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ABSTRACT

The combination of multiple-principal element materials, known as high-entropy materials (HEMs), expands the
multi-dimensional compositional space to gigantic stoichiometry. It is impossible to afford a holistic approach to
explore each possibility. With the advance of the materials genome initiative and characterization technology, a
high-throughput (HT) approach is more reasonable, especially to identify the specified functions for the new
HEMs development. There are three major components for the HT approach, which are the computational tools,
experimental tools, and digital data. This article reviews both the materials informatics and experimental ap-
proaches for the HT methods. Applications of these tools on composition-varying samples can be used to obtain
stoichiometry effectively and phase-structure-property relationships efficiently for the materials-property data-
base establishment. They can also be used in conjunction with machine learning (ML) to improve the predict-
ability of models. These ML tools will be an essential part of HT approaches to develop the new HEMs. The ML-
developed HEMs together with ML-created other materials are positioned in this manuscript for future HEMs
advancement. Comparing all the reviewed properties, the hierarchical microstructures together with the het-
erogeneous grain sizes show the highest potential to apply ML for new HEMs, which needs HT validations to
accelerate the development. The promising potential and the database from the HEMs exploration would shed

light on the future of humanity building from the scratch of Mars regolith.

1. Introduction

Since the late 1970s/early 1980s, Prof. Cantor and Prof. Yeh indi-
vidually broke through the traditional boundaries of the principal-
element concept and invented the high-entropy alloys (HEAs), also
known as the multi-principal element alloys (MPEAs) [1] and the
complex concentrated alloys [2]. With the development of advanced
metallurgy, materials scientists create much greater dimensions for this
new class of materials [3,4]. Besides the metallic systems, there are also
high-entropy ceramics (HECs). The concept of entropy stabilization al-
lows HECs as an ideal platform to study the role of mass and interatomic
force disorder beyond what has been previously accessible. Since the
conception of these ceramics, high-entropy oxides (HEOs) exhibited
great capabilities for superionic mobility and thermochemical water
splitting [5] as well other new opportunities [6]. For example, Music
et al. summarized the emergent fields of HEOs, which included optical
properties [7]. The luminescent high-entropy materials (HEMs) can be
quite different from the traditional luminescent materials. For the
luminescent HEMs, slightly different compositions may yield quite
changes in properties. Therefore, from the perspective of optical prop-
erties, luminescent HEMs can be tunable for their light-emitting wave-
lengths, such as Chen and Wu’s transparent high-entropy fluoride laser
ceramics [8]. The HEMs with optical properties included (Ce,Gd,La,Nd,
Pr,Sm,Y)0,.8, (Ce,La,Nd,Pr,Sm,Y)05.8, (Ce,La,Pr,Sm,Y)0,.5, (Ce,La,Pr,
Y)0,.8, (Ce,La,Pr,Sm)0,.5, (Ce,La,Pr)0,.8, (Ce,Pr)0,.5, (Ce,Gd,La,Nd,
Pr,Sm,Y)0,.8, (Ce,La,Nd,Pr,Sm,Y)0,.8, and (Ce,La,Pr,Sm,Y)0-.5 in their
crystal structures [9] and (La, Ti, Nb, W, Zr)O in amorphous-glass
structure [10]. In addition, the HEMs with luminescent characteristics
can be tailored by varying the elemental composition to achieve the
tunability of light emission. Hence, measuring the light-emission
behavior of the material, discussing the relationship between the
electron-electron pair in the energy band, and considering the rela-
tionship between the material structure and composition are also an
important part of studying optical properties. The HEOs show potential
applications in energy storage and catalysis. Djenadic et al. indicated a
crystalline single-phase oxide of Mg 2Cog2Nig2Cug2Zng20 as an
entropy-stabilized oxide (ESO) [11]. Other “entropy-stabilized” mate-
rials include high-entropy metal diborides, high-entropy carbides,
high-entropy sulfides, high-entropy fluorides, and high-entropy alumino
silicides [7]. Besides inorganic materials, Zhang et al. reported
three-dimensional (3D) HEA-polymer composite nanolattices, which
displayed exceptional strength-recoverability advantages [12]. For the
amorphous structures, several high-entropy amorphous alloys (HEAAs)
and high-entropy amorphous alloys composites (HEAACs) have been
found for their promising applications as magnetic materials [13-15].

Although many components forming HEMs would not certainly
guarantee better performance, the exploration of the multi-components
materials beyond conventional binary, ternary, and dilute alloy open
new opportunities [3]. Meanwhile, there are even more metastable
HEAs rising exponentially with increasing the number of complexity and
potential properties [16]. Prof. Cantor demonstrated an enormous
number of potential HEMs can be 1 googol as 10100 [3], which was
greater than the number of pharmacologically relevant molecules on the
order of 10%° [17].

Traditionally, the research on structural materials is largely rooted in
the enlightened empiricism of traditional metallurgy, the advent of
artificial intelligence (AI), and the emergence of robust advanced
characterizations, suggesting new engineering strategies in which the
mechanism-based understanding is expected to discover new HEMs.
However, it is impossible to carry out an Edisonian approach via trial-
and-error examination of each stoichiometry. As summarized by
Schmidt et al., machine learning (ML) is successfully employed for
classification, regression, clustering, and dimensionality reduction tasks
[18]. ML has revealed superior abilities in playing Go [19], self-driving
cars [20], image and speech recognition classification, and even our
daily email filtering [18]. Therefore, it is desirable to apply ML to ma-
terials research for the Pareto efficiency and surrogate model [18]
similar to ML applications in the aforementioned fields.

As a result of the maturation of ML, it has become increasingly
possible to identify a corpus of central results, which serves as the basis
for the discovery and analysis of HEMs. To tackle the aforementioned
challenges for HEMs, the Materials Genome Initiative (MGI) [21]
showed promising progress to narrow the exploring dimensions by
facilitating active learning in materials science with emphasis on the
targeted design [22], which also inspires on-the-fly data acquisition
[23]. The approach of ML as “active learning” is that the algorithm
dynamically chooses the data from which it learns so that it can perform
better over the long-run statistically [24]. The “learning on-the-fly”
scheme offers a superior efficiency by reducing the number of calcula-
tions [25]. There are successful “learning on-the-fly” cases, such as using
the neural network potential for Al-Mg-Si alloys development [26],
creating the interatomic potential for zirconium [27], parametrizing
interatomic potentials [28], and accelerating HT searches for new alloys
[29]. The Integrated Computational Materials Engineering (ICME) [30],
such as thermodynamics databases for materials design, has demon-
strated the ability to accelerate the discovery and the development of
new materials, namely the corrosion-resistant alloys developed by
QuesTek, LLC, the low-rhenium alloys developed by GE, and the cast
aluminum cylinder heads and engine blocks developed by the virtual
aluminum castings (VAC) program of Ford [31]. For the manufacturing,
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the VAC program successfully combined a vast knowledge base of the
cast aluminum research with readily available computer-aided engi-
neering (CAE) tools to design, cast, heat treat, and test specific aspects of
vehicle parts working together simultaneously.

Meanwhile, data is the key to ML. Hence, the HT research plays a
significant role in ML. In November 2020, the Division on Engineering
and Physical Sciences of the National Academy of Engineering spon-
sored the online workshop “High Throughput Research: Accelerating
Materials Discovery, Design, Development and Deployment” to review
the applications of Al and big data analytics coupled with advanced
sensing, measurement, visualization, and process-control hardware.
During the workshop, Prof. Flores used the concept of alloy design space
to illustrate how to facilitate the HT methods to position the targeted
alloy and manipulate the database in effectively shortening the distance
between the target and the simulated models [32]. Miracle et al. re-
ported a new characterization strategy, which suggests to reject the
largest number of alloys with the smallest effort first and separate into
computations, structure-insensitive, and structure-sensitive evaluations
[33].

Research on HEMs as a dynamic topic has emerged as one of the
promising directions for their engineering applications [4,34,35]. The
challenges regarding the applications always imply demands, which
must be new classes of advanced properties. For the specified challenge,
ML [36] can accelerate the development of HEMs, such as HECs [37]
and HEMs [38,39]. These approaches specified that ML can accelerate
the specified materials discovery [40-42], such as phase predictions
[43-45]. In Schmidt et al.’s work, ML performs better than traditional
molecular dynamics (MD) for phase predictions [18]. The number of
published works from January 2000 to April 2021 on “machine
learning” and “machine learning + high entropy alloys” is shown in
Fig. 1.

To hasten the design of HEMs, several criteria were proposed [46],
such as the ML-informed prediction [47], HT design [48], and entropy
descriptors [49]. Besides these mechanistic-understanding-based pa-
rameters and supervised ML, Tshitoyan et al. has recently indicated an
unsupervised text mining from 3.3 million materials science literature
between 1922 and 2018 in materials discovery [50]. They unveiled the
previously-unrecognized properties of existing materials, which could
then be repurposed [50]. Tshitoyan et al.’s methods can sort the over-
whelming published text, which is difficult to analyze by traditional
approaches. This unsupervised method may shed light to text mining the
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reported properties in the literature.

Moreover, increasingly complex HEMs engendered the emergence of
methods built around the explicit consideration of multiple properties
simultaneously. As a result of these new challenges, this review attempts
to summarize the present capacities of ML and HT combinatorial ap-
proaches, such as thin-film materials libraries [51], diffusion database
[52], and X-ray diffraction datasets [53] for HEMs discoveries and de-
velopments. For example, we compare how many papers reporting
either “high entropy effects” or “ML” on specific materials. Following
Tshitoyan et al.’s report [50], we select piezoelectric, superconductors,
thermoelectrics, intermetallics, photovotaics, organic compounds,
quantum heterostructure, and battery materials for comparison pur-
poses, as depicted in Fig. 2.

In Fig. 2, the sizes of the circles are in proportion to the number of
publications. For each material type, the darker and the lighter circles
indicate the numbers of papers using ML and high entropy concepts,
respectively. As shown in Table 1, for the piezoelectric research, most
researchers apply ML. For the superconductors and intermetallics, there
are more people applying the high entropy concepts. On the other hand,
for the thermoelectrics and battery materials, there are more researchers
using ML. Meanwhile, for the quantum heterostructures materials,
photovotaics, and organic compounds, the number of publications with
high entropy concepts is much less than that with ML.

The review is hence divided into three parts. It starts with an over-
view of the applications of ML for HEMs development, including Al,
atomic potentials, and big-data approaches. The argument made here is
that there are already many measured properties summarized in the
review articles and web-based database [60], but for model fitting and
simulation, it is also necessary to recap a priori assumption of theoretical
calculations. For example, DeCost et al.’s reflections [61] read “current
applications of Al in materials science focus more on solving engineering and
design problems”. Others also note that a major criticism of ML tech-
niques is that “black-box algorithms” do not always provide “new physical
laws” [18]. Some Al applications in materials science report the
“black-box-like” optimization. To realize the full potential of AI in
helping the materials community, Lipton’s criteria to examine the
interpretability of the ML are listed as (1) simulatability, decomposability,
(2) algorithmic transparency, (3) text explanations, (4) visualization, and
(5) local explanations [62]. Along this direction, his manuscript reviewed
the selected HT examination cases for HEMs, which may not include all
the five criteria for the interpretability but follow at least few. This
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Fig. 1. Number of published works on “machine learning” and “machine learning + high-entropy alloys” (from January 2000 to April 2021).
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Apply on HEA

Fig. 2. The eight materials from Tshitoyan et al.’s unsupervised text mining [50] (Adapted from Fig. 1 in Tshitoyan et al.’s paper [50]). The sizes of the circles are
proportional to the number of published works on “machine learning + one of the eight materials” and “high entropy + one of the eight materials” described in the

darker color and lighter color, respectively (from January 2000 to April 2021).

Table 1

Summary of the piezoelectric, superconductors, thermoelectrics, intermetallics, photovotaics, organic compounds, quantum heterostructure, and battery materials
with the keywords of either “machine learning” or “high entropy” searched from the Web of Science and their corresponding numbers of the references (from January

2000 to April 2021).

Numbers of the

Materials Keywords
references
X ) 126 Machine learning and Piezoelectric
Piezoelectric ) : )
3, [54-56] High entropy and Piezoelectric
37 Machine learning and Superconductors
Superconductors -
32 High entropy and Superconductors
216 Machine learning and Battery materials /Energy
Battery materials storage
i
Y 36 High entropy and Battery materials/Energy
storage
h lectri 70 Machine learning and Thermoelectrics
ermoelectrics
I 37 High entropy and Thermoelectrics
) 140 Machine learning and Photovoltaics
Photovoltaics B B
1,[57] High entropy and Photovoltaics
Organic 26 Machine learning and Organic compounds
compounds 1, [58] High entropy and Organic compounds
. 41 Machine learning and Intermetallics
Intermetallics - -
381 High entropy and Intermetallics

manuscript also summarized some potential experimental approaches
for future ML and HT examinations for the HEMs combinatorial
research.

Finally, recalling Raabe et al.’s report on the impact and technology
readiness of sustainability measured for structural alloys [63], corrosion
protection is pointed out as the high potential for impacts on the sus-
tainability of structural metals. In this manuscript, we review the
corrosion properties of HEAs, which ML and HT examinations are rarely
applied yet. We put the review of the corrosion as the final part, which
the authors believe would be the future directions and challenges for
HEMs. This part will also be a culmination of great efforts set forth in the
preceding sessions with the aim being that the metallurgists and mate-
rials scientists attempt to consider potential applications for the HEMs
discoveries and developments through ML and HT methodologies.

Yet, together with the scientists’ voyage, the future of humanity on
Mars would not just be science movies. The resource of Mars could offer
much potential for supporting the robotics’ activities. Meanwhile, it will
fall to design, civil, and space engineers to ensure that the trips to Mars
and the buildings using Mars’ elements by additive manufacturing are
safe and realistic [64]. Hence, in the summary, we review the current
materials and potential HEMs for the high-temperature applications and
the oxidation because the materials for the vehicles to Mars and the
additive manufacturing on Mars can induce high-heat-flux heating and

cause high temperatures. What we learned from the HT examination and
ML for the fabrications will enable the selection of the mining and ad-
ditive manufacturing HEMs on Mars.

2. Machine learning

Although ML is being extensively applied to facilitate problem
solving of materials research, there are considerable challenges in effi-
ciently exploring such a vast ML domain knowledge for a metallurgist.
Specifically, there are numerous ML terminologies that a non-specialist
is not familiar with. In this session, before explaining various ML tech-
niques, which are relatively new and quite complex, the review will start
with the classical metallurgy topics evolving with ML to bridge the gap
between the science experiments and ML review session.

According to Meredig’s summary, there are five major high-impact
research areas in ML for materials science, which are summarized
below [65]: (1) Training models to predict materials properties and the
validation by experiments and/or physics simulation; (2) ML methods
development for descriptors, multi-property optimization [66], extrapolation
detection [67], and uncertainty quantification [68]; (3) High-throughput
data acquisition; (4) ML to accelerate or simplify materials characterization
which advances the current protocols and algorithms; and (5) Integration of
physics and physics-based simulations within ML. In the following sessions,
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when ML methods are introduced, the associated impacts will be also
mentioned.

Herein, two exemplary metallurgy topics evolving with ML trends
and successfully developed are introduced, which are the crystal plas-
ticity finite element method (CPFEM) and the elasticity, respectively.

For the crystal plasticity, it was written in the textbook that Taylor
quantitatively described the models of crystallographic systems [69]. In
1972, Hill and Rice constructed a general time-independent constitutive
model for the crystallographic shearing, which allows a general finite
deformation elastic—plastic framework for analyzing single crystals
[70]. In 1982, Peirce et al. numerically formulated the deformations of
ductile single crystals subjected to tensile loading [71]. Peirce et al.
successfully modeled an elastic-plastic relation based on Schmid’s law.
They considered lattice rotations for the non-uniform and localized
deformations. They included self-hardening and latent hardening of the
slip systems and compared the resolved shear stress vs. shear strain of
the experimental points and their simulation profiles, which are both
nonlinear [71]. In summary, without ML, there were already successful
models quantitatively describing the nonlinear behavior of the crystal
plasticity [70]. Meanwhile, the finite element method (FEM) enables
modeling in smaller parts and constructs into a larger mesh of the objects
and equations that models the entire system. Khan et al. clearly
reviewed the history of the combining crystal plasticity with FEM as the
CPFEM [72]. In 2015, without ML, Khan et al. demonstrated that how
the CPFEM predicts finite plastic deformation of single crystalline metals
over a wide strain rate range. Khan et al. commented that “as the
complexity of models increases, the number of parameters that need to be
identified also increases, and it is usually more difficult to perform the nu-
merical simulations”.

To deal with the increasing models, equations, and the number of
parameters, Ali et al. explained why they selected the artificial neural
network (ANN), which is one group of the algorithms used for ML in
their CPFEM work on the AA6063-T6 aluminum alloys [73]. The idea of
neural network (NN) is inspired by the biological neuron, where neurons
are connected to each other in the network. Each neuron receives an
input from all the neurons in the previous layer with weights and sends
its output to every neuron in the next layer. The positive and negative
weights reflect the excitatory and inhibitory connections, respectively.
Similar to the accumulated experiences, the NN with different layers can
adapt from the inputs and outputs, which is able to model the activities
and predict the behaviors. Like the biological neural network learning
knowledge, the ANN frameworks process the data to attain the required
objective but use mathematical models instead. Moreover, beyond the
training experiences, there are more sophisticated layer to layer filtra-
tion processes for the ANN.

Although the leading studies have constructed comprehensive
models of the CPFEM, the key challenge is the balance between the
accuracy and computational efficiency, where the computational cost-
effectiveness decreases as the complexity of microstructure increases
[74]. Before implementing ML, the experimental data are typically used
to back-fit the constitutive model of the investigated systems. For the
crystal plasticity, the microscopic material parameters in the formulas
are considered to solve the constitutive model for connecting the
macroscopic performances, such as the stress-strain curves, and the
microscopic mechanisms, such as the textures. Ali et al. applied the
typical crystal plasticity simulations, which can successfully forecast the
experimental stress-strain and texture data. The results from the crystal
plasticity simulations were used to train the ANN models in predicting
the real material behavior. Moreover, the ANN has huge computational
improvements over conventional simulation tools because the ANN
models can be trained and validated. With the accumulated “experi-
ences”, the ANN models forecast the data without computationally
expensive simulations. Hence, the ANN models take much less time
compared to their counterparts, which are the traditional numerical
simulations [73]. For the HEAs, Gao et al.’s took a step forward to apply
the ANN to their CPFEM in the NiCoCrFe system [75]. Similar to Ali

Materials Science & Engineering R 147 (2022) 100645

et al,, Gao et al. also employed the CPFEM method based on their
experimental data and physical mechanisms to provide the data set for
training ML. Comparing with the experimental data, the CPFEM pro-
vides a huge amount of data for Gao et al.’s ANN models. Meanwhile,
solving the nonlinear and multivariable problems are the major ad-
vantages of the ANN. Gao et al.’s extended the multi-level CPFEM
framework coupled with an improved ANN algorithm, which is one of
the successful cases of ML. From this case, the terminology of the ANN is
briefly introduced. In summary, recalling Meredig’s summary [65], Gao
et al.’s training models with the benchmark data were validated by
experiments and physics simulation. With different experimental data as
the multi-property inputs, Gao et al’s ML accelerated the
high-throughput data acquisition. With the integrated physics-based
simulations within ML, Gao et al. demonstrated the benefits of ML in
investigating the plasticity of the NiCoCrFe HEAs [75].

Another terminology of ML, gradient boosting trees (GB-Trees) al-
gorithm, is introduced here for the lattice elasticity study. For the HEAs,
due to its complexity of the neighboring elements, the application of the
Vegards’ law may not be taken for granted [76]. Using in-situ
neutron-diffraction (ND) characterizations can measure the lattice
elasticity [77] while first-principles calculations can estimate the
interatomic distance distributions from calculations of optimized special
quasi-random structure (SQS) [78]. However, it is not trivial to measure
each HEA system using ND. For the first-principles calculations, it will
consume considerable computational time, especially for the complex
systems. Coherent potential approximation (CPA) is another option for
this research by estimating how sound waves scatter in a material, which
might picture the spatial inhomogeneity of the modeling systems.
However, several reports showed that CPA may not be able to model
well the HEAs, such as the charge transfer between atoms. This gap can
lead to deviations in quantifying the interatomic bonding [78]. Kim
et al. compared the CPA, SQS, and ML models and found that both the
CPA and SQS models without the atomic position relaxation can result in
overestimating elastic-constant values [78]. On the other hand, Kim
et al. applied the GB-Trees algorithm of MLs and found that ML models
accurately forecasted the elastic properties of the HEAs and suggested
the tunability of elastic properties in the HEAs [78].

Their methods are cited frequently. Here are few selected citations to
recommend why Kim et al.’s ML methods have advantages. For example,
Roy and Balasubramanian highlighted Kim et al.’s ML approaches
because Kim et al.’s data used in ML was derived from density-functional
theory (DFT) calculations, where a high quality of numerous DFT
dataset enhances the phase and mechanical property predictions [79].
Moreover, using the data from the Materials Project database [80] also
takes the advantage for their accuracy, which was due to the accumu-
lated previous work. Kim et al.’s did not need to obtain the data from the
scratch so that their approach demonstrated a relative economic path for
data generation without time and resource on physical experiments
[79]. Specifically, Chen et al.’s ML recommended Kim et al.’s ML ap-
proaches; the citation reads, “the authors built a GB Tree-based predictive
model using a separate set of nearly 7000 ordered, crystalline solids from the
Materials Project, in which the elastic constants have already been properly
labeled. It is worth mentioning that the training set and validation set do not
contain any high-entropy alloys [81]”.

Now, let’s take a closer look at Kim et al.’s ML method, which is the
GB-Trees algorithm, one of the ML techniques. From Natekin and Knoll’s
tutorial, gradient boosting machines (GBMs) are known for their highly
customizable to the particular needs of the application [82]. Using the
GBMs, the ML procedure consecutively fits the models to provide a more
accurate estimate of the response variable. In Natekin and Knoll’s
tutorial, the citation reads, “The principal idea behind this algorithm is to
construct the new base-learners to be maximally correlated with the negative
gradient of the loss function, associated with the whole ensemble. The loss
functions applied can be arbitrary, but to give a better intuition, if the error
function is the classic squared-error loss, the learning procedure would result
in consecutive error-fitting. In general, the choice of the loss function is up to
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the researcher, with both a rich variety of loss functions derived so far and
with the possibility of implementing one’s own task-specific loss” [82].

The difference from the GBM and other ML methods is that the other
ML, such as the NN based on an ensemble of models is relatively a
“strong” model [82]. For example, the ANN can be further combined
altogether. One typical example is the ANN introduced in the earlier
session for Gao et al.’s CPFEM combining a bucket of models for
particular learning tasks [75]. Here, for Kim et al.’s GBM [78], their
GB-Trees algorithm relies on combining a large number of relatively
weak simple models to obtain a stronger ensemble prediction [82]. The
GBM merges several simple models, called “weak learner”, into robust
committee as a strong model using additive models for improving pre-
diction accuracy and avoiding overfitting. The weak learner is defined as
the one whose performance is at least slightly better than random
chance, which can be any models, but the decision tree is usually
selected. In general ML algorithms, gradient descent method is used to
minimize the loss function for optimizing the model parameters. How-
ever, the GBM aims to optimize or train the weak learner for predicting

the residual hy,(x) (defined as negative gradient of loss function — %L—;.fs,

where yf is the prediction value). According to the task, the different loss
function can be selected, but all of them must be differentiable for GBM.
For example, logarithmic loss can be used for a classification problem
while mean squared error (MSE) is the most commonly used for a
regression problem. The algorithm starts by initializing the weak model
ho with a first guess. At each training iteration, a weak learner is fitted to
the current residual and added to the prior model to update the residual
until the variance is minimized and a robust learner is achieved, which is
the so-called forward stage-wise procedure. To minimize the overfitting,
the contribution of each weak learner can be narrowed by multiplying a
scaling factor for better prediction.

The random forests (RF) is another important ML model assembling
many relatively-weak simple models to become a stronger prediction
[83]. Read from Natekin and Knoll’s tutorial, “The common ensemble
techniques like random forests rely on simple averaging of models in the
ensemble. The family of boosting methods is based on a different, constructive
strategy of ensemble formation. The main idea of boosting is to add new
models to the ensemble sequentially. At each particular iteration, a new weak,
base-learner model is trained with respect to the error of the whole ensemble
learnt so far” [82].

The decision tree is the nonlinear ML concept, which was used in Kim
et al.’s GB-Trees algorithm. Decision trees are hierarchical models that
aim to find a target value by asking the fewer if-else questions [84]. For
example, the RF regressors are a combination of many regression trees.
The predictivity of RF is from the diversity of the trees/branches. Each
node on a tree splits the dataset once according to whether a specific
parameter or a combination of them, is above or below a threshold value
[85].

Similar to Kim et al.’s GBM applications for the HEAs elasticity
research, Salvador et al. discovered low-modulus Ti-Nb-Zr alloys using
ML and the first-principles calculations [84]. Salvador et al. first eval-
uated the predictive accuracies of linear regression and RF regressors.
They optimized the RF models by searching for 50 different combina-
tions of hyperparameters based on a random search algorithm. All their
models used 80 % of the data as the training set to predict the unseen 20
%, where they successfully predicted the bulk modulus (K) and shear
modulus (G) for the optimized Ti-Nb-Zr alloys [84]. Both Kim et al. [78]
and Salvador et al. [84] employed the data from the Materials Project
[80] with the aims of training predictive models for K and G based on
compositional features. From this case, the terminology of the GBM is
introduced. Meanwhile, recalling Meredig’s summary [65], Kim et al.
extracted materials data from the Materials Project database, which fed
the data-hungry ML. Kim et al.’s ML extrapolation for the elasticity was
also validated by the measured results for the HEAs [78].

In summary, the ML review session starts with the aforementioned
two classical metallurgy topics to introduce the ANN and GBM of MLs
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for CPFEM and elasticity, respectively. These two examples are
described more specifically to introduce the background and the appli-
cations of MLs for better understanding of the terminology. Followings
are relatively general reviews on ML for HEMs.

2.1. Machine learning for HEMs

Because the HEMs have many compositional dimensions [86,87], the
materials design is a great challenge. In the past, the metallurgists may
apply an Edisonian approach using a single-element substitution method
to explore different compositions under a specific alloy family [88-91].
However, exhaustive trial-and-error experiments consume too much
time and resources. To solve the difficulty, the parametric and compu-
tational approaches are introduced. For example, deep neural networks
[92] can be trained to perform fast and automated identifications of
atomic/molecular types and positions as well as atomic defects [93].
Meanwhile, the challenges for ML are the interpretability and the
physical understanding gained from ML models. One critical issue is that
whether ML may replace other computational approaches, such as
first-principle methods [18].

A parametric approach combines empirical rules and theoretical
models to guide phase formation and stability as the microstructure is
highly linked with materials properties [21,91,94-102]. The used pa-
rameters are generally based on the chemistry and topology nature. For
example, the mixing enthalpy, AHpx, and the atomic-size difference
(polydispersity), 6, are two most widely used. Other design parameters
are the mixing entropy, ASpix, valence electron concentration (VEC),
and electronegativity difference, Ay. Meanwhile, the calculation of
phase diagrams (CALPHAD) [103-105] based on the existing experi-
mental database, MD simulation [99,106], and first-principal method
[107-109] are commonly utilized to predict and screen the HEMs. Yet,
the approaches face some challenges due to their critical limitations on
the oversimplification, high computation cost, insufficient reliability,
and uncertainties. Some selected examples, which show the HEMs
properties predicted by ML methods, are listed in Table 2.

In recent years, ML has garnered considerable attention since it can
largely accelerate materials design in various areas, e.g., organic molecules,
solid states, and HEAs. As materials science has become more and more data-
centric, a vast amount of data generated from simulations and experiments
can be included in training ML models. “Big data” opened up the fourth
paradigms of materials science, which emphasizes the unlocking knowledge
by data-driven techniques, e.g., predictive analytics, clustering, and rela-
tionship mining and generation [21]. Supported by the MGI [21], materials
informatics has shaped the way how materials scientists uncover the
processing-structure-property-performance (PSPP) relationships [148-150].

Table 2
Summary of some HEMs properties predicted by ML together with the associated
methods and corresponding references.

Property Ref.
Vibrational free energy and entropy [110,111]
Lattice parameters [112-115]
Thermal expansion coefficients [112]
Anisotropic thermal expansions [113]
Thermal conductivities [112,115]
Anisotropic phonon thermal conductivities [113]
Melting temperature [116,117]
Curie temperature [111]

Grain boundaries [118,119]

Elastic properties, such as bulk and shear moduli [111-114,120-123]
Lattice distortion [111]

Electron density of states [124,125]

Phase prediction [44,102,115,123,126-137]

Formation energy [111]
Magnetic properties [138]
Stacking fault energy [111,139-147]
Long-and short-range order [111]
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Table 3
ML algorithms for materials science applications.
Category Methods Target
ANNs Aims to build the properties (i.e.,
GBM mechanical, thermodynamic, electric,
Gaussian process chemical properties, and other properties of
Kernel ridge material) of predictive models for
predicting the properties of unknown
Regression materials and can be coupled with the
optimization algorithm to realize the
Support vector . . . .
. inversed material design (exploring new
machines (SVMs) . . . .
recipe). An overview of different properties
that was predicted by ML have been
reviewed in Ref. [18].
ANN
.. Separates the data points (categorical data)
Decision tree . . X
Kernel ridge into several classes, which can be used in
Classification 8 R the phase prediction or type (3d-HEA,
k-nearest neighbors R .
CEM Refractory HEA, etc.) classification for
HEAs.
SVMs s
embedding (t-SNE)
Hidden Markov
model Mapping the material-data points into
. Hierarchical cluster vectors for measuring the distances or
Clustering AP .
k-means similarities between materials themselves
Modularity [68].

t-distributed
stochastic neighbor

In general, there are two directions of materials design: the first is the pre-
diction as the forward model, and the second is the discovery as the inverse
model. In other words, ML can automatically identify the patterns and fea-
tures of the high dimensional input data via statistical models to predict
specific output, e.g., microstructures and properties. By interpolation and/or
extrapolation, ML can also discover novel compositions via optimization
algorithms or generative models in a target-oriented fashion. The advantage
of ML is its time-saving and low-cost characteristics. However, since it is an
extension of existing data, data accessibility, reliability, and processing are of
concern.

To be more specific, ML can be classified into three categories, i.e.,
regression, classification, and clustering. For the HEAs, the regression
models are usually applied for the continuous target output, such as
hardness while classification models are used for the discontinuous
output, such as phases or structures. Table 3 recaps the ML algorithms
incorporated in materials science. Based on the training input, ML can
also be classified into three types, i.e., supervised learning, semi-
supervised learning, and unsupervised learning.

Nowadays, studies for HEMs widely exploit supervised learning
while a few take unsupervised learning for dimension reduction as
feature engineering to identify the key features. Semi-supervised
learning falls between supervised and unsupervised learning. In this
case, the algorithm is provided with both unlabeled as well as labeled
data. It has been utilized in the molecular design [151]. It is particularly
useful when available data are incomplete and to learn representations
[152]. Since each algorithm has its own suitability and application
scope, selection of a proper algorithm is crucial for its successful
implementation. Among the aforementioned terminology summarized
in Table 3, ANN and GBM are already introduced earlier. The other
selected representative terminologies are introduced herein and cate-
gorized as supervised learning and unsupervised learning.

2.1.1. Supervised learning

As shown in Fig. 3, to predict the outputs and categorize the data,
supervised learning uses labeled datasets to train algorithms. Prior to the
learning process, the database construction is the first step. Once the
data is obtained, a priori pre-processing is to prepare the data for model
developments because the raw data may contain attributes from
different units and scales. When the problem descriptions and the
boundary conditions are clearly defined, ML is ready for learning [153].
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Fig. 3. Schmidt et al.’s supervised learning workflow. Adapted from [18] with
permission from npj computational materials.

For the learning, regression is one of the supervised learning
methods, where the labeled datasets are used to train algorithms in
predicting outcomes accurately. Later, the input data will be fed into the
model. The supervised ML adjusts its weights until the model can be
cross validated. A support vector machine (SVM) [154] is a type of su-
pervised learning method, and it can be used for both regression and
classification tasks. Some of the common ML methods used for super-
vised learning include Naive Bayes, k-nearest neighbor (KNN), decision
trees, kernel ridge regression (KRR), random forest regression (RFR),
gradient boosting regression (GBR), Gaussian process regression (GPR),
SVM, and ANNs.

The main concept of SVM is to find a hyperplane of N-1 dimensions
in an N-dimensional space which can distinctly categorize the data
points. Meanwhile, the hyperplane with the maximum margin between
data of different classes is chosen so that the selected hyperplane re-
inforces the future data points being classified correctly. The so-called
support vectors are the distance between the hyperplane and the
closet data points, which determines the position and orientation of the
optimal hyperplane. For example, in Fig. 4, there are two groups of the
data points marked as the solid and empty circles, respectively. Among
the three lines, Hy, Hy, and Hs, H3 can separate two sets of the data best
as the margin is maximized. The support vectors are the lines in grey.

A linear hyperplane can be defined as the set of points that satisfy:

wix;—b=0 (@]

where w is a normal vector to the hyperplane and b is the bias. If the data
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Fig. 4. H; cannot distinguish two sets of the data. H, can separate two sets of
the data with a smaller margin. H3 does separate two groups of the data with
the maximum margin. (Adapted from the https://en.wikipedia.org/wiki
/Support-vector_machine).

is linearly separable, we can define the margin by two parallel hyper-
planes separating the two classes of data, which can be written:

y,»(wa,- —b) >1 fori=1,...,n (2)

where y; = 1 or -1 depending on whether the data is above or below the
hyperplane, respectively. The margin can be maximized by minimizing
|[w|| subject to (2). The data is finally separated without mis-
classifications, which is so-call hard margin. If the data is not clearly
separated or the margin is too small, the model would tend to overfit or
be sensitive to outliers. Hence, the soft margin SVM could be helpful for
better generalization. In soft margin SVM, the hinge loss function, as
shown below, can be implemented to optimize the margin.

L(y) = %Z;l:lmax(o,l —y,»(wai — b) ) + 2wl 3)

where 1 is the extra regularization term to control the margin, x; lies on
the correct side of margin, y; is the i-th target, and w is the normal vector
to the hyperplane.

For the problems that are not linearly separable, SVM can make use
of a feature transform technique called kernel tricks to solve a problem
with more complex behaviors. The kernel functions implicitly map the
data points into a high-dimensional feature space and make it possible to
solve the problem with a nonlinear hyperplane. The most used kernels
are polynomial and radial basis function. The GPR has been used to
construct the foundation of ML algorithms. Gaussian processes (GPs) are
natural generalizations of multivariate Gaussian random variables to
infinite index sets [155]. GPR assumes that a Gaussian distribution best
describes the statistical variance of the modeling data [156]. Being
treated within a Bayesian framework, statistical methods can be
implemented in the GP models. Hence, the GP models can validate the
estimations of uncertainties in the predictions.

Liu et al. demonstrated how they apply the GPR to predict new
NiTiHf shape-memory alloys (SMAs) and their performances in a high
dimensional, multiple-target-property design space that considers
chemistry, multi-step processing routes, and characterization method-
ology variations [157]. For GPR, the choice of covariance function is
known as the relationship between observations. Liu et al. applied the
GPR for their SMAs research because GPR can also estimate both the
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response and the variance in the response, which is better for extrapo-
lation of the training data near the composition and processing domains.

Specifically, Liu et al. employed physics-informed nonlinear trans-
formations of the process features time (t) and temperature (T), such as
In(t) and T x (1 — e~T= )~! where 0 is the critical temperature for a
phase transformation enabling the GPR model to work well. Such
physics-informed approaches are depicted from Liu et al. [157]. Liu
et al. demonstrated that using GPR together with the physics-informed
feature engineering enable the design of physical complex SMAs (Fig. 5).

Vasudevan et al. used the following example to explain the differ-
ences between the regression and classification for the supervised ML.
“When the property of interest (Y;) is a numerical quantity, such as yield
strength or melting point, then regression-based methods are well suited. On
the other hand, when Y; is a categorical quantity, such as space group of a
crystalline material or crystal structure-type, then classification learning
methods are better suited for supervised learning [153]".

Kernel ridge regression (KRR) combines ridge regression and clas-
sification with the kernel trick. Ridge regression is used to estimate the
coefficients of multi-regression models where independent variables are
highly correlated and it is a biased estimation procedure that produces
stable estimates of the coefficients [159]. Recalling Schmidt et al.’s
“Recent advances and applications of machine learning in solid state
materials science”, ridge regression, a multi-dimensional least squares
linear-fit problem is equivalent to solve the following minimization
problem [18]:

min((1Y — XpI5 + 21813) @

where X is the descriptor matrix, and Y is the outcome vector. j repre-
sents the vector of weighted coefficient. The A parameter is the regula-
rization penalty, which favors specific solutions with smaller
coefficients. As complex regression problems can usually not be solved
by a simple linear model, the kernel trick is often applied to ridge
regression. A kernel first transformed the original descriptor into a
higher-dimensional feature space ¢(x). In this space, the kernel k(x, y) is
equal to the inner product (¢(x), ¢(y) ). In practice, only the kernel needs
to be evaluated, avoiding an inefficient or even impossible explicit
calculation of the features in the new space. After that, Schmidt et al.
solved the minimization problem given by Eq. (4) in the new feature
space which results in a non-linear regression in the original feature
space. This is usually referred to as KRR. Fig. 6 is Shen et al.’s example

2.0F

====target function

—— prediction

training data 20 credible region

N 1 1 N 1 N 1 N ! N 1
.93 0 2 1 6 8 10
[

Fig. 5. Leclercq’s illustration of GPR in one dimension, for the target test
function (dashed line). Training data are acquired (red dots); they are subjected
to a Gaussian observation noise with standard deviation ¢, = 0.03. The blue
line shows the mean prediction p(0) of the GPR, and the shaded region of the
corresponding 20(0) uncertainty. GPs allow interpolating and extrapolating
predictions in regions of parameter space where training data are absent [158].
Adapted from [158] with permission from American Physical Society (APS)
(For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.).
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Fig. 6. Shen et al.’s illustration showing a schematic diagram of two-step KRR.
(A) An intermediate prediction of LPI is conducted using an IncRNA KRR model.
(B) Protein KRR is trained using the last step information for predicting new
proteins. Adapted from [160] with permission from frontiers in Genetics.

showing multivariate information fusion with fast kernel learning to
KRR in predicting LncRNA-Protein interactions [160].

K-nearest neighbors (KNN) [161] can be applied for both regression
and classification problem. It forecasts the values of new data by
measuring feature similarity. New data point is assigned to a value based
on how close it resembles the points in the training set. The K in KNN
indicates the number of neighbors, which the calculation will involve. A
similar algorithm is radius-nearest neighbors (RNN) [162], which circles
a group of neighbors according to the assigned neighbors. There are two
steps in KNN: (1) Calculating the distance between the new data point and
each training data point where the commonly used distance functions are
Euclidean, Manhattan and Hamming (for classification used). (2) Selecting a
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K to involve the K closest neighbors and calculating the mean of the K
neighbors. The strength of KNN is the simplicity of its algorithm while it
may be slow for large datasets compared with other regression models.
Fig. 7 is Atallah et al.’s example showing intelligent feature selection
with the modified K-nearest neighbor [163].

2.1.2. Unsupervised learning

The purpose of the unsupervised learning is to obtain the intrinsic
relations within data. When dealing with high dimensional data, it is
often useful to reduce dimensionality by projecting the data into a lower
dimensional subspace to capture the essence of the data and to make the
data visualized. This is called dimensionality reduction. It is a data
preparation technique performed after data processing and before
model training. In unsupervised learning, only input data is given to a
model but no labeled output, which is tasked with a learning objective to
find rankings or patterns clustering for this input. The representative
methods include k-means [164,165], hierarchical cluster analysis [164],
and Hidden Markov model [166]. In materials research, it enables the
understanding of the similarities between materials themselves. Since
each algorithm has its own suitability and application scope, the selec-
tion of a proper algorithm is crucial for its successful implementation.

K-means is a clustering method aiming to minimize the intra cluster
distance as good grouping, indicating that each instance is close to the
assigned cluster while apart from the nearest cluster [167] (Fig. 8).

K-means involves pre-assigned number of clusters and centroid that
is the mean value of each cluster. Domain knowledge is important at the
stage of determining the number of clusters. It begins with initial
random guess of centroids and iteratively updates until the centroids do
not change for best solutions. Given a set of data (xi, X2, ..., Xp), €ach
data has a d-dimension vector, k-means aims to build k clusters where
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Fig. 7. Atallah et al.’s illustration showing steps of the proposed modified K-nearest neighbor [163]. Adapted from [163] with permission from Springer Nature.
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the sum of the distances of the data to its centroid is minimized within
each cluster S = (S1, S, ..., Sk). The objective function can be
formulated:

T =3y -l

XES;

(5)

where x; is referred to as the j-th data in the i-th cluster and y; is the
centroid of the i-th cluster S;. ||x; — y;|| denotes the distance which can be
either Euclidean distance or Manhattan distance. y; can be computed by
following equation:

>

o]
b Inl

ilyes;

(6)

where n; represents the number of data points in the i-th cluster.
Hierarchical cluster is a pairwise approach that builds the cluster
step by step. Through a dendrogram, the correlations among clusters can
be visualized [169]. Observations are allocated to clusters by drawing a
horizontal line through the dendrogram. Observations that are joined
together below the line are in clusters. Fig. 9 is Fujii et al.’s example,
which quantitatively predicts grain-boundary thermal conductivities
from local atomic environments (LAEs) using hierarchical cluster [170].
There are two major types of hierarchical clustering algorithm:
agglomerative hierarchical clustering and divisive hierarchical clus-
tering. The former is a bottom-up strategy, assuming each object as an
individual cluster and merging clusters that are close. Divisive hierar-
chical clustering starts with the whole dataset as a single cluster then
separates the clusters step by step. Both strategies vary according to how
the dissimilarity (distance) is measured, most of which are single linkage
and complete linkage. Single and complete linkages were defined as the
distances between the closest points and between the furthest points in

10

the two groups, respectively. They are based on the following mea-
surements where C, and Cy, are the two different clusters:

Single linkage : d(C,,Cp) = Xleé?jglecbd(x,-,x,-) @
Complete linkage : d(C,,C,) = max d(x;,x_/-) (8)

3i€Ca;€CH

It is obvious that different distance measurements can result in
completely different results. Single linkage tends to depict chaining ef-
fect while complete linkage tends to be used in data with significant
groups by comparing clusters with extreme similarity. Bortolotti et al.
showed that combining X-ray powder diffraction (XRD) and X-ray
fluorescence (XRF) with cluster analysis can automatically map the
chemical and crystallographic surface [170]. Similarly, Torralba et al.
performed a hierarchical cluster analysis (HCA) with complete linkage
method based on their composition for determining whether some
combinations of elements tend to be used in the HEAs consistently
[171]. The dendrogram analysis reveals dissimilarity between different
compositions of HEAs. It is found that the 9 types of clusters can
apparently be divided into refractory metals and transition metals,
where refractory metals have BCC phase structure and transition metals
include BCC and FCC(+BCC), as shown in Fig. 10.

2.1.3. Machine learning methods for HEMs

The supervised learning is mostly mature for most ML studies in the
physical sciences, which is a ML paradigm for acquiring the input (e.g.,
structure, composition, experiment conditions.)-output (e.g., properties,
phases, structure, type, etc.) relationships from training a given set of
input-output pairs and using the training model to produce optimal
outputs for unseen inputs. As for the output data with continuous
quantity, the regression methods, such as the KRR or GPR [172], ANNs
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Fig. 9. Fujii et al.’s illustration showing hierarchical clustering of grain-boundary local atomic environments. (a) Hierarchical relationship between LAEs depicted in
dendrogram form. The different regions represent three general groups of LAEs: (green) highly under-coordinated (bond-ruptured); (red) moderately under-
coordinated or strongly strained; and (grey) moderately strained, weakly strained or bulk-like. (b) Representative distributions of the LAE groups and LDFs at six
STGBs. A log scale is used to make it easier to distinguish changes in LDFs within LAE groups. Adapted from [170] with permission from Springer Nature (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.).

[173], and SVMs [174], are widely used. If the target is the discrete
output, such as the type of material phase, ANNs, decision tree [175],
k-nearest neighbors, and random-forest [176] algorithms are the
commonly used classification algorithms.
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Fig. 10. Torralba et al.’s illustration showing dendrogram plot obtained from
the hierarchical clustering classification on the HEAs data set, which shows the
9 types of HEA alloys [171]. Adapted from [171] with permission from Taylor
& Francis.
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Since the HEMs consisting of five or more principal components
provide great freedom for the materials development, the design of new
HEMs and the associated manufacturing processes with optimal com-
positions and experimental parameters become more challenging.
Although computational HT virtual screening (HTVS) has emerged as a
significant tool in materials science to speed up the discovery of new
materials in recent years, the computation-intensive approaches of first-
principles calculations is the bottleneck that limits the exploration of the
chemical space and large-scale system in HEMs. Studies turned to
employ ML replacing exhaustive trial-and-error experiments and cal-
culations. Recently, many ML models have been developed for fast and
accurate forward predictions of materials phases and properties of ma-
terials. The computational burden of HTVS by the ML framework effi-
ciently explores a large chemical space.

As mentioned earlier, Schmidt et al. suggested that the ML algo-
rithms can be divided into three main categories as supervised learning,
unsupervised learning, and reinforcement learning [18]. For the su-
pervised ML, Pedersen et al. manifested the unbiased discovery of new
catalyst candidates for the carbon dioxide (CO3) and carbon monoxide
(CO) reduction reactions on CoCuGaNiZn and AgAuCuPdPt HEAs by
combining DFT with ML [177]. For the unsupervised ML, Li et al. dis-
closed (1) intelligent corrupt data detection and re-interpolation to a big
tabulated thermodynamic dataset based on an unsupervised learning
algorithm and (2) parameterization via ANNs of the purged big ther-
modynamic dataset into a non-linear equation consisting of base func-
tions and parameterization coefficients on the Al-xZn-2Mg-2Cu alloys
(weight percent, wt. %) and Al 32C027.27Cr135.18Fe1s.18Nizy.27Tis 78 HEA
[178].

Meanwhile, the materials inverse design of ML becomes more pop-
ular. The inverse design is a goal-oriented approach, which is signifi-
cantly different from the forward development. It starts from the desired
properties or functionalities and ends in the chemical space. Most
existing methods of solving inverse problems are based on optimization
techniques, such as the genetic algorithm (GA), simulation annealing,
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Table 4
Algorithms and the associated methods for HEMs ML.
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Methods

Ref.

Linear least-squares regression
Generalized linear regression (GLMNET)
Linear discriminant (LDA)

Logistic regression

Decision tree (DT)

Kriging or Gaussian process

Artificial neural network (ANN)

Support vector machine (SVM)

Decision tree

Random tree/ forest (RF)

k-nearest neighbors

Naive Bayes

Gradient boosting classifier

Conditional generative adversarial network (CGAN)

Kernel principal component analysis (KPCA)

Density-functional theory (DFT)

Exact muffin-tin orbitals formalism-coherent potential
approximation (EMTP-CPA)

[114,184,185]

[135]

[135]

[186,187]

[135]

[188-190]
[44,75,127,128,133,135,
187,190-196]
[102,115,128,135,187,
193,197,198]

[186,187]
[135,185-187,197,199]
[135,186,193,197]
[135,197]
[123,185,187]

[134]

[115]

[126,129,138]

[111]

Ab initio calculations [130,131]

Vienna Ab initio Simulation Package (VASP)- Special [111]
Quasi-random Structures (SQS)

Molecular dynamics (MD) simulation [122]

Computer coupling of phase diagrams and [132,137]
thermochemistry (CALPHAD)

Feature engineering [136]

and Bayesian optimization [39,134,179,180]. Alternatively, generative
models (GMs) in ML are proved to be able to inversely design in material
discovery, e.g., the conditional generative adversarial networks (CGAN)
for phase and mechanical properties predictions of HEAs [134,181],
GAN model for inorganic materials [182], variational autoencoder
(VAE) for new crystal structures of solid-state materials [183], and
conditional variational autoencoder (CVAE) for molecules [151]. Some
selected methods were listed in Table 4.

2.2. HT theoretical & experimental approaches

Traditionally, new materials are developed empirically or through
experimental trial-and-error approaches. Since the launch of the MGI in
2011, the MGI led the material science accelerating the data-driven
paradigm [21], which boosted the emerging field of materials big data
and materials informatics to help businesses discover, develop, and
deploy new materials much faster. The materials informatics is a useful
approach to reveal the hidden correlations among the elements of ma-
terials through big-data analysis, which thus opens new pathways for
materials discovery and design. HT techniques are the crucial tools for
materials informatics that enables scientists to efficiently produce the
big dataset for further extracting information from the materials data-
base. With the rapid development of high-performance computing fa-
cilities and parallel computing architectures, HT computing becomes a
more efficient way to create data than experiments. Theoretical
first-principles calculations and semi-empirical CALPHAD methods are
both popular approaches to investigate the atomistic and thermody-
namic mechanisms of the HEMs formation, so as for new HEMs design.

First-principles calculations have been widely accepted as the major
approach in the atomic-scale materials design. Based on the HT
approach, recent studies have led the exponential growth of the material
database, which drives the development of a material database system
and accelerates materials innovation [200]. For example, the
automatic-flow (AFLOW) for materials discovery [201,202] is a re-
pository that first developed the HT framework to generate phase dia-
grams, electronic structures, and magnetic properties from DFT
calculations codes (e.g., VASP and Quantum Espresso) in 2003. All the
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Table 5
Current developments of HT DFT tools.
HT-DFT Supported DFT software Program Workflow
tools Management
AFLOWrn Quantum Espresso, VASP Python 2.7 YES
AiiDA Quantum Eepresso, GPAW, Python 2.7 YES
VASP, Wannier90, Wien2K
Atomate VASP Python 3 YES
MAST VASP Python 2.x YES
and 3.x
Fireworks VASP, ABINIT, NwCHEM, Python 3.7 YES
Gaussian and ASE
Qmpy VASP Python 3 YES
PyChemia VASP, ABINIT, Octopus, Python 3.x NO

DFTB-+, and Fireball

DFTB + is a fast and efficient versatile quantum mechanical simulation software
package. FIREBALL is a local-orbital Ab initio tight binding implementation of
MD.

available results were determined by the HT management workflow
named AFLOW r [203,204]. AFLOW r is a public release software,
which allows the researchers to customize their automated and robust
workflows by constructing consistent datasets and screening properties.
The Materials Project [203,205] is another example of the MGI. The
Materials Project is an open web-based access database, which provides
the DFT-calculated data of all known and predicted materials as well as
analysis tools to inspire and design novel materials. The HT manage-
ment module, Fireworks [204,206], is released on GitHub with
comprehensive documentations supported, which can be freely down-
loaded. People can also modify and re-compile the source codes on the
users’ own facility in solving specific problems, using Fireworks [204,
206]. Other workflow-management tools, such as atomate [207,208],
AiiDa (Quantum ESPRESSO base) [209,210], materials simulation
toolkit (MAST) [211,212], PyChemia [213], and gmpy (OQMD) [214],
are also free and open-source codes for defining, managing, and
executing workflows, which enables researchers to build automated and
robust workflows for creating consistent datasets. All these tools are
outlined in Table 5.

Apart from quantum mechanics/DFT-based (Ab initio) calculations at
the sub-nanoscale, scientists are also interested in dynamic in-situ be-
haviors of the HEMs above absolute zero temperature. Accordingly, MD
or Monte Carlo (MC) simulations are used to investigate complicated
atomistic mechanisms in nanoscale. It is discovered that MD performs
well and accurately in agreement with experiments, if interatomic po-
tentials are of “high quality”. Unfortunately, there is a significant lack of
interatomic potentials for the complex HEM systems. To obtain reliable
interatomic potentials, ML is incorporated with HT DFT calculations.
Atomic coordinates are mapped to machine-learned energies with two
steps: 1. coordinates of an atom and its neighbors are transferred into
descriptors, which describes the local chemical environment of an atom.
2. ML methods are applied to map the descriptors to atomic energies.
ML-potentials are trained from considerable high-fidelity DFT data
including energies, forces, stresses, etc., and hence they are the
complicated functions of atomistic position and chemical environment
compared with the conventional and empirical potentials. As ML-
potentials inherit two advantages at the same time-accuracy in line
with first-principles & efficiency of MD simulation in larger scale,
different ML-potentials have been proposed, such as Behler-Parrinello
neural network potentials (BPNNPs) [215], moment tensor potentials
(MTPs) [216], spectral neighbor analysis potentials (SNAPs) [217], deep
learning potentials (DLPs) [218], Gaussian approximation potentials
(GAPs) [219], and low-rank potentials (LRPs) [131]. These ML-poten-
tials impulse HEMs research into a new stage as they can perform well on
many-body interactions in multi-element systems to study and under-
stand the fundamental behaviors of HEAs at different temperatures.

Based on the thermodynamic theory, CALPHAD is a useful approach
to predict the phase stability in multi-component systems, such as the
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HEAs, for alloys design. Since the 1970s, the CALPHAD technology has
been employed to calculate the phase diagrams for new alloy design.
There are several commercial products in the market, e.g., PANDAT
[220], MatCalc [221], and Thermo-Calc [222] as well as open-sources
codes, such as PyCalphad [223] and ESPEI [224]. The thermodynamic
models have been widely used for the HEMs design. Although most of
the thermodynamic data in CALPHAD is the traditional alloys, several
studies have demonstrated that an appropriate selection of binaries and
few ternary alloy databases can successfully enable the design of the
single-phase solid-solution HEAs, such as the CoCuFeMnNi HEA in the
face-centered-cubic (FCC) structure [225], the CryMoNbTaVW HEAs in
the body-centered cubic (BCC) structure [226], the AlCoCrNi eutectic
HEAs in the FCC and B2 structure [227], and the equilibrium AlCoCr-
FeNi HEA [104], respectively.

The commercial software, PANDAT [220], has recently implemented
the HT tools for efficiently generating thermodynamical properties of Al
alloys [228] and HEAs [105]. A Python-based open-source program,
named automatic execution and extraction tasks (AEET) [229], is
developed for automatic and HT thermodynamic calculations via
Thermo-Calc. The general infrastructure is archived [229]. Serving as
virtual screening experiments, the HT thermodynamical calculation
provides the guidance for the design of real experiments and compre-
hensive understanding of the influences of heat-treatment conditions
and alloy compositions. However, the validity of the CALPHAD pre-
dictions for HEAs remains unsatisfactory in some cases, due to the
complexity of HEAs and the lack of available thermodynamic and kinetic
data for ternary and more complicated systems of the database, which
does not ensure the complete prediction of HEAs [230,231]. Although
commercial databases for HEAs, such as TCHEA4 [232] from Ther-
mo-Calc., including 26 elements [222], and PanHEA, including 15 ele-
ments [233] from Pandat™ [220], are already available, their accuracy
still requires additional verification. To improve the results obtained
from the CALPHAD with existing commercial databases, previous
studies integrated the basic first-principles data with experimental data
in the construction of the CALPHAD thermodynamic database [231,
234]. However, most of the current HT first-principles calculation data
focuses on perfectly ordered stoichiometric phases at absolute zero,
which is limited in incorporation with the CALPHAD calculation. Walle
et al. [235] developed a set of software tools, included in the alloy
theoretic automated toolkit (ATAT) [236]. Walle et al.’s working flow
largely automates the process of converting Ab initio data into thermo-
dynamic databases that can readily be imported into a standard ther-
modynamic modeling software and provides a clear path to expand the
coverage of HT efforts towards non-stoichiometric phases and non-zero
temperatures [235].

In the HT experiment, the technique in preparing a composition
gradient in a thin-film material deposition was first conducted to ach-
ieve a onetime characterization of a batch of compositions in 1965
[237]. These new methods pave the way for efficiently build up finer
and complete composition-structure-property relationships. However, it
is noted that the experimental process to synthesize materials is very
expensive. The synthesis and characterization techniques have been
developed to prepare the compositional-graded bulk alloys, such as the
diffusion couples, supergravity field, additive manufacturing, sputter
deposition, and laser deposition [238,239].

Ren et al. reported the accelerated discovery of metallic glasses
through iterations of ML and HT experiments, which synthesizes and
screens a ternary (about 1000 alloy compositions) in a day, resulting in a
100-fold acceleration [240]. Ren et al.’s rapid parallel synthesis of the
thin-film alloy deposition was divided into three combinatorial
composition spreads as the libraries. Each library was deposited, and the
alloys were co-deposited, using single-element targets. Ren et al.’s HT
characterizations simultaneously included two-dimensional (2D) X-ray
powder diffraction (XRD) patterns and X-ray fluorescence (XRF) map-
ping on the combinatorial libraries at the Stanford Synchrotron Radia-
tion Lightsource (SSRL) [240]. Ren et al.’s work demonstrated the
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importance to bridge theory and images, including the 2D structure and
functional data from the library, to speed up the materials discovery
[241]. For example, with high-resolution detector, the X-ray nano-
diffraction (XND) of the Taiwan Photon Source (TPS) provided
spatially-resolved mapping for elements, phases, orientation, residual
strain-stress, and dislocations at a resolution of 100 x 100 x 50 nm
showing the lattice distortion of the HEAs [242].

Some of the HT databases are accessible through an open access
repository, such as the high-throughput experimental materials (HTEM)
database [243] and materials data facility (MDF) [244]. With the
considerable growth of data generated by the HT approach, a Data and
Learning Hub for Science (DLHub) provides a ML model repository,
associated data transformation, and analysis tools in materials research,
which allows researchers to run and publish ML models with flexible
application programming interfaces (API) for access, descriptive meta-
data for building the servable, and persistent identifiers for subsequent
citations [245].

While the parallel material synthesis and rapid characterization
enable the HT experimental and combinatorial community, it is also not
trivial to analyze the associated great amounts of high-quality mea-
surements correlated with the composition, processing, and micro-
structure. It is important to standardize data formats, build data
analysis, and interpretation tools for large-scale data sets. Schmidt et al.
summarized several modes of measuring properties, visualizing, and
interpreting data for the other materials [18]. The examples of HT
measurements for the HEMs are presented in the Part 2 of this
manuscript.

2.3. Big-data approach

As Vasudevan et al. commented, here are the needs to organize data
across existing platforms and the searchability to find the relevance
[93]. Because of the launch of the MGI, the basic infrastructures and
techniques for material informatics developed rapidly, and the tradi-
tional databases evolved into a data center, which provides the
data-distribution platforms or repository for online data storing,
sharing, querying, visualization, and analysis. More and more data in-
frastructures and companies open worldwide. For the open database, the
AFLOW database [201], developed by Duke University, includes over 3,
405,082 material compounds with over 667,396,072 calculated prop-
erties, where the compound includes the binary, ternary, and quaternary
systems, and the properties cover the band structures, Bader charges,
elastic properties, and thermal properties. The Materials Project data-
base [203], established by Massachusetts Institute of Technology (MIT),
provides the structural information and properties of more than 131,613
inorganic compounds, 76,194 band structures, 14,071 elastic tensors,
and 49,705 molecules, that collected a huge database from DFT.

Some of the HT databases are accessible through an open access
repository, such as the HTEM database [243] and materials data facility
(MDF) [244]. The MDF [244] is a data publication network for
computational and experimental datasets. There are more than 500
datasets. The HTEM database [243] contains information about mate-
rials obtained from HT experiments at the National Renewable Energy
Laboratory (NREL), which releases large amounts of high-quality
experimental data to public. The HTEM database contains the infor-
mation about synthesis conditions, chemical compositions, crystal
structures, and optoelectronic (e.g., electrical conductivity and band
gaps) measurements of the materials. The current public data consists of
37,093 compositions, 47,213 structures, 26,577 optical properties, and
12,849 electrical properties of thin films synthesized using combinato-
rial methods. Those data repositories provide material data with a
standardization format and tools for easy data access, visualization, and
exploration [246]. Beside the data repository mentioned above, more
than 50 materials repositories have been established, which can be
classified into the calculation/experimental database, open access/-
commercial database, organic/inorganic database, crystal/liquid
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Table 6
Publicly accessible structure and property databases for solid materials and
molecules.

Method Ref.
Automatic-flow for materials discovery (AFLOW) [130]
Computer coupling of phase diagrams and thermochemistry [249]
(CALPHAD)
Citrination [247]
Materials Project [250-252]
Center for Hierarchical Materials Design (CHiMaD) [253]
High Throughput Experimental Materials Database (HTEM DB) [243]
National Renewable Energy Laboratory Materials Database [254]
(NRELMatDB)
NIMS Materials Database (MatNavi) [255]
Novel Material Discovery Repository (NoMaD) [256]
Computational Materials Data Network (CMD Network) [257]
Polymer genome [258]
Matmatch [259]

crystal/glass database, and so on.

In addition, several companies start up the material-design business
based on the material-informatics techniques. For example, Materi-
alsZone [102] supplied the platform for sharing, screening, visualizing,
and managing heterogeneous data sets for rapid materials discovery and
ML applications. Granta Design provides commercial data, tools, and
expertise for materials design. Citrine informatics [247] and
Schrf)dinger [248] established the cloud platform for new materials
development with ML and the necessary expertise to develop,
commercialize, and scale new materials. With a rapid increase of public
and commercial material platform for solid materials and molecules, ML
has become a robust methodology applied across many materials dis-
ciplines, as summarized in Table 6.

Since the HEAs were introduced by Yeh et al. in 2004, a huge number
of articles in the Web of Science on the theme of “high-entropy alloys”
have been published. Li et al. [260] used Keyword Graph analysis of the
articles to uncover future development directions of HEAs and the most
interesting topics. We follow Li et al.’s format and update the Keyword
Graph analyzing the number of papers published from 2004 to 2020 to
display the research trends of the HEMs in Fig. 11. The change of
research keywords with average time in Fig. 11 reveals that the current
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field of HEAs has attracted increasing attention to microstructure,
CALPHAD, corrosion behavior, stability, MD, laser cladding, magnetron
sputtering, and films, demonstrating that the current studies are focused
on the topics of microstructure, surface coating, and sputtering. Laser
cladding and magnetron sputtering are both the most mature techniques
for high-entropy coatings [261]. Note that the theoretical study of MD
received much attention in recent years, which may attribute to the
development of potential functions and parameters [106,262,263]. Due
to a significant increase of ML studies for the HEAs design, HT CALPHAD
was broadly used to generate training data of microstructure.

2.4. Combinational approach

In recent years, materials discovery and design have taken a huge
leap since “combinatorial approach” and “materials informatics” were
proposed and applied in different areas, the success of which are
attributed to data generated from computational and experimental
tracks. From there, the scientists have explored big digital data space via
data mining, autonomous systems, and Al techniques. As theoretical
methods become more precise and hardwares for high-performance
computing become more powerful, large-scale and rapid computa-
tional data generation arrives. The accessibility together elevates along
with the establishment of many open-source online databases, such as
the Materials Project [203] or AFLOW [201]. These infrastructures
systematically reposit computational measurements of materials prop-
erties calculated through DFT approach, e.g., electronic band structure
and formation energy. Likewise, HT experimental data ranging from
synthesis to characterization measurements also needs great curation for
the community. Many efforts have been made to manage large and
heterogeneous data sets, e.g., MaterialsZone [102], NIST [264] are good
online systems for handling and analyzing. In a HT manner, integration
of computational and experimental data is a new topic for materials
science. HT semi-empirical CALPHAD approaches are powerful tools for
calculating the phase diagrams for the purpose of structural design. HT
ab-inito approach not only compensates the lack of available thermo-
dynamic and kinetic data for CALPHAD calculations but also uses to
screening the new stable composition with different structures and
desired properties. The HT experiments enable the rapid synthesis and
characterizations for validation. On the one hand, combinatorial HT
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Fig. 11. Changes of research keywords with the average time, reflecting future development directions of HEAs. The search keyword is the “high-entropy alloys” and
the total number of articles is 5000 from 2004 to 2020 in the Web of Science. The figure is the extension of Li et al.’s statistics [260].
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Fig. 12. ML assists the materials exploration and bridges the gap of multiscale simulation.

experiments can validate theoretical predictions based on modeling,
particularly in a wide compositional range. Meanwhile, experimental
data generated from libraries can then be used to augment or optimize
the theoretical models. In summary, effect coupling of experimental and
theoretical approaches not only accelerate materials discovery but also
bring two domains into a higher level of study.

Apart from experimental and theoretical information, data generated
from multi-scale simulations in terms of different applications can also
be incorporated with ML, as shown in Fig. 12. As for the ML at the end
manner (left block), this method utilizes existing resources (data) in
either inverse discovery of novel materials or forward prediction of
properties and structure, saving much time and cost. Meanwhile, the
physical rules of prediction results can be unveiled from the weighting of
various input features. ML can also be embedded in these combinatorial
approaches, as shown in the right block of Fig. 12. To investigate me-
chanical behaviors of structural components such as fatigue mode and
stress components, computational results of MD or MC simulations are
used to train ML models. Subsequently, the output of training models is
implemented into FEM to substitute constitutive relations used in the
conventional continuum models. This hierarchical approach shows the
potential of ML in connecting nano mechanics with structural mechanics
[265]. To gain in-depth analysis of dynamic behaviors for nano-
structure, ML is also available for bridging Ab initio calculations with MD
simulations by mapping atomistic coordinates and chemical environ-
ments to ML-potentials. Nano twinning, grain boundaries, and phase
transition of materials under specific temperatures are then identified
accurately and efficiently via the combinatorial approaches.

2.5. Summary

Materials design continues to progress in order to save cost and time
as well to enhance performance simultaneously. The scientists are
making efforts in tailoring composition, process, and structures with the
aim of the improved properties and performances of materials. Fig. 13
illustrates the innovation for new materials discovery.

Traditionally, experimental approaches are based on physical in-
tuitions and/or expensive trial-and-error strategies. Theoretical
methods offer the way to understand the most fundamental and
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important information of materials. HT approaches are the platforms
that provide a rapid and systematical synthesis, characterization, and
calculations for materials screening. However, the drawbacks of HT
approaches are limited by the user-selected library (compositions) and
experts’ intuitions, which could miss out on high-performing materials.
Data-driven science as materials-informatics technique is possibly
implemented by data mining, ML, and mathematical optimization using
the existing database and HT data, resulting in a new pathway to un-
derstand the materials and enable the innovation of materials design. In
other words, HT screening with machine-learned predictors may filter
out preferable materials as well disclose the fundamental physical and
thermodynamic rules. In addition, global optimization and generative
models as deep learning models can be utilized to build new hypothet-
ical crystal structures and compositions for HTVS that go beyond the
existing structural and compositional motifs. The greatest value is its
powerfulness for systematically extracting physical relationships,
mechanisms, and principles [61] such as PSPP relations. Hence, the
combinatorial HT approaches correlated with materials informatics
have the potential to speed up the development schedule and boost the
innovation of the HEMs, as well as to reduce the cost for competitive
materials discovery. However, there are still some challenges herein
mainly based on the original collected data, such as accuracy, repre-
sentation, and heterogeneity. As long as we have reliable data of high
quality, materials informatics is a powerful wheel promoting the
development of materials science.

Again, since the HEMs provide a huge space of great tunability for
design, materials informatics can assist with daunting tasks to untangle
unanswered questions and explore unexploited domains. There are
growing data repositories established in recent years for the HEMs. Most
of the HEMs data are the data of phase diagrams and material hardness
whereas the other properties are introduced below.

3. ML and HT studies for HEMs

Chen et al. reported several successful cases using ML for the HEAs in
which ML can make scientists better [65]. For example, to design the
multiphase HEMs, Krishna et al. employed the ML approach with a data
set of 636 alloys and predicted the HEAs with a mixture of the solid
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Fig. 13. Towards ML and material informatics to enhance combinatorial HT calculations and experiments for material discovery and innovation.

solution and intermetallic (SS + IM) [187]. Krishna et al.’s ML algo-
rithms comprised logistic regression, decision tree, SVM classifier,
random forest, gradient boosting classifier, and ANN. ANN has shown
the best accuracy of more than 80 % of the test data. Their predictions
were verified, and ANN is a more accurate prediction in their HEMs
system [187]. For medium-entropy alloys (MEAs), Li et al. combined HT
simulation with ML to obtain MEAs with high strength and low cost
[190]. Roy et al. employed a gradient boost regressor ML method to
predict Young’s modulus of low-, medium- and high-entropy alloys with
root-mean-square error (RMSE) of 87.76 %, revealing that T, and AHpjx
are the most important descriptors [123].

Besides these successful cases, due to the complexity of the HEMs,
Miracle et al. proposed new strategies to accelerate the discovery and
development of HEMs [33]. Miracle et al.’s strategies start with the
calculated phase diagrams to quickly screen the alloy candidates, which
can save more resources as the Stage Zero. Comparing with the required
time to examine the candidate materials via a computational approach,
Miracle et al. then suggested to investigate the structure-insensitive
properties as the Stage One for the first experimental step. Miracle
et al.’s final evaluation is to measure the properties that depend on both
compositions and microstructures [33]. Along this vein, in this session,
we review the structure-insensitive properties of the HEMs. Since the HT
and combinatorial experiments are well established for functional ma-
terials, the second part of this session is the review of the functional
properties of the HEMs. Finally, we review the other properties of the
HEMSs which depend on both compositions and microstructures. With
Tshitoyan et al.’s unsupervised word embeddings capture methods [50],
the previously unrecognized correlations of these
composition-microstructure-dependent data may be unveiled for new
applications.

To promote ML-based optimization, the validation of the ML results
by experiment or physics-based simulation is important for the inter-
pretability, thus, HT data acquisition capabilities are critical [65].
DeCost et al. concluded that critical bottlenecks for adaptive science and
autonomous control of experimental systems are (i) a widespread
absence of API to interact with laboratory equipment, (ii) lack of a
unified language for experimental workflow protocols, and (iii) lack of
standardized and open data formats to facilitate accessibility and
interoperability [61]. Therefore, in this session, we will review the
selected examples showing the complimentary and validated results
using HT methods.

Zhao summarized the HT experimental tools for the materials
genome, which focused on the experimental tools for HT and high
spatial resolution measurements of the materials properties such as
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phase, elastic modulus, thermal conductivity, specific heat capacity, and
thermal expansion [266], which can be applied for the HEMs. Specif-
ically, it is important to generate and apply the “libraries” from both
experiment and theoretical tools [93]. In terms of HT screening of the
experiments, a screening facility typically holds a library of stock and
assay plates. For example, Li and Flores employed a HT direct laser
deposition processing method to construct AlyCoCrFeNi HEA micro-
structural library, which x = 0.51 ~ 1.25 [267]. The samples are graded
in composition and quench rate ranging from 26 ~ 6400 K/s. Li and
Flores found that the microstructural feature sizes followed a power law
relationship with the quench rate. Their study demonstrated that laser
processing coupled with microstructural library was an effective method
for HEA developments [267].

Haase et al. reported a methodology that combines thermodynamic
modeling with 3D printing of elemental powder blends for HT investi-
gation of the Co-Cr-Fe-Mn-Ni HEAs system [268]. For bulk sample
production, Haase et al.’s laser metal deposition of an elemental powder
blend allows high flexibility in varying the chemical composition while
the microstructural, texture, and mechanical properties of the processed
materials were characterized, using optical microscopy (OM), electron
backscatter diffraction (EBSD), energy dispersive X-ray spectroscopy
(EDS) analysis, XRD, and hardness and compression testing [268].
Similarly, Moorehead et al. also presented the HT synthesis using ad-
ditive manufacturing [269]. Moreover, Moorehead et al. designed HEAs
sample arrays for in-situ alloying of elemental powders, where scanning
electron microscope (SEM), EDS, and XRD were performed while the
samples were remained on build plate to construct the library. Besides
their HT synthesis and characterization, Moorehead et al. utilized
CALPHAD calculations via PanDat™ as the HT modeling to predict the
equilibrium phases of each printed alloy composition at 300 °C.
Moorehead et al. found a discrepancy between the simulated and printed
HEAs, such as certain Ta-rich and Nb-poor compositions due to the slow
diffusivity of refractory metals at this temperature [269].

Moorehead et al. applied similar HT additive manufacture synthesis,
characterization, and CALPHAD procedures to map the compositional
array of the Cr-Fe-Mn-Ni alloys to build the library for the irradiation
investigations [270]. Moorehead et al. reported that radiation-induced
hardening was observed in the compositionally complex alloys
(CCAs), which was comparable to neutron irradiation [270].

Besides the applications of the aforementioned additive
manufacturing for the HT synthesis, Xu et al. carried out in-situ HT
synthesis of FeCoNiCrCuAlx in a transmission electron microscope
(TEM). The dynamic melting process of FeCoNiCrCu with Al was
recorded, and the composition of FeCoNiCrCuAlx was examined by EDS.
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Xu et al.’s in-situ HT method in the TEM avoid the drawbacks of the
conventional arc-melting and casting, where the repetitious melting
processes can cause the evaporation of some low-melting-temperature
elements at the high temperature environment [271].

3.1. HT studies on the structure-insensitive properties of HEMs

The structure-insensitive properties reviewed in this session mainly
focus on the moduli and thermal expansion. Several in-situ instruments
are presented because these advanced methods obtain multi-scale
properties of the HEAs simultaneously from the bulk to the lattice-
level properties [272].

As mentioned earlier, Kim et al. investigated the relationship be-
tween the elastic properties and lattice distortion using a combined
experimental and computational approach based on in-situ neutron-
diffraction characterizations and first-principles calculations [78]. Kim
et al. selected the single-phase FCC Aly3CoCrFeNi HEA because the
constituent elements have large size differences. Kim et al.’s calculated
elastic constant values are within 5% of the ND measurements and
indicated that the lattice distortion results in the reduced stiffness. Kim
et al. implemented ML modeling, which was trained on a large dataset of
inorganic structures, to predict the elastic moduli of HEAs. Their ML
models also demonstrated the dependence of bulk and shear moduli on
several material features, such as (a) cohesive energy, (b) group number,
(c) density, (d) radius, and (e) electronegativity, which act as guides for
tuning elastic properties in the HEAs [78]. Similarly, Yen et al. applied
the Lennard-Jones potential, the embedded atom method (EAM) po-
tential, and the modified embedded atom method (MEAM) to investi-
gate the lattice distortion effect on Young’s modulus E (hkl) and
Poisson’s ratio v (hkl, 0) along [100,110,111] loading directions for the
FeCrNi MEA and CoNiCrFeMn HEA comparing with the pure Ni and
other FCC metallic systems as the references [273]. Yen et al. used the
in-situ ND data [77] as the inputs and recursively fitted their simulation
and complimentary neutron results. Yen et al. unveiled that the effect of
electron density inconsistency is more dominant than the effect of lattice
distortion associated with the atomic size difference. The anisotropy of
the CoNiCrFeMn HEA from their simulation and in-situ ND measure-
ments is self-consistent [77].

In both Kim et al.’s [78] and Yen et al.’s [77] cases, the advanced
photon source indicated an important capability to illuminate multiple
diffractions at the lattice levels for in-situ measurements on the bulk
samples, which reveals much more mechanisms than just phase char-
acterizations. In particular, the main advantage of the in-situ neutron
environment is the possibility of investigating the evolution of micro-
structures since identical specimens are monitored the entire time and
are subjected to the changes of the control parameters. Moreover, most
of the ND instruments are equipped with strobing software, such as the
VULCAN Data Reduction and Interactive Visualization software
(VDRIVE) [274] of VULCAN at the Spallation Neutron Source (SNS) of
Oak Ridge National Laboratory (ORNL), which may reduce the data at
the end of each test and is much more useful. The strobing system is a
continuously running software utilizing event-based data acquisition
where each neutron carries a time stamp. In this case, diffraction data
can be collected continuously and binned later according to the desired
time scale for the HEMs [77,275,276]. TAKUMI [277] is another ma-
terials engineering diffractometer located in Japan at the Japan Proton
Accelerator Research Complex (JPARC) that is capable of various in-situ
environments, including elevated-temperature measurements. The
in-situ loading setup of TAKUMI enables the measurements of the fatigue
behavior in the HEAs [278,279] while low-temperature in-situ loading
setup of TAKUMI captures the serration behavior of the CrMnFeCoNi
HEA [280]. The Spectrometer for Materials Research at Temperature
and Stress (SMARTS) at the Los Alamos Neutron Science Center
(LANSCE) [281] in the US and ENGIN-X [282] of the ISIS at the Ruth-
erford Appleton Laboratory (RAL) in the UK also have the same features
of the measurements [283-285]. For a reactor-based neutron
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diffractometer, the Residual Stress Instrument (RSI) installed at the
High-Flux Advanced Neutron Application Reactor (HANARO) of the
Korea Atomic Energy Research Institute (KAERI) also conducted the
temperature-dependent mechanical-behavior evolutions of the HEMs
[286]. Similarly, synchrotron X-rays can also illuminate the micro-
structure with high penetration. For example, the in-situ loading mea-
surements capturing the deformation-induced phase transformation
[287-291]. Following is an example of the heating setup of one of the
synchrotron X-rays in the TPS [292] where the temporally coherent
X-ray diffraction (TPS-09A) [293] can heat the samples up to almost
1200 K to examine the lattice thermal expansions and the phase stability
[294] while the TPS 21A XND and the TPS 23A X-ray nanoprobe (XNP)
provide spatially-resolved mapping for the HEMs to distinguish local
lattice distortion associated with element distributions [242], as shown
in Fig. 14. More examples of the neutron and synchrotron X-ray mea-
surements for their potential HT examinations can be found in Calder
et al.’s summary [295]. Lee et al.’s recent report manifested the tem-
perature dependence of elastic and plastic deformation behavior of a
NbTaTiV refractory HEA (RHEA) using in-situ ND [296].

Moreover, beyond the structure-insensitive properties, s mentioned
earlier, Gao et al. applied ML to their CPFEM in the NiCoCrFe system
based on their in-situ ND experimental data and physical mechanisms to
provide the data set [75]. Similarly, Dai et al. recently demonstrated the
micromechanical behaviors of a polycrystalline metal by ANNs from the
in-situ diffraction data. Dai et al.’s ANN model was trained based on the
datasets generated by the physics-based viscoplastic self-consistent
(VPSC) model, which captures the loading path-dependent micro-
mechanical behavior of the copper polycrystals with arbitrary texture,
even beyond the bounds of the generated dataset [297].

3.1.1. Studies for the moduli of the HEMs

Vegard’s law is an approximate rule, which empirically estimates the
crystal lattice constant of an alloy based on a linear relation for the
concentrations of the constituent elements [76]. From Vegard’s law of
the simple mixtures, the lattice constants determined by the relative
atomic sizes are the reference points to calculate the moduli of the
crystals.

Although DFT is known to estimate the cohesive energies, volume
per atom, and bulk moduli, due to the complex of the HEMs, the
determination of the suitable modeling size and associated moduli is not
trivial. Moreover, the HEMs may contain some late transition metals,
such as Ag, Au, Cd, Ga, Tl, Pb, and Bi. These elements may influence the
calculations of DFT with the description of the d-electron correlation,
dispersion, relativistic effects, and spin-orbit coupling for HT DFT cal-
culations [301]. By applying HT calculations, Jong et al. demonstrated a
statistical learning framework to estimate the elastic moduli of k-nary
inorganic polycrystalline compounds of diverse chemistries and struc-
tures [301]. Jong et al.’s datasets are diverse, and they constructed
descriptors that generalized over the chemistry and crystal structure,
incorporating multivariate local regression within a gradient boosting
framework [301]. Jong et al.’s moduli predictions showed that there is a
discrepancy between the gradient boosting machine local polynomial
regression (GBM-Locfit) and DFT. Jong et al. disclosed that there were
DFT methods-related errors, which added noise to the underlying
physical phenomenon.

To verify the predictions, it is important to compare with the
measured temperature dependence of elastic constants. For the HEMs,
Laplanche et al. summarized the elastic moduli [302] of the Cantor al-
loys [34] and their associated subsystems of CrFeCoNi, CrCoNi, CrFeNi,
FeCoNi, MnCoNi, MnFeNi, and CoNi in Figs. 15 and 16. The
thermal-expansion coefficients of these HEAs and their subsystems were
presented in  Fig. 19 [302,303]. Laplanche et al’s
temperature-dependent thermal-expansion coefficients and elastic
moduli, which are mainly from the measurements on the bulk samples,
are useful for quantifying fundamental aspects of the HEAs for structural
analyses [302,304].
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There is a clear gap between the Ti-based HEAs and the others in
Figs. 15 and 16. For the biomedical applications, Yang et al. employed
the XGBoost model and GA to search for BCC p-Ti alloys with low
Young’s modulus in the Ti-Mo-Nb-Zr-Sn-Ta system. They found that the
Tizg.4Mo1 gNbg gZrs 9Sny 1 Tag 9 has the lowest Young’s modulus of 48

18

GPa in prediction and 46 GPa in experimental validation [305]. Wu et al.
trained a NN model to explore new alloys meeting the criteria for
bio-compatibility, low modulus, and low cost for the development of
orthopedic and prosthetic implants. The new and affordable cost Ti al-
loys (Ti-12Nb-12Zr-12Sn) were found and validated by experiment,
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which had the bone-like Young’s modulus (42.4 GPa), high tensile
strength (900 MPa), acceptable ductility, and biocompatibility [306].
Salvador et al. also attempted to discover low modulus of Ti-Nb-Zr
system with ML. Materials Project database was fed to the linear
models, random forest regressors, and ANNs models to evaluate the
prediction reliability. According to the analysis results, the
Ti-22Zr-14.8Nb is the most promising candidate in the biomedical field,
which exhibits a low elastic modulus of 30.8 GPa, shear modulus of 10.6
GPa, Young’s modulus of 3.79 GPa, and elevated beta-phase stability
[84]. These three Ti-based alloys shown here are to demonstrate the
contrast between the HEMs for the structural and biomedical applica-
tions, but not from the simulation and experimental methods.

Besides the bulk moduli evolution subjected to environmental tem-
peratures, the orientation-dependent (h k [) moduli of the Cantor Alloys
can be obtained by in-situ ND measurements [307]. Huang et al. heated
the selected HEA in the load frame to 200 °C, 400 °C, and 600 °C using
an induction-coil heating system of the VULCAN diffractometer at the
ORNL [307]. The results were shown in Fig. 17. The upper limit was
selected as 600 °C because it was below the effective high temperature to
avoid vacancy formation [242] and creep [286] during the measure-
ments. The diffracted neutrons were refined, using the general structure
analysis system (GSAS) software based on the Rietveld method [308].
The data acquisition streamlines the coordination between the me-
chanical load control and neutron-data collection. The event-based
data-reduction software, VDRIVE, was built specifically for this data
structure and experiment scheme [274]. The collected data was chopped
in 5 min [309]. With the event-based data acquisition of the
materials-engineering diffractometer, such as VULCAN [309] of SNS,
multiple diffraction peaks were collected simultaneously under applied
loads for their hkl-dependent moduli measurements, as shown in Fig. 17.
There is a discrepancy between the lattice moduli of different orders of
the (h k I). For example, E11; as the modulus of (1 I 1) plane and Eg95 as
the modulus of (2 2 2) have different trends subjected to temperature.
The evolutions of the lattice spaces, di11, as for the diffraction peak of (1
1 1), and dago, as for the diffraction peak of (2 0 0) have different ten-
dencies [307]. These features indicated the effects of stacking faults in
the Cantor alloys, which resulted in different responses of the lattices
subjected to the environmental temperature changes.

Moreover, the in-situ diffraction measurements could be applied to
obtain the tensors of the crystal materials [283]. The model fitting
coupled with the bulk properties and diffraction data enabled
crystal-plasticity-based investigations [310]. For example, to obtain the
stiffness tensors (Cy), the generalized Hooke’s law from the compliance
tensors (S;), which is the second-order tensor expression for the elastic
compliance, M¢ can be derived for homogeneous and isotropic materials
in the FCC structure, as shown in the Egs. (9)-(11).

= o455, —supisu+ 25~ (5 5)/ (L) (-2)
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where E is the Young’s modulus, G is the shear modulus, and v is the
Poisson’s ratio.

For the temperature-dependent stiffness tensors Cj for C11, C12, and
Ca4, the aforementioned Laplanche et al.’s empirical fitting results ob-
tained from the thermal coefficients [303] can be used in the Egs. (12)—
(14):

G=85- 16/<e“88/r ~1) a2
E:214735/(e4'6/T 1) (13)
v=-—1 +% a4

For the model fitting, Wu et al.’s room-temperature data [276] was
used in Fig. 18. For the tensors at other temperatures, Huang et al.’s data
[77] shown in Fig. 17 was used together with other data [311,312]. The
data taken from in-situ ND measurements can yield the hkl-dependent
moduli (Ewq), as shown in Fig. 17. By the application of the following
directional cosines (I, m, and n) from lattice planes with respect to the
three orthogonal axes, the stiffness tensors (C;) for Ci1, C12, and Cy4q can
also be derived:

Epg = s11 — 2[(511 —S) — %4] x (Pm? + m*n* + n*l?) (15)

The fitted bulk stress-strain and predicted lattice-strain curves were
archived [313]. In Fig. 18, the temperature-dependent stiffness tensors,
C11, C12, and Cy4, derived from the coefficients of thermal expansions
[303] were described in the black, red, and blue dashed lines, respec-
tively. Recalling Shu-min et al.’s maximum entropy approach for
simulating the elastic properties of HEAs [314], the effect of the local
environment and lattice distortion on the HEAs can contribute to the
elastic properties. The tensors derived from the ND data [77] were
validated by Yen et al.’s model fittings [273]. Specifically, Yen et al.
identified that the effect of electron density inconsistency is more
dominant than the effect of lattice distortion associated with the
atomic-size difference. The electronic configuration in the HEAs envi-
ronment plays a greater role in the elastic anisotropy than that in the
differences among the atomic radii [273].

MehdiJafary-Zadeh et al. developed a ML interatomic potential
based on an efficient “learning-on-the-fly” scheme for the CoFeNi, which
was moment tensor potential (MTP), to unravel the effects of local lattice
distortion on the elastic properties of MPEAs [122]. Using this potential,

) MehdiJafary-Zadeh et al. performed MD simulations to calculate the
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Fig. 18. Temperature-dependent stiffness tensors ((C11, Ci2,
and Cy4). Neutron-derived results were shown in the empty
symbols. Data taken from [276] were represented by the solid
symbols; data derived from [303] were represented by the

dashed lines; data derived from [77]. C11 (W), C12 (@), and Ca4
(A) data derived from Epy taken from ND [276]. The stiffness
tensors resulting from thermal expansion were C;; (black
dashed line), Ci» (red dashed line), and C44 (blue dashed line).
The stiffness tensors (Cl,) for Cy1, C12, and Cyu4, presented as the
empty squares ([]), circles (), and triangles (A), respectively,
were taken from Huang et al.’s data [313]. As reported, there
was neither significant vacancy formation [242] nor creep
[286] during heating up to 873 K. (Adapted from [313] with
permission from Elsevier) (For interpretation of the references
to colour in this figure legend, the reader is referred to the web

version of this article.).
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Fig. 19. Temperature dependencies of the thermal expansion coefficients in the HEAs. (Data taken from [302,321,322]).

elastic moduli of single- and polycrystalline CoFeNi [122]. Dai et al.
[113] employed DLP to predict the temperature dependence of thermal
(lattice constants, anisotropic thermal expansions, and anisotropic
phonon thermal conductivities), and elastic properties (elastic constant,
bulk, shear, and Young’s moduli) for  high-entropy
(Tip.2Zro.2Hfp 2Nbg 2Tap.2)Ba from 0 °C to 2500 °C. They found that the
obtained data from their predictions were well consistent with those
from the experiments at room temperature. Besides, the lattice distor-
tion was not severe by characterizing the displacements of atoms from
ideal positions.

Above all, Gorsse et al. [315] summarized the mechanical properties
of 370 HEAs and CCAs reported in the period from 2004 to 2016. Their
data sheets comprised alloy composition, type of microstructures, den-
sity, hardness, type of tests to measure the room-temperature mechan-
ical properties, yield strength (YS), elongation, ultimate tensile strength
(UTS), and Young’s modulus from Miracle and Senkov’s [1], Gorsse
et al.’s [316], and Senkov et al.’s [317] publications, respectively.
Specifically, they reported 27 RHEAs, the yield stress and elongation
were given as a function of temperature [315]. Recently, Shukla et al.
utilized the friction stir gradient alloying as a HT screening technique for
the HEAs. The Young’s modulus value is one of the retrieved properties
in their Fe40Mn20C020Cr15Si5 HEA system [31 8]

3.1.2. Studies on the thermal expansion of the HEMs
Thermal expansion is another important structure-insensitive prop-

20

erty [33], especially for the materials subjected to temperature fluctu-
ations. Thermal expansion originates from the potential energy on the
mean separation of atoms. Specifically, the elastic properties of crystals
relate to atomic-vibrational spectra, according to the Debye’s model,
which can be used to calculate the lattice specific heat [319]. Griineisen
performed one step further to correlate the specific heat with the volume
expansivity [320]. As the reinforcement phases usually have a lower
coefficient of thermal expansion (CTE) than the matrix, thermal stresses
may develop during solidification and processing and thus affect the
strength. To calculate thermal stress at a given temperature, a knowl-
edge of CTEs and elastic constants were required [302]. The CTE («) was
defined below [302].

a= aHT(l —eiT/90> 16)

where agr is the value of CTE in the high-temperature limit, and &p, is
the Debye temperature.

Because thermal expansion is one of the fundamental properties of
the materials, many models in terms of the state functions have been
applied to predict the thermal expansion. There are several ML pre-
dictions of thermal expansion for the concrete [323], inorganic glasses
[324], and even the negative thermal expansion materials [325].

However, due to the complicated configurations of the HEMs, the
temperature-dependent thermal expansions are not intuitive [46,326].
For example, from Santodonato et al’s work, they found the deviation
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from high-entropy configurations in the atomic distributions of the
Al 3CoCrCuFeNi model system [327]. It is even more intricate to obtain
the temperature-dependent thermal expansions in the HEMs at higher
temperature due to the ease of the vacancy formation entropy at higher
temperature. As shown in Fig. 19, Huang et al. followed Simmons and
Balluffi’s concept [328] and compared the differences between the
lengths subjected to high temperatures from time zero to the time
reaching quasi-equilibrium state [242]. The dilation of the bulk spec-
imen, AL/L, and the change in the lattice parameter, Aa/a were defined
as follows

3(da/a) = p(T) + r(T) +x(T) a7)

3(AL/L) = ¢(T) +s(T) +¥(T) (18)
where p(T) and q(T) are the ideal thermal expansion without thermally
generated defects, x(T) and y(T) are expansion arising directly from the
formation of defects, and r(T) and s(T) are the thermal expansion of the
crystal due to the presence of lattice defects that alter the lattice fre-
quency distribution and thus internal energy.

At time zero, the major contributions to the thermal expansion are
the p(T) and q(T) without thermally generated defects. At the time when
the samples reach quasi-equilibrium, expansion arising directly from
formation of defects and the thermal expansion of the crystal due to the
presence of lattice defects altering the lattice frequency distribution and
internal energy all influence the thermal expansion of the HEMs [242].
In Fig. 20(a), AL/L and Aa/a of the CoCrFeMnNi are shown as a function
of temperature. The bulk expansion, AL/L, subjected to
quasi-equilibrium and non-equilibrium states were shown in the red
dashed line and green dashed line, respectively. The results of Aa/a (the
solid black line) were calculated, using the second-order polynomial
fitting, following the methodology of Bichile and Kulkarni [329,330] in
formulating the second-order polynomial fit for thermal expansion co-
efficient estimations [330]. It can be observed that AL/L increases with
increasing temperature, and the second-order polynomial curve closely
matches the results up to a temperature of approximately 1000 K but
deviates at temperatures higher than 1000 K.

The evolutions of vacancy formation as a function of the homologous
temperature (T/T,,) in the HEAs and the reference Cu alloys subjected to
heating were shown in Fig. 20(b) where T, is the melting temperature of
materials. The observable onset temperature of vacancy formation in the
pure Cu is approximately 0.74 T,,. However, the observable onset tem-
perature of vacancy formation in the CoCrFeNi and CoCrFeMnNi HEAs
is approximately 0.6 T, suggesting that vacancy formation is easier in
the HEAs. The consequence of the vacancy formation subjected to
heating may induce severe lattice distortion, as mapped by the TPS 21A
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XND and the TPS 23A XNP from their spatially-resolved mapping for
both the CoCrFeNi and the CoCrFeMnNi HEAs [242].

Hence, for the high-temperature thermal expansion of the HEMs, ML
is needed to solve the complexity as formulated in Egs. (17) and (18).
Using ML, Buranich et al. applied the complex of analytical algorithms
(linear, random forest, and gradient boosting regression) to calculate the
thermal and mechanical properties of TiNbHfTaW, CrNbHfTaW, and
VNbHfTaW HEAs, which are refractory metals-based HEAs [185]. For
the other HEMs, Dai et al. performed theoretical predictions on the
thermal and mechanical properties in the high entropy
(Zry.oHfy 2Tip 2Nbg 2Tag 2)C by a deep learning potential [112]. Dai et al.
verified their predictions by comparing the measured lattice parameters
and elastic constants in the mono-phase carbides TMC (TM = Ti, Zr, Hf,
Nb, and Ta) at room temperature. Their predictions included the lattice
constants (ranging from 4.57 A to 4.67 A), thermal expansion co-
efficients (ranging from 7.85 x 107% K~! t0 10.58 x 107% K1), phonon
thermal conductivities (ranging from 2.02 W m~! K~! to 0.95 W m™!
K’l), and elastic properties of high entropy (Zrg 2Hfp 2Tip 2Nbg 2Tag.2)C
in temperature ranging from 0 °C to 2400 °C by MD simulations [112].
Later on, Dai et al. developed their theoretical predictions on the ther-
mal and elastic properties in the high entropy (Tig 2Zrg 2Hfp 2Nbg 2Tag 2)
B using MD simulations [113].

3.2. HT studies on functional properties of the HEMs

Before 2004, there were some reports on the HEAs showing their
functional properties, where the earlier studies were chronically sum-
marized [331]. Nowadays, Zhao concluded that most multi-functional
materials were used in the thin film format [266]. For example, Li
et al. fabricated the combinatorial thin-film libraries and the
electrical-resistance measurement and its correlation with the
glass-forming ability were done using the automatic four-point probes
method [332]. Flores’s group evaluated the microstructure and me-
chanical property variations in the Al,CoCrFeNi HEAs fabricated by an
HT laser deposition method [32]. These examples demonstrated that the
thin-film-based combinatorial materials science approaches are
extremely important for the discovery, research, and development of the
HEMs.

Above all, the HT, combinatorial experiments are designed to quickly
evaluate the materials properties. This approach uses materials libraries
with composition gradients and rapid experimental techniques that can
be automated, parallelized, and miniaturized. Such techniques are well
established for functional materials. For example, Green et al. man-
ifested that HT and combinatorial methodologies can characterize the
electronic, magnetic, optical, and energy-related materials by the
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Fig. 20. (a) Measured strain versus temperature in the quasi-equilibrium and non-equilibrium states for the CoCrFeMnNi HEA. (b) X,~homologous temperature (T/
Tp) curves of Cu, CoCrFeNi, and CoCrFeMnNi in the quasi-equilibrium state. (Adapted from [242] with permission from Springer Nature).
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synthesis of a “library” sample that contains the materials with the
controlled variations of compositions [333]. Potyrailo and Takeuchi
summarized novel measurement instrumentation, which was critical for
characterization in combinatorial materials science as rapid and local-
ized measurement schemes, resulting in massive data sets [334] for the
combinatorial and high-throughput experimentation [335].

Meanwhile, there has been growing interest in developing high-
entropy functional materials. Comparisons of functional properties be-
tween the HEMs and conventional low- and medium-entropy materials
using computational modeling and tuning the composition of existing
functional materials through substitutional or interstitial mixing were
archived [336-339]. Gao et al. recapped the designing future of
high-performance functional materials, such as the magnetic HEMs,
which may possess an enhanced magnetocaloric effect (MCE) and po-
tential thermoelectric materials [336].

Even for the functional properties, investigating the microstructures
of the HEM is still not trivial as it is highly associated with the desired
properties. Therefore, in this session, we review the descriptors and the
functional properties of the HEMs, such as the magnetic, electrical
conductivity, superconductivity, thermoelectric, and magnetocaloric
properties, which will be wuseful for the multi-functional HT
examinations.

3.2.1. ML studies on phase predictions of the HEMs

From Liu et al.’s work, the magnetic properties of the AlCoCuFeNiy
HEAs are dependent on the composition and phase structure. Other
functional properties also highly depend on the combination of the
composition and phase structure [266]. Hence, in this session, ML for
phase prediction of the HEMs is reviewed.

Generally, there are four categories in configurational phases, i.e.,
solid solution (SS), intermetallic (IM), mixed SS and IM (SS + IM), and
amorphous (AM) phases. Much research primarily aimed to discover the
single-phase SS that has promising mechanical properties, such as
increasing hardness and strength [340,341].

Troparevsky et al. proposed a model as the criteria to predict the
formation of single-phase HEAs, which used HT computation of the
enthalpies of formation of binary compounds based on DFT [126].
Lederer et al’s HT Ab-initio approach, named as Leder-
er-ToherVecchio-Curtarolo (LTVC), can scan through many thousands of
systems available in the AFLOW consortium repository [130]. Lederer et
al’s LTVC is corroborated by MC simulations for estimating the transi-
tion temperature of a SS. Ab-initio energies were incorporated into a
mean-field statistical mechanical model where an order parameter fol-
lowed the evolution of disorder [130]. Meanwhile, Lederer et al. found
that there are cases in disagreement with the experiments or CALPHAD
when the vibrational formation entropy or insufficient training data for
cluster expansion was neglected in their HT Ab-initio approach. Lederer
et al. concluded that sluggish kinetics was the bottleneck in achieving
the equilibrium state, especially in measuring many transition temper-
atures precisely.

For the predictions of specific phases, such as the BCC and FCC, Pei
et al. performed a support vector machine model to predict the stable
HEAs from the composition space of 16 metallic elements, which was
one order larger than the number of available experimental data [129].
There are 322 as-cast samples with a cross validation accuracy over 90 %
after training and testing. Pei et al. anticipated there have 369 FCC and
267 BCC equiatomic HEAs. Eleven RHEAs agreed with recent experi-
ments, and the 20 quinary ones with the highest melting temperatures
are validated through first-principles calculations [129]. Pei et al.’s
model was complementary to the calculation of phase diagrams and
Ab-initio methods [129]. Li et al. built a SVM model with 322 as-cast
HEAs and a cross validation accuracy over 90 % to forecast the FCC
and BCC phases formation [129]. Among them, several RHEAs were
screened out based on a high ratio of melting temperature to density. 11
of them complied with recent experiments and the 20 quinary HEAs
were validated through first-principles calculations. Kostiuchenko and
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his teammates developed a novel ML-potential involving relaxation ef-
fects, called as low-rank potentials. In combination with MC simula-
tions, the potentials are proved to reach high accuracy as cluster
expansion techniques in studying the phase stability in the prototypical
NbMoTaW HEA. Local relaxation effects were found to significantly
stabilize single-phase formation of NbMoTaW to room temperature
[131]. Meanwhile, Songa et al. proposed a method that combines elec-
tronegativity different, CALPHAD and ML to screen the high yield
strength region in Co-Cr-Fe-Ni-Mo multi-component. SVMs model with
trained data of CALPHAD calculations was established to predict the
phase decomposition temperature for obtaining single-phase HEAs.
Because the yield strength is positively related to the electronegativity
difference, the compositions of HEAs with the phase decomposition
temperature of 900 K and the maximum electronegativity are screened
from the large amounts of high-throughput ML calculations. Moreover,
Songa et al.’s results are validated by the experiments [342].

Since the IM was found to enhance functional applications via pre-
cipitate hardening, comprehensive studies on the IM have been con-
ducted [89,343]. Islam et al.’s ML for phase selection in the HEAs
employed a neural network in the ML framework to identify data pat-
terns from an experimental dataset [127]. Islam et al. analyzed the
correlations between the five features that lead to the phase selection in
a dataset of 118 data of the HEAs and trained a NN model to classify the
resulting phases based on the input features. They found a very high
accuracy (> 99 %) in learning of the full dataset as well the most
important factor is the VEC and the least important one is the mixing
entropy. In addition, it is known that the amorphous phase exhibits great
corrosion resistivity, and its crystalline structure and atomic-size dis-
tribution have been discussed through parametric studies [95,344].

On the other hand, eutectic or dual-phase HEAs were proposed as
promising new classes of the HEAs owning high ductility-strength
combination with the concept of combining soft FCC with hard BCC
phases [1,345-347]. Therefore, efficiently predicting phases or struc-
tures, such as BCC, FCC, and hexagonal-close-packed (HCP) structures as
well establishing links with compositions, is a pivotal step for screening
a huge amount of the HEAs before further detailed characterization, and
the implementation of ML can significantly achieve the goal. For
example, Qu et al. [102] employed a SVM to build phase-predictive
models (FCC, BCC, HCP, IM, or other phases) with both composition
and thermodynamic parameters datasets (AHpx, 8, Ay, and VEC). A
dataset with 1348 data points has been established, which covers most
of the HEAs families. The accuracies of both models were similar and
above 85 %, and the gap were mainly caused by the IM-phase prediction.
To be more specific, thermodynamic parameters have less effect on
different SS-phases prediction. On the other hand, following Islam and
Huang’s work [127] with only 118 data points, Huang et al. [128]
involved three different ML algorithms, namely, Fine and Weight KNN,
SVM and ANN [unsupervised SOM method and supervised multi-layer
feed-forward NN (MLFFNN)], to differentiate SS, IM, and SS + IM
phases using 401 datasets. It was suggested that all the five input
elemental features converted from compositions were mostly indepen-
dent, among which & and VEC were more crucial than the others. Due to
the blurry boundary between the SS and SS + IM phases, direct ternary
classifications could not reach high accuracy as MLFFNN displayed 74.3
% of highest accuracy among all models. For the local atomic behavior,
which influences the HEMs, Kostiuchenko et al. employed ML potentials
based on Ab initio data combined with MC simulations to investigate the
phase stability, phase transitions, and chemical short-range order (SRO)
in the BCC NbMoTaW HEA.

For the ML guided appraisal and exploration of phase design, Zhou
et al. used one-dimensional (1D) convolutional neural network (CNN)
and ANN [44]. Later, there are more and more investigations about
complex phase predictions. For instance, Dixit and coworkers [133]
implemented an ANN and unprecedentedly included processing routes,
e.g., arc melting, injection-casting, and sputtering as an input feature
apart from the conventional thermodynamic parameters. Given the total
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input features, the proposed model can forecast all the coexisting phases,
i.e., FCC, BCC, FCC1 + FCC2, BCC1 + BCC2, B2, Laves, C14 and Laves +
Sigma, with 87.08 % accuracy. Lee et al.’s recent work [134] refined the
NN into a deep learning-based phase predictor. To optimize
hyper-parameters in the architecture, Bayesian optimization was
applied, and a CGAN generates data to overcome the shortage of data.
After adding augmented data, the performance of the model was largely
elevated, reaching 93.17 % of accuracy. In addition, the deep
learning-based NN permits the interpretability of design parameters.
This work built a comprehensive guidance in the HEAs design, and most
importantly, demonstrated the capability of generating similar and
novel compositions via generative models.

As a framework of phase prediction via ML is gradually consolidated,
research tends to uncover the relationships between microstructures and
thermodynamic properties to reach higher predictability and interpret-
ability. Some studies created novel thermodynamic parameters or
physical parameters for training while others focused on feature engi-
neering with rational selection of materials descriptors. There are
several materials descriptors correlated with the HEMs. For example,
Yang and Zhang proposed the parameters 2 and § to anticipate the phase
formation for the HEAs [98]. Yang and Zhang defined Q=

(Trm X ASmix) /| AHix| where ASp, is the entropy of mixing, T;, is the mean

melting temperature averaging from the principal elements, and AHp;y is
the enthalpy of mixing. Yang and Zhang defined § = /> ;¢; (1 —r /F) 2

where c; is the atomic percentage of the i component, 7 is the average
atomic radius, and r; is the atomic radius, respectively [98]. Yang and
Zhang indicated that the HEAs were stabilized as solid solution when
2 >1.1 and 6 < 6.6% [98]. Xie et al.’s MD simulation in the AlCoCr-
CuFeNi HEA thin film growth results [99] were in good agreement with
Yang and Zhang’s solid-solution formation rules [98]. VEC is another
important parameter to predict the phase stability of the HEMs [132].
Guo et al. found that the stability of FCC and BCC HEAs was highly
correlated with the VEC, that Chen et al. employed the VEC to design the
HEAs with strength-ductility balance [348].

With these materials features and descriptors, Zhang et al. [115]
employed feature selection and feature-variable transformation based
on Kernel Principal Component Analysis (KPCA) in a four-phase pre-
diction. It was found that the SVM model with four feature variables in
KPCA led to the highest accuracy of 97.43 % for the classification of SS,
AM, SS + IM, and IM. The investigation unprecedently included
formation-enthalpies parameters extended from the Miedema theory
[349], such as the mixing enthalpy of amorphous phase (Hay), forma-
tion enthalpy of intermetallic compound phase (Hpy), and elastic energy
of alloy (Hg). Pei et al. trained the ML model with 93 % accuracy for the
single-phase prediction (FCC, BCC, and HCP groups) of the HEAs. The
most important features such as melting point, molar volume, and bulk
modulus were identified [47]. And a new thermodynamics-based rule
was developed to predict solid—solution alloys although it was slightly
less accurate (73 %). Zhang et al. [350] utilized a GA to rationally select
a good combination of ML models and materials descriptors subsets from
14 empirical descriptors plus 56 self-defined descriptors, attaining an
accuracy of 88.7 % in the SS/non-SS classification and an accuracy of
91.3 % in the BCC/FCC/Dual phase identification. Furthermore, they
reported that the initial dataset of high classification uncertainties can
improve their ML model, which demonstrated a successful
active-learning approach. Kaufmann et al. employed a random forest
model coupling with 108 compositional and 244 thermodynamic fea-
tures to forecast the formation ability of SS including single- or
multi-phase SS [199]. 13 most related features were extracted from the
total of 352 features. The training data contained 134 equiatomic
compositions from DFT calculations. The model predicted well the
validation set for binary and ternary systems obtained from the CAL-
PHA. However, the score for validation set of DFT-based LTVC was
relatively low, attributed to the lack of training data for the ternary,

23

Materials Science & Engineering R 147 (2022) 100645

quaternary, and quinary compositions. Notably, the uncertainty of the
model can be known by the votes of each decision tree and the fractions
of votes of each class. Recently, Machaka demonstrated a systemic
framework of phase prediction, which was constructed by incorporating
the six feature selection methods, features ensembles, and eight
top-most identified classifiers. Machaka successfully forecasted five
alloy systems for their phase transitions and phase stabilization [135].
Roy et al. applied a gradient boost regressor ML method and concluded
that the mean melting point (Tp,,) and electronegativity difference as the
most important descriptors have the strongest contributions to the phase
formation in the low-, medium- and high-entropy alloys [123]. Dai et al.
tried multiple algorithms and different features to achieve high accuracy
for phase prediction with limited training dataset [136]. With feature
engineering, over ten thousand descriptors could be constructed from 9
original features by four fundamental functions of |x|'/2, x2, X3,
log(1 + |x|)) and by multiplying any 2 or 3 features. 9 most related
features were selected for best representing the dataset. Interestingly,
the constructed non-linear descriptors associated with logistic regres-
sion as a linear algorithm boosted the prediction performance of mate-
rials research.

3.2.2. Studies on magnetic and magnetocaloric properties of the HEMs

ML and HT examinations have been applied for the research of
magnetic materials for years, as reviewed by Vasudevan et al. [93]. One
of the highlights in Vasudevan et al’s review is the generation and
application of libraries from both experimental and theoretical tools.
Frey et al.’s HT search discovered the magnetic and topological order in
transition metal oxides where they calculated more than 27,000 unique
magnetic orderings for more than 3000 transition metal oxides in the
Materials Project database [351]. Choudhary et al.’s HT search for
magnetic topological materials using spin-orbit spillage and ML [352].
Choudhary et al. also experimentally synthesized and characterized a
few candidate materials, which supported their theoretical predictions
[352]. Meanwhile, Ren et al. accelerated the discovery of metallic glass
through the iteration of ML and HT experiments where they trained a ML
model on previously reported observations and parameters from phys-
iochemical theories. Ren et al. made their ML model become synthesis
method-dependent to guide HT experiments in finding a new system of
metallic glasses in the Co-V-Zr ternary [240]. Geng et al. demonstrated
bulk combinatorial synthesis and HT characterization for the rapid
assessment of magnetic materials, using the Laser Engineered Net
Shaping (LENS™) methods [353].

There are several important characteristics for magnetic materials,
namely, the coercivity and the energy product designated as BHyax. Soft
magnets have low coercive fields and narrow hysteresis loops while hard
magnets have higher coercive fields. Larger maximum energy products
(BHpay, unit J /m3) are desirable for hard magnets. The remanent in-

duction, Bg, is the induction that remains when the field H is removed.
The coercive field, H, is the field required to fully magnetize and
demagnetize the materials.

For the HEMs, Gao et al. summarized the literatures reporting the
magnetic properties, where the study of the magnetic properties of the
HEAs aiming to reach high saturation magnetization (M;) and low
coercivity (H¢) [336]. Meanwhile, Gao et al. also pointed out that many
functional materials have been studied, which satisfied the HEA defi-
nitions [336]. Table 7 summarizes the magnetic properties of the HEAs.

In Fig. 21, the measured magnetic properties of the selected HEAs
(Table 7) are overlaid on a map of saturation magnetization versus
coercivity for major conventional soft and semihard magnetic materials.
It can be seen from Fig. 21 that compared to the traditional soft magnets,
the HEAs have lower saturation magnetization and higher coercivity.

Using ML, Rickman et al. outlined several computational strategies
to identify useful HEAs, including the HEAs for the magnetic applica-
tions [355]. Rickman et al. found that the SRO influenced the physical
properties of the HEAs. More specifically, SRO dictated the magnetic
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Table 7
Measured saturation magnetization (M, T) versus coercivity (H., A/m) for the
HEAs reported in the literature [336,338,339].

Alloy Structure H. (A/m) M; (T)
CoFeNi FCC 121 1.606
CoFeNi FCC 1,069 1.356
CoFeNi FCC 189 1.671
CoCrFeNi FCC 46 0.200
CoCrFeNi FCC 1,252 0.144
CoFeMnNi FCC 119 0.188
Alg 25CoCrFeNi FCC 356 0.151
Al »5CoFeNi FCC 216 1.287
Al »5CoFeMnyg 25Ni FCC 268 0.999
CoCrFeMnNi FCC 13,980 0.951
CoCrFeMnNi FCC ~0 0.328
CoCrFeMnNi FCC 10,804 0.014
CoCrFeNiTi FCC 11,900 0.220
CoCrFeNiTi FCC 9,661 0.013
CoCrCuFeNi FCC 13,210 0.559
CoFeNiSig 25 FCC 352 1.216
CoFeNi(AlSi)o 1 FCC 1,089 1.287
CoFeNi(AlSi)g o FCC 1,401 1.130
AlCoCrFeNi BCC 4,138 0.546
Al; »5CoCrFeNi BCC 2,912 0.656
AlyCoCrFeNi BCC 188 0.267
AlCoCrFeNbg 1Ni BCC 4,615 0.422
Alp sCoCrFeNi FCC + BCC 756 0.143
Aly 75CoCrFeNi FCC + BCC 363 0.087
CoFeNi(AlCu)o g FCC + BCC 362 0.714
CoFeNi(AlMn)o 5 FCC + BCC 730 0.482
CoFeNi(AlMn)g 75 FCC + BCC 445 1.148
CoFeNi(AlCu)g sGag.02 FCC + BCC 381 0.717
CoFeNi(AlCu)o.sGag.o04 FCC + BCC 383 0.722
CoFeNi(AlCu)o gGag.o6 FCC + BCC 464 0.733
CoFeNi(AlCu)g sGag.os FCC + BCC 686 0.749
Aly sCoFeNi FCC + BCC 343 0.992
Alp 75CoFeNi FCC + BCC 308 0.985
AlCoFeNi FCC + BCC 224 0.846
CoFeNi(AlSi)o 5 FCC + BCC 19,336 0.900
CoFeNi(AlSi)g.4 FCC + BCC 17,963 0.904
CoFeNi(AlSi)g s FCC + BCC 1,937 0.865
CoFeNi(AlSi)o g FCC + BCC 5952 0.423
AlCoCrCuFeNi FCC + BCC 3581 0.339
AlCoCrCuFeNi FCC + BCC 1,194 0.143
CoFeGaMnNi FCC + BCC 915 0.763
CoFeNiSig 5 FCC + Ni3Si 408 0.816
CoFeNiSig 75 FCC + Ni3Si 4,532 0.671
CrFeNiTi FCC1 + FCC2 + ¢ 13,284 0.118
CrFeNiTi FCC1 + FCC3 + ¢ 12,161 0.008
CrFeMnNiTi FCC1 + FCC4 + ¢ 17,971 0.020
CrFeMnNiTi FCC1 + FCC5 + ¢ 10,430 0.004
CoFeMnNiSn L21 + BCC 3,431 0.797
AlCoFeMnNi BCC + B2 629 1.260
Fe40C035NisAlsCrsSiio BCC + B2 80 1.145
AlCoCrFeNby sNi BCC1 + BCC2 + Laves 7,480 0.298
AlCoCrFeNbg sNi BCC1 + BCC3 + Laves 6,764 0.154
AlCoCrFeNby 7sNi BCC1 + BCC4 + Laves 7,480 0.091
Cog6.7F€e26.7Ning 6SigB11 Amorphous 2 1.070
B15C025Fes5NissSiig Amorphous 2 0.840
B17.5C025Fe2sNissSiy 5 Amorphous 1 0.870
Bg.7C02g 5Fe26 7Ning 5P3Sis e Amorphous 4 1.070
FeNiGaMnSi BCC 232 0.431
CoCrFeNiCu FCC 2,627 0.291

properties, electronic transport, and deformation mechanics of the
HEMs [355].

For the combinatorial assessment of the HEMs, Borkar et al. exam-
ined the composition-microstructure-microhardness-magnetic property
relationships, using the laser-deposited compositionally-graded AlyCr-
CuFeNip where 0 < x < 1.5 [356]. Specifically, for the FeMnCoCrAl HEA
system, Marshal et al. developed thin-film libraries for the combinatorial
evaluation of the phase formation and magnetic properties [138].
Marshal et al. systematically investigated using the conventional XRD
and spatially-resolved atom probe tomography as characterization
techniques as well as DFT [138]. Marshal et al. found that the BCC
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structure was formed with an addition of Al, exhibiting a soft ferro-
magnetic behavior. Further increase in the non-ferromagnetic Al content
beyond 8 wt. % decreased the overall Ms because of the substitution of
ferromagnetic species by the paramagnetic Al, which also induced lat-
tice distortions. Marshal et al.’s measured the trend of the Al
concentration-induced reduction in magnetization, which was in
agreement with their DFT predictions [138].

Compared with the traditional commercial magnetic materials, the
magnetic properties of HEAs are mostly located between semi-hard
magnetic and soft magnetic regions. As Gao et al. pointed out that the
magnetic HEMs may possess an enhanced MCE as potential thermo-
electric materials [336].

With the assistance of ML, there are several new materials with
better magnetocaloric. Holleis et al. demonstrated the ML-guided design
of single-molecule magnets for magnetocaloric applications [357].
Castro et al. showed the ML-guided discovery of the gigantic MCE in
HoB; near the hydrogen-liquefaction temperature [358]. Zhang and Xu
reported that they tuned the MCE, represented by the maximum mag-
netic entropy change (MMEC), in manganites from compositions and
structural parameters via ML [359]. Zhang and Xu screened more than
70 lattices, cubic, pseudocubic, orthorhombic, and rhombohedral, with
the MMEC ranging from 0.65 J-kg ' K~ t0 8.00 J-kg ! K~! under a field
change of 5 T [359].

For the HEM, Perrin et al. reported the role of compositional tuning
of the distributed exchange on the magnetocaloric properties in the
HEAs [360]. Yuan et al. demonstrated the rare-earth HEAs with giant
MCE [361]. Law et al. enhanced the MCE by the magneto-structural
phase transition [362]. Following is an example of the high-entropy
bulk metallic glasses (HE-BMGs), which maximize large magnetic en-
tropy changes (ASy). Huo et al. developed the HE-BMGs for their wider
ASy peak, and thus, larger refrigerant capacity [363]. Huo et al.
demonstrated that the HE-BMGs are the potential candidates for mag-
netic refrigerants working in a helium and hydrogen-liquefaction tem-
perature range [363]. To characterize the MCE, the ASy can be
estimated as below.

Huax /M
ASy(T,H) = / <—) dH
u{ ) Huin or "

where Hpi, and Hpax represent the initial and final values of the mag-
netic field, respectively. Huo et al. set Hpin = 0 and Hpax = 5 T [363].

19)

The peak magnetic entropy changes (AS?VII‘) in the HE-BMGs are shown
in Fig. 22.

3.2.3. Studies on thermal, electrical, thermoelectric conductivities and
superconductivity

Thermal, electrical, thermoelectric conductivities, and supercon-
ductivity are the important functional properties. Hence, there are many
new materials systems developed by coupling the ML and HT methods.
The electrical resistivity of alloys is principally controlled by electron-
electron interactions, magnetic effects, and phonon at temperatures in
the range of 4 ~ 300 K, and solely by phonon at temperatures in 300 ~
400 K. The phonon contribution to thermal conductivity actually is
comparable with the electronic contribution [368]. For thermal con-
ductivity, Juneja et al. predicted the lattice thermal conductivity by
coupling the HT property map and ML [369]. Chen et al. built a
ML-based model using a benchmark data set of experimentally measured
100 inorganic materials [370]. Chen et al. considered 61 features, which
belonged to the three distinct categories, i.e., elemental, structural, and
pertaining to valence electrons. Chen et al. found that the key features
governing the thermal-transport behaviors in non-metals are the specific
bulk modulus and bond length [370]. For the semiconductors, Carrete
et al. revealed an unprecedented discovery of low-thermal-conductivity
half-Heusler semiconductors via HT materials modeling [371] in the
AFLOWLIB.org database [60,202]. For the high-temperature solid
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phases, Roekeghem et al. used finite-temperature phonon calculations
and ML methods to estimate the mechanical stability of approximately
400 semiconducting oxides and fluorides with cubic perovskite struc-
tures at different temperatures [372]. Roekeghem et al. also screened for
materials exhibiting negative thermal expansion [372].

Schiitt et al. demonstrated a ML approach for fast prediction of the
electronic properties [373]. Schiitt et al. employed local spin-density
approximation calculations as a training set. Schiitt et al. focused on
predicting the value of the density of electronic states at the Fermi en-
ergy. Schiitt et al. found that conventional representations of the input
data, such as the Coulomb matrix, is not suitable for the training of
learning machines in the case of periodic solids [373]. To understand the
behavior of dielectric insulators experiencing extreme electric fields,
Kim et al. used advanced statistical or ML schemes to obtain predictive
phenomenological models of dielectric breakdown and found analytical
relationships between the breakdown field and material properties, such
as band gap and phonon-cutoff frequency [374]. For the electrical
conductivity, Chen et al. developed a small set of ML algorithms [375],
which was used to investigate the electrical properties of the materials
for future applications, such as for neuromorphic computing [376].
Islam et al. showed that emerging non-volatile memory devices that
exhibit gradual changes in resistivity are a key enabler of in-memory
computing, which is a type of neuromorphic computing [376].

For the thermal and electrical conductivity, Oliynyk et al. trained a
ML model to discover the Heusler compounds. Compared to the other
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approaches, Oliynyk et al.’s HT ML-driven synthesis made faster and
more reliable predictions of the occurrence of Heusler vs. non-Heusler
compounds for an arbitrary combination of elements with no struc-
tural input on over 400,000 candidates [377]. Gaultois et al. employed
ML to guide an experimentally new compound (Er;2CosBi/Gd;2CosBi)
for thermoelectric materials, which possessed low thermal and high
electrical conductivities, but modest Seebeck coefficient [377]. Notably,
the rare-earth family compound is quite distinct from the known ther-
moelectrics, but exhibits similar structures with the known thermo-
electrics. In addition, a positive temperature dependence of the thermal
diffusivity is found for these compounds, which was rarely obtained
before.

The Wiedemann-Franz law examine the thermal and electrical con-
ductivities by comparing the ratio of the electronic contribution of the
thermal conductivity to the electrical conductivity of a metal as a
function of temperature, as presented in the following Equation.

K =K, +Kpy = LoT = (Le + Lph)O'T (20)
where T is the temperature, k is the thermal conductivity, L. is the
Lorenz number, and ¢ is the electrical conductivity.

A four-point probe method is used to measure the electrical resis-
tance. Huxtable et al. demonstrated the thermal conductivity imaging at
a micrometre-scale resolution for combinatorial studies of materials
[378]. Thermal diffusivity is determined by means of the laser-flash
method [379]. Meanwhile, the differential scanning calorimeter (DSC)
is used to measure the variation of heat capacity with temperature. Thus,
the thermal conductivity () is calculated, as shown below.

k(T) = a(T) x S(T) x p(T) 21)
where T is the temperature; x(T) is thermal conductivity, a(T) is thermal
diffusion coefficient, S(T) is the specific heat, and p(T) is the density.

Fig. 23 depicts the thermal conductivity and electrical resistivity for
different materials, and the dashed line indicates that the HEAs also
follow the Wiedemann-Franz law. Due to the obvious diffuse reflection
effect, the HEAs have lower thermal conductivity and electrical con-
ductivity than the traditional alloys [380].

To apply the HEMs for the applications of thermoelectric technolo-
gies, Wei et al. recapped the thermodynamic routes showing the ultra-
low thermal conductivity and high thermoelectric performance [383].
In search of thermoelectric materials with high conversion efficiency,
the dimensionless TE figure-of-merit, zT, has been used to estimate the
performance, defined as follows.
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where S is the Seeback coefficient, ¢ is the electrical conductivity, and
kiotal is the total thermal conductivity. The temperature dependencies of
the Seebeck coefficients from the selected HEMs are shown in Fig. 24.
The results show that by increasing the manganese (Mn) content, there is
a higher Seebeck coefficient and lower electrical conductivity through
the cocktail effect in the HEMs. Due to the reason that conventional TE
device suffer from high cost for fabrication, spin-driven thermoelectric
(STE) phenomena provides an alternative solution to this problem.
Unfortunately, the understanding of the fundamental mechanism and
the material parameters is still lacking. Iwasaki et al. employed the
combination method of ML and HT experiments to develop a better STE
material. The obtained Feg g65Pt0 27Smo 05 achieved 11.12 pV/K [384].

From Yuan et al.’s review on the advances in the HT superconduc-
tivity research, the HT computation, synthesis, characterization, and the
emerging field of ML for materials were presented [387]. For example,
Stanev et al. developed several ML schemes to model the critical tem-
perature (T.) of the 12,000 + known superconductors available via the
SuperCon database and investigate the chemical/structural properties of
materials [388]. Stanev et al. divided superconductivity materials into
two classes based on their T, values, above and below 10 K. Stanev et al.
used materials data from the AFLOW Online Repositories [60,202] and

searched for the entire Inorganic Crystallographic Structure Database
(ICSD) for new potential superconductors, in which Stanev et al. iden-
tified > 30 non-cuprate and non-iron-based oxides as candidate mate-
rials [388]. Matsumoto et al. used the random forest regression model to
establish a T, prediction model for searching superconductors with
higher T, [389]. The versatility of the model enables to predict well the
Mg-B-Ti system and Fe-Te-Se system despite the lack of Fe-based su-
perconductors in the training data. The Ca-B-C system with the highest
T. (36 K) was forecasted by the model. It is suggested that a higher T.
superconductor could be found in a quaternary or a five-element system
as the training model including cuprate and Fe-based superconductors.

To investigate the superconductivity property of the HEMs, Marik
et al. prepared a single-phase polycrystalline NbyjRe;6ZragHf23Tiog HEA
material [390]. Quasi-static (DC) magnetization, ac susceptibility,
electrical, and specific heat measurements were performed, using a
Magnetic Properties Measurement System (MPMS) and Physical Prop-
erty Measurement System (PPMS). The effective Fermi temperature (Tg)
is obtained by the following Equation.

#? n*3
ksTr = 7(3”2)2/3W

23

where kg is the Boltzmann constant, Tr is the Fermi temperature, # is the
Dirac constant, n is the quasiparticle number density per unit volume,
and m* is the effective mass of quasiparticles [391].
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Fig. 25 depicts the superconducting transition temperature (T,) vs.
the effective Fermi temperature (Tr). The NbgyjRejgZrogHf23Tisg HEA is
shown as a solid red star with Tr of 10,091 K. The results suggest that the
Nby1Rej6ZraoHf23Tizg HEA belongs to a type-II superconductor, which
exhibits an intermediate phase of the mixed ordinary and super-
conducting properties at intermediate temperatures [392]. Compared to
the other systems, the superconducting transition critical temperature of
HEAs is relatively low. The superconductivity of the HEMs may appear
only subjected to extreme environments. Most HEMs with supercon-
ductivity have transition elements, such as Re and Ta. The critical
temperatures of these systems are below 10 K as non-traditional su-
perconductors [390,391,393].

3.3. HT studies on properties depending on both compositions and
microstructures

Referring to Miracle and Senkov’s conclusion on the HEAs and
related concepts of MPEAs [1], the structural properties of HEMs depend
on both compositions and microstructures [33]. Moreover, the struc-
tural properties have dramatic scaling effects [396]. Since the micro-
structures and length scales are major barriers for the HT examinations
on the structural properties, mainly the mechanical behaviors of the
HEMs, it is not as trivial as the applications of the HT examinations on
the functional HEMs. Therefore, in this section, we introduced a few
examples of the HT studies on the mechanical properties in the HEMs.
Major efforts are to summarize the mechanical behaviors and the asso-
ciated microstructures of the HEMs.

3.3.1. ML and HT studies on mechanical properties of the HEMs
Although many efforts have been primarily dedicated to the phase
selection with an informatics-based approach, several researchers have
applied ML and HT techniques to mechanical-properties predictions,
particularly hardness and YS. For example, Coury et al. reported an
“Effective Atomic Radii for Strength” (EARS) methodology, together
with different semi-empirical and first-principle models, and they pre-
dicted the extent of SS strengthening to design new CrysNis; 5C027.5
HEAs owning a YS over 50 % greater associated with equivalent ductility
than the strong HEA (Cr33 3Nis3 3C033.3) from the CrMnFeNiCo family
[48]. Meanwhile, Cheng et al. propose a machine model to extract
important features, which influence SS strengthening of the HEAs.
Cheng et al. propose a new model with feature of electronegativity
difference that fit the hardness data better than the other models which
were mainly based on the mismatches of the atomic sizes and the dif-
ferences between the moduli. Cheng et al. introduced the mixing
enthalpy to improve the predictions of the single-phase HEAs hardness
in an error rate of 13.8 % [397]. Moreover, Coury et al. developed a HT
nanoidentation for yield-stress estimations of single-phase HEAs within
an approximately error of 10 %, which was successfully applied to a
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compositionally-graded region of a diffusion multiple [238]. Coury
et al.’s experimental and complimentary simulation results indicated
that the strength was maximized when the atomic-size mismatch was
maximized in their systems, including CrjgMnyoFe;C023Niss,
Cr27Mn4Fe2C034Ni33, Cran24Fe26C024Ni25, Cran2F61C047Ni49,
Cr33.3Fe10Co2g.3Ning 3, Cras5Co37.5Niz7 5, Cr33.3C033.3Nizz 3, CrazasFejo.
Co2g.3Ning 3, Cr33.3MnjoCo283Nizg 3, CrasCoz75Nizzs, CraoMnagFesq.
CogoNizg, MnpsFez5Co25Nizs, and Craz 3C033.3Ni33.3, CosoNiso [238].

To design light and strong HEAs, Menou et al. [132] conducted the
computational method by a multi-objective optimization genetic algo-
rithm combining a data-mining method using (1) phase calculations
through the CALPHAD method to estimate the probability of forming a
single SS, (2) physical models to predict the solid solution hardening
(SSH) contribution and crystal structures of multi-concentrated alloys,
and (3) a mixture rule for the density estimation to design HEAs with
high specific strengths. The method led to the design of 3155 compo-
sitions, which simultaneously had a higher probability to form a BCC
single solid solution structure, a higher SSH, and a lower density,
so-called Pareto-optimal. A new HEA of Al3sCr3sMngMosTiy; was
selected and fabricated, reaching an actual composition of
Al31Cr3y;MnyMogTiy 9. The measurement result of the HEAs is one of the
hardest (658 HV) metallic alloys ever recorded for such a low density
(5.5 g/cm®). Moreover, they also proposed the same strategy to explore
the strong and stable FCC HEA [188]. More than 2000 compositions are
produced with the optimization strategy. The optimized FCC alloy,
Al;(Coq7Fe3sMosNisy, is selected to fabricate by vacuum arc melting for
validation. The experiment results disclosed that the Vickers hardness of
1.78 GPa, a yield stress of 215 MPa, and an ultimate tensile strength of
665 MPa in the annealed state are superior to the existing FCC HEAs
with comparable density. Menou et al.’s data-driven method can be
further implemented for including more criteria, such as the elastic
modulus, cost, and melting temperature, etc.

Similarly, Xiong and coworkers [398] proposed a two-objective
regression model predicting hardness and compressive yield stress, the
correlation coefficient of which were both higher than 0.905. These
studies demonstrated the predictability of ML on different mechanical
properties. Followed by Rickman’s previous endeavors in materials data
analytics in conjunction with a visualization strategy, known as parallel
coordinates [399], they successfully screened and generated virtual
HEAs having high hardness in excess of 1000 HV via the combination of
the canonical correlation analysis (CCAA) and GA optimization strategy
with a CCAA-recommended fitness function [39]. The fitness function
governed GA in finding candidates that are 5-element alloys from 16
elements and 16 M compositions per element, in certain regions. Finally,
the model was validated by seven candidates synthesized and charac-
terized, compared with the predictive hardness. In 2020, Rickman et al.
reviewed several novel ML applications for HEAs on top of his previous
work [400]. Within the cuckoo search, another nature-inspired
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algorithm was proposed to deal with optimization problems. It was
coupled with MD to maximize the ultimate tensile strength in the
Al-Cr-Co-Fe-Ni quinary alloy system, and the improvement on this al-
gorithm accelerating convergence was also discussed. Bhandari et al.
[401] established the ANN model for the prediction of the Vickers
hardness of RHEAs. Through the features selection, the predicted
hardness of 695 HV from the ANN model was consistent with the
experiment of 601 HV for Cy 1CrgMo;1 gNbygRej5TaggWag, which is less
than 15 % error. Since the training sets include little dataset (128
samples) and several elements (17 elements), the prediction error is
diverged and ranged from 0.99 % ~ 49.2 %. As the volume fraction and
size of precipitate play dominant roles in precipitation strengthening,
Zheng et al. [402] developed the ANN model to hasten the exploration of
ultra-strong nanoprecipitated HEAs. The volume fraction of the y*” phase
was selected as the primary target in ANN model, while the YS played an
assistance factor. Note that the training data only include the
nickel-based superalloys. The predicted volume fractions are in good
agreement with target values for the testing database of HEAs. In this
work, a novel NizyCoagFeqgCrsAlsTig (wt. %) aged HEA with volume
fractions of 50.4 % and yielding strength of 1.03 GPa was obtained by
ML HT screening among 102,213 compositions. Prestrain aging was
further performed to enhance the YS, UTS, and elongation to 1.31 GPa,
1.65 GPa, and 15 %, respectively.

Besides exploring new compositions with better mechanical prop-
erties, the efforts are also put forth in reasoning the relationships among
the discovery of the property, structure, and composition. Wen et al.
[180] demonstrated a systematic framework combining ML and design
of experiments to find the HEAs with high hardness in the
Al-Co-Cr-Cu-Fe-Ni system. They first trained a surrogate model learning
the property-composition relationships and predicted nearly
two-million pseudo compositions in a virtual space. As a utility function
was used to guide the search for high hardness, some alloys would be
selected to synthesize and add to the dataset. After seven iterations, the
active learning with experiments led to several HEAs with hardness 10 %
higher than the maximum value (775 HV) in the original training data.
They even found that the two alloys with the highest hardness have
more Al and little Cu. When combined with Ni, Al tends to form a BCC
ordered phase (B2). Therefore, when the Al content increases, the solid
solution would transform from the FCC to BCC, and to B2 phase. Chang
et al. [21] wutilized simulation annealing to search for the
Al-Co-Cr-Fe-Mn-Ni HEA with high hardness. These efforts reveal the
importance of Co, Cr, and Al for future HEMs design. Al is considered as
the main contribution to the hardness. These optimization methods
accelerate the HEMs discovery and help scientists gain insights from the
results, which is the key of materials informatics-explainable and
interpretable ML models. Xiong et al. employed random forest classifier
to classify the phases as well random forest regression model to predict
the hardness and UTS in the HEAs [403]. The 5 most related features are
identified from the 30 selected features for the predictions of phase,
hardness, and YTS in the HEAs. Shapley additive explanation (SHAP)
method is adopted to calculate the contribution of features, which
quantitatively gives a contribution value of features to the mechanical
properties. Thereby it provides a straightforward assessment in the
design of HEAs. Roy et al. [79] reviewed the pipeline construction of ML
and data-driven exploration of the HEAs with emphasis on feature se-
lection and role of feature descriptors. Physical quantities such as
melting temperature and Young’s modulus are suitable for predicting
the mechanical properties while chemical composition and environ-
mental factors are included in the oxidation resistance and corrosion
rates prediction. Kimenko et al. [404] applied ML approach to forecast
the YS of the Al-Cr-Nb-Ti-V-Zr system at various temperatures. The
models showed satisfactory accuracy prediction, particularly with small
size of training dataset. To uncover the relationship between elements
and solidification interval characteristics, Qiao et al. [405] applied a
fuzzy neural network (FNN) model to design novel HEAs in the
Fe-Cr-Ni-Al system. Finding that the elemental fractions of Cr and Al are
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more sensitive to mechanical performance, compositions with the nar-
rowest solidification interval (calculated from CALPHAD) were pre-
dicted by FNN model and prepared by experiment. The FeCrNiAljg
exhibits high fracture strength and plastic strain of 2839 MPa and 41 %,
respectively, with high work hardening capacity. The strategy provides
an alternative way to design the advanced HEAs with superior me-
chanical properties. Li et al. integrated the atomic simulation (MD), the
physical model (Hall-Petch relationship), and the machine learning
model (ANN) as an active learning process to find the optimal grain size
of CrCoFeNi HEAs with heterogeneous grain structures for high strength
[405]. ML uncovers the grain size of 38.4 nm at a large grain size of 165
nm in the CrCoFeNi HEAs possessing a highest yield strength. The results
agree well with those obtained by MD simulation. The design workflow
can be further applied to explore the other materials with the desired
performance. More recently, Li et al. [406] employed MD with SNAPs to
simulate the refractory NbMoTaW with respect to single crystal and
polycrystalline HEAs. They found that the edge dislocations were more
important in the HEAs than in the individual pure BCC metal, and Nb
segregation to grain boundaries enhanced the observed SRO. Nb
enrichment stabilizes the grain boundaries and leads to higher strength.
Thereby, tailoring grain boundary composition and SRO is critical to
designing the HEAs with great mechanical properties. Fig. 26 describes
the grain size effects on the YS and UTS. There is a clear gap between the
ML-designed HEA with heterogeneous grain structures [407] and the
HEAs mainly with mono-dispersed grain size [408-412], which is
marked as the symbol of . Such a difference demonstrates that with the
applications of the hierarchical structure and heterogeneous grain
structure, the ML approach will open more possibility for the micro-
structure design of the HEMs.

In summary, ML has shown the ability to effectively predict the
compositions and phase constitutions of the HEAs. While reducing the
endless number of compositions in the design of HEAs to mere hundreds,
big data analysis can further improve the process by observing the sta-
tistical distributions and trends to obtain an insight of which element
playing a critical role in the phase constitution. As a result, the process of
designing HEAs can be accelerated systematically. Moreover, for the
complicated structures, such as simultaneously tailoring both the hier-
archical microstructure and heterogeneous grain structure, ML can shed
light on possible direction, which is not feasible for the trial-and-error
process.

3.3.2. Phase stability in the HEAs

The importance of the phase in the HEMs is evidenced in Table 8,
where the phase prediction is the most frequent research topic [44,102,
115,123,126-137]. The phase formation for the functional properties in
the HEMs is reviewed in the earlier session. Herein, the review focuses
on the mechanical properties in terms of the phase formation and phase
stability. Phase formation and the distribution of the microstructural
features in the HEMs dramatically change the mechanical properties of
the HEMs. For example, Wu et al. investigated the mechanisms of
eutectic formation (FCC/L12 + BCC/B2) in the HEAs [137]. Wu et al.
discovered that Al is the most critical element while Cr is strongly
associated with Al in the Al-Co-Cr-Fe-Ni system. This target-oriented
systematic ML design is useful to develop the eutectic HEAs (EHEAs).
Wu et al. demonstrated how to untangle the elemental relationships in
the complex systems and matched with the microstructures. Wu et al.’s
EHEASs has the UTS of ~ 1300 MPa and total elongation of ~ 20 %.

Meanwhile, another critical issue for the HEMs is their phase sta-
bility. HEMs do not simply inherit the structures and properties of their
constituent elements, as expected with a “linear effect”. The high
chemical complexity and packing disorder cause severe local lattice
distortion, which could further stabilize the HEAs kinetically. Therefore,
HEMs might exhibit rich tunable behaviors under high pressures [425,
426]. For example, the structural stability of various HEA systems has
been explored, using in-situ high-pressure synchrotron radiation-based
XRD techniques showing a transformation from FCC to HCP phases in



E.-W. Huang et al.

Materials Science & Engineering R 147 (2022) 100645

14000 * 14000
12000 [ ML Heterogencous stracture X ML-Heterogeneous structure 112000 =~
10000 [ S Lk Li, 2021), CoCrFeNi /0 ) D 1h @021, CoCrfeNi 410000 £
—_ 1) = v’ ' = E
< oo \ =
=] - 4 ' cperi ierarchi N el 4
E 1600 , \\ Experimental-hicrarchical structure \ Experimental-hierarchical structure| 1600 )
S v \ EHEA Fe,,Co, Ni, Al ' EHEA Fey,CoyNi Al s
g i . . .
éﬂ 1200 \ ®  P.Shi, (2021), conventional casting v e P Shi, (2021), conventional casting 1200 «;J
o \\ © P, Shi, 2021), directionally solidified O P. Shi, (2021), directionally solidified 2
2 v v v, © =
- v L] A @
@» v " > LI 1 , N 5
= 800 > . "o v 1800 =S
S W53 5w, QU CoGrF NN . ° W53 5w, QU7 CoGrF NN . . \ )
; ® F.Otto, (2013), CoCrFeMaNi [ AN ® F.Otto, (2013), CoCrFeMaNi * .l "I =
A SH. Joo, (2017), CoCrFeMaNi o’ s & A SH Joo, (2017), CoCrFeMaNi > A o £
W H. Shabmir, (2016), CoCrFeMaNi W H. Shabmir, (2016), CoCrFeMaNi R
400 | ¢ G Laptmcte, 2016, CocrFertans o v // \\ @ G Laplanche, 2016, CoCrFeMaN: 1400 s
<« B.Gludovats, @014), CoCrFMaNs LS | % < B.Gludovatz, Q2014), CoCrFeMaNi =)
P S.J.Sun, (2018), CoCrFeMaNi > ot ‘. P S.J.Sun, @01), CoCrFeMaNi
1 1 L 1 1 1 1 1 1 1
0.01 0.1 1 10 100 0.0 0.1 1 10 100

Grain size (um)

Grain size (pm)
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heterogeneous grain structures [407] and the others [408-413]).

Table 8

A comparison of elongation and ultimate tensile strength in different types of the as-cast HEAs [137,414-419].

Yield Ultimate Tensile Elongation Type Phase Ref Remarks: with ML, without ML,
Strength Strength (MPa) (%) with ML and verified by
(MPa) experiments
NizgCozoFe;oCrioAl1sW2 - 1,266 20 EHEA FCC + BCC With ML and verified by
experiment
NissCosFeroCrioAligWs  — 1,316 20 EHEA FCC + BCC [137] Zg:rmz?d verified by
NisCozoFeroCrioAligWa  — 1,344 21 EHEA FCC + BCC Xﬁgr?ﬁ:d verified by
AlCoCrFeNis ; - 1,100 18 EHEA FCC + BCC [414] Without ML
AlCrFe,Niy 780 1,228 17 EHEA FCC + BCC [415] Without ML
Fez0Co20Nig1Alig 577 1,103 19 EHEA FCC + BCC [416] Without ML
CrFeNiyAl 774 1,357 6 Primary BCC + FCC FCC + BCC Without ML
CrFeNi,;Aly o 610 1,173 9 Primary BCC + FCC  FCC + BCC Without ML
CrFeNij »Alg g 479 956 13 EHEA FCC + BCC [417] Without ML
CrFeNij 3Alg 7 461 835 30 Primary FCC + BCC FCC + BCC Without ML
CrFeNi, 4Aly 441 757 45 Primary FCC + BCC  FCC + BCC Without ML
(FeCoNiCrMn)g;Alg 332 728 30 Primary FCC + BCC FCC + BCC Without ML
(FeCoNiCrMn)goAl; o 528 1,000 16 Primary FCC + BCC FCC + BCC [418] Without ML
(FeCoNiCrMn)goAl;1 832 1,174 8 Primary BCC + FCC FCC + BCC Without ML
CoCrFeNiNbg 103 317 622 19 FCC + Laves FCC + IM Without ML
CoCrFeNiNbg 155 321 744 21 FCC + Laves FCC + IM Without ML
CoCrFeNiNby 206 402 807 9 FCC + Laves FCC + IM [419] Without ML
CoCrFeNiNby 309 478 879 4 FCC + Laves FCC + IM Without ML
CoCrFeNiNbg 412 637 1,004 1 FCC + Laves FCC + IM Without ML
Al oHf,sNbsSc1oTizsZtzs 500 900 4.2 Primary BCC Primary BCC [420]  Without ML
Orthorhombic Orthorhombic
NigoFe30Co20Al10 337 670 49.9 FCC FCC [421] Without ML
Al4Mo4NbgTisgZrs4 825 825 11.0 BCC BCC [422] Without ML
TizgV15sNbasHfog 774 792 20.6 Primary BCC + BCT Primary BCC + BCT [423] Without ML
TipsVasNbosHfos 1004 - 16.1 - - Without ML
TigoAlCrVNb 960 - 28 BCC BCC [423] Without ML
FesooNii1 sMnsgAly; sCry; 593 22 BCC + FCC/B2 BCC + FCC/B2 [424]  Without ML
CrysCogy iz s ~340 X ~50 FCC + SIGMA [48] With theoretical model, and

verified by experiment

the CoCrFeMnNi HEAs [289-291,427]. A similar FCC-to-HCP phase
transformation was demonstrated in ternary and quaternary equiatomic
FCC-structured alloys, such as CoCrNi and CoCrFeNi alloys [427].
However, some FCC-structured HEAs did not exhibit phase transition
even under extreme high-pressure compression, such as CoCrFeCuNi,
NiCoCrFePd, Aly 3CoCrFeNi, and AlCoCrCuFeNi alloys [427-430]. Sur-
prisingly, some experiments concluded no phase transformation
observed in the CoCrFeMnNi HEA even the compression pressure
increasing up to 49 GPa [428,431]. These results implied that the
phase-transformation mechanism in these FCC-structured HEAs is not
yet known in detail while many polymorphic transitions have been
discovered, as summarized by Zhang et al. [426]. There are three
possible mechanisms to interpret the differences among these cases
[289-291,427-431], and Zhang et al. [432] indicated the hydrostaticity
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effects of pressure-transmitting media and grain size effects of the
inconsistency of the onset pressure-induced phase transformation
among high pressure studies [1,35,290,427,432,433]. From Huang
et al.’s results, as shown in Fig. 27, another possibility was that the local
heterogeneity in the HEMs may induce the temporal shear between the
transmitting medium and the HEMs, which induced the shear defor-
mation during deformation.

Similar shear-induced phase transformation was also observed by
Niu et al. where Niu et al.’s tensile experiment and MD simulation
demonstrated the deformation paths of the stacking faults and twins
inducing the subsequent FCC-HCP structure transformation in the
CoCrFeMnNi HEA tensile specimen [147]. These reports implied that
the phase transformation mechanism in the HEAs and MEAs are strongly
correlated to the shear deformation. It is also clear that stacking faults
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Fig. 27. Diffraction results of the collected system subjected to hydrostatic compression: (a) ~ (k) and (1) after decompression. (Adapted from [291] with permission

from Elsevier).

play an important role in the phase stability and phase transformation in
the HEMs.

3.3.3. Stacking-fault effects on the HEAs

Due to the complex nature of the HEMs, different principal elements
have various crystal structures before forming the alloys. The HEMs in
certain compositions possess a unique combination of high strength and
high ductility. The unique combination is due to the change in the
deformation mechanisms from the slip to twinning to transformation-
induced plasticity. Recent work has demonstrated that the mechanism
changes, resulting from a lower stacking fault energy (SFE) of alloys.
Zhang et al. even proposed the negative SFEs and nano-twin formation
in the FCC HEAs [143]. The SFE is the energy carried by the interruption
of the normal atomic-stacking sequence, as exemplified for the FCC
structure [111]. It is known that the SFE determines whether a material
reveals transformation-induced plasticity (TRIP) or twinning-induced
plasticity (TWIP). Furthermore, a low SFE is known to suppress dislo-
cation climb and cross-slip, thereby modifying the dislocation gliding
behavior and possibly decreasing the dislocation mobility. The
(intrinsic) SFE, yg, for the FCC structure is defined as

ESF - Efcc

Ainl (24)

Vsr =

where Egr and Ef.. represent the energies of the FCC structure with and
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without a stacking fault, respectively. A;, denotes the interface area over
which the stacking fault extends in the (111) plane [111]. Ikeda et al.
summarized the Ab initio works on the SFEs of the HEAs with various
methods of theoretical calculations of SFEs [111]. Table 9 outlines the
SFEs of the HEMs modified after Ikeda et al. [111].

Besides the simulated SFE summarized in Table 9, Lam et al. applied
the Convolutional Multiple Whole Profile (CMWP) modeling to analyze
the in-situ neutron-diffraction profiles and [279] found the
fatigue-induced stacking faults and twinning activities. Woo et al. esti-
mated the SFE of the MEAs using in-situ neutron-diffraction experiments
[443]. The in-situneutron-diffraction was performed to obtain a number
of faulting-embedded diffraction peaks simultaneously from a set of (h k
D) grains during deformation. The peak profiles diffracted from the
imperfect crystal structures were analyzed to correlate the stacking-fault
probabilities and mean-square lattice strains to the SFEs. The results
disclosed that the averaged SFE was 15.1 mJ/m?in the CrCoNi alloys.
Meanwhile, during deformation, the SFE varies from 24 to 11 mJ/m?
from the initial to stabilized stages. The SFE of atomic configurations
includes SRO or segregation-based atomic environments. The transient
SFEs are attributed to the deformation activity changes from dislocation
slip to twinning as straining. The significant variance of the SFE suggests
the critical twinning stress as 790 + 40 MPa for the CrCoNi MEA.

Gaurav Arora et al. [445] employed the ML-based methodology with
a calculated dataset to anticipate the SFEs of the Ni-Fe-Cr system. They
reported that the SFEs of multi-elemental alloys can be accurately



E.-W. Huang et al.

Table 9
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Collection of experiments and Ab initio works on the SF of the HEMs. SF stands for “stacking fault”. NM indicates that the Stacking Fault Energy (SFE) calculations are

done under the non-magnetic condition modified after Ikeda et al. [111].

Year Reference HEAs Specific calculation methods Calculation/ Experiments
2013 Zaddach et al. FeNi, CrFeNi, CoCrFeNi, CoCrFeMnNi, and EMTO-CPA VASP-SQS Ab initio elastic constants + experimental SF
[139] variations probabilities
2015 Huangetal [140]  CoCrFeMnNi EMTO-CPA Explicit SF
2016  Patriarca et al. CoCrFeMnNi VASP-SQS Explicit SF
[141]
2016 Wang et al. [434] Fe40.4Nii1.3Mnag gAl; 5Cre, Measured via weak-beam imaging of the
Feg0.4Nij1.3Mnzg gAly 5Cre+0.07%C, separation of dislocation partials using
Fe40.4Niq1 3Mn34 gAly 5Cre+1.1%C transmission electron microscopy (TEM)
Beyramali Kivy
and Asle Zaeem CoCrFeNi + additions of Cu, Mn, Al, Ti, Mo) VASP + random supercell Explicit SF
[142]
Zhang et al. [143]  CoCrNi, CoCrFeNi VASP-SQS Explicit SF, Negative SFE
2017  Zhangetal. [143]  CoCrNi VASP + random supercell Explicit SF, ANNNI
Zhao et al. [144] CoCrFeMnNi, CoCrFeNiPd, and equiatomic VASP-50S Explicit SF, ANNNI
subsystems
Liu et al. [435] FeCoNiCrAlg ; In-situ TEM
Cai et al. [436] FeCoCrNiMos 3 In-situ neutron diffraction
Alkan et al. [145] CoCrFeMnNi VASP-SQS Explicit SF
2018 Huang et al. [146] CoCrNi, CoCrMnNi, CoCrFeNi, CoCrFeMnNi EMTO-CPA Explicit SF
Niu et al. [147] CoCrNi, CoCrFeMnNi VASP-SQS Explicit SF
Wang et al. [437] Alp ¢CoCrFeNi According to the critical stress theory, SFE of Dynamic impact tests
i the FCC phase is estimated
?f;;;”al etal. FeMnNi, FeMnNiCo, FeMnNiCoCu CALPHAD Combinatorial approach
Liu et al. [439] NiCoCr, FeCoNiCr, FeCoNiCrMn, (FeCoNiCr)g4Mng, Experimentally measured by weak-beam
(FeCoNiCr)ggMn1 4, FeogCo15NizsCragMnag dark-field using TEM
In-situ diffraction peak profile evolutions
2018 Huangetal [290]  CoCrFeMnNi showing the SFs formation prior to the phase
transformation
DFT calculations with the Vienna ab initio Scanning transmission electron microscopy
2018 Niu et al. CoCrNi Simulation Package (VASP), using the (STEM), in high-angle annular dark field
projector augmented wave (PAW) method (HAADF) mode
Resolving in-situ 2D diffraction peak profiles
2019 Huangetal [291]  CoCrFeMnNi showing the deviatoric deformation-induced
SFs
2019 Jiang et al. [440] CoFeNiyVy.5sMog o Synchrotron X-ray diffraction, TEM
Experimentally estimated via measuring the
2019  Wuetal. [441] CoCrFeNiMoyg 15 widths of the dissociated dislocations using
TEM
2019 Gao et al. [442] CraeMnygFesCoqoNis4 TEM
2020 Woo et al. [443] CrCoNi In-situ neutron-diffraction
2020 Frank et al. [444] Fe40MnyoCry5C020Sis In-situ neutron-diffraction
Convolutional Multiple Whole Profile In-situ neutron-diffraction showing fatigue-
2020 Lam et al. [279] CoCrFeMnNi (CMWP) modeling for analyzing the neutron-

induced SFs evolutions

diffraction profiles

predicted by the ML model while relying only on the dataset of binary
alloys. Once the dataset is produced by the calculation of inter-atomic
potentials, which may not agree quantitatively with the DFT or experi-
ment, the present work serves as a proof-of-concept framework. Due to
the limitation of calculations, the dataset of the calculated structure did
not consider the magnetic, elemental segregation, and SRO structure
effects. Although it remains to be a proof-of-concept, it opens a prom-
ising possibility for the design of HEAs owning high strength and high
ductility if the specific training data can be included in the future. Vilalta
et al. also applied ML models to predict the relationship between the
yield stress and the SFE landscape in the HEAs [446]. The data for
learning in this work were taken from phase-field dislocation dynamics
simulations of partial dislocations in the FCC metals. Vilalta et al.
adopted three different ways to describe the variations of the SFE
landscape as the inputs to the ML models. Vilalta et al.’s best ML model
can predict the yield stress to approximately 2% error [446].

4. Environmental resistance properties for the HEM studies
Environmental resistance is a major requirement for structural al-

loys. Among aqueous corrosion, wear, high-temperature oxidation, and
stress-corrosion cracking [33], Raabe et al.’s pointed out that the
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corrosion protection is on the top priority for structural alloys [63]. Due
to the importance of the corrosion applications, there are already suc-
cessful ML and HT experiments to develop new materials (such as for the
metallic glass [240] and alternatives to toxic chromate corrosion in-
hibitors [447]) and to predict the corrosion behavior of the existing
materials. For example, Winkler et al. screened a large library of organic
compounds using HT experiments to assess 100 small organic molecules
as the potential inhibitors of corrosion in the aerospace Al alloys of
AA2024 and AA7075 [447]. Smith et al. designed the computerized
optical analysis method as a new, rapid, HT corrosion testing method to
quantify the corrosion data [448]. Using ML, Pei et al. forecasted the
atmospheric corrosion of a carbon steel [449]. Pei et al.’s results showed
that the random forest (RF) models have higher accuracy than ANN and
SVR models for corrosion prediction. Liu et al. applied ML for
multiple-performance optimization to develop the material with satis-
factory resistance to hot-corrosion and oxidation [450]. Liu et al. firstly
introduced the phase-classification model trained with the CALPHAD
thermodynamic database to filter the potential composition with y and y’
two-phase microstructures. Multi-regression models with bootstrap
sampling were built to predict the ¢ solvus temperature, solidus, lig-
uidus, and density based on an experimental dataset assembled from the
literature. Multi-performance optimization was adopted to search for



E.-W. Huang et al.

y'-strengthened  Co-based superalloys. The final optimized
y'-strengthened Co-base superalloys were obtained through three rounds
of experiment validations and fabricating four alloys each round. The
best performer of new alloys is Co-36Ni-12Al-2Ti-4Ta-1W-2Cr, which
could be comparable with some advanced Ni-base single-crystal super-
alloys [450]. Yan et al. analyzed the effect of various parameters on the
atmospheric corrosion behavior of low alloy steels and anticipated the
corrosion rates using ML [451]. Wen et al. used SVR and BPNN (back
propagation neural network) models for the prediction of corrosion rates
of a 3C steel under different seawater environments [452]. Kamrunna-
har et al. developed supervised BPNN mapping method to forecast the
polarization curves in the FeggNijqxMoxSizBig metallic glass, the
corrosion rates in the carbon and alloy steels, and the extent of crevice
corrosion damage in the grade-2 titanium as a function of changing
environment [453]. The pitting corrosion behavior of 316 L stainless
steel (SS), in different environment conditions, was studied by
Jimeneze-come et al. using the model based on KNN and ANNs.
Jimeneze-come et al.’s results exhibited very good precision, which are
all above ~93 % [454]. Overall, Fig. 28 presents that ML can be suc-
cessfully utilized to predict different corrosion properties.

With growing interest in the field of multi-component systems viz.
HEMs, it is imperative to forecast their corrosion behaviors under
different environmental conditions for their potential applications. Un-
fortunately, the studies on predicting the corrosion behaviors in the
HEMs using ML are scarce. Recently, the U.S. Department of Energy
(DOE) awarded more than $45.3 million through its Nuclear Energy
University Program (NEUP) to support university-led nuclear energy
research and development projects, including “Machine learning on HT
databases of irradiation response and corrosion properties of selected
compositionally complex alloys for structural nuclear materials.” led by
the University of Wisconsin-Madison [456].

As the HEAs consist of multiple elements in equiatomic or non-
equiatomic ratios, the microstructure and resultant corrosion behavior
will depend upon the synergistic effects of all the constituent elements.
This trend is in contrast with the conventional alloys, where their
properties are dictated by one or mostly two dominant elements. Apart
from the composition and microstructure, processing method and type
of the electrolyte will also affect the corrosion response of the HEAs. In
this section, a comprehensive review on the corrosion behavior of the
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HEAs is presented.

Table 10 lists the corrosion parameters (Ecorr, icorr, and Epj, or Ep: as
the breakdown potential) for several HEAs and conventional alloys. The
relatively lower corrosion potential, current density, and higher pitting/
breakdown potentials in the HEAs, as compared to the conventional
alloys, indicate that the HEAs can be good candidates as corrosion-
resistant alloys in aqueous corrosive media.

An earlier study on the corrosion characteristics of the HEAs was
carried out by Chen et al.,, where the corrosion behaviors of the
Cug sNiAlCoCrFeSi HEA and 304 SS alloy were evaluated and compared
in an aqueous solution of HySO4 and NaCl. Anodic polarization sug-
gested that the HEA exhibits better corrosion resistance than the 304 SS
alloy in the range of concentration (0.1-1 M) of aqueous solution.
However, resistance to pitting corrosion in the Cl~ environment of the
HEA was inferior, as compared to the 304 SS because of the observed
narrower passive region in the former. The addition of NaCl to 1 N
H3SO4 solution changes the corrosion characteristics of the HEA. The
corrosion resistance decreases up to 0.5 M NaCl and then increases, as
shown in Fig. 29 [457].

The effects of Mo on the corrosion behavior of the CoCrFeNis HEA in
3.5 wt. % NaCl were studied by Rodriguez et al. [458]. A higher
corrosion resistance in the CoCrFeNisMog 25 compared to the CoCrFeNiy
HEA was attributed to the presence of Mo, which stabilized the pro-
tective CrpO3 passive layer by the precipitation of MoO3 on the surface.
Using X-ray photoelectron spectroscopy (XPS), Dai et al. [475]
concluded that the CoCrFeNiMoy (x = 0, 0.1, 0.3, and 0.6) HEAs con-
sisted of a bilayer-structured surface film. The outer layer contained a
mixed Cr/Fe hydroxides/oxides and MoOs, whereas the inner layer was
rich in Cr(IIl) species with a higher ratio of Cr(ox) and Cr(hyd) along
with MoO4 and Fe;O3. The addition of Mo was found to increase the Cr
(0x)/Cr(hyd) and molybdenum oxide in the protective film, thus,
increasing the Mo content resulted in an improved corrosion resistance
in the HySO4 solution. Dai et al. [475] further suggested that the damage
mechanism changes from pitting in the CoCrFeNi and CoCrFeNiMoy 1
HEAs to selective dissolution in the CoCrFeNiMoy (0.3 and 0.6) HEAs
due to the change in the microstructure from a single FCC phase to a dual
phase [FCC + (Cr, Mo)-rich precipitates] as the Mo content is increased.
Shang et al. [459] varied the content of Mo (x = 0.1 - 0.5) in the
CoCrFeNiMoy HEA and elucidated the corrosion behaviors in 3.5 wt. %
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Summary of corrosion parameters in the HEAs and conventional alloys from previous studies. The average values of the parameters at room temperature are presented.
SCE: saturated calomel electrode, MSE: mercurous sulfate electrode, SHE: standard hydrogen electrode. Reference electrode is SCE unless specified.

HEA System Electrolyte Ecorr (Vscg) icorr (pA/cm®) Epic /B, (Vscr) Ref.
0.1 M NaCl 0.01 0.178 0.58
1 M Nacl ~0.53 3.16 ~0.25
0.1 N HzS04 ~0.06 10.7 0.11
1 N HyS04 —0.41 251 0.09
) . 1 N H,S0,4 + 1 M NaCl ~0.45 141 ~0.28
Cuto sNIAICoCrFeSi 1 N H,S04 + 0.6 M NaCl ~0.47 1620 ~0.23
1 N H,S0, + 0.5 M NaCl —0.48 1950 —0.21 4571
1 N H,S04 + 0.4 M NaCl ~0.46 1710 ~0.215
1 N HpS04 + 0.1 M NaCl —0.44 316 ~0.24
1 N HzS04 + 0.01 M NaCl ~0.43 282 —0.22
0.1 M NaCl ~0.25 1.59 0.46
1 M Nacl ~0.59 4.37 0.17
304ss 0.1 N H,S04 ~0.05 50.1 1.12
1 N H,S04 ~0.22 501 1.06
CoCrFeNi, ~0.29 0.129 0.32
CoCrFeNi;Mog 5 ~0.26 0.125 0.91
Hastelloy C-276 3.5 wt. % NaCl ~0.28 0.128 0.74 [458]
316 L ~0.25 0.111 0.27
CoCrFeNiMog 1 ~0.263 0.381 0.949
CoCrFeNiMog » ~0.131 0.072 0.941
CoCrFeNiMog 3 3.5 wt. % NaCl ~0.257 0.766 0.955
CoCrFeNiMog 4 ~0.261 0.082 0.948
CoCrFeNiMog s ~0.261 0.738 0.965 450]
CoCrFeNiMog , ~0.688 9.666 0.469
CoCrFeNiMog » ~0.682 2.926 0.460
CoCrFeNiMog 3 0.5 M H,504 (MSE) ~0.694 8.626 0.453
CoCrFeNiMog 4 ~0.663 0.712 0.462
CoCrFeNiMog 5 ~0.632 1.526 0.450
st 35 wt. % Nacl (Ag/AgCD) o008 076 0474 L60)
Aly 5CoCrFeNi ~0.195 0.0835 0.460
AICy sCoCrFeNi 3.5 wt. % NaCl ~0.225 0.252 0.385 [461]
Alg,CoCrFeNi ~0.275 0.429 0.052
CoCrFeNi ~0.081 15.8 0.002
Alg 25CoCrFeNi ~0.095 16.7 0.008
Algso CoCrFeNi 0.5 M H,50, (SHE) ~0.084 13.4 0.017 [462]
AICOCrFeNi ~0.094 13.1 0.010
$5304 ~0.185 453 ~0.071
CrFe; sMnNig s ~0.229 686.0 ~0.055
Alg 5CrFe; sMnNig s ~0.194 ~2390 ~0.012
Aly 5CrFe; sMnNig 5 0.5 M H2S04 (SHE) —0.206 ~5080 0.047
304 SS ~0.186 745 ~0.022
0.5 M H,S0,4 (SHE) ~0.221 686.0 1172
) 0.5 M H,S0,4 + 0.10 M NaCl (SHE) ~0.242 ~ 2060 1.180
Crfe, sMnNio 5 0.5 M H,S0;4 + 0.25 M NaCl (SHE) ~0.238 ~ 4600 0.589 [463]
0.5 M H,S0;4 + 0.50 M NaCl (SHE) ~0.240 ~ 9750 0.475
0.5 M H,S0, (SHE) ~0.194 ~ 2390 1.164
Al sCrFes oMnNio s 0.5 M H,S0;4 + 0.10 M NaCl (SHE) ~0.219 ~ 2480 1.156
: : : 0.5 M H,50;4 + 0.25 M NaCl (SHE) ~0.231 ~ 6050 0.250
0.5 M H,50;4 + 0.50 M NaCl (SHE) ~0.250 ~ 10,400 0.257
Aly 3CoCrFeNi (As-forged) -0.189 0.0632 0.522
AlysCoCrFeNi (As-forged) ~0.261 0.187 0.316
Alp 7CoCrFeNi (As-forged) —0.292 0.392 0.118
Aly 5CoCrFeNi (As-equilibrated) 3.5 wt. % NaCl ~0.180 0.0289 0.808 14641
Al sCoCrFeNi (As-equilibrated) —0.228 0.0714 0.496
Alp 7CoCrFeNi (As-equilibrated) —0.258 0.267 0.256
CoCrFeNi ~0.248 0.108 0.442
Alg 5CoCrFeNi ~0.252 0.238 0.290
Alg 6CoCrFeNi 0.6 M NaCl ~0.179 0.070 0.190 [465]
Alg oCoCrFeNi ~0.216 0.093 0.164
Alg 9CoCrFeNiTip 5 ~0.347 0.310 0.184
AlL,CoCrFeNi ~0.1934 0.00941 0.1933
Al §CoCrFeNiTig 2 ~0.2602 0.02633 0.1894
Al 5CoCrFeNiTip s ~0.2394 0.01644 0.2622
Al 5CoCrFeNiTip g 3.5 wt. % NaCl ~0.2588 0.02411 0.3486 [466]
AICOCrFeNiTi ~0.311 0.03273 0.3694
Aly gCoCrFeNiTi; 5 ~0.426 0.05600 0.3533
AICOCIFeNiTi ~0.27 0.561 -
Alg §CoCrFeNiTig 3.5 wt. % NaCl ~0.69 7.96 -
Aly 5sCoCrFeNiTip 5 ~0.32 0.532 - 4671
AICOCrFeNi ~0.41 ~ 546 ~0.35
Alg gCoCrFeNiTio 0.5 M H,504 (MSE) —0.47 ~117 ~0.12
Aly sCoCrFeNiTip s ~0.40 ~ 320 ~0.21

(continued on next page)
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HEA System Electrolyte Ecorr (Vsce) icorr (PA/cm®) Epit /Ep (Vscr) Ref.
AlCoCuFeNi —0.058 7.93 -
AlCoCuFeNiCr -0.075 5.09 -
AlCoCuFeNiTi 0.5 M H,S04 -0.253 44.76 - [468]
AICoCuFeNiCrTi -0.256 39.59 -
AICoCrFeNiSio 1 -0.453 304.20 0.925
304 SWS 0.5 M H,S04 —0.438 105.12 0.925 [469]
CoCrFeNi —0.257 - 0.556
CoCrFeNiAl -0.322 - 0.297
CoCrFeNiCu ~0.180 - —0.069
CoCrFeNiSn 0.6 MNaCl (Ag/AgC ~0.252 - 1.099 14701
5304 —0.246 - 0.199
8316 —0.254 - 0.267
FeCoNiCr -0.26 0.0315 0.31
FeCoNiCrCug s . -0.29 0.723 0.09
FeCoNiCrCu 3:5 wt. % NacCl ~0.33 1.32 0.08 L4711
304 LSS -0.25 0.601 0.23
Alp sCoCrCuFeNiB —0.115 787 0.233
Alp sCoCrCuFeNiBg » -0.121 1025 0.215 .
Al sCoCrCuFeNiBy ¢ 1 N H,504 (SHE) -0.148 2626 [472]
Al 5CoCrCuFeNiB —0.159 2848 -
AICoCrCuFe —0.264 0.967 —0.130
(TiAl)o.7Vo.15Fe0.1Nio 05 —0.388 0.037 0.263
AITiVCrSi —0.498 0.168 0.011 )
CoCrFeNiAlg o 0.6 M NaCl -0.217 0.093 0.164 73l
CoCrFeNi (SPS") —0.304 0.610 —0.008
Tio.3(CoCrFeNi)o., -0.273 0.036 1.040
TiZro sNbCro 5 —0.489 0.00441 1.180
TiZro sNbCro sV 3.5 wt. % NaCl -0.311 0.00974 1.448
TiZro sNbCro sMo —0.455 0.0940 1.400 [474)
TiZro sNbCro -0.277 0.452 0.968
TiZro sNbCro sV 0.5 M HzS04 —0.087 0.02039 0.998
TiZro sNbCro sMo -0.018 0.0526 0.984
0.0 20 microstructure, i.e., no micro-galvanic effect and presence of a passive
oxide film (Al;03/Cr03).
014 Corrosion rate The influence of aluminum (Al) content on the pitting-corrosion
0.2+ P-mng potential F15 o behaviors of the AlyCoCrFeNi (x = 0.3, 0.5, and 0.7) in a 3.5 wt. %
e '\/' S NaCl solution was also studied by Shi et al. [461]. Increasing the Al
o . . .
> 034 2 content changed the microstructure from a single-phase FCC in the
s r10 3 Al 3CoCrFeNi to FCC + BCC (both ordered and disordered) phase in the
s %4 3 Alj 7CoCrFeNi. The increased volume fraction of the (Al, Ni)-rich and
& 054 ——= g Cr-depleted BCC phase decreased the corrosion resistance of the HEA
’ Corrosion potential 5 g due to the increased extent of the selective dissolution of the Cr-depleted
0.6 BCC phases in the presence of Cl™ ions. Fig. 31(a) shows the formation of
sporadic pits in a single-phase FCC Al 3CoCrFeNi. In contrast, localized
0.7 T T 0 corrosion is severe in the case of the Aly;CoCrFeNi HEA [Fig. 31(c)],
0.0 0.2 0.4 0.6 0.8 10

1N H,S0, + x M NaCl

Fig. 29. Variation of corrosion rate, pitting potential, and corrosion potential
with the concentration of NaCl in 1 N H,SO,4. Adapted from [457] with
permission from Elsevier.

NaCl and 0.5 M HSO4. The corrosion resistance increased up to x = 0.2
but decreased with further increase in the Mo content due to the pre-
cipitation of a secondary ¢ phase (Cr-Mo rich) in the interdendritic re-
gions [476,477].

Kumar et al. [460] investigated the general and pitting corrosion
resistance in the Aljy1CoCrFeNi HEA whose resistance was found to be
higher than that in the 304 SS in 3.5 wt. % NaCl. The pit number density
was higher in the 304 SS rather than in the HEA. However, the depth of
the pits was almost similar. In addition, the pits were elliptical for the
304 SS but circular for HEA. The number distributions of pit sizes for the
HEA and 304 SS are shown in Fig. 30 (a) and (b), respectively. Using the
lognormal distribution fitting, the average pit size for the HEA and 304
SS was measured to be 142 and 110 pm, respectively. In the case of the
HEA, most of the pits were of size less than 100 pm. The better corrosion
resistance in the HEA was postulated to be due to its single-phase
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where a complete BCC phase is attacked. Using an in-situ visualization
system, Shi et al. [478] later confirmed that the localized corrosion
changed from pitting in the Al 3CoCrFeNi to selective dissolution of
BCC phases in the HEAs containing a higher content of Al. Similar se-
lective dissolution of the BCC phase in the FCC matrix was observed
when the Aly 5CoCrFeNi [(Fig. 31(b)] was exposed to the 3.5 wt. % NaCl
solution after aging in a temperature range of 350-950 °C [479].

Kao et al. [462] evaluated the corrosion behaviors of the AlyCoCr-
FeNi HEAs (x = 0, 0.25, 0.50, and 1.0) by immersing them in a corrosive
solution (0.25 M, 0.5 M and 1.0 M NaCl in the 0.5 M H2SO4 solution) and
performing polarization tests. Interestingly, increasing the Al content
did not bring a significant change in the corrosion potential (Ecor) and
corrosion current density (icory) values, and no obvious trend was
observed in the polarization tests. The passive region was observed be-
tween 0-1.2 Vgyg in 0.5 M H,SO4, and pitting potential (Epi) of the
studied alloys decreased with the addition of C1™~ ions. Furthermore, the
corrosion rates, measured from the weight loss in the immersion tests
(8-15 days), were reported to be much higher in the alloys containing a
higher Al content (Al sCoCrFeNi and AlCoCrFeNi) than in the remain-
ing two alloys. This feature was also postulated to be due to the selective
dissolution of a (Al, Ni)-rich phase in the HEAs with a higher Al content.
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Fig. 32. Polarization curves in the AlyCoCrFeNi in a 3.5 wt. % NaCl solution for
(a) as-forged and (b) as-equilibrated conditions. Adapted from [464] with
permission from Elsevier.
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Fig. 30. Distribution of pit size in the (a) Alp.;CoCrFeNi HEA, and (b) 304 SS.
Adapted from [460] with permission from Elsevier.
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Fig. 31. SEM micrographs showing the pits after a potentiodynamic polarization test for (a) Alg 3CoCrFeNi, (b) AlysCoCrFeNi, and (c) Alp,CoCrFeNi. Adapted from
[461] with permission from Elsevier.
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Fig. 33. Potentiodynamic-polarization curves for the Al,CoCrFeNiTiy, HEAs in a
0.6 M NaCl solution. Adapted from [465] with permission from Elsevier.

In another study, an increase in the Al content was also observed to
increase the icory values and decrease the Eyy values of the Al,Cr-
Fe; sMnNig s (x = 0, 0.3, and 0.5) HEAs in 1 M NaCl and 0.5 M HSO4
solutions [463]. Shi et al. [464] further investigated the effect of ho-
mogenization at 1250 °C on the corrosion response of the AlyCoCrFeNi
(x = 0.3, 0.5, and 0.7) HEAs in a 3.5 wt. % NaCl solution using a
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potentiodynamic polarization test. The alloys were first forged at 1250
°C for 50 % reduction (as-forged condition), followed by annealing at
1250 °C for 1000 h (as-equilibrated condition). Increasing the Al content
resulted in a change in the microstructure from (Co, Cr, Fe)-rich sin-
gle-phase FCC in Alp 3CoCrFeNi to a multi-phase (FCC + BCC) micro-
structure in Aly7CoCrFeNi, where BCC phases were (Al, Ni)-rich and
(Co, Cr, Fe)-rich. Fig. 32 presents the polarization curves for both
as-forged and as-equilibrated conditions, where a decrease in the Eqq.
and an increase in the i, can be observed with increasing Al content,
suggesting an improved general corrosion resistance at a lower Al con-
centration. Furthermore, a decrease in the E; with increasing Al con-
tent indicated a weakened localized corrosion resistance at higher Al
contents. The observed trend was again ascribed to the multi-phase
microstructure at higher Al contents. Nevertheless, homogenization
resulted in an improved corrosion resistance in all the alloys due to the
reduced elemental segregation, which resulted in a decreased variation
of the work function, measured by scanning Kelvin probe force micro-
scopy (SKPFM).

Qui et al. [465] investigated the role of Al along with an addition of
titanium (Ti) on the corrosion behavior of the as-cast CoCrFeNi HEA in a
0.6 M NaCl solution. In contrast to the observation made by Shi et al.
[461], this study concluded an increased general corrosion resistance
with increasing Al content from 0.3 to 0.9, as i.oy values decreased
(Fig. 33). This trend was supposedly attributed to the increased fraction
of AlyOg3 in the passive film with an increase in the Al content. The
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microstructure changed from a single-phase FCC (0 and 0.3 Al) to FCC +
BCC + B3 (0.6 and 0.9 Al) phase. The addition of Ti (Alg gCoCrFeNiTi 5)
resulted in a dramatic decrease in the corrosion resistance. In fact, the
icorr Value of this HEA was the highest (Fig. 33), which was ascribed to
the formation of a Fe-Cr-type sigma phase leading to the depletion of Cr
from the matrix.

Zhao et al. [466] also elucidated the role of Ti/Al ratio on the
corrosion-resistance behaviors of the Al, yCoCrFeNiTiy HEAs (x =0, 0.2,
0.5, 0.8, 1.0, and 1.2) in a 3.5 wt. % NaCl solution. The microstructure
changes from BCC; + B, and BCC; + BCCy + By to BCC;  BCCy + Laves
phases with increasing Ti content, where BCC; is characterized as the
(Fe-Cr)-rich phase, and BCC; is the (Al, Ni)-rich phase (similar to the
B,-NiAl phase). Among all the studied Ti-containing alloys, Al; sCoCr-
FeNiTip s exhibited the best general corrosion properties. The lower
corrosion resistance at a higher Ti content was due to the negative effect
of the multi-phase structures and decreased the protection level by the
passive film. However, it should be noted that all of the Ti-containing
alloys exhibit higher E;; with a wide passive region, which suggested
that Ti addition improves pitting corrosion resistance. Jiang et al. [467]
studied the corrosion behaviour of the AlyCoCrFeNiTi;.x (x = 0.5, 0.8,
and 1.0) in a 3.5 wt. % NaCl solution. The highest and lowest corrosion
resistance was observed for Ti-free and AlygCoCrFeNiTipo HEAs,
respectively. The authors mentioned that although Ti itself is resistant to
Cl™ ions, the elemental segregation and dual-phase structure (FCC +
BCC phases) with Ti addition negate its beneficial effect in the case of
Alg gCoCrFeNiTig 2. In the Al sCoCrFeNiTip s HEA, a higher content of
Ti was probably able to counter the aforementioned weakening effect
and thereby increased the corrosion resistance.

Xiao et al. [468] carried out both immersion and
potentiodynamic-polarization tests in 0.5 M HoSO4 and observed that an
addition of Cr to AlCoCuFeNi improved the corrosion resistance,
whereas the Ti addition deteriorated the corrosion resistance. Both icorr
from polarization curves and corrosion rates from immersion tests
showed the following corrosion-resistance trend: AlCoCuFeNiCr >
AlCoCuFeNi > AlCoCuFeNiCrTi > AlCoCuFeNiTi [Fig. 34 (e, f)]. This
behavior can be attributed to the distribution of phases in the alloys. All
four alloys consist of the FCC phase, ordered BCC (B2) phase, and
disordered BCC (Ay) phase, as presented in Fig. 34 (a-d). Increasing the
Cr content increased the fraction of the BCC (B2/A2) phase while the Ti
addition increased the fraction of the FCC phase. The authors reported
that as the FCC phase is more anodic, as compared to the BCC phase, the
former dissolves, leading to the formation of pits, as shown in Fig. 34
(gj). Therefore, since the fraction of the FCC phase increases with the Ti
addition, the corrosion resistance also decreases with an increase in the
Ti content.

The addition of 0.1 Si to the AlCoCrFeNi was not observed to induce
a significant change in the microstructure of the HEA [469]. In the
presence of the corrosive medium (3.5 wt. % NaCl), the alloys exhibit
pseudo-passive behavior, where the pits are formed at the dendrites due
to their lower Cr content and formation of micro-galvanic coupling with
interdendrites. In contrast, active-passive behavior was observed ina 0.5
M H3SO4 solution. The corrosion-resistance behaviors of the CoCrFe-
NiWy (x = 0, 0.2, and 0.5) HEAs was evaluated by Niu et al. [480]. The
medium was seawater, which was prepared by the distilled water and
artificial sea salt in the ratio of 30:1 (mass ratio). The CoCrFeNiWg s
exhibited the highest pitting resistance and easy passivation behavior,
which was attributed to the increase in the stability of the
chromium-oxide passive film by the addition of tungsten. Muangtong
et al. [470] investigated the role of Sn, Cu, and Al additions on the
corrosion susceptibility of the CoCrFeNi HEA in a 0.6 M NaCl solution.
Among all the alloys, CoCrFeNiSn performed the best corrosion resis-
tance due to the largest passive region and the highest pitting potential,
indicating that the alloy’s passive film has a good stability for pitting
corrosion resistance. This behavior was assigned to the presence of both
Cr03 and SnO, in the surface film, making it resistant to the attack. The
CoCrFeNiCu was observed to exhibit the lowest corrosion resistance.
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Hsu et al. [471] explored the effect of Cu on the corrosion properties
of the CoCrFeNiCuy (x = 0, 0.5, and 1.0) HEAs in a 0.6 M NaCl solution.
With increasing Cu content, the corrosion resistance of the HEA was
observed to decrease, which was ascribed to the dissolution of Cu-rich
regions. It was postulated that due to the weak binding force with
other elements, Cu segregates as Cu-rich and Cu-depleted regions. In the
presence of the corrosive solution, Cu-rich regions preferentially corrode
due to the micro-galvanic effect. Luo et al. [481] examined the corrosion
resistance of the CoCrFeNiMn HEA in a 0.1 M HySO4 solution and
compared with the 304 L SS. The HEA exhibited lower corrosion resis-
tance than the 304 L SS. Although both HEA and 304 L SS had good
passive layer forming capability, the lower Cr content in the passive
layer of the HEA and no obvious selective dissolution of other elements
were the plausible reasons for the observed lower corrosion resistance.
Later, Sarraf et al. [482] also revealed that the presence of Mn degraded
the pitting-corrosion resistances of the CoCrFeNi HEA in 0.1 M NaCl and
in the temperature range of 25 °C-75 °C. The pits in the CoCrFeNiMn
HEA were much deeper than that in the CoCrFeNi HEA, the extent of
which increased with increasing temperature. This trend was attributed
to the adverse effect of Mn in the matrix, lower concentration of Cr in the
film, and more defective oxide film in the CoCrFeNiMn HEA, which
make it easy for the film to breakdown. Similarly, Yang et al. [483] also
observed that increasing the Mn content increased the susceptibility to
corrosion of the CoCrFeNiMn in a 0.1 M H,SO4 solution as it suppressed
the passivation process and increased the dissolution rate of the passive
film. Sahu et al. investigated the localized corrosion behavior of a series
of single phase NisgFepoCryMnag.5:C021.05x (X = 6, 10, 14, and 22)
HEAs in a 0.6 M NacCl solution. While E .+ was observed to be inde-
pendent of Cr content, pitting resistance increased with increasing Cr
content, i.e., NiggFeyoCroaMn(Co¢ exhibited the highest resistance to
pitting. The passivation behavior of NizgFegoCraaMnjoCo1g was further
explored by Gerard et al., where the passive film was predominantly
enriched in Cr with a small amount of Fe, Ni, Mn, and Co [484].

The effects of boron on the corrosion behavior of the AlysCoCrCu-
FeNiBy (x = 0, 0.2, 0.6, and 1.0) HEAs in aqueous 1 N HySO4 were
studied by Lee et al. [472] and were compared with SS 304 steel.
Increasing the boron content increased the corrosion potential and
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pitting potential and corrosion current among the conventional alloys, bulk and
thin-film HEAs in the 3.5 wt. % NaCl solution. Adapted from [485] with
permission from Elsevier.

current density from - 0.115 Vgyg to — 0.159 Vgyg and 0.787 x 107
A/cm? to 2.848 x 107% A/cm?, respectively. This feature suggests that
the corrosion resistance decreased with the addition of boron, which
was attributed to the formation of precipitates of Cr, Fe, and Co-borides,
resulting in the formation of the micro-galvanic effect and preferential
corrosion of inter-dendritic regions. Nevertheless, the HEAs have better
corrosion resistant than the SS 304 steel, which exhibited corrosion
potential and current density of — 0.165 Vgyg and 3.318 x 107° A/cmz,
respectively.

Other than casting (with and without rolling), the HEAs have been
also synthesized, using other methods, such as laser melting, ball milling
followed by sintering, sputtering, etc. Qui et al. [473] performed
potentiodynamic-polarization testing of about twenty HEAs in a 0.6 M
NaCl solution. The Ecor and Epj; values of these HEAs along with steels
and aluminum alloys are listed in Fig. 35. The E.,; values of the studied
HEAs are in the range of ~ — 498 mVgcg to — 180 mVgcg and are higher
than those of the mild steel and aluminum alloys, suggesting that the
studied HEAs are much nobler than both the mild steel and aluminum
alloys. Ecor values for several HEAs lie between ferritic stainless steels
and austenitic stainless steels, whereas a couple of HEAs (CoCrFeNiAlp g
and CoFeMnNi) were even nobler than the austenitic stainless steels. For
most of the HEAs, E,;; values are more positive than those of the ferritic
stainless steels with some of them exhibiting even higher than the
austenitic stainless steels, e.g., CoCrFeNi (LM, AM), Tig 3(CoCrFeNi)g 7,
etc. From Fig. 35, it is clear that processing methods can lead to the
changes in the corrosion properties of the same HEA. For example, the
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Epit value of the CoCrFeNi fabricated by arc melting is 442 mVscg. In
contrast, the same HEA, fabricated by spark plasma sintering (SPS),
exhibits lower Ep;; values of — 28 mVscg and — 8 mVsck.

A HT synthesis of nanocrystalline Aly(CoCrFeNi);gp.x (x = 4.5-40 at.
%) was carried out by Shi et al. [485] using a combinatorial thin-film
magnetron sputtering technique, followed by the evaluation of their
corrosion responses in 3.5 wt. % NaCl, using electrochemical tests. With
an increase in the Al content, the microstructure changed from a
single-phase FCC to single-phase BCC in the as-deposited thin films,
relative to the observed transition from a single-phase FCC to
multi-phase (FCC + BCC) microstructure in the bulk HEAs [461]. The
polarization curves showed a decrease in both general and pitting
corrosion resistances with increasing Al content, which was similar to
the trend observed in the Al,CoCrFeNi bulk HEAs [461]. However, the
as-deposited HEA disclosed higher corrosion resistance than the bulk
HEA, as shown in the polarization curves (Fig. 36(a)) of the HEAs con-
taining 7 at. % Al in both as-deposited and bulk conditions. Fig. 36(b)
presents the comparison of corrosion parameters in the conventional
alloys, thin-film HEAs, and bulk HEAs, which clearly demonstrates that
the thin-films HEAs exhibit better corrosion resistance than the bulk
alloys.

5. Summary of the environmental resistance properties for the
HEMs

The corrosion-resistance behaviors of the HEAs have been exten-
sively reviewed. Overall, the corrosion behavior of the HEAs predomi-
nantly depends on three factors, namely, compositions and
microstructures of the alloys, type of electrolyte and processing routes
(parameters). A comparison of the corrosion-resistance behaviors in the
conventional alloys and HEAs (Table 10) clearly shows that the HEAs, in
general, could be good candidates for corrosion-resistant alloys in
aqueous media. Most of the studies on the corrosion behavior of the
HEAs are limited to the transition metal family, and other families are
largely still uncovered. In addition, most of the studies have been carried
out in a particular environment. As the HEAs contain at least four ~ five
elements (equiatomic or non-equiatomic), synthesizing all HEAs by
traditional metallurgical process and then evaluating their corrosion
properties are both expensive and highly time- consuming. Therefore,
the ML-assisted design and HT studies are needed for the analysis of the
whole domain in an optimized way. ML can analyze a vast amount of
data to understand the complex inter-relation between multiple vari-
ables and their impacts on the output. Deriving insights from the existing
corrosion data in the HEAs (Table 10), ML may help predict an opti-
mized composition along with the best process conditions and param-
eters to synthesize a HEA for the maximum corrosion resistance through
multi-dimensional optimization. It can also incorporate any potential
boundary conditions, including limits to a particular elemental compo-
sition or a process parameter during the optimization process.

6. Future work

Before Jeff Bezos’ Blue Origin’s flight to the space on July 20th and
Sir Richard Branson reached the edge of space on July 11th, Elon Musk’s
reusable rocket, designed and manufactured by SpaceX, has transported
payloads into Earth orbit and beyond. Meanwhile, a Mars rover,
Perseverance, is traveling across Mars accompanied by a robotic heli-
copter, Ingenuity [486]. However, the colony will depend largely on
self-sufficient, even with the latest Atlas rocket it takes unmanned
spacecraft around 200 days to Mars [487]. For the space missions,
Ghidini has outlined the materials properties needed in engineering
design [64]. With the available sun energy, additive manufacturing is
the key for the on-planet manufacturing using local Mars resources, such
as the regolith and the soil [488]. As a result, traveling to and building
on Mars are not a quaint sci-fi concept as it used to be. Building on Mars
is actual scientific possible.
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However, choosing the best materials on Mars to build the future of
humanity are yet not conclusive. Hence, the accumulated knowledge of
the HEMSs, which are beyond traditional metallurgy based on the Earth,
will play an important role. It would also be important to apply the HT
examinations to speed up the materials recognition and selections on
Mars. The applications of ML are expected to optimize the fabrication
procedures to adapt the manufacturing conditions on Mars. The poten-
tial applications of the HEMs for the settlements on Mars bring a
fundamental change in approach because the atmospheres and the
abundance of the elements are different from the Earth. It is expected to
be a new paradigm shift. Although there will be unlimited new possi-
bilities for the HEMs on Mars, in this session, only the high-temperature
applications and the oxidation are selected for discussion as the future
direction.

Many different materials are suitable for high-temperature applica-
tions. Some conventional materials for thermal protection system (TPC)
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are listed below as benchmark [489,490]. The devices of the TPC can be
the blanket insulation, tile insulation, ablator, and hot structure for the
rockets to Mars. These devices are listed in italics in Fig. 37. The
maximum working temperature is shown in the bottom. The benchmark
materials of different TPCs are displayed in underlining in Fig. 37. The
potential HEMs for different temperatures ranging from medium to
ultra-high temperatures are indicated in Fig. 37, which are the
light-weight HEAs [491], RHEAs [423,492], High-Entropy Superalloys
(HESAs) [493,494], HECs [326], and High-Entropy Composites [46].
Meanwhile, on the Earth, oxidation is critical for the metals. For
example, the engines of the flight are exposed to high temperature air
and when the metals are poured into a mould during the casting process
[495]. Typically, the engineers consider the operating temperature
range below the maximum temperature (Tpyax) at which the materials
can reasonably be used without oxidation, chemical change or excessive
creep. On the other hand, the capability of oxide layer can prevent
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oxidation, such as the chromium oxide as the oxidation resistance layer.
For the oxide dispersion strengthening, high strength at high tempera-
tures can be obtained with fine oxide dispersions in a metal matrix, such
as the fine dispersions of thoria (ThOs).

For the HEMs, the oxidation effects on different elements within
various dimensions and hierarchical microstructures are expected to be
much more complicated [495-507]. Moreover, the environment of Mars
is different to that of the Earth, where Mars’ atmosphere is 95 % carbon
dioxide (CO3), 3 % nitrogen (N3), 1.6 % argon (Ar); and it has traces of
oxygen (O), carbon monoxide (CO), water (H,0), methane (Chy),
halogen gas (HCl), other gases, and dusts [508]. However, the experi-
ences and the approaches on the oxidation research of the HEMs on the
Earth is critical for similar perspectives to examine how would the HEMs
be subjected to high-temperature fabrication and operations on Mars.
Hence, in the end, some HEMs oxidation results are summarized [495,
497,504-507] in Fig. 38, which could lead the way to mimic the
high-temperature research on Mars.

7. Conclusions

In this manuscript, we review “ML” and “HT examinations” for the
HEAs discovery. In a HT manner, the integration of computational and
experimental data becomes a crucial topic. Combinatorial experiments
can validate theoretical predictions based on modeling, particularly in a
wide compositional range. On the other hand, experimental data
generated from the libraries can then be used to augment or optimize the
theoretical models. Since the HEAs give a vast number of new alloy
bases, material informatics employing statistical models, ML, computer
vision, and numerical optimization provides an efficient pathway to
discover new materials and even reaches the destination for extracting
PSPP relationships. Up to now, there are still many challenges in data-
centric approach for the HEAs: 1. Most of the studies still focus on the
forward prediction model of properties with an optimization strategy to
inversely discover novel compositions. The development of more effi-
cient and advanced generative network models is a challenge and re-
mains to be developed. 2. The database of HEM is still limited to certain
dimensions; uncertainty quantification is important for revealing the
bias of prediction. 3. Most of the ML HEAs research centralize in the
mechanical properties at room temperature and phases with casting
process. 4. Metadata associated with physical phenomena, such as
deformation mechanism, the creep mechanism, or the fatigue proper-
ties, are not generally taken into account.

Comparing the numbers of published works between “ML” and “ML
+ HEAs”, the trends reveal that the rate of using ML on the HEMs
research catches up with the applications of ML. From the reviews, there
are already improved computational and ML tools for predicting multi-
component phase diagrams and transport coefficients of the HEMs.
There are also improved experimental and theoretical tools to study the
short-range ordering effects of the HEMs. It is expected that ML can
accelerate the development of cost-effective HEMs. While using ML can
optimize and discover new HEMs for better performance, there are still
some discrepancies to extend the ML results, such as the uncertainty and
the reproducibility. Hence, complementary HT examinations for
archival data to final model predictions to be validated and verified are
important to establish the interpretability and trust for the ML results. As
demonstrated by AFLOW, it is also important to collect and publish open
reference data online. Especially, when exploring the huge composition
and multi-scale spaces of the HEMs, the development and adoption of
the common benchmark datasets are the key to position the new simu-
lation and measurement results. Comparing the performance indicators
will also enhance the on-the-fly examination to check the methodolog-
ical progress.

As algorithms for automating the HT synthesis, characterization, and
modeling will become more and more mature, the decision-making and
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organized experimental schemes will be the new tasks for the HEMs
research using ML and HT methods. This feature means that the ad-
vances in autonomous experimental systems with Al are the key for the
future. It is also necessary for the materials society to reform the higher
education for this trend. Meanwhile, in the other fields, such as the In-
ternational Union of Crystallography and National Institute of Standards
and Technology, there are calibration standards to assess dataset and
source bias through round-robin type studies to establish reproducible
results. It is also important for the HEMs research community to create
atmosphere in accepting the benchmarks for fusing experimental and
computational data with uncertainty and applicability propagation
through the model training, testing, and interpretation pipeline.

In summary, the HEMs developed with or without ML and HT
methods are positioned on several property maps. We summarize the
reports of corrosion research in the HEMs. Among the reviewed ap-
proaches in this manuscript, the applications of ML and HT to develop
the hierarchical microstructure with the heterogeneous grain sizes are
the most promising directions for better development of the HEMs.

In view of the future of the HEMs above and beyond the Earths, there
are still plenty of space.
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