least squares, i.e. the problem 909

min
◊

ÎX◊ ≠ yÎ2
2 [23] 910

where we allow for the possibility that X does not have linearly independent columns. When this is indeed the case, there will be multiple
solutions to Eq. (23), but there is a unique element ◊̂ of the solution set that has minimum norm. In fact, this is given by the formula

◊̂ = X
†
y,

where X
† denotes the Moore-Penrose pseudo-inverse of X. 911

We extend the definition of leverage scores to this case by defining the i-th leverage score hi to be the i-th diagonal entry of the matrix
H := XX

†. Note that the vector of predicted values is given by we have

ŷ = X◊̂ = XX
†
y = Hy,

so that this coincides with the definition of leverage scores in the linearly independent case. 912

In what follows, we will work extensively with leave-one-out (LOO) perturbations of the sample and the resulting estimators. We shall use 913

X
(≠i) to denote the data matrix with the i-th data point removed, and ◊̂

(≠i)
to denote the solution to Eq. (23) with X replaced with X

(≠i). We 914

have the following two generalizations of standard formulas in the full rank setting. 915

Lemma 5 (Leave-one-out estimated coefficients). The LOO estimated coefficients satisfy

x
T
i

1
◊̂ ≠ ◊̂

(≠i)
2

= hiêi

1 ≠ hi

where êi = yi ≠ x
T
i ◊̂ is the residual from the full model. 916

Proof. Note that we may write X
† =

!
X

T
X

"†
X

T . We may then follow the proof of the usual identity but substituting Eq. (24) in lieu of the 917

regular Sherman-Morrison formula. 918

Lemma 6 (Sherman-Morrison). Let X be any matrix. Then 919

!
X

(≠i)T
X

(≠i)"† =
!
X

T
X

"† +
!
X

T
X

"†
xix

T
i

!
X

T
X

"†

1 ≠ hi
. [24] 920

Proof. We apply Theorem 3 in (68) to A = X
T

X, c = xi and d = ≠xi, noting that the necessary conditions are fulfilled. 921

Theorem 7 (Generalization error for linear regression). Consider a linear regression model

y = ◊T
x + ‘ + ÷

‘ and ÷ are independent, E{‘ | x} = E{÷ | x} = 0, E
)

‘
2 | x

*
= ‡

2
‘ , and E

)
÷

2*
= ‡

2
÷ . Given a training set Dn, and a query point x, let 922

◊̂n be the estimated regression vector. There is an event E of probability at most 2p/n over which we have 923

EDn,x

Ó!
x

T
!
◊̂n ≠ ◊

""2
1{Ec}

Ô
Æ 2

3
p‡

2
‘

n + 1 + 2‡
2
÷

4
. [25] 924

Proof. Let Dn denote the training set. Let E be the event on which x
T

!
X

T
X

"†
x Ø 1

2 . This quantity is the leverage score for x, so that

E
Ó

x
T

!
X

T
X

"†
x

Ô
Æ p

n + 1

by exchangeability of x with the data points in Dn. We may then apply Markov’s inequality to get

P{E} Æ 2p

n + 1 .

Again using exchangeability, we may write

EDn,x

Ó!
x

T
!
◊̂n ≠ ◊

""2
1{Ec}

Ô
= 1

n + 1

nÿ

i=0

EDn+1

;1
x

T
i

1
◊̂

(≠i)
n+1 ≠ ◊

222
1{Ec

i }
<

, [26]

where Dn+1 is the augmentation of Dn with the query point x0 = x and response y0, ◊̂n+1 is the regression vector learnt from Dn+1, and for 925

each i, ◊̂
(≠i)
n+1 that from Dn+1\{(xi, yi)}. 926
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To bound this, we first rewrite the prediction error for the full model as

x
T
i

!
◊̂n+1 ≠ ◊

"
= x

T
i X

†
y ≠ x

T
i ◊

= x
T
i X

†(X◊ + ‘ + ÷) ≠ x
T
i ◊

= x
T
i X

†(‘ + ÷), [27]

where the last equality follows because xi lies in the column space of X
†
X. Next, we may decompose that for the LOO model as927

x
T
i

1
◊̂

(≠i)
n+1 ≠ ◊

2
= x

T
i

1
◊̂

(≠i)
n+1 ≠ ◊̂n+1

2
+ x

T
i

!
◊̂n+1 ≠ ◊

"
. [28]928

We expand the first term using Lemma 5 to get

x
T
i

1
◊̂

(≠i)
n+1 ≠ ◊̂n+1

2
= hi

1 ≠ hi

!
x

T
i ◊̂n+1 ≠ yi

"

= hi

1 ≠ hi

!
x

T
i

!
◊̂n+1 ≠ ◊

"
≠ ‘i ≠ ÷i

"
. [29]

We plug Eq. (29) into Eq. (28) and then Eq. (27) into the resulting equation to get

x
T
i

1
◊̂

(≠i)
n+1 ≠ ◊

2
= hi

1 ≠ hi

!
x

T
i

!
◊̂n+1 ≠ ◊

"
≠ ‘i ≠ ÷i

"
+ x

T
i

!
◊̂n+1 ≠ ◊

"

= 1
1 ≠ hi

!
x

T
i

!
◊̂n+1 ≠ ◊

""
≠ hi

1 ≠ hi
(‘i + ÷i)

= 1
1 ≠ hi

x
T
i X

†(‘ + ÷) ≠ hi

1 ≠ hi
(‘i + ÷i).

Taking expectations and using the independence of ‘ and ÷, we get

E
;1

x
T
i

1
◊̂

(≠i)
n+1 ≠ ◊

222
1{Ec

i }
<

= E

I3
x

T
i X

†‘ ≠ hi‘i

1 ≠ hi

42

1{Ec
i }

J
+ E

I3
x

T
i X

†÷ ≠ hi÷i

1 ≠ hi

42

1{Ec
i }

J

Æ E

I3
x

T
i X

†‘ ≠ hi‘i

1 ≠ hi · 1/2

42
J

+ E

I3
x

T
i X

†÷ ≠ hi÷i

1 ≠ hi · 1/2

42
J

.

Summing up the first term over all indices, and then taking an inner expectation with respect to ‘, we get

1
n + 1

nÿ

i=0

E

I3
x

T
i X

†‘ ≠ hi‘i

1 ≠ hi · 1/2

42
J

= 1
n + 1E

Ó..(1 ≠ diag(H) · 1/2)≠1(H ≠ diag(H))‘
..2

2

Ô

= ‡
2
‘

n + 1E
)

Tr
!
WW

T
"*

. [30]

where
W = (1 ≠ diag(H) · 1/2)≠1(H ≠ diag(H)).

Since H is idempotent, we get
(H ≠ diag(H))2 = H ≠ Hdiag(H) ≠ diag(H)H + diag(H)2

.

The i-th summand in the trace therefore satisfies

!
WW

T
"

ii
= hi ≠ 2h

2
i + h

2
i

(1 ≠ hi · 1/2)2

Æ hi

1 ≠ hi · 1/2
Æ 2hi.

Summing these up, we therefore continue Eq. (30) to get929

‡
2
‘

n + 1E
)

Tr
!
WW

T
"*

Æ 2‡
2
‘

n + 1E{Tr(H)} Æ 2p‡
2
‘

n + 1 . [31]930

Next, for any x, we slightly abuse notation, and denote ‡
2
÷(x) = E

)
÷

2 | x

*
. By a similar calculation, we get

1
n + 1

nÿ

i=0

E

I3
x

T
i X

†÷ ≠ hi÷

1 ≠ hi · 1/2

42
J

= 1
n + 1E

)
Tr

!
W�W

T
"*

,
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where � is a diagonal matrix with entries given by �ii = ‡
2
÷(xi) for each i. We compute

!
W�W

T
"

ii
=

q
j ”=i

H
2
ij‡÷(xj)2

(1 ≠ hi · 1/2)2 Æ 4
nÿ

j=0

H
2
ij‡÷(xj)2 = 4

!
H�H

T
"

ii
.

This implies that

1
n + 1E

)
Tr

!
W�W

T
"*

Æ 4
n + 1E

)
Tr

!
H�H

T
"*

Æ 4
n + 1E{Tr(�)}

= 4‡
2
÷. [32]

Applying Eq. (31) and Eq. (32) into Eq. (26) completes the proof. 931

Remark 8. Note that while we have bounded the probability of E by 2p
n , it could be much smaller in value. If � is constructed out of a single 932

tree, then E holds if and only if the test point lands in a leaf containing no training points. (13) shows that the probability of this event decays 933

exponentially in n. 934
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