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A B S T R A C T   

The combination of multiple-principal element materials, known as high-entropy materials (HEMs), expands the 
multi-dimensional compositional space to gigantic stoichiometry. It is impossible to afford a holistic approach to 
explore each possibility. With the advance of the materials genome initiative and characterization technology, a 
high-throughput (HT) approach is more reasonable, especially to identify the specified functions for the new 
HEMs development. There are three major components for the HT approach, which are the computational tools, 
experimental tools, and digital data. This article reviews both the materials informatics and experimental ap
proaches for the HT methods. Applications of these tools on composition-varying samples can be used to obtain 
stoichiometry effectively and phase-structure-property relationships efficiently for the materials-property data
base establishment. They can also be used in conjunction with machine learning (ML) to improve the predict
ability of models. These ML tools will be an essential part of HT approaches to develop the new HEMs. The ML- 
developed HEMs together with ML-created other materials are positioned in this manuscript for future HEMs 
advancement. Comparing all the reviewed properties, the hierarchical microstructures together with the het
erogeneous grain sizes show the highest potential to apply ML for new HEMs, which needs HT validations to 
accelerate the development. The promising potential and the database from the HEMs exploration would shed 
light on the future of humanity building from the scratch of Mars regolith.   

1. Introduction 

Since the late 1970s/early 1980s, Prof. Cantor and Prof. Yeh indi
vidually broke through the traditional boundaries of the principal- 
element concept and invented the high-entropy alloys (HEAs), also 
known as the multi-principal element alloys (MPEAs) [1] and the 
complex concentrated alloys [2]. With the development of advanced 
metallurgy, materials scientists create much greater dimensions for this 
new class of materials [3,4]. Besides the metallic systems, there are also 
high-entropy ceramics (HECs). The concept of entropy stabilization al
lows HECs as an ideal platform to study the role of mass and interatomic 
force disorder beyond what has been previously accessible. Since the 
conception of these ceramics, high-entropy oxides (HEOs) exhibited 
great capabilities for superionic mobility and thermochemical water 
splitting [5] as well other new opportunities [6]. For example, Musicó 
et al. summarized the emergent fields of HEOs, which included optical 
properties [7]. The luminescent high-entropy materials (HEMs) can be 
quite different from the traditional luminescent materials. For the 
luminescent HEMs, slightly different compositions may yield quite 
changes in properties. Therefore, from the perspective of optical prop
erties, luminescent HEMs can be tunable for their light-emitting wave
lengths, such as Chen and Wu’s transparent high-entropy fluoride laser 
ceramics [8]. The HEMs with optical properties included (Ce,Gd,La,Nd, 
Pr,Sm,Y)O2-δ, (Ce,La,Nd,Pr,Sm,Y)O2-δ, (Ce,La,Pr,Sm,Y)O2-δ, (Ce,La,Pr, 
Y)O2-δ, (Ce,La,Pr,Sm)O2-δ, (Ce,La,Pr)O2-δ, (Ce,Pr)O2-δ, (Ce,Gd,La,Nd, 
Pr,Sm,Y)O2-δ, (Ce,La,Nd,Pr,Sm,Y)O2-δ, and (Ce,La,Pr,Sm,Y)O2-δ in their 
crystal structures [9] and (La, Ti, Nb, W, Zr)O in amorphous-glass 
structure [10]. In addition, the HEMs with luminescent characteristics 
can be tailored by varying the elemental composition to achieve the 
tunability of light emission. Hence, measuring the light-emission 
behavior of the material, discussing the relationship between the 
electron-electron pair in the energy band, and considering the rela
tionship between the material structure and composition are also an 
important part of studying optical properties. The HEOs show potential 
applications in energy storage and catalysis. Djenadic et al. indicated a 
crystalline single-phase oxide of Mg0.2Co0.2Ni0.2Cu0.2Zn0.2O as an 
entropy-stabilized oxide (ESO) [11]. Other “entropy-stabilized” mate
rials include high-entropy metal diborides, high-entropy carbides, 
high-entropy sulfides, high-entropy fluorides, and high-entropy alumino 
silicides [7]. Besides inorganic materials, Zhang et al. reported 
three-dimensional (3D) HEA-polymer composite nanolattices, which 
displayed exceptional strength-recoverability advantages [12]. For the 
amorphous structures, several high-entropy amorphous alloys (HEAAs) 
and high-entropy amorphous alloys composites (HEAACs) have been 
found for their promising applications as magnetic materials [13–15]. 

Although many components forming HEMs would not certainly 
guarantee better performance, the exploration of the multi-components 
materials beyond conventional binary, ternary, and dilute alloy open 
new opportunities [3]. Meanwhile, there are even more metastable 
HEAs rising exponentially with increasing the number of complexity and 
potential properties [16]. Prof. Cantor demonstrated an enormous 
number of potential HEMs can be 1 googol as 10100 [3], which was 
greater than the number of pharmacologically relevant molecules on the 
order of 1060 [17]. 

Traditionally, the research on structural materials is largely rooted in 
the enlightened empiricism of traditional metallurgy, the advent of 
artificial intelligence (AI), and the emergence of robust advanced 
characterizations, suggesting new engineering strategies in which the 
mechanism-based understanding is expected to discover new HEMs. 
However, it is impossible to carry out an Edisonian approach via trial- 
and-error examination of each stoichiometry. As summarized by 
Schmidt et al., machine learning (ML) is successfully employed for 
classification, regression, clustering, and dimensionality reduction tasks 
[18]. ML has revealed superior abilities in playing Go [19], self-driving 
cars [20], image and speech recognition classification, and even our 
daily email filtering [18]. Therefore, it is desirable to apply ML to ma
terials research for the Pareto efficiency and surrogate model [18] 
similar to ML applications in the aforementioned fields. 

As a result of the maturation of ML, it has become increasingly 
possible to identify a corpus of central results, which serves as the basis 
for the discovery and analysis of HEMs. To tackle the aforementioned 
challenges for HEMs, the Materials Genome Initiative (MGI) [21] 
showed promising progress to narrow the exploring dimensions by 
facilitating active learning in materials science with emphasis on the 
targeted design [22], which also inspires on-the-fly data acquisition 
[23]. The approach of ML as “active learning” is that the algorithm 
dynamically chooses the data from which it learns so that it can perform 
better over the long-run statistically [24]. The “learning on-the-fly” 
scheme offers a superior efficiency by reducing the number of calcula
tions [25]. There are successful “learning on-the-fly” cases, such as using 
the neural network potential for Al-Mg-Si alloys development [26], 
creating the interatomic potential for zirconium [27], parametrizing 
interatomic potentials [28], and accelerating HT searches for new alloys 
[29]. The Integrated Computational Materials Engineering (ICME) [30], 
such as thermodynamics databases for materials design, has demon
strated the ability to accelerate the discovery and the development of 
new materials, namely the corrosion-resistant alloys developed by 
QuesTek, LLC, the low-rhenium alloys developed by GE, and the cast 
aluminum cylinder heads and engine blocks developed by the virtual 
aluminum castings (VAC) program of Ford [31]. For the manufacturing, 
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the VAC program successfully combined a vast knowledge base of the 
cast aluminum research with readily available computer-aided engi
neering (CAE) tools to design, cast, heat treat, and test specific aspects of 
vehicle parts working together simultaneously. 

Meanwhile, data is the key to ML. Hence, the HT research plays a 
significant role in ML. In November 2020, the Division on Engineering 
and Physical Sciences of the National Academy of Engineering spon
sored the online workshop “High Throughput Research: Accelerating 
Materials Discovery, Design, Development and Deployment” to review 
the applications of AI and big data analytics coupled with advanced 
sensing, measurement, visualization, and process-control hardware. 
During the workshop, Prof. Flores used the concept of alloy design space 
to illustrate how to facilitate the HT methods to position the targeted 
alloy and manipulate the database in effectively shortening the distance 
between the target and the simulated models [32]. Miracle et al. re
ported a new characterization strategy, which suggests to reject the 
largest number of alloys with the smallest effort first and separate into 
computations, structure-insensitive, and structure-sensitive evaluations 
[33]. 

Research on HEMs as a dynamic topic has emerged as one of the 
promising directions for their engineering applications [4,34,35]. The 
challenges regarding the applications always imply demands, which 
must be new classes of advanced properties. For the specified challenge, 
ML [36] can accelerate the development of HEMs, such as HECs [37] 
and HEMs [38,39]. These approaches specified that ML can accelerate 
the specified materials discovery [40–42], such as phase predictions 
[43–45]. In Schmidt et al.’s work, ML performs better than traditional 
molecular dynamics (MD) for phase predictions [18]. The number of 
published works from January 2000 to April 2021 on “machine 
learning” and “machine learning + high entropy alloys” is shown in 
Fig. 1. 

To hasten the design of HEMs, several criteria were proposed [46], 
such as the ML-informed prediction [47], HT design [48], and entropy 
descriptors [49]. Besides these mechanistic-understanding-based pa
rameters and supervised ML, Tshitoyan et al. has recently indicated an 
unsupervised text mining from 3.3 million materials science literature 
between 1922 and 2018 in materials discovery [50]. They unveiled the 
previously-unrecognized properties of existing materials, which could 
then be repurposed [50]. Tshitoyan et al.’s methods can sort the over
whelming published text, which is difficult to analyze by traditional 
approaches. This unsupervised method may shed light to text mining the 

reported properties in the literature. 
Moreover, increasingly complex HEMs engendered the emergence of 

methods built around the explicit consideration of multiple properties 
simultaneously. As a result of these new challenges, this review attempts 
to summarize the present capacities of ML and HT combinatorial ap
proaches, such as thin-film materials libraries [51], diffusion database 
[52], and X-ray diffraction datasets [53] for HEMs discoveries and de
velopments. For example, we compare how many papers reporting 
either “high entropy effects” or “ML” on specific materials. Following 
Tshitoyan et al.’s report [50], we select piezoelectric, superconductors, 
thermoelectrics, intermetallics, photovotaics, organic compounds, 
quantum heterostructure, and battery materials for comparison pur
poses, as depicted in Fig. 2. 

In Fig. 2, the sizes of the circles are in proportion to the number of 
publications. For each material type, the darker and the lighter circles 
indicate the numbers of papers using ML and high entropy concepts, 
respectively. As shown in Table 1, for the piezoelectric research, most 
researchers apply ML. For the superconductors and intermetallics, there 
are more people applying the high entropy concepts. On the other hand, 
for the thermoelectrics and battery materials, there are more researchers 
using ML. Meanwhile, for the quantum heterostructures materials, 
photovotaics, and organic compounds, the number of publications with 
high entropy concepts is much less than that with ML. 

The review is hence divided into three parts. It starts with an over
view of the applications of ML for HEMs development, including AI, 
atomic potentials, and big-data approaches. The argument made here is 
that there are already many measured properties summarized in the 
review articles and web-based database [60], but for model fitting and 
simulation, it is also necessary to recap a priori assumption of theoretical 
calculations. For example, DeCost et al.’s reflections [61] read “current 
applications of AI in materials science focus more on solving engineering and 
design problems”. Others also note that a major criticism of ML tech
niques is that “black-box algorithms” do not always provide “new physical 
laws” [18]. Some AI applications in materials science report the 
“black-box-like” optimization. To realize the full potential of AI in 
helping the materials community, Lipton’s criteria to examine the 
interpretability of the ML are listed as (1) simulatability, decomposability, 
(2) algorithmic transparency, (3) text explanations, (4) visualization, and 
(5) local explanations [62]. Along this direction, his manuscript reviewed 
the selected HT examination cases for HEMs, which may not include all 
the five criteria for the interpretability but follow at least few. This 

Fig. 1. Number of published works on “machine learning” and “machine learning + high-entropy alloys” (from January 2000 to April 2021).  
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manuscript also summarized some potential experimental approaches 
for future ML and HT examinations for the HEMs combinatorial 
research. 

Finally, recalling Raabe et al.’s report on the impact and technology 
readiness of sustainability measured for structural alloys [63], corrosion 
protection is pointed out as the high potential for impacts on the sus
tainability of structural metals. In this manuscript, we review the 
corrosion properties of HEAs, which ML and HT examinations are rarely 
applied yet. We put the review of the corrosion as the final part, which 
the authors believe would be the future directions and challenges for 
HEMs. This part will also be a culmination of great efforts set forth in the 
preceding sessions with the aim being that the metallurgists and mate
rials scientists attempt to consider potential applications for the HEMs 
discoveries and developments through ML and HT methodologies. 

Yet, together with the scientists’ voyage, the future of humanity on 
Mars would not just be science movies. The resource of Mars could offer 
much potential for supporting the robotics’ activities. Meanwhile, it will 
fall to design, civil, and space engineers to ensure that the trips to Mars 
and the buildings using Mars’ elements by additive manufacturing are 
safe and realistic [64]. Hence, in the summary, we review the current 
materials and potential HEMs for the high-temperature applications and 
the oxidation because the materials for the vehicles to Mars and the 
additive manufacturing on Mars can induce high-heat-flux heating and 

cause high temperatures. What we learned from the HT examination and 
ML for the fabrications will enable the selection of the mining and ad
ditive manufacturing HEMs on Mars. 

2. Machine learning 

Although ML is being extensively applied to facilitate problem 
solving of materials research, there are considerable challenges in effi
ciently exploring such a vast ML domain knowledge for a metallurgist. 
Specifically, there are numerous ML terminologies that a non-specialist 
is not familiar with. In this session, before explaining various ML tech
niques, which are relatively new and quite complex, the review will start 
with the classical metallurgy topics evolving with ML to bridge the gap 
between the science experiments and ML review session. 

According to Meredig’s summary, there are five major high-impact 
research areas in ML for materials science, which are summarized 
below [65]: (1) Training models to predict materials properties and the 
validation by experiments and/or physics simulation; (2) ML methods 
development for descriptors, multi-property optimization [66], extrapolation 
detection [67], and uncertainty quantification [68]; (3) High-throughput 
data acquisition; (4) ML to accelerate or simplify materials characterization 
which advances the current protocols and algorithms; and (5) Integration of 
physics and physics-based simulations within ML. In the following sessions, 

Fig. 2. The eight materials from Tshitoyan et al.’s unsupervised text mining [50] (Adapted from Fig. 1 in Tshitoyan et al.’s paper [50]). The sizes of the circles are 
proportional to the number of published works on “machine learning + one of the eight materials” and “high entropy + one of the eight materials” described in the 
darker color and lighter color, respectively (from January 2000 to April 2021). 

Table 1 
Summary of the piezoelectric, superconductors, thermoelectrics, intermetallics, photovotaics, organic compounds, quantum heterostructure, and battery materials 
with the keywords of either “machine learning” or “high entropy” searched from the Web of Science and their corresponding numbers of the references (from January 
2000 to April 2021).  

3, [54-56]

1, [57]

1, [58]

1, [59]
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when ML methods are introduced, the associated impacts will be also 
mentioned. 

Herein, two exemplary metallurgy topics evolving with ML trends 
and successfully developed are introduced, which are the crystal plas
ticity finite element method (CPFEM) and the elasticity, respectively. 

For the crystal plasticity, it was written in the textbook that Taylor 
quantitatively described the models of crystallographic systems [69]. In 
1972, Hill and Rice constructed a general time-independent constitutive 
model for the crystallographic shearing, which allows a general finite 
deformation elastic–plastic framework for analyzing single crystals 
[70]. In 1982, Peirce et al. numerically formulated the deformations of 
ductile single crystals subjected to tensile loading [71]. Peirce et al. 
successfully modeled an elastic-plastic relation based on Schmid’s law. 
They considered lattice rotations for the non-uniform and localized 
deformations. They included self-hardening and latent hardening of the 
slip systems and compared the resolved shear stress vs. shear strain of 
the experimental points and their simulation profiles, which are both 
nonlinear [71]. In summary, without ML, there were already successful 
models quantitatively describing the nonlinear behavior of the crystal 
plasticity [70]. Meanwhile, the finite element method (FEM) enables 
modeling in smaller parts and constructs into a larger mesh of the objects 
and equations that models the entire system. Khan et al. clearly 
reviewed the history of the combining crystal plasticity with FEM as the 
CPFEM [72]. In 2015, without ML, Khan et al. demonstrated that how 
the CPFEM predicts finite plastic deformation of single crystalline metals 
over a wide strain rate range. Khan et al. commented that “as the 
complexity of models increases, the number of parameters that need to be 
identified also increases, and it is usually more difficult to perform the nu
merical simulations”. 

To deal with the increasing models, equations, and the number of 
parameters, Ali et al. explained why they selected the artificial neural 
network (ANN), which is one group of the algorithms used for ML in 
their CPFEM work on the AA6063-T6 aluminum alloys [73]. The idea of 
neural network (NN) is inspired by the biological neuron, where neurons 
are connected to each other in the network. Each neuron receives an 
input from all the neurons in the previous layer with weights and sends 
its output to every neuron in the next layer. The positive and negative 
weights reflect the excitatory and inhibitory connections, respectively. 
Similar to the accumulated experiences, the NN with different layers can 
adapt from the inputs and outputs, which is able to model the activities 
and predict the behaviors. Like the biological neural network learning 
knowledge, the ANN frameworks process the data to attain the required 
objective but use mathematical models instead. Moreover, beyond the 
training experiences, there are more sophisticated layer to layer filtra
tion processes for the ANN. 

Although the leading studies have constructed comprehensive 
models of the CPFEM, the key challenge is the balance between the 
accuracy and computational efficiency, where the computational cost- 
effectiveness decreases as the complexity of microstructure increases 
[74]. Before implementing ML, the experimental data are typically used 
to back-fit the constitutive model of the investigated systems. For the 
crystal plasticity, the microscopic material parameters in the formulas 
are considered to solve the constitutive model for connecting the 
macroscopic performances, such as the stress-strain curves, and the 
microscopic mechanisms, such as the textures. Ali et al. applied the 
typical crystal plasticity simulations, which can successfully forecast the 
experimental stress-strain and texture data. The results from the crystal 
plasticity simulations were used to train the ANN models in predicting 
the real material behavior. Moreover, the ANN has huge computational 
improvements over conventional simulation tools because the ANN 
models can be trained and validated. With the accumulated “experi
ences”, the ANN models forecast the data without computationally 
expensive simulations. Hence, the ANN models take much less time 
compared to their counterparts, which are the traditional numerical 
simulations [73]. For the HEAs, Gao et al.’s took a step forward to apply 
the ANN to their CPFEM in the NiCoCrFe system [75]. Similar to Ali 

et al., Gao et al. also employed the CPFEM method based on their 
experimental data and physical mechanisms to provide the data set for 
training ML. Comparing with the experimental data, the CPFEM pro
vides a huge amount of data for Gao et al.’s ANN models. Meanwhile, 
solving the nonlinear and multivariable problems are the major ad
vantages of the ANN. Gao et al.’s extended the multi-level CPFEM 
framework coupled with an improved ANN algorithm, which is one of 
the successful cases of ML. From this case, the terminology of the ANN is 
briefly introduced. In summary, recalling Meredig’s summary [65], Gao 
et al.’s training models with the benchmark data were validated by 
experiments and physics simulation. With different experimental data as 
the multi-property inputs, Gao et al.’s ML accelerated the 
high-throughput data acquisition. With the integrated physics-based 
simulations within ML, Gao et al. demonstrated the benefits of ML in 
investigating the plasticity of the NiCoCrFe HEAs [75]. 

Another terminology of ML, gradient boosting trees (GB-Trees) al
gorithm, is introduced here for the lattice elasticity study. For the HEAs, 
due to its complexity of the neighboring elements, the application of the 
Vegards’ law may not be taken for granted [76]. Using in-situ 
neutron-diffraction (ND) characterizations can measure the lattice 
elasticity [77] while first-principles calculations can estimate the 
interatomic distance distributions from calculations of optimized special 
quasi-random structure (SQS) [78]. However, it is not trivial to measure 
each HEA system using ND. For the first-principles calculations, it will 
consume considerable computational time, especially for the complex 
systems. Coherent potential approximation (CPA) is another option for 
this research by estimating how sound waves scatter in a material, which 
might picture the spatial inhomogeneity of the modeling systems. 
However, several reports showed that CPA may not be able to model 
well the HEAs, such as the charge transfer between atoms. This gap can 
lead to deviations in quantifying the interatomic bonding [78]. Kim 
et al. compared the CPA, SQS, and ML models and found that both the 
CPA and SQS models without the atomic position relaxation can result in 
overestimating elastic-constant values [78]. On the other hand, Kim 
et al. applied the GB-Trees algorithm of MLs and found that ML models 
accurately forecasted the elastic properties of the HEAs and suggested 
the tunability of elastic properties in the HEAs [78]. 

Their methods are cited frequently. Here are few selected citations to 
recommend why Kim et al.’s ML methods have advantages. For example, 
Roy and Balasubramanian highlighted Kim et al.’s ML approaches 
because Kim et al.’s data used in ML was derived from density-functional 
theory (DFT) calculations, where a high quality of numerous DFT 
dataset enhances the phase and mechanical property predictions [79]. 
Moreover, using the data from the Materials Project database [80] also 
takes the advantage for their accuracy, which was due to the accumu
lated previous work. Kim et al.’s did not need to obtain the data from the 
scratch so that their approach demonstrated a relative economic path for 
data generation without time and resource on physical experiments 
[79]. Specifically, Chen et al.’s ML recommended Kim et al.’s ML ap
proaches; the citation reads, “the authors built a GB Tree–based predictive 
model using a separate set of nearly 7000 ordered, crystalline solids from the 
Materials Project, in which the elastic constants have already been properly 
labeled. It is worth mentioning that the training set and validation set do not 
contain any high-entropy alloys [81]”. 

Now, let’s take a closer look at Kim et al.’s ML method, which is the 
GB-Trees algorithm, one of the ML techniques. From Natekin and Knoll’s 
tutorial, gradient boosting machines (GBMs) are known for their highly 
customizable to the particular needs of the application [82]. Using the 
GBMs, the ML procedure consecutively fits the models to provide a more 
accurate estimate of the response variable. In Natekin and Knoll’s 
tutorial, the citation reads, “The principal idea behind this algorithm is to 
construct the new base-learners to be maximally correlated with the negative 
gradient of the loss function, associated with the whole ensemble. The loss 
functions applied can be arbitrary, but to give a better intuition, if the error 
function is the classic squared-error loss, the learning procedure would result 
in consecutive error-fitting. In general, the choice of the loss function is up to 
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the researcher, with both a rich variety of loss functions derived so far and 
with the possibility of implementing one’s own task-specific loss” [82]. 

The difference from the GBM and other ML methods is that the other 
ML, such as the NN based on an ensemble of models is relatively a 
“strong” model [82]. For example, the ANN can be further combined 
altogether. One typical example is the ANN introduced in the earlier 
session for Gao et al.’s CPFEM combining a bucket of models for 
particular learning tasks [75]. Here, for Kim et al.’s GBM [78], their 
GB-Trees algorithm relies on combining a large number of relatively 
weak simple models to obtain a stronger ensemble prediction [82]. The 
GBM merges several simple models, called “weak learner”, into robust 
committee as a strong model using additive models for improving pre
diction accuracy and avoiding overfitting. The weak learner is defined as 
the one whose performance is at least slightly better than random 
chance, which can be any models, but the decision tree is usually 
selected. In general ML algorithms, gradient descent method is used to 
minimize the loss function for optimizing the model parameters. How
ever, the GBM aims to optimize or train the weak learner for predicting 
the residual hm(x) (defined as negative gradient of loss function − ∂Loss

∂yp
i

, 

where yp
i is the prediction value). According to the task, the different loss 

function can be selected, but all of them must be differentiable for GBM. 
For example, logarithmic loss can be used for a classification problem 
while mean squared error (MSE) is the most commonly used for a 
regression problem. The algorithm starts by initializing the weak model 
h0 with a first guess. At each training iteration, a weak learner is fitted to 
the current residual and added to the prior model to update the residual 
until the variance is minimized and a robust learner is achieved, which is 
the so-called forward stage-wise procedure. To minimize the overfitting, 
the contribution of each weak learner can be narrowed by multiplying a 
scaling factor for better prediction. 

The random forests (RF) is another important ML model assembling 
many relatively-weak simple models to become a stronger prediction 
[83]. Read from Natekin and Knoll’s tutorial, “The common ensemble 
techniques like random forests rely on simple averaging of models in the 
ensemble. The family of boosting methods is based on a different, constructive 
strategy of ensemble formation. The main idea of boosting is to add new 
models to the ensemble sequentially. At each particular iteration, a new weak, 
base-learner model is trained with respect to the error of the whole ensemble 
learnt so far” [82]. 

The decision tree is the nonlinear ML concept, which was used in Kim 
et al.’s GB-Trees algorithm. Decision trees are hierarchical models that 
aim to find a target value by asking the fewer if-else questions [84]. For 
example, the RF regressors are a combination of many regression trees. 
The predictivity of RF is from the diversity of the trees/branches. Each 
node on a tree splits the dataset once according to whether a specific 
parameter or a combination of them, is above or below a threshold value 
[85]. 

Similar to Kim et al.’s GBM applications for the HEAs elasticity 
research, Salvador et al. discovered low-modulus Ti-Nb-Zr alloys using 
ML and the first-principles calculations [84]. Salvador et al. first eval
uated the predictive accuracies of linear regression and RF regressors. 
They optimized the RF models by searching for 50 different combina
tions of hyperparameters based on a random search algorithm. All their 
models used 80 % of the data as the training set to predict the unseen 20 
%, where they successfully predicted the bulk modulus (K) and shear 
modulus (G) for the optimized Ti-Nb-Zr alloys [84]. Both Kim et al. [78] 
and Salvador et al. [84] employed the data from the Materials Project 
[80] with the aims of training predictive models for K and G based on 
compositional features. From this case, the terminology of the GBM is 
introduced. Meanwhile, recalling Meredig’s summary [65], Kim et al. 
extracted materials data from the Materials Project database, which fed 
the data-hungry ML. Kim et al.’s ML extrapolation for the elasticity was 
also validated by the measured results for the HEAs [78]. 

In summary, the ML review session starts with the aforementioned 
two classical metallurgy topics to introduce the ANN and GBM of MLs 

for CPFEM and elasticity, respectively. These two examples are 
described more specifically to introduce the background and the appli
cations of MLs for better understanding of the terminology. Followings 
are relatively general reviews on ML for HEMs. 

2.1. Machine learning for HEMs 

Because the HEMs have many compositional dimensions [86,87], the 
materials design is a great challenge. In the past, the metallurgists may 
apply an Edisonian approach using a single-element substitution method 
to explore different compositions under a specific alloy family [88–91]. 
However, exhaustive trial-and-error experiments consume too much 
time and resources. To solve the difficulty, the parametric and compu
tational approaches are introduced. For example, deep neural networks 
[92] can be trained to perform fast and automated identifications of 
atomic/molecular types and positions as well as atomic defects [93]. 
Meanwhile, the challenges for ML are the interpretability and the 
physical understanding gained from ML models. One critical issue is that 
whether ML may replace other computational approaches, such as 
first-principle methods [18]. 

A parametric approach combines empirical rules and theoretical 
models to guide phase formation and stability as the microstructure is 
highly linked with materials properties [21,91,94–102]. The used pa
rameters are generally based on the chemistry and topology nature. For 
example, the mixing enthalpy, ΔHmix, and the atomic-size difference 
(polydispersity), δ, are two most widely used. Other design parameters 
are the mixing entropy, ΔSmix, valence electron concentration (VEC), 
and electronegativity difference, Δχ. Meanwhile, the calculation of 
phase diagrams (CALPHAD) [103–105] based on the existing experi
mental database, MD simulation [99,106], and first-principal method 
[107–109] are commonly utilized to predict and screen the HEMs. Yet, 
the approaches face some challenges due to their critical limitations on 
the oversimplification, high computation cost, insufficient reliability, 
and uncertainties. Some selected examples, which show the HEMs 
properties predicted by ML methods, are listed in Table 2. 

In recent years, ML has garnered considerable attention since it can 
largely accelerate materials design in various areas, e.g., organic molecules, 
solid states, and HEAs. As materials science has become more and more data- 
centric, a vast amount of data generated from simulations and experiments 
can be included in training ML models. “Big data” opened up the fourth 
paradigms of materials science, which emphasizes the unlocking knowledge 
by data-driven techniques, e.g., predictive analytics, clustering, and rela
tionship mining and generation [21]. Supported by the MGI [21], materials 
informatics has shaped the way how materials scientists uncover the 
processing-structure-property-performance (PSPP) relationships [148–150]. 

Table 2 
Summary of some HEMs properties predicted by ML together with the associated 
methods and corresponding references.  

Property Ref. 

Vibrational free energy and entropy [110,111] 
Lattice parameters [112–115] 
Thermal expansion coefficients [112] 
Anisotropic thermal expansions [113] 
Thermal conductivities [112,115] 
Anisotropic phonon thermal conductivities [113] 
Melting temperature [116,117] 
Curie temperature [111] 
Grain boundaries [118,119] 
Elastic properties, such as bulk and shear moduli [111–114,120–123] 
Lattice distortion [111] 
Electron density of states [124,125] 
Phase prediction [44,102,115,123,126–137] 
Formation energy [111] 
Magnetic properties [138] 
Stacking fault energy [111,139–147] 
Long-and short-range order [111]  
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In general, there are two directions of materials design: the first is the pre
diction as the forward model, and the second is the discovery as the inverse 
model. In other words, ML can automatically identify the patterns and fea
tures of the high dimensional input data via statistical models to predict 
specific output, e.g., microstructures and properties. By interpolation and/or 
extrapolation, ML can also discover novel compositions via optimization 
algorithms or generative models in a target-oriented fashion. The advantage 
of ML is its time-saving and low-cost characteristics. However, since it is an 
extension of existing data, data accessibility, reliability, and processing are of 
concern. 

To be more specific, ML can be classified into three categories, i.e., 
regression, classification, and clustering. For the HEAs, the regression 
models are usually applied for the continuous target output, such as 
hardness while classification models are used for the discontinuous 
output, such as phases or structures. Table 3 recaps the ML algorithms 
incorporated in materials science. Based on the training input, ML can 
also be classified into three types, i.e., supervised learning, semi- 
supervised learning, and unsupervised learning. 

Nowadays, studies for HEMs widely exploit supervised learning 
while a few take unsupervised learning for dimension reduction as 
feature engineering to identify the key features. Semi-supervised 
learning falls between supervised and unsupervised learning. In this 
case, the algorithm is provided with both unlabeled as well as labeled 
data. It has been utilized in the molecular design [151]. It is particularly 
useful when available data are incomplete and to learn representations 
[152]. Since each algorithm has its own suitability and application 
scope, selection of a proper algorithm is crucial for its successful 
implementation. Among the aforementioned terminology summarized 
in Table 3, ANN and GBM are already introduced earlier. The other 
selected representative terminologies are introduced herein and cate
gorized as supervised learning and unsupervised learning. 

2.1.1. Supervised learning 
As shown in Fig. 3, to predict the outputs and categorize the data, 

supervised learning uses labeled datasets to train algorithms. Prior to the 
learning process, the database construction is the first step. Once the 
data is obtained, a priori pre-processing is to prepare the data for model 
developments because the raw data may contain attributes from 
different units and scales. When the problem descriptions and the 
boundary conditions are clearly defined, ML is ready for learning [153]. 

For the learning, regression is one of the supervised learning 
methods, where the labeled datasets are used to train algorithms in 
predicting outcomes accurately. Later, the input data will be fed into the 
model. The supervised ML adjusts its weights until the model can be 
cross validated. A support vector machine (SVM) [154] is a type of su
pervised learning method, and it can be used for both regression and 
classification tasks. Some of the common ML methods used for super
vised learning include Naïve Bayes, k-nearest neighbor (KNN), decision 
trees, kernel ridge regression (KRR), random forest regression (RFR), 
gradient boosting regression (GBR), Gaussian process regression (GPR), 
SVM, and ANNs. 

The main concept of SVM is to find a hyperplane of N-1 dimensions 
in an N-dimensional space which can distinctly categorize the data 
points. Meanwhile, the hyperplane with the maximum margin between 
data of different classes is chosen so that the selected hyperplane re
inforces the future data points being classified correctly. The so-called 
support vectors are the distance between the hyperplane and the 
closet data points, which determines the position and orientation of the 
optimal hyperplane. For example, in Fig. 4, there are two groups of the 
data points marked as the solid and empty circles, respectively. Among 
the three lines, H1, H2, and H3, H3 can separate two sets of the data best 
as the margin is maximized. The support vectors are the lines in grey. 

A linear hyperplane can be defined as the set of points that satisfy: 

wT xi − b = 0 (1)  

where w is a normal vector to the hyperplane and b is the bias. If the data 

Table 3 
ML algorithms for materials science applications.  

Category Methods Target 

Regression 

ANNs Aims to build the properties (i.e., 
mechanical, thermodynamic, electric, 
chemical properties, and other properties of 
material) of predictive models for 
predicting the properties of unknown 
materials and can be coupled with the 
optimization algorithm to realize the 
inversed material design (exploring new 
recipe). An overview of different properties 
that was predicted by ML have been 
reviewed in Ref. [18]. 

GBM 
Gaussian process 
Kernel ridge 

Support vector 
machines (SVMs) 

Classification 

ANN 
Separates the data points (categorical data) 
into several classes, which can be used in 
the phase prediction or type (3d-HEA, 
Refractory HEA, etc.) classification for 
HEAs. 

Decision tree 
Kernel ridge 
k-nearest neighbors 
GBM 
SVMs 

Clustering 

embedding (t-SNE) 

Mapping the material-data points into 
vectors for measuring the distances or 
similarities between materials themselves 
[68]. 

Hidden Markov 
model 
Hierarchical cluster 
k-means 
Modularity 
t-distributed 
stochastic neighbor  

Fig. 3. Schmidt et al.’s supervised learning workflow. Adapted from [18] with 
permission from npj computational materials. 
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is linearly separable, we can define the margin by two parallel hyper
planes separating the two classes of data, which can be written: 

yi
(
wT xi − b

)
≥ 1 fori = 1,…, n (2)  

where yi = 1 or -1 depending on whether the data is above or below the 
hyperplane, respectively. The margin can be maximized by minimizing 
‖w‖ subject to (2). The data is finally separated without mis
classifications, which is so-call hard margin. If the data is not clearly 
separated or the margin is too small, the model would tend to overfit or 
be sensitive to outliers. Hence, the soft margin SVM could be helpful for 
better generalization. In soft margin SVM, the hinge loss function, as 
shown below, can be implemented to optimize the margin. 

L(y) =

[
1
n

∑n

i=1
max

(
0, 1 − yi

(
wT xi − b

) )
]

+ λ‖w‖2 (3)  

where λ is the extra regularization term to control the margin, xi lies on 
the correct side of margin, yi is the i-th target, and w is the normal vector 
to the hyperplane. 

For the problems that are not linearly separable, SVM can make use 
of a feature transform technique called kernel tricks to solve a problem 
with more complex behaviors. The kernel functions implicitly map the 
data points into a high-dimensional feature space and make it possible to 
solve the problem with a nonlinear hyperplane. The most used kernels 
are polynomial and radial basis function. The GPR has been used to 
construct the foundation of ML algorithms. Gaussian processes (GPs) are 
natural generalizations of multivariate Gaussian random variables to 
infinite index sets [155]. GPR assumes that a Gaussian distribution best 
describes the statistical variance of the modeling data [156]. Being 
treated within a Bayesian framework, statistical methods can be 
implemented in the GP models. Hence, the GP models can validate the 
estimations of uncertainties in the predictions. 

Liu et al. demonstrated how they apply the GPR to predict new 
NiTiHf shape-memory alloys (SMAs) and their performances in a high 
dimensional, multiple-target-property design space that considers 
chemistry, multi-step processing routes, and characterization method
ology variations [157]. For GPR, the choice of covariance function is 
known as the relationship between observations. Liu et al. applied the 
GPR for their SMAs research because GPR can also estimate both the 

response and the variance in the response, which is better for extrapo
lation of the training data near the composition and processing domains. 

Specifically, Liu et al. employed physics-informed nonlinear trans
formations of the process features time (t) and temperature (T), such as 
ln(t) and T ×

(
1 − e− (T− θ)

)
− 1 where θ is the critical temperature for a 

phase transformation enabling the GPR model to work well. Such 
physics-informed approaches are depicted from Liu et al. [157]. Liu 
et al. demonstrated that using GPR together with the physics-informed 
feature engineering enable the design of physical complex SMAs (Fig. 5). 

Vasudevan et al. used the following example to explain the differ
ences between the regression and classification for the supervised ML. 
“When the property of interest (Yi) is a numerical quantity, such as yield 
strength or melting point, then regression-based methods are well suited. On 
the other hand, when Yi is a categorical quantity, such as space group of a 
crystalline material or crystal structure-type, then classification learning 
methods are better suited for supervised learning [153]”. 

Kernel ridge regression (KRR) combines ridge regression and clas
sification with the kernel trick. Ridge regression is used to estimate the 
coefficients of multi-regression models where independent variables are 
highly correlated and it is a biased estimation procedure that produces 
stable estimates of the coefficients [159]. Recalling Schmidt et al.’s 
“Recent advances and applications of machine learning in solid state 
materials science”, ridge regression, a multi-dimensional least squares 
linear-fit problem is equivalent to solve the following minimization 
problem [18]: 

min
β

(
‖Y − Xβ‖2

2 + λ‖β‖2
2

)
(4)  

where X is the descriptor matrix, and Y is the outcome vector. β repre
sents the vector of weighted coefficient. The λ parameter is the regula
rization penalty, which favors specific solutions with smaller 
coefficients. As complex regression problems can usually not be solved 
by a simple linear model, the kernel trick is often applied to ridge 
regression. A kernel first transformed the original descriptor into a 
higher-dimensional feature space ϕ(x). In this space, the kernel k(x, y) is 
equal to the inner product 〈ϕ(x),ϕ(y) 〉. In practice, only the kernel needs 
to be evaluated, avoiding an inefficient or even impossible explicit 
calculation of the features in the new space. After that, Schmidt et al. 
solved the minimization problem given by Eq. (4) in the new feature 
space which results in a non-linear regression in the original feature 
space. This is usually referred to as KRR. Fig. 6 is Shen et al.’s example 

Fig. 4. H1 cannot distinguish two sets of the data. H2 can separate two sets of 
the data with a smaller margin. H3 does separate two groups of the data with 
the maximum margin. (Adapted from the https://en.wikipedia.org/wiki 
/Support-vector_machine). 

Fig. 5. Leclercq’s illustration of GPR in one dimension, for the target test 
function (dashed line). Training data are acquired (red dots); they are subjected 
to a Gaussian observation noise with standard deviation σn = 0.03. The blue 
line shows the mean prediction μ(θ) of the GPR, and the shaded region of the 
corresponding 2σ(θ) uncertainty. GPs allow interpolating and extrapolating 
predictions in regions of parameter space where training data are absent [158]. 
Adapted from [158] with permission from American Physical Society (APS) 
(For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.). 
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showing multivariate information fusion with fast kernel learning to 
KRR in predicting LncRNA-Protein interactions [160]. 

K-nearest neighbors (KNN) [161] can be applied for both regression 
and classification problem. It forecasts the values of new data by 
measuring feature similarity. New data point is assigned to a value based 
on how close it resembles the points in the training set. The K in KNN 
indicates the number of neighbors, which the calculation will involve. A 
similar algorithm is radius-nearest neighbors (RNN) [162], which circles 
a group of neighbors according to the assigned neighbors. There are two 
steps in KNN: (1) Calculating the distance between the new data point and 
each training data point where the commonly used distance functions are 
Euclidean, Manhattan and Hamming (for classification used). (2) Selecting a 

K to involve the K closest neighbors and calculating the mean of the K 
neighbors. The strength of KNN is the simplicity of its algorithm while it 
may be slow for large datasets compared with other regression models. 
Fig. 7 is Atallah et al.’s example showing intelligent feature selection 
with the modified K-nearest neighbor [163]. 

2.1.2. Unsupervised learning 
The purpose of the unsupervised learning is to obtain the intrinsic 

relations within data. When dealing with high dimensional data, it is 
often useful to reduce dimensionality by projecting the data into a lower 
dimensional subspace to capture the essence of the data and to make the 
data visualized. This is called dimensionality reduction. It is a data 
preparation technique performed after data processing and before 
model training. In unsupervised learning, only input data is given to a 
model but no labeled output, which is tasked with a learning objective to 
find rankings or patterns clustering for this input. The representative 
methods include k-means [164,165], hierarchical cluster analysis [164], 
and Hidden Markov model [166]. In materials research, it enables the 
understanding of the similarities between materials themselves. Since 
each algorithm has its own suitability and application scope, the selec
tion of a proper algorithm is crucial for its successful implementation. 

K-means is a clustering method aiming to minimize the intra cluster 
distance as good grouping, indicating that each instance is close to the 
assigned cluster while apart from the nearest cluster [167] (Fig. 8). 

K-means involves pre-assigned number of clusters and centroid that 
is the mean value of each cluster. Domain knowledge is important at the 
stage of determining the number of clusters. It begins with initial 
random guess of centroids and iteratively updates until the centroids do 
not change for best solutions. Given a set of data (x1, x2, …, xn), each 
data has a d-dimension vector, k-means aims to build k clusters where 

Fig. 6. Shen et al.’s illustration showing a schematic diagram of two-step KRR. 
(A) An intermediate prediction of LPI is conducted using an lncRNA KRR model. 
(B) Protein KRR is trained using the last step information for predicting new 
proteins. Adapted from [160] with permission from frontiers in Genetics. 

Fig. 7. Atallah et al.’s illustration showing steps of the proposed modified K-nearest neighbor [163]. Adapted from [163] with permission from Springer Nature.  
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the sum of the distances of the data to its centroid is minimized within 
each cluster S = (S1, S2, …, Sk). The objective function can be 
formulated: 

J(μi) =
∑k

i

∑

xj∈Si

⃦
⃦xj − μi

⃦
⃦2 (5)  

where xj is referred to as the j-th data in the i-th cluster and μi is the 
centroid of the i-th cluster Si. 

⃦
⃦xj − μi

⃦
⃦ denotes the distance which can be 

either Euclidean distance or Manhattan distance. μi can be computed by 
following equation: 

μi =
1

|ni|

∑

xj∈Si

xj (6)  

where ni represents the number of data points in the i-th cluster. 
Hierarchical cluster is a pairwise approach that builds the cluster 

step by step. Through a dendrogram, the correlations among clusters can 
be visualized [169]. Observations are allocated to clusters by drawing a 
horizontal line through the dendrogram. Observations that are joined 
together below the line are in clusters. Fig. 9 is Fujii et al.’s example, 
which quantitatively predicts grain-boundary thermal conductivities 
from local atomic environments (LAEs) using hierarchical cluster [170]. 

There are two major types of hierarchical clustering algorithm: 
agglomerative hierarchical clustering and divisive hierarchical clus
tering. The former is a bottom-up strategy, assuming each object as an 
individual cluster and merging clusters that are close. Divisive hierar
chical clustering starts with the whole dataset as a single cluster then 
separates the clusters step by step. Both strategies vary according to how 
the dissimilarity (distance) is measured, most of which are single linkage 
and complete linkage. Single and complete linkages were defined as the 
distances between the closest points and between the furthest points in 

the two groups, respectively. They are based on the following mea
surements where Ca and Cb are the two different clusters: 

Single linkage : d(Ca,Cb) = min
xi∈Ca ,xj∈Cb

d
(
xi, xj

)
(7)  

Complete linkage : d(Ca,Cb) = max
xi∈Ca ,xj∈Cb

d
(
xi, xj

)
(8) 

It is obvious that different distance measurements can result in 
completely different results. Single linkage tends to depict chaining ef
fect while complete linkage tends to be used in data with significant 
groups by comparing clusters with extreme similarity. Bortolotti et al. 
showed that combining X-ray powder diffraction (XRD) and X-ray 
fluorescence (XRF) with cluster analysis can automatically map the 
chemical and crystallographic surface [170]. Similarly, Torralba et al. 
performed a hierarchical cluster analysis (HCA) with complete linkage 
method based on their composition for determining whether some 
combinations of elements tend to be used in the HEAs consistently 
[171]. The dendrogram analysis reveals dissimilarity between different 
compositions of HEAs. It is found that the 9 types of clusters can 
apparently be divided into refractory metals and transition metals, 
where refractory metals have BCC phase structure and transition metals 
include BCC and FCC(+BCC), as shown in Fig. 10. 

2.1.3. Machine learning methods for HEMs 
The supervised learning is mostly mature for most ML studies in the 

physical sciences, which is a ML paradigm for acquiring the input (e.g., 
structure, composition, experiment conditions.)-output (e.g., properties, 
phases, structure, type, etc.) relationships from training a given set of 
input-output pairs and using the training model to produce optimal 
outputs for unseen inputs. As for the output data with continuous 
quantity, the regression methods, such as the KRR or GPR [172], ANNs 

Fig. 8. Page’s illustration showing K-means clustering algo
rithm. An example 2-cluster run is shown, with the clusters 
distinguished by color and the current cluster seeds marked by 
a starburst. In the first round, each point is assigned to its 
closest seed, and a new seed is chosen for each cluster based on 
the average of all points in that cluster. As a result, the blue 
cluster seed moves to the right side. In the second round, both 
cluster seeds drift to their correct locations, resulting in a 
proper division. Note that, after two rounds, the clusters have 
reached a steady-state, and would not change further through 
an infinite number of iterations. Adapted from [168] with 
permission from Springer Nature (For interpretation of the 
references to colour in this figure legend, the reader is referred 
to the web version of this article.).   
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[173], and SVMs [174], are widely used. If the target is the discrete 
output, such as the type of material phase, ANNs, decision tree [175], 
k-nearest neighbors, and random-forest [176] algorithms are the 
commonly used classification algorithms. 

Since the HEMs consisting of five or more principal components 
provide great freedom for the materials development, the design of new 
HEMs and the associated manufacturing processes with optimal com
positions and experimental parameters become more challenging. 
Although computational HT virtual screening (HTVS) has emerged as a 
significant tool in materials science to speed up the discovery of new 
materials in recent years, the computation-intensive approaches of first- 
principles calculations is the bottleneck that limits the exploration of the 
chemical space and large-scale system in HEMs. Studies turned to 
employ ML replacing exhaustive trial-and-error experiments and cal
culations. Recently, many ML models have been developed for fast and 
accurate forward predictions of materials phases and properties of ma
terials. The computational burden of HTVS by the ML framework effi
ciently explores a large chemical space. 

As mentioned earlier, Schmidt et al. suggested that the ML algo
rithms can be divided into three main categories as supervised learning, 
unsupervised learning, and reinforcement learning [18]. For the su
pervised ML, Pedersen et al. manifested the unbiased discovery of new 
catalyst candidates for the carbon dioxide (CO2) and carbon monoxide 
(CO) reduction reactions on CoCuGaNiZn and AgAuCuPdPt HEAs by 
combining DFT with ML [177]. For the unsupervised ML, Li et al. dis
closed (1) intelligent corrupt data detection and re-interpolation to a big 
tabulated thermodynamic dataset based on an unsupervised learning 
algorithm and (2) parameterization via ANNs of the purged big ther
modynamic dataset into a non-linear equation consisting of base func
tions and parameterization coefficients on the Al-xZn-2Mg-2Cu alloys 
(weight percent, wt. %) and Al3.32Co27.27Cr18.18Fe18.18Ni27.27Ti5.78 HEA 
[178]. 

Meanwhile, the materials inverse design of ML becomes more pop
ular. The inverse design is a goal-oriented approach, which is signifi
cantly different from the forward development. It starts from the desired 
properties or functionalities and ends in the chemical space. Most 
existing methods of solving inverse problems are based on optimization 
techniques, such as the genetic algorithm (GA), simulation annealing, 

Fig. 9. Fujii et al.’s illustration showing hierarchical clustering of grain-boundary local atomic environments. (a) Hierarchical relationship between LAEs depicted in 
dendrogram form. The different regions represent three general groups of LAEs: (green) highly under-coordinated (bond-ruptured); (red) moderately under- 
coordinated or strongly strained; and (grey) moderately strained, weakly strained or bulk-like. (b) Representative distributions of the LAE groups and LDFs at six 
STGBs. A log scale is used to make it easier to distinguish changes in LDFs within LAE groups. Adapted from [170] with permission from Springer Nature (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.). 

Fig. 10. Torralba et al.’s illustration showing dendrogram plot obtained from 
the hierarchical clustering classification on the HEAs data set, which shows the 
9 types of HEA alloys [171]. Adapted from [171] with permission from Taylor 
& Francis. 
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and Bayesian optimization [39,134,179,180]. Alternatively, generative 
models (GMs) in ML are proved to be able to inversely design in material 
discovery, e.g., the conditional generative adversarial networks (CGAN) 
for phase and mechanical properties predictions of HEAs [134,181], 
GAN model for inorganic materials [182], variational autoencoder 
(VAE) for new crystal structures of solid-state materials [183], and 
conditional variational autoencoder (CVAE) for molecules [151]. Some 
selected methods were listed in Table 4. 

2.2. HT theoretical & experimental approaches 

Traditionally, new materials are developed empirically or through 
experimental trial-and-error approaches. Since the launch of the MGI in 
2011, the MGI led the material science accelerating the data-driven 
paradigm [21], which boosted the emerging field of materials big data 
and materials informatics to help businesses discover, develop, and 
deploy new materials much faster. The materials informatics is a useful 
approach to reveal the hidden correlations among the elements of ma
terials through big-data analysis, which thus opens new pathways for 
materials discovery and design. HT techniques are the crucial tools for 
materials informatics that enables scientists to efficiently produce the 
big dataset for further extracting information from the materials data
base. With the rapid development of high-performance computing fa
cilities and parallel computing architectures, HT computing becomes a 
more efficient way to create data than experiments. Theoretical 
first-principles calculations and semi-empirical CALPHAD methods are 
both popular approaches to investigate the atomistic and thermody
namic mechanisms of the HEMs formation, so as for new HEMs design. 

First-principles calculations have been widely accepted as the major 
approach in the atomic-scale materials design. Based on the HT 
approach, recent studies have led the exponential growth of the material 
database, which drives the development of a material database system 
and accelerates materials innovation [200]. For example, the 
automatic-flow (AFLOW) for materials discovery [201,202] is a re
pository that first developed the HT framework to generate phase dia
grams, electronic structures, and magnetic properties from DFT 
calculations codes (e.g., VASP and Quantum Espresso) in 2003. All the 

available results were determined by the HT management workflow 
named AFLOW π [203,204]. AFLOW π is a public release software, 
which allows the researchers to customize their automated and robust 
workflows by constructing consistent datasets and screening properties. 
The Materials Project [203,205] is another example of the MGI. The 
Materials Project is an open web-based access database, which provides 
the DFT-calculated data of all known and predicted materials as well as 
analysis tools to inspire and design novel materials. The HT manage
ment module, Fireworks [204,206], is released on GitHub with 
comprehensive documentations supported, which can be freely down
loaded. People can also modify and re-compile the source codes on the 
users’ own facility in solving specific problems, using Fireworks [204, 
206]. Other workflow-management tools, such as atomate [207,208], 
AiiDa (Quantum ESPRESSO base) [209,210], materials simulation 
toolkit (MAST) [211,212], PyChemia [213], and qmpy (OQMD) [214], 
are also free and open-source codes for defining, managing, and 
executing workflows, which enables researchers to build automated and 
robust workflows for creating consistent datasets. All these tools are 
outlined in Table 5. 

Apart from quantum mechanics/DFT-based (Ab initio) calculations at 
the sub-nanoscale, scientists are also interested in dynamic in-situ be
haviors of the HEMs above absolute zero temperature. Accordingly, MD 
or Monte Carlo (MC) simulations are used to investigate complicated 
atomistic mechanisms in nanoscale. It is discovered that MD performs 
well and accurately in agreement with experiments, if interatomic po
tentials are of “high quality”. Unfortunately, there is a significant lack of 
interatomic potentials for the complex HEM systems. To obtain reliable 
interatomic potentials, ML is incorporated with HT DFT calculations. 
Atomic coordinates are mapped to machine-learned energies with two 
steps: 1. coordinates of an atom and its neighbors are transferred into 
descriptors, which describes the local chemical environment of an atom. 
2. ML methods are applied to map the descriptors to atomic energies. 
ML-potentials are trained from considerable high-fidelity DFT data 
including energies, forces, stresses, etc., and hence they are the 
complicated functions of atomistic position and chemical environment 
compared with the conventional and empirical potentials. As ML- 
potentials inherit two advantages at the same time-accuracy in line 
with first-principles & efficiency of MD simulation in larger scale, 
different ML-potentials have been proposed, such as Behler-Parrinello 
neural network potentials (BPNNPs) [215], moment tensor potentials 
(MTPs) [216], spectral neighbor analysis potentials (SNAPs) [217], deep 
learning potentials (DLPs) [218], Gaussian approximation potentials 
(GAPs) [219], and low-rank potentials (LRPs) [131]. These ML-poten
tials impulse HEMs research into a new stage as they can perform well on 
many-body interactions in multi-element systems to study and under
stand the fundamental behaviors of HEAs at different temperatures. 

Based on the thermodynamic theory, CALPHAD is a useful approach 
to predict the phase stability in multi-component systems, such as the 

Table 4 
Algorithms and the associated methods for HEMs ML.  

Methods Ref. 

Linear least-squares regression [114,184,185] 
Generalized linear regression (GLMNET) [135] 
Linear discriminant (LDA) [135] 
Logistic regression [186,187] 
Decision tree (DT) [135] 
Kriging or Gaussian process [188–190] 
Artificial neural network (ANN) [44,75,127,128,133,135, 

187,190–196] 
Support vector machine (SVM) [102,115,128,135,187, 

193,197,198] 
Decision tree [186,187] 
Random tree/ forest (RF) [135,185–187,197,199] 
k-nearest neighbors [135,186,193,197] 
Naive Bayes [135,197] 
Gradient boosting classifier [123,185,187] 
Conditional generative adversarial network (CGAN) [134] 
Kernel principal component analysis (KPCA) [115] 
Density-functional theory (DFT) [126,129,138] 
Exact muffin-tin orbitals formalism-coherent potential 

approximation (EMTP-CPA) 
[111] 

Ab initio calculations [130,131] 
Vienna Ab initio Simulation Package (VASP)- Special 

Quasi-random Structures (SQS) 
[111] 

Molecular dynamics (MD) simulation [122] 
Computer coupling of phase diagrams and 

thermochemistry (CALPHAD) 
[132,137] 

Feature engineering [136]  

Table 5 
Current developments of HT DFT tools.  

HT-DFT 
tools 

Supported DFT software Program Workflow 
Management 

AFLOWπ  Quantum Espresso, VASP Python 2.7 YES 
AiiDA Quantum Eepresso, GPAW, 

VASP, Wannier90, Wien2K 
Python 2.7 YES 

Atomate VASP Python 3 YES 
MAST VASP Python 2.x 

and 3.x 
YES 

Fireworks VASP, ABINIT, NwCHEM, 
Gaussian and ASE 

Python 3.7 YES 

Qmpy VASP Python 3 YES 
PyChemia VASP, ABINIT, Octopus, 

DFTB+, and Fireball 
Python 3.x NO 

DFTB + is a fast and efficient versatile quantum mechanical simulation software 
package. FIREBALL is a local-orbital Ab initio tight binding implementation of 
MD. 

E.-W. Huang et al.                                                                                                                                                                                                                              



Materials Science & Engineering R 147 (2022) 100645

13

HEAs, for alloys design. Since the 1970s, the CALPHAD technology has 
been employed to calculate the phase diagrams for new alloy design. 
There are several commercial products in the market, e.g., PANDAT 
[220], MatCalc [221], and Thermo-Calc [222] as well as open-sources 
codes, such as PyCalphad [223] and ESPEI [224]. The thermodynamic 
models have been widely used for the HEMs design. Although most of 
the thermodynamic data in CALPHAD is the traditional alloys, several 
studies have demonstrated that an appropriate selection of binaries and 
few ternary alloy databases can successfully enable the design of the 
single-phase solid-solution HEAs, such as the CoCuFeMnNi HEA in the 
face-centered-cubic (FCC) structure [225], the CrxMoNbTaVW HEAs in 
the body-centered cubic (BCC) structure [226], the AlCoCrNi eutectic 
HEAs in the FCC and B2 structure [227], and the equilibrium AlCoCr
FeNi HEA [104], respectively. 

The commercial software, PANDAT [220], has recently implemented 
the HT tools for efficiently generating thermodynamical properties of Al 
alloys [228] and HEAs [105]. A Python-based open-source program, 
named automatic execution and extraction tasks (AEET) [229], is 
developed for automatic and HT thermodynamic calculations via 
Thermo-Calc. The general infrastructure is archived [229]. Serving as 
virtual screening experiments, the HT thermodynamical calculation 
provides the guidance for the design of real experiments and compre
hensive understanding of the influences of heat-treatment conditions 
and alloy compositions. However, the validity of the CALPHAD pre
dictions for HEAs remains unsatisfactory in some cases, due to the 
complexity of HEAs and the lack of available thermodynamic and kinetic 
data for ternary and more complicated systems of the database, which 
does not ensure the complete prediction of HEAs [230,231]. Although 
commercial databases for HEAs, such as TCHEA4 [232] from Ther
mo-Calc., including 26 elements [222], and PanHEA, including 15 ele
ments [233] from Pandat™ [220], are already available, their accuracy 
still requires additional verification. To improve the results obtained 
from the CALPHAD with existing commercial databases, previous 
studies integrated the basic first-principles data with experimental data 
in the construction of the CALPHAD thermodynamic database [231, 
234]. However, most of the current HT first-principles calculation data 
focuses on perfectly ordered stoichiometric phases at absolute zero, 
which is limited in incorporation with the CALPHAD calculation. Walle 
et al. [235] developed a set of software tools, included in the alloy 
theoretic automated toolkit (ATAT) [236]. Walle et al.’s working flow 
largely automates the process of converting Ab initio data into thermo
dynamic databases that can readily be imported into a standard ther
modynamic modeling software and provides a clear path to expand the 
coverage of HT efforts towards non-stoichiometric phases and non-zero 
temperatures [235]. 

In the HT experiment, the technique in preparing a composition 
gradient in a thin-film material deposition was first conducted to ach
ieve a onetime characterization of a batch of compositions in 1965 
[237]. These new methods pave the way for efficiently build up finer 
and complete composition-structure-property relationships. However, it 
is noted that the experimental process to synthesize materials is very 
expensive. The synthesis and characterization techniques have been 
developed to prepare the compositional-graded bulk alloys, such as the 
diffusion couples, supergravity field, additive manufacturing, sputter 
deposition, and laser deposition [238,239]. 

Ren et al. reported the accelerated discovery of metallic glasses 
through iterations of ML and HT experiments, which synthesizes and 
screens a ternary (about 1000 alloy compositions) in a day, resulting in a 
100-fold acceleration [240]. Ren et al.’s rapid parallel synthesis of the 
thin-film alloy deposition was divided into three combinatorial 
composition spreads as the libraries. Each library was deposited, and the 
alloys were co-deposited, using single-element targets. Ren et al.’s HT 
characterizations simultaneously included two-dimensional (2D) X-ray 
powder diffraction (XRD) patterns and X-ray fluorescence (XRF) map
ping on the combinatorial libraries at the Stanford Synchrotron Radia
tion Lightsource (SSRL) [240]. Ren et al.’s work demonstrated the 

importance to bridge theory and images, including the 2D structure and 
functional data from the library, to speed up the materials discovery 
[241]. For example, with high-resolution detector, the X-ray nano
diffraction (XND) of the Taiwan Photon Source (TPS) provided 
spatially-resolved mapping for elements, phases, orientation, residual 
strain–stress, and dislocations at a resolution of 100 × 100 × 50 nm 
showing the lattice distortion of the HEAs [242]. 

Some of the HT databases are accessible through an open access 
repository, such as the high-throughput experimental materials (HTEM) 
database [243] and materials data facility (MDF) [244]. With the 
considerable growth of data generated by the HT approach, a Data and 
Learning Hub for Science (DLHub) provides a ML model repository, 
associated data transformation, and analysis tools in materials research, 
which allows researchers to run and publish ML models with flexible 
application programming interfaces (API) for access, descriptive meta
data for building the servable, and persistent identifiers for subsequent 
citations [245]. 

While the parallel material synthesis and rapid characterization 
enable the HT experimental and combinatorial community, it is also not 
trivial to analyze the associated great amounts of high-quality mea
surements correlated with the composition, processing, and micro
structure. It is important to standardize data formats, build data 
analysis, and interpretation tools for large-scale data sets. Schmidt et al. 
summarized several modes of measuring properties, visualizing, and 
interpreting data for the other materials [18]. The examples of HT 
measurements for the HEMs are presented in the Part 2 of this 
manuscript. 

2.3. Big-data approach 

As Vasudevan et al. commented, here are the needs to organize data 
across existing platforms and the searchability to find the relevance 
[93]. Because of the launch of the MGI, the basic infrastructures and 
techniques for material informatics developed rapidly, and the tradi
tional databases evolved into a data center, which provides the 
data-distribution platforms or repository for online data storing, 
sharing, querying, visualization, and analysis. More and more data in
frastructures and companies open worldwide. For the open database, the 
AFLOW database [201], developed by Duke University, includes over 3, 
405,082 material compounds with over 667,396,072 calculated prop
erties, where the compound includes the binary, ternary, and quaternary 
systems, and the properties cover the band structures, Bader charges, 
elastic properties, and thermal properties. The Materials Project data
base [203], established by Massachusetts Institute of Technology (MIT), 
provides the structural information and properties of more than 131,613 
inorganic compounds, 76,194 band structures, 14,071 elastic tensors, 
and 49,705 molecules, that collected a huge database from DFT. 

Some of the HT databases are accessible through an open access 
repository, such as the HTEM database [243] and materials data facility 
(MDF) [244]. The MDF [244] is a data publication network for 
computational and experimental datasets. There are more than 500 
datasets. The HTEM database [243] contains information about mate
rials obtained from HT experiments at the National Renewable Energy 
Laboratory (NREL), which releases large amounts of high-quality 
experimental data to public. The HTEM database contains the infor
mation about synthesis conditions, chemical compositions, crystal 
structures, and optoelectronic (e.g., electrical conductivity and band 
gaps) measurements of the materials. The current public data consists of 
37,093 compositions, 47,213 structures, 26,577 optical properties, and 
12,849 electrical properties of thin films synthesized using combinato
rial methods. Those data repositories provide material data with a 
standardization format and tools for easy data access, visualization, and 
exploration [246]. Beside the data repository mentioned above, more 
than 50 materials repositories have been established, which can be 
classified into the calculation/experimental database, open access/
commercial database, organic/inorganic database, crystal/liquid 
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crystal/glass database, and so on. 
In addition, several companies start up the material-design business 

based on the material-informatics techniques. For example, Materi
alsZone [102] supplied the platform for sharing, screening, visualizing, 
and managing heterogeneous data sets for rapid materials discovery and 
ML applications. Granta Design provides commercial data, tools, and 
expertise for materials design. Citrine informatics [247] and 
SchrÖdinger [248] established the cloud platform for new materials 
development with ML and the necessary expertise to develop, 
commercialize, and scale new materials. With a rapid increase of public 
and commercial material platform for solid materials and molecules, ML 
has become a robust methodology applied across many materials dis
ciplines, as summarized in Table 6. 

Since the HEAs were introduced by Yeh et al. in 2004, a huge number 
of articles in the Web of Science on the theme of “high-entropy alloys” 
have been published. Li et al. [260] used Keyword Graph analysis of the 
articles to uncover future development directions of HEAs and the most 
interesting topics. We follow Li et al.’s format and update the Keyword 
Graph analyzing the number of papers published from 2004 to 2020 to 
display the research trends of the HEMs in Fig. 11. The change of 
research keywords with average time in Fig. 11 reveals that the current 

field of HEAs has attracted increasing attention to microstructure, 
CALPHAD, corrosion behavior, stability, MD, laser cladding, magnetron 
sputtering, and films, demonstrating that the current studies are focused 
on the topics of microstructure, surface coating, and sputtering. Laser 
cladding and magnetron sputtering are both the most mature techniques 
for high-entropy coatings [261]. Note that the theoretical study of MD 
received much attention in recent years, which may attribute to the 
development of potential functions and parameters [106,262,263]. Due 
to a significant increase of ML studies for the HEAs design, HT CALPHAD 
was broadly used to generate training data of microstructure. 

2.4. Combinational approach 

In recent years, materials discovery and design have taken a huge 
leap since “combinatorial approach” and “materials informatics” were 
proposed and applied in different areas, the success of which are 
attributed to data generated from computational and experimental 
tracks. From there, the scientists have explored big digital data space via 
data mining, autonomous systems, and AI techniques. As theoretical 
methods become more precise and hardwares for high-performance 
computing become more powerful, large-scale and rapid computa
tional data generation arrives. The accessibility together elevates along 
with the establishment of many open-source online databases, such as 
the Materials Project [203] or AFLOW [201]. These infrastructures 
systematically reposit computational measurements of materials prop
erties calculated through DFT approach, e.g., electronic band structure 
and formation energy. Likewise, HT experimental data ranging from 
synthesis to characterization measurements also needs great curation for 
the community. Many efforts have been made to manage large and 
heterogeneous data sets, e.g., MaterialsZone [102], NIST [264] are good 
online systems for handling and analyzing. In a HT manner, integration 
of computational and experimental data is a new topic for materials 
science. HT semi-empirical CALPHAD approaches are powerful tools for 
calculating the phase diagrams for the purpose of structural design. HT 
ab-inito approach not only compensates the lack of available thermo
dynamic and kinetic data for CALPHAD calculations but also uses to 
screening the new stable composition with different structures and 
desired properties. The HT experiments enable the rapid synthesis and 
characterizations for validation. On the one hand, combinatorial HT 

Table 6 
Publicly accessible structure and property databases for solid materials and 
molecules.  

Method Ref. 

Automatic-flow for materials discovery (AFLOW) [130] 
Computer coupling of phase diagrams and thermochemistry 

(CALPHAD) 
[249] 

Citrination [247] 
Materials Project [250–252] 

Center for Hierarchical Materials Design (CHiMaD) [253] 
High Throughput Experimental Materials Database (HTEM DB) [243] 

National Renewable Energy Laboratory Materials Database 
(NRELMatDB) 

[254] 

NIMS Materials Database (MatNavi) [255] 
Novel Material Discovery Repository (NoMaD) [256] 

Computational Materials Data Network (CMD Network) [257] 
Polymer genome [258] 

Matmatch [259]  

Fig. 11. Changes of research keywords with the average time, reflecting future development directions of HEAs. The search keyword is the “high-entropy alloys” and 
the total number of articles is 5000 from 2004 to 2020 in the Web of Science. The figure is the extension of Li et al.’s statistics [260]. 
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experiments can validate theoretical predictions based on modeling, 
particularly in a wide compositional range. Meanwhile, experimental 
data generated from libraries can then be used to augment or optimize 
the theoretical models. In summary, effect coupling of experimental and 
theoretical approaches not only accelerate materials discovery but also 
bring two domains into a higher level of study. 

Apart from experimental and theoretical information, data generated 
from multi-scale simulations in terms of different applications can also 
be incorporated with ML, as shown in Fig. 12. As for the ML at the end 
manner (left block), this method utilizes existing resources (data) in 
either inverse discovery of novel materials or forward prediction of 
properties and structure, saving much time and cost. Meanwhile, the 
physical rules of prediction results can be unveiled from the weighting of 
various input features. ML can also be embedded in these combinatorial 
approaches, as shown in the right block of Fig. 12. To investigate me
chanical behaviors of structural components such as fatigue mode and 
stress components, computational results of MD or MC simulations are 
used to train ML models. Subsequently, the output of training models is 
implemented into FEM to substitute constitutive relations used in the 
conventional continuum models. This hierarchical approach shows the 
potential of ML in connecting nano mechanics with structural mechanics 
[265]. To gain in-depth analysis of dynamic behaviors for nano
structure, ML is also available for bridging Ab initio calculations with MD 
simulations by mapping atomistic coordinates and chemical environ
ments to ML-potentials. Nano twinning, grain boundaries, and phase 
transition of materials under specific temperatures are then identified 
accurately and efficiently via the combinatorial approaches. 

2.5. Summary 

Materials design continues to progress in order to save cost and time 
as well to enhance performance simultaneously. The scientists are 
making efforts in tailoring composition, process, and structures with the 
aim of the improved properties and performances of materials. Fig. 13 
illustrates the innovation for new materials discovery. 

Traditionally, experimental approaches are based on physical in
tuitions and/or expensive trial-and-error strategies. Theoretical 
methods offer the way to understand the most fundamental and 

important information of materials. HT approaches are the platforms 
that provide a rapid and systematical synthesis, characterization, and 
calculations for materials screening. However, the drawbacks of HT 
approaches are limited by the user-selected library (compositions) and 
experts’ intuitions, which could miss out on high-performing materials. 
Data-driven science as materials-informatics technique is possibly 
implemented by data mining, ML, and mathematical optimization using 
the existing database and HT data, resulting in a new pathway to un
derstand the materials and enable the innovation of materials design. In 
other words, HT screening with machine-learned predictors may filter 
out preferable materials as well disclose the fundamental physical and 
thermodynamic rules. In addition, global optimization and generative 
models as deep learning models can be utilized to build new hypothet
ical crystal structures and compositions for HTVS that go beyond the 
existing structural and compositional motifs. The greatest value is its 
powerfulness for systematically extracting physical relationships, 
mechanisms, and principles [61] such as PSPP relations. Hence, the 
combinatorial HT approaches correlated with materials informatics 
have the potential to speed up the development schedule and boost the 
innovation of the HEMs, as well as to reduce the cost for competitive 
materials discovery. However, there are still some challenges herein 
mainly based on the original collected data, such as accuracy, repre
sentation, and heterogeneity. As long as we have reliable data of high 
quality, materials informatics is a powerful wheel promoting the 
development of materials science. 

Again, since the HEMs provide a huge space of great tunability for 
design, materials informatics can assist with daunting tasks to untangle 
unanswered questions and explore unexploited domains. There are 
growing data repositories established in recent years for the HEMs. Most 
of the HEMs data are the data of phase diagrams and material hardness 
whereas the other properties are introduced below. 

3. ML and HT studies for HEMs 

Chen et al. reported several successful cases using ML for the HEAs in 
which ML can make scientists better [65]. For example, to design the 
multiphase HEMs, Krishna et al. employed the ML approach with a data 
set of 636 alloys and predicted the HEAs with a mixture of the solid 

Fig. 12. ML assists the materials exploration and bridges the gap of multiscale simulation.  
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solution and intermetallic (SS + IM) [187]. Krishna et al.’s ML algo
rithms comprised logistic regression, decision tree, SVM classifier, 
random forest, gradient boosting classifier, and ANN. ANN has shown 
the best accuracy of more than 80 % of the test data. Their predictions 
were verified, and ANN is a more accurate prediction in their HEMs 
system [187]. For medium-entropy alloys (MEAs), Li et al. combined HT 
simulation with ML to obtain MEAs with high strength and low cost 
[190]. Roy et al. employed a gradient boost regressor ML method to 
predict Young’s modulus of low-, medium- and high-entropy alloys with 
root-mean-square error (RMSE) of 87.76 %, revealing that Tm and ΔHmix 
are the most important descriptors [123]. 

Besides these successful cases, due to the complexity of the HEMs, 
Miracle et al. proposed new strategies to accelerate the discovery and 
development of HEMs [33]. Miracle et al.’s strategies start with the 
calculated phase diagrams to quickly screen the alloy candidates, which 
can save more resources as the Stage Zero. Comparing with the required 
time to examine the candidate materials via a computational approach, 
Miracle et al. then suggested to investigate the structure-insensitive 
properties as the Stage One for the first experimental step. Miracle 
et al.’s final evaluation is to measure the properties that depend on both 
compositions and microstructures [33]. Along this vein, in this session, 
we review the structure-insensitive properties of the HEMs. Since the HT 
and combinatorial experiments are well established for functional ma
terials, the second part of this session is the review of the functional 
properties of the HEMs. Finally, we review the other properties of the 
HEMs which depend on both compositions and microstructures. With 
Tshitoyan et al.’s unsupervised word embeddings capture methods [50], 
the previously unrecognized correlations of these 
composition-microstructure-dependent data may be unveiled for new 
applications. 

To promote ML-based optimization, the validation of the ML results 
by experiment or physics-based simulation is important for the inter
pretability, thus, HT data acquisition capabilities are critical [65]. 
DeCost et al. concluded that critical bottlenecks for adaptive science and 
autonomous control of experimental systems are (i) a widespread 
absence of API to interact with laboratory equipment, (ii) lack of a 
unified language for experimental workflow protocols, and (iii) lack of 
standardized and open data formats to facilitate accessibility and 
interoperability [61]. Therefore, in this session, we will review the 
selected examples showing the complimentary and validated results 
using HT methods. 

Zhao summarized the HT experimental tools for the materials 
genome, which focused on the experimental tools for HT and high 
spatial resolution measurements of the materials properties such as 

phase, elastic modulus, thermal conductivity, specific heat capacity, and 
thermal expansion [266], which can be applied for the HEMs. Specif
ically, it is important to generate and apply the “libraries” from both 
experiment and theoretical tools [93]. In terms of HT screening of the 
experiments, a screening facility typically holds a library of stock and 
assay plates. For example, Li and Flores employed a HT direct laser 
deposition processing method to construct AlxCoCrFeNi HEA micro
structural library, which x = 0.51 ~ 1.25 [267]. The samples are graded 
in composition and quench rate ranging from 26 ~ 6400 K/s. Li and 
Flores found that the microstructural feature sizes followed a power law 
relationship with the quench rate. Their study demonstrated that laser 
processing coupled with microstructural library was an effective method 
for HEA developments [267]. 

Haase et al. reported a methodology that combines thermodynamic 
modeling with 3D printing of elemental powder blends for HT investi
gation of the Co-Cr-Fe-Mn-Ni HEAs system [268]. For bulk sample 
production, Haase et al.’s laser metal deposition of an elemental powder 
blend allows high flexibility in varying the chemical composition while 
the microstructural, texture, and mechanical properties of the processed 
materials were characterized, using optical microscopy (OM), electron 
backscatter diffraction (EBSD), energy dispersive X-ray spectroscopy 
(EDS) analysis, XRD, and hardness and compression testing [268]. 
Similarly, Moorehead et al. also presented the HT synthesis using ad
ditive manufacturing [269]. Moreover, Moorehead et al. designed HEAs 
sample arrays for in-situ alloying of elemental powders, where scanning 
electron microscope (SEM), EDS, and XRD were performed while the 
samples were remained on build plate to construct the library. Besides 
their HT synthesis and characterization, Moorehead et al. utilized 
CALPHAD calculations via PanDat™ as the HT modeling to predict the 
equilibrium phases of each printed alloy composition at 300 ◦C. 
Moorehead et al. found a discrepancy between the simulated and printed 
HEAs, such as certain Ta-rich and Nb-poor compositions due to the slow 
diffusivity of refractory metals at this temperature [269]. 

Moorehead et al. applied similar HT additive manufacture synthesis, 
characterization, and CALPHAD procedures to map the compositional 
array of the Cr-Fe-Mn-Ni alloys to build the library for the irradiation 
investigations [270]. Moorehead et al. reported that radiation-induced 
hardening was observed in the compositionally complex alloys 
(CCAs), which was comparable to neutron irradiation [270]. 

Besides the applications of the aforementioned additive 
manufacturing for the HT synthesis, Xu et al. carried out in-situ HT 
synthesis of FeCoNiCrCuAlx in a transmission electron microscope 
(TEM). The dynamic melting process of FeCoNiCrCu with Al was 
recorded, and the composition of FeCoNiCrCuAlx was examined by EDS. 

Fig. 13. Towards ML and material informatics to enhance combinatorial HT calculations and experiments for material discovery and innovation.  
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Xu et al.’s in-situ HT method in the TEM avoid the drawbacks of the 
conventional arc-melting and casting, where the repetitious melting 
processes can cause the evaporation of some low-melting-temperature 
elements at the high temperature environment [271]. 

3.1. HT studies on the structure-insensitive properties of HEMs 

The structure-insensitive properties reviewed in this session mainly 
focus on the moduli and thermal expansion. Several in-situ instruments 
are presented because these advanced methods obtain multi-scale 
properties of the HEAs simultaneously from the bulk to the lattice- 
level properties [272]. 

As mentioned earlier, Kim et al. investigated the relationship be
tween the elastic properties and lattice distortion using a combined 
experimental and computational approach based on in-situ neutron- 
diffraction characterizations and first-principles calculations [78]. Kim 
et al. selected the single-phase FCC Al0.3CoCrFeNi HEA because the 
constituent elements have large size differences. Kim et al.’s calculated 
elastic constant values are within 5% of the ND measurements and 
indicated that the lattice distortion results in the reduced stiffness. Kim 
et al. implemented ML modeling, which was trained on a large dataset of 
inorganic structures, to predict the elastic moduli of HEAs. Their ML 
models also demonstrated the dependence of bulk and shear moduli on 
several material features, such as (a) cohesive energy, (b) group number, 
(c) density, (d) radius, and (e) electronegativity, which act as guides for 
tuning elastic properties in the HEAs [78]. Similarly, Yen et al. applied 
the Lennard-Jones potential, the embedded atom method (EAM) po
tential, and the modified embedded atom method (MEAM) to investi
gate the lattice distortion effect on Young’s modulus E (hkl) and 
Poisson’s ratio ν (hkl, θ) along [100,110,111] loading directions for the 
FeCrNi MEA and CoNiCrFeMn HEA comparing with the pure Ni and 
other FCC metallic systems as the references [273]. Yen et al. used the 
in-situ ND data [77] as the inputs and recursively fitted their simulation 
and complimentary neutron results. Yen et al. unveiled that the effect of 
electron density inconsistency is more dominant than the effect of lattice 
distortion associated with the atomic size difference. The anisotropy of 
the CoNiCrFeMn HEA from their simulation and in-situ ND measure
ments is self-consistent [77]. 

In both Kim et al.’s [78] and Yen et al.’s [77] cases, the advanced 
photon source indicated an important capability to illuminate multiple 
diffractions at the lattice levels for in-situ measurements on the bulk 
samples, which reveals much more mechanisms than just phase char
acterizations. In particular, the main advantage of the in-situ neutron 
environment is the possibility of investigating the evolution of micro
structures since identical specimens are monitored the entire time and 
are subjected to the changes of the control parameters. Moreover, most 
of the ND instruments are equipped with strobing software, such as the 
VULCAN Data Reduction and Interactive Visualization software 
(VDRIVE) [274] of VULCAN at the Spallation Neutron Source (SNS) of 
Oak Ridge National Laboratory (ORNL), which may reduce the data at 
the end of each test and is much more useful. The strobing system is a 
continuously running software utilizing event-based data acquisition 
where each neutron carries a time stamp. In this case, diffraction data 
can be collected continuously and binned later according to the desired 
time scale for the HEMs [77,275,276]. TAKUMI [277] is another ma
terials engineering diffractometer located in Japan at the Japan Proton 
Accelerator Research Complex (JPARC) that is capable of various in-situ 
environments, including elevated-temperature measurements. The 
in-situ loading setup of TAKUMI enables the measurements of the fatigue 
behavior in the HEAs [278,279] while low-temperature in-situ loading 
setup of TAKUMI captures the serration behavior of the CrMnFeCoNi 
HEA [280]. The Spectrometer for Materials Research at Temperature 
and Stress (SMARTS) at the Los Alamos Neutron Science Center 
(LANSCE) [281] in the US and ENGIN-X [282] of the ISIS at the Ruth
erford Appleton Laboratory (RAL) in the UK also have the same features 
of the measurements [283–285]. For a reactor-based neutron 

diffractometer, the Residual Stress Instrument (RSI) installed at the 
High-Flux Advanced Neutron Application Reactor (HANARO) of the 
Korea Atomic Energy Research Institute (KAERI) also conducted the 
temperature-dependent mechanical-behavior evolutions of the HEMs 
[286]. Similarly, synchrotron X-rays can also illuminate the micro
structure with high penetration. For example, the in-situ loading mea
surements capturing the deformation-induced phase transformation 
[287–291]. Following is an example of the heating setup of one of the 
synchrotron X-rays in the TPS [292] where the temporally coherent 
X-ray diffraction (TPS-09A) [293] can heat the samples up to almost 
1200 K to examine the lattice thermal expansions and the phase stability 
[294] while the TPS 21A XND and the TPS 23A X-ray nanoprobe (XNP) 
provide spatially-resolved mapping for the HEMs to distinguish local 
lattice distortion associated with element distributions [242], as shown 
in Fig. 14. More examples of the neutron and synchrotron X-ray mea
surements for their potential HT examinations can be found in Calder 
et al.’s summary [295]. Lee et al.’s recent report manifested the tem
perature dependence of elastic and plastic deformation behavior of a 
NbTaTiV refractory HEA (RHEA) using in-situ ND [296]. 

Moreover, beyond the structure-insensitive properties, s mentioned 
earlier, Gao et al. applied ML to their CPFEM in the NiCoCrFe system 
based on their in-situ ND experimental data and physical mechanisms to 
provide the data set [75]. Similarly, Dai et al. recently demonstrated the 
micromechanical behaviors of a polycrystalline metal by ANNs from the 
in-situ diffraction data. Dai et al.’s ANN model was trained based on the 
datasets generated by the physics-based viscoplastic self-consistent 
(VPSC) model, which captures the loading path-dependent micro
mechanical behavior of the copper polycrystals with arbitrary texture, 
even beyond the bounds of the generated dataset [297]. 

3.1.1. Studies for the moduli of the HEMs 
Vegard’s law is an approximate rule, which empirically estimates the 

crystal lattice constant of an alloy based on a linear relation for the 
concentrations of the constituent elements [76]. From Vegard’s law of 
the simple mixtures, the lattice constants determined by the relative 
atomic sizes are the reference points to calculate the moduli of the 
crystals. 

Although DFT is known to estimate the cohesive energies, volume 
per atom, and bulk moduli, due to the complex of the HEMs, the 
determination of the suitable modeling size and associated moduli is not 
trivial. Moreover, the HEMs may contain some late transition metals, 
such as Ag, Au, Cd, Ga, Tl, Pb, and Bi. These elements may influence the 
calculations of DFT with the description of the d-electron correlation, 
dispersion, relativistic effects, and spin-orbit coupling for HT DFT cal
culations [301]. By applying HT calculations, Jong et al. demonstrated a 
statistical learning framework to estimate the elastic moduli of k-nary 
inorganic polycrystalline compounds of diverse chemistries and struc
tures [301]. Jong et al.’s datasets are diverse, and they constructed 
descriptors that generalized over the chemistry and crystal structure, 
incorporating multivariate local regression within a gradient boosting 
framework [301]. Jong et al.’s moduli predictions showed that there is a 
discrepancy between the gradient boosting machine local polynomial 
regression (GBM-Locfit) and DFT. Jong et al. disclosed that there were 
DFT methods-related errors, which added noise to the underlying 
physical phenomenon. 

To verify the predictions, it is important to compare with the 
measured temperature dependence of elastic constants. For the HEMs, 
Laplanche et al. summarized the elastic moduli [302] of the Cantor al
loys [34] and their associated subsystems of CrFeCoNi, CrCoNi, CrFeNi, 
FeCoNi, MnCoNi, MnFeNi, and CoNi in Figs. 15 and 16. The 
thermal-expansion coefficients of these HEAs and their subsystems were 
presented in Fig. 19 [302,303]. Laplanche et al.’s 
temperature-dependent thermal-expansion coefficients and elastic 
moduli, which are mainly from the measurements on the bulk samples, 
are useful for quantifying fundamental aspects of the HEAs for structural 
analyses [302,304]. 
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There is a clear gap between the Ti-based HEAs and the others in 
Figs. 15 and 16. For the biomedical applications, Yang et al. employed 
the XGBoost model and GA to search for BCC β-Ti alloys with low 
Young’s modulus in the Ti-Mo-Nb-Zr-Sn-Ta system. They found that the 
Ti79.4Mo1.8Nb8.8Zr2.9Sn4.1Ta2.9 has the lowest Young’s modulus of 48 

GPa in prediction and 46 GPa in experimental validation [305]. Wu et al. 
trained a NN model to explore new alloys meeting the criteria for 
bio-compatibility, low modulus, and low cost for the development of 
orthopedic and prosthetic implants. The new and affordable cost Ti al
loys (Ti-12Nb-12Zr-12Sn) were found and validated by experiment, 

Fig. 14. Spatially-resolved mapping for the HEMs to distinguish the local lattice distortion associated with the element distributions [298–300].  

Fig. 15. Temperature dependencies of the Young’s moduli. (Data taken from experiments [302,304–307] and DFT calculation [84]) of the HEAs.  

Fig. 16. Temperature dependencies of the shear moduli of HEAs. (Data taken from experiments [302,304,307] and DFT calculation [84].  
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which had the bone-like Young’s modulus (42.4 GPa), high tensile 
strength (900 MPa), acceptable ductility, and biocompatibility [306]. 
Salvador et al. also attempted to discover low modulus of Ti-Nb-Zr 
system with ML. Materials Project database was fed to the linear 
models, random forest regressors, and ANNs models to evaluate the 
prediction reliability. According to the analysis results, the 
Ti-22Zr-14.8Nb is the most promising candidate in the biomedical field, 
which exhibits a low elastic modulus of 30.8 GPa, shear modulus of 10.6 
GPa, Young’s modulus of 3.79 GPa, and elevated beta-phase stability 
[84]. These three Ti-based alloys shown here are to demonstrate the 
contrast between the HEMs for the structural and biomedical applica
tions, but not from the simulation and experimental methods. 

Besides the bulk moduli evolution subjected to environmental tem
peratures, the orientation-dependent (h k l) moduli of the Cantor Alloys 
can be obtained by in-situ ND measurements [307]. Huang et al. heated 
the selected HEA in the load frame to 200 ◦C, 400 ◦C, and 600 ◦C using 
an induction-coil heating system of the VULCAN diffractometer at the 
ORNL [307]. The results were shown in Fig. 17. The upper limit was 
selected as 600 ◦C because it was below the effective high temperature to 
avoid vacancy formation [242] and creep [286] during the measure
ments. The diffracted neutrons were refined, using the general structure 
analysis system (GSAS) software based on the Rietveld method [308]. 
The data acquisition streamlines the coordination between the me
chanical load control and neutron-data collection. The event-based 
data-reduction software, VDRIVE, was built specifically for this data 
structure and experiment scheme [274]. The collected data was chopped 
in 5 min [309]. With the event-based data acquisition of the 
materials-engineering diffractometer, such as VULCAN [309] of SNS, 
multiple diffraction peaks were collected simultaneously under applied 
loads for their hkl-dependent moduli measurements, as shown in Fig. 17. 
There is a discrepancy between the lattice moduli of different orders of 
the (h k l). For example, E111 as the modulus of (1 1 1) plane and E222 as 
the modulus of (2 2 2) have different trends subjected to temperature. 
The evolutions of the lattice spaces, d111, as for the diffraction peak of (1 
1 1), and d200, as for the diffraction peak of (2 0 0) have different ten
dencies [307]. These features indicated the effects of stacking faults in 
the Cantor alloys, which resulted in different responses of the lattices 
subjected to the environmental temperature changes. 

Moreover, the in-situ diffraction measurements could be applied to 
obtain the tensors of the crystal materials [283]. The model fitting 
coupled with the bulk properties and diffraction data enabled 
crystal-plasticity-based investigations [310]. For example, to obtain the 
stiffness tensors 

(
Cij

)
, the generalized Hooke’s law from the compliance 

tensors 
(
Sij

)
, which is the second-order tensor expression for the elastic 

compliance, Me can be derived for homogeneous and isotropic materials 
in the FCC structure, as shown in the Eqs. (9)–(11). 
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=
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=
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)(
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−
2ν
E

)
(10)  

C44 = 1
/S44

= G (11)  

where E is the Young’s modulus, G is the shear modulus, and ν is the 
Poisson’s ratio. 

For the temperature-dependent stiffness tensors Cij for C11, C12, and 
C44, the aforementioned Laplanche et al.’s empirical fitting results ob
tained from the thermal coefficients [303] can be used in the Eqs. (12)– 
(14): 

G = 85 − 16
/(

e
488

/

T
− 1

) (12)  

E = 214 − 35
/(

e
416

/

T
− 1

) (13)  

ν = − 1 +
E

2G
(14) 

For the model fitting, Wu et al.’s room-temperature data [276] was 
used in Fig. 18. For the tensors at other temperatures, Huang et al.’s data 
[77] shown in Fig. 17 was used together with other data [311,312]. The 
data taken from in-situ ND measurements can yield the hkl-dependent 
moduli (Ehkl), as shown in Fig. 17. By the application of the following 
directional cosines (l, m, and n) from lattice planes with respect to the 
three orthogonal axes, the stiffness tensors 

(
Cij

)
for C11, C12, and C44 can 

also be derived: 

Ehkl = s11 − 2
[
(s11 − s12) −

s44

2

]
×

(
l2m2 + m2n2 + n2l2)

(15) 

The fitted bulk stress–strain and predicted lattice-strain curves were 
archived [313]. In Fig. 18, the temperature-dependent stiffness tensors, 
C11, C12, and C44, derived from the coefficients of thermal expansions 
[303] were described in the black, red, and blue dashed lines, respec
tively. Recalling Shu-min et al.’s maximum entropy approach for 
simulating the elastic properties of HEAs [314], the effect of the local 
environment and lattice distortion on the HEAs can contribute to the 
elastic properties. The tensors derived from the ND data [77] were 
validated by Yen et al.’s model fittings [273]. Specifically, Yen et al. 
identified that the effect of electron density inconsistency is more 
dominant than the effect of lattice distortion associated with the 
atomic-size difference. The electronic configuration in the HEAs envi
ronment plays a greater role in the elastic anisotropy than that in the 
differences among the atomic radii [273]. 

MehdiJafary-Zadeh et al. developed a ML interatomic potential 
based on an efficient “learning-on-the-fly” scheme for the CoFeNi, which 
was moment tensor potential (MTP), to unravel the effects of local lattice 
distortion on the elastic properties of MPEAs [122]. Using this potential, 
MehdiJafary-Zadeh et al. performed MD simulations to calculate the 

Fig. 17. (a) The hkl-dependent moduli of the HEAs; (b) The associated anisotropy factor 

⎛

⎝Ahkl = h2k2+k2 l2+h2 l2
(h2+k2+l2)

⎞

⎠. (Adapted from [77] with permission from Elsevier).  
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elastic moduli of single- and polycrystalline CoFeNi [122]. Dai et al. 
[113] employed DLP to predict the temperature dependence of thermal 
(lattice constants, anisotropic thermal expansions, and anisotropic 
phonon thermal conductivities), and elastic properties (elastic constant, 
bulk, shear, and Young’s moduli) for high-entropy 
(Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)B2 from 0 ◦C to 2500 ◦C. They found that the 
obtained data from their predictions were well consistent with those 
from the experiments at room temperature. Besides, the lattice distor
tion was not severe by characterizing the displacements of atoms from 
ideal positions. 

Above all, Gorsse et al. [315] summarized the mechanical properties 
of 370 HEAs and CCAs reported in the period from 2004 to 2016. Their 
data sheets comprised alloy composition, type of microstructures, den
sity, hardness, type of tests to measure the room-temperature mechan
ical properties, yield strength (YS), elongation, ultimate tensile strength 
(UTS), and Young’s modulus from Miracle and Senkov’s [1], Gorsse 
et al.’s [316], and Senkov et al.’s [317] publications, respectively. 
Specifically, they reported 27 RHEAs, the yield stress and elongation 
were given as a function of temperature [315]. Recently, Shukla et al. 
utilized the friction stir gradient alloying as a HT screening technique for 
the HEAs. The Young’s modulus value is one of the retrieved properties 
in their Fe40Mn20Co20Cr15Si5 HEA system [318]. 

3.1.2. Studies on the thermal expansion of the HEMs 
Thermal expansion is another important structure-insensitive prop

erty [33], especially for the materials subjected to temperature fluctu
ations. Thermal expansion originates from the potential energy on the 
mean separation of atoms. Specifically, the elastic properties of crystals 
relate to atomic-vibrational spectra, according to the Debye’s model, 
which can be used to calculate the lattice specific heat [319]. Grüneisen 
performed one step further to correlate the specific heat with the volume 
expansivity [320]. As the reinforcement phases usually have a lower 
coefficient of thermal expansion (CTE) than the matrix, thermal stresses 
may develop during solidification and processing and thus affect the 
strength. To calculate thermal stress at a given temperature, a knowl
edge of CTEs and elastic constants were required [302]. The CTE (α) was 
defined below [302]. 

α = αHT

(
1 − e

− T/ΘD

)
(16)  

where αHT is the value of CTE in the high-temperature limit, and ΘD is 
the Debye temperature. 

Because thermal expansion is one of the fundamental properties of 
the materials, many models in terms of the state functions have been 
applied to predict the thermal expansion. There are several ML pre
dictions of thermal expansion for the concrete [323], inorganic glasses 
[324], and even the negative thermal expansion materials [325]. 

However, due to the complicated configurations of the HEMs, the 
temperature-dependent thermal expansions are not intuitive [46,326]. 
For example, from Santodonato et al’s work, they found the deviation 

Fig. 18. Temperature-dependent stiffness tensors ((C11, C12, 
and C44). Neutron-derived results were shown in the empty 
symbols. Data taken from [276] were represented by the solid 
symbols; data derived from [303] were represented by the 
dashed lines; data derived from [77]. C11 (◼), C12 ( ), and C44 

( ) data derived from Ehkl taken from ND [276]. The stiffness 
tensors resulting from thermal expansion were C11 (black 
dashed line), C12 (red dashed line), and C44 (blue dashed line). 
The stiffness tensors 

(
Cij

)
for C11, C12, and C44, presented as the 

empty squares (□), circles ( ), and triangles ( ), respectively, 
were taken from Huang et al.’s data [313]. As reported, there 
was neither significant vacancy formation [242] nor creep 
[286] during heating up to 873 K. (Adapted from [313] with 
permission from Elsevier) (For interpretation of the references 
to colour in this figure legend, the reader is referred to the web 
version of this article.).   

Fig. 19. Temperature dependencies of the thermal expansion coefficients in the HEAs. (Data taken from [302,321,322]).  

E.-W. Huang et al.                                                                                                                                                                                                                              



Materials Science & Engineering R 147 (2022) 100645

21

from high-entropy configurations in the atomic distributions of the 
Al1.3CoCrCuFeNi model system [327]. It is even more intricate to obtain 
the temperature-dependent thermal expansions in the HEMs at higher 
temperature due to the ease of the vacancy formation entropy at higher 
temperature. As shown in Fig. 19, Huang et al. followed Simmons and 
Balluffi’s concept [328] and compared the differences between the 
lengths subjected to high temperatures from time zero to the time 
reaching quasi-equilibrium state [242]. The dilation of the bulk spec
imen, ΔL/L, and the change in the lattice parameter, Δa/a were defined 
as follows 

3(Δa/a) = p(T) + r(T) + x(T) (17)  

3(ΔL/L) = q(T) + s(T) + y(T) (18)  

where p(T) and q(T) are the ideal thermal expansion without thermally 
generated defects, x(T) and y(T) are expansion arising directly from the 
formation of defects, and r(T) and s(T) are the thermal expansion of the 
crystal due to the presence of lattice defects that alter the lattice fre
quency distribution and thus internal energy. 

At time zero, the major contributions to the thermal expansion are 
the p(T) and q(T) without thermally generated defects. At the time when 
the samples reach quasi-equilibrium, expansion arising directly from 
formation of defects and the thermal expansion of the crystal due to the 
presence of lattice defects altering the lattice frequency distribution and 
internal energy all influence the thermal expansion of the HEMs [242]. 
In Fig. 20(a), ΔL/L and Δa/a of the CoCrFeMnNi are shown as a function 
of temperature. The bulk expansion, ΔL/L, subjected to 
quasi-equilibrium and non-equilibrium states were shown in the red 
dashed line and green dashed line, respectively. The results of Δa/a (the 
solid black line) were calculated, using the second-order polynomial 
fitting, following the methodology of Bichile and Kulkarni [329,330] in 
formulating the second-order polynomial fit for thermal expansion co
efficient estimations [330]. It can be observed that ΔL/L increases with 
increasing temperature, and the second-order polynomial curve closely 
matches the results up to a temperature of approximately 1000 K but 
deviates at temperatures higher than 1000 K. 

The evolutions of vacancy formation as a function of the homologous 
temperature (T/Tm) in the HEAs and the reference Cu alloys subjected to 
heating were shown in Fig. 20(b) where Tm is the melting temperature of 
materials. The observable onset temperature of vacancy formation in the 
pure Cu is approximately 0.74 Tm. However, the observable onset tem
perature of vacancy formation in the CoCrFeNi and CoCrFeMnNi HEAs 
is approximately 0.6 Tm, suggesting that vacancy formation is easier in 
the HEAs. The consequence of the vacancy formation subjected to 
heating may induce severe lattice distortion, as mapped by the TPS 21A 

XND and the TPS 23A XNP from their spatially-resolved mapping for 
both the CoCrFeNi and the CoCrFeMnNi HEAs [242]. 

Hence, for the high-temperature thermal expansion of the HEMs, ML 
is needed to solve the complexity as formulated in Eqs. (17) and (18). 
Using ML, Buranich et al. applied the complex of analytical algorithms 
(linear, random forest, and gradient boosting regression) to calculate the 
thermal and mechanical properties of TiNbHfTaW, CrNbHfTaW, and 
VNbHfTaW HEAs, which are refractory metals-based HEAs [185]. For 
the other HEMs, Dai et al. performed theoretical predictions on the 
thermal and mechanical properties in the high entropy 
(Zr0.2Hf0.2Ti0.2Nb0.2Ta0.2)C by a deep learning potential [112]. Dai et al. 
verified their predictions by comparing the measured lattice parameters 
and elastic constants in the mono-phase carbides TMC (TM = Ti, Zr, Hf, 
Nb, and Ta) at room temperature. Their predictions included the lattice 
constants (ranging from 4.57 Å to 4.67 Å), thermal expansion co
efficients (ranging from 7.85 × 10− 6 K− 1 to 10.58 × 10− 6 K− 1), phonon 
thermal conductivities (ranging from 2.02 W m− 1 K− 1 to 0.95 W m− 1 

K− 1), and elastic properties of high entropy (Zr0.2Hf0.2Ti0.2Nb0.2Ta0.2)C 
in temperature ranging from 0 ◦C to 2400 ◦C by MD simulations [112]. 
Later on, Dai et al. developed their theoretical predictions on the ther
mal and elastic properties in the high entropy (Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2) 
B2 using MD simulations [113]. 

3.2. HT studies on functional properties of the HEMs 

Before 2004, there were some reports on the HEAs showing their 
functional properties, where the earlier studies were chronically sum
marized [331]. Nowadays, Zhao concluded that most multi-functional 
materials were used in the thin film format [266]. For example, Li 
et al. fabricated the combinatorial thin-film libraries and the 
electrical-resistance measurement and its correlation with the 
glass-forming ability were done using the automatic four-point probes 
method [332]. Flores’s group evaluated the microstructure and me
chanical property variations in the AlxCoCrFeNi HEAs fabricated by an 
HT laser deposition method [32]. These examples demonstrated that the 
thin-film-based combinatorial materials science approaches are 
extremely important for the discovery, research, and development of the 
HEMs. 

Above all, the HT, combinatorial experiments are designed to quickly 
evaluate the materials properties. This approach uses materials libraries 
with composition gradients and rapid experimental techniques that can 
be automated, parallelized, and miniaturized. Such techniques are well 
established for functional materials. For example, Green et al. man
ifested that HT and combinatorial methodologies can characterize the 
electronic, magnetic, optical, and energy-related materials by the 

Fig. 20. (a) Measured strain versus temperature in the quasi-equilibrium and non-equilibrium states for the CoCrFeMnNi HEA. (b) Xv–homologous temperature (T/
Tm) curves of Cu, CoCrFeNi, and CoCrFeMnNi in the quasi-equilibrium state. (Adapted from [242] with permission from Springer Nature). 
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synthesis of a “library” sample that contains the materials with the 
controlled variations of compositions [333]. Potyrailo and Takeuchi 
summarized novel measurement instrumentation, which was critical for 
characterization in combinatorial materials science as rapid and local
ized measurement schemes, resulting in massive data sets [334] for the 
combinatorial and high-throughput experimentation [335]. 

Meanwhile, there has been growing interest in developing high- 
entropy functional materials. Comparisons of functional properties be
tween the HEMs and conventional low- and medium-entropy materials 
using computational modeling and tuning the composition of existing 
functional materials through substitutional or interstitial mixing were 
archived [336–339]. Gao et al. recapped the designing future of 
high-performance functional materials, such as the magnetic HEMs, 
which may possess an enhanced magnetocaloric effect (MCE) and po
tential thermoelectric materials [336]. 

Even for the functional properties, investigating the microstructures 
of the HEMs is still not trivial as it is highly associated with the desired 
properties. Therefore, in this session, we review the descriptors and the 
functional properties of the HEMs, such as the magnetic, electrical 
conductivity, superconductivity, thermoelectric, and magnetocaloric 
properties, which will be useful for the multi-functional HT 
examinations. 

3.2.1. ML studies on phase predictions of the HEMs 
From Liu et al.’s work, the magnetic properties of the AlCoCuFeNix 

HEAs are dependent on the composition and phase structure. Other 
functional properties also highly depend on the combination of the 
composition and phase structure [266]. Hence, in this session, ML for 
phase prediction of the HEMs is reviewed. 

Generally, there are four categories in configurational phases, i.e., 
solid solution (SS), intermetallic (IM), mixed SS and IM (SS + IM), and 
amorphous (AM) phases. Much research primarily aimed to discover the 
single-phase SS that has promising mechanical properties, such as 
increasing hardness and strength [340,341]. 

Troparevsky et al. proposed a model as the criteria to predict the 
formation of single-phase HEAs, which used HT computation of the 
enthalpies of formation of binary compounds based on DFT [126]. 
Lederer et al.’s HT Ab-initio approach, named as Leder
er-ToherVecchio-Curtarolo (LTVC), can scan through many thousands of 
systems available in the AFLOW consortium repository [130]. Lederer et 
al’s LTVC is corroborated by MC simulations for estimating the transi
tion temperature of a SS. Ab-initio energies were incorporated into a 
mean-field statistical mechanical model where an order parameter fol
lowed the evolution of disorder [130]. Meanwhile, Lederer et al. found 
that there are cases in disagreement with the experiments or CALPHAD 
when the vibrational formation entropy or insufficient training data for 
cluster expansion was neglected in their HT Ab-initio approach. Lederer 
et al. concluded that sluggish kinetics was the bottleneck in achieving 
the equilibrium state, especially in measuring many transition temper
atures precisely. 

For the predictions of specific phases, such as the BCC and FCC, Pei 
et al. performed a support vector machine model to predict the stable 
HEAs from the composition space of 16 metallic elements, which was 
one order larger than the number of available experimental data [129]. 
There are 322 as-cast samples with a cross validation accuracy over 90 % 
after training and testing. Pei et al. anticipated there have 369 FCC and 
267 BCC equiatomic HEAs. Eleven RHEAs agreed with recent experi
ments, and the 20 quinary ones with the highest melting temperatures 
are validated through first-principles calculations [129]. Pei et al.’s 
model was complementary to the calculation of phase diagrams and 
Ab-initio methods [129]. Li et al. built a SVM model with 322 as-cast 
HEAs and a cross validation accuracy over 90 % to forecast the FCC 
and BCC phases formation [129]. Among them, several RHEAs were 
screened out based on a high ratio of melting temperature to density. 11 
of them complied with recent experiments and the 20 quinary HEAs 
were validated through first-principles calculations. Kostiuchenko and 

his teammates developed a novel ML-potential involving relaxation ef
fects, called as low-rank potentials. In combination with MC simula
tions, the potentials are proved to reach high accuracy as cluster 
expansion techniques in studying the phase stability in the prototypical 
NbMoTaW HEA. Local relaxation effects were found to significantly 
stabilize single-phase formation of NbMoTaW to room temperature 
[131]. Meanwhile, Songa et al. proposed a method that combines elec
tronegativity different, CALPHAD and ML to screen the high yield 
strength region in Co-Cr-Fe-Ni-Mo multi-component. SVMs model with 
trained data of CALPHAD calculations was established to predict the 
phase decomposition temperature for obtaining single-phase HEAs. 
Because the yield strength is positively related to the electronegativity 
difference, the compositions of HEAs with the phase decomposition 
temperature of 900 K and the maximum electronegativity are screened 
from the large amounts of high-throughput ML calculations. Moreover, 
Songa et al.’s results are validated by the experiments [342]. 

Since the IM was found to enhance functional applications via pre
cipitate hardening, comprehensive studies on the IM have been con
ducted [89,343]. Islam et al.’s ML for phase selection in the HEAs 
employed a neural network in the ML framework to identify data pat
terns from an experimental dataset [127]. Islam et al. analyzed the 
correlations between the five features that lead to the phase selection in 
a dataset of 118 data of the HEAs and trained a NN model to classify the 
resulting phases based on the input features. They found a very high 
accuracy (> 99 %) in learning of the full dataset as well the most 
important factor is the VEC and the least important one is the mixing 
entropy. In addition, it is known that the amorphous phase exhibits great 
corrosion resistivity, and its crystalline structure and atomic-size dis
tribution have been discussed through parametric studies [95,344]. 

On the other hand, eutectic or dual-phase HEAs were proposed as 
promising new classes of the HEAs owning high ductility-strength 
combination with the concept of combining soft FCC with hard BCC 
phases [1,345–347]. Therefore, efficiently predicting phases or struc
tures, such as BCC, FCC, and hexagonal-close-packed (HCP) structures as 
well establishing links with compositions, is a pivotal step for screening 
a huge amount of the HEAs before further detailed characterization, and 
the implementation of ML can significantly achieve the goal. For 
example, Qu et al. [102] employed a SVM to build phase-predictive 
models (FCC, BCC, HCP, IM, or other phases) with both composition 
and thermodynamic parameters datasets (ΔHmix, δ, Δχ, and VEC). A 
dataset with 1348 data points has been established, which covers most 
of the HEAs families. The accuracies of both models were similar and 
above 85 %, and the gap were mainly caused by the IM-phase prediction. 
To be more specific, thermodynamic parameters have less effect on 
different SS-phases prediction. On the other hand, following Islam and 
Huang’s work [127] with only 118 data points, Huang et al. [128] 
involved three different ML algorithms, namely, Fine and Weight KNN, 
SVM and ANN [unsupervised SOM method and supervised multi-layer 
feed-forward NN (MLFFNN)], to differentiate SS, IM, and SS + IM 
phases using 401 datasets. It was suggested that all the five input 
elemental features converted from compositions were mostly indepen
dent, among which δ and VEC were more crucial than the others. Due to 
the blurry boundary between the SS and SS + IM phases, direct ternary 
classifications could not reach high accuracy as MLFFNN displayed 74.3 
% of highest accuracy among all models. For the local atomic behavior, 
which influences the HEMs, Kostiuchenko et al. employed ML potentials 
based on Ab initio data combined with MC simulations to investigate the 
phase stability, phase transitions, and chemical short-range order (SRO) 
in the BCC NbMoTaW HEA. 

For the ML guided appraisal and exploration of phase design, Zhou 
et al. used one-dimensional (1D) convolutional neural network (CNN) 
and ANN [44]. Later, there are more and more investigations about 
complex phase predictions. For instance, Dixit and coworkers [133] 
implemented an ANN and unprecedentedly included processing routes, 
e.g., arc melting, injection-casting, and sputtering as an input feature 
apart from the conventional thermodynamic parameters. Given the total 
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input features, the proposed model can forecast all the coexisting phases, 
i.e., FCC, BCC, FCC1 + FCC2, BCC1 + BCC2, B2, Laves, C14 and Laves +
Sigma, with 87.08 % accuracy. Lee et al.’s recent work [134] refined the 
NN into a deep learning-based phase predictor. To optimize 
hyper-parameters in the architecture, Bayesian optimization was 
applied, and a CGAN generates data to overcome the shortage of data. 
After adding augmented data, the performance of the model was largely 
elevated, reaching 93.17 % of accuracy. In addition, the deep 
learning-based NN permits the interpretability of design parameters. 
This work built a comprehensive guidance in the HEAs design, and most 
importantly, demonstrated the capability of generating similar and 
novel compositions via generative models. 

As a framework of phase prediction via ML is gradually consolidated, 
research tends to uncover the relationships between microstructures and 
thermodynamic properties to reach higher predictability and interpret
ability. Some studies created novel thermodynamic parameters or 
physical parameters for training while others focused on feature engi
neering with rational selection of materials descriptors. There are 
several materials descriptors correlated with the HEMs. For example, 
Yang and Zhang proposed the parameters Ω and δ to anticipate the phase 
formation for the HEAs [98]. Yang and Zhang defined Ω ≡

(Tm × ΔSmix)/|ΔHmix|
where ΔSmix is the entropy of mixing, Tm is the mean 

melting temperature averaging from the principal elements, and ΔHmix is 

the enthalpy of mixing. Yang and Zhang defined δ =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1ci

(
1 − ri/r

)
2

√

where ci is the atomic percentage of the ith component, r is the average 
atomic radius, and ri is the atomic radius, respectively [98]. Yang and 
Zhang indicated that the HEAs were stabilized as solid solution when 
Ω ≥ 1.1 and δ ≤ 6.6% [98]. Xie et al.’s MD simulation in the AlCoCr
CuFeNi HEA thin film growth results [99] were in good agreement with 
Yang and Zhang’s solid-solution formation rules [98]. VEC is another 
important parameter to predict the phase stability of the HEMs [132]. 
Guo et al. found that the stability of FCC and BCC HEAs was highly 
correlated with the VEC, that Chen et al. employed the VEC to design the 
HEAs with strength-ductility balance [348]. 

With these materials features and descriptors, Zhang et al. [115] 
employed feature selection and feature-variable transformation based 
on Kernel Principal Component Analysis (KPCA) in a four-phase pre
diction. It was found that the SVM model with four feature variables in 
KPCA led to the highest accuracy of 97.43 % for the classification of SS, 
AM, SS + IM, and IM. The investigation unprecedently included 
formation-enthalpies parameters extended from the Miedema theory 
[349], such as the mixing enthalpy of amorphous phase (HAM), forma
tion enthalpy of intermetallic compound phase (HIM), and elastic energy 
of alloy (HE). Pei et al. trained the ML model with 93 % accuracy for the 
single-phase prediction (FCC, BCC, and HCP groups) of the HEAs. The 
most important features such as melting point, molar volume, and bulk 
modulus were identified [47]. And a new thermodynamics-based rule 
was developed to predict solid–solution alloys although it was slightly 
less accurate (73 %). Zhang et al. [350] utilized a GA to rationally select 
a good combination of ML models and materials descriptors subsets from 
14 empirical descriptors plus 56 self-defined descriptors, attaining an 
accuracy of 88.7 % in the SS/non-SS classification and an accuracy of 
91.3 % in the BCC/FCC/Dual phase identification. Furthermore, they 
reported that the initial dataset of high classification uncertainties can 
improve their ML model, which demonstrated a successful 
active-learning approach. Kaufmann et al. employed a random forest 
model coupling with 108 compositional and 244 thermodynamic fea
tures to forecast the formation ability of SS including single- or 
multi-phase SS [199]. 13 most related features were extracted from the 
total of 352 features. The training data contained 134 equiatomic 
compositions from DFT calculations. The model predicted well the 
validation set for binary and ternary systems obtained from the CAL
PHA. However, the score for validation set of DFT-based LTVC was 
relatively low, attributed to the lack of training data for the ternary, 

quaternary, and quinary compositions. Notably, the uncertainty of the 
model can be known by the votes of each decision tree and the fractions 
of votes of each class. Recently, Machaka demonstrated a systemic 
framework of phase prediction, which was constructed by incorporating 
the six feature selection methods, features ensembles, and eight 
top-most identified classifiers. Machaka successfully forecasted five 
alloy systems for their phase transitions and phase stabilization [135]. 
Roy et al. applied a gradient boost regressor ML method and concluded 
that the mean melting point (Tm) and electronegativity difference as the 
most important descriptors have the strongest contributions to the phase 
formation in the low-, medium- and high-entropy alloys [123]. Dai et al. 
tried multiple algorithms and different features to achieve high accuracy 
for phase prediction with limited training dataset [136]. With feature 
engineering, over ten thousand descriptors could be constructed from 9 
original features by four fundamental functions of |x|1/2, x2, x3, 
log(1 + |x| )) and by multiplying any 2 or 3 features. 9 most related 
features were selected for best representing the dataset. Interestingly, 
the constructed non-linear descriptors associated with logistic regres
sion as a linear algorithm boosted the prediction performance of mate
rials research. 

3.2.2. Studies on magnetic and magnetocaloric properties of the HEMs 
ML and HT examinations have been applied for the research of 

magnetic materials for years, as reviewed by Vasudevan et al. [93]. One 
of the highlights in Vasudevan et al’s review is the generation and 
application of libraries from both experimental and theoretical tools. 
Frey et al.’s HT search discovered the magnetic and topological order in 
transition metal oxides where they calculated more than 27,000 unique 
magnetic orderings for more than 3000 transition metal oxides in the 
Materials Project database [351]. Choudhary et al.’s HT search for 
magnetic topological materials using spin-orbit spillage and ML [352]. 
Choudhary et al. also experimentally synthesized and characterized a 
few candidate materials, which supported their theoretical predictions 
[352]. Meanwhile, Ren et al. accelerated the discovery of metallic glass 
through the iteration of ML and HT experiments where they trained a ML 
model on previously reported observations and parameters from phys
iochemical theories. Ren et al. made their ML model become synthesis 
method-dependent to guide HT experiments in finding a new system of 
metallic glasses in the Co-V-Zr ternary [240]. Geng et al. demonstrated 
bulk combinatorial synthesis and HT characterization for the rapid 
assessment of magnetic materials, using the Laser Engineered Net 
Shaping (LENS™) methods [353]. 

There are several important characteristics for magnetic materials, 
namely, the coercivity and the energy product designated as BHmax. Soft 
magnets have low coercive fields and narrow hysteresis loops while hard 
magnets have higher coercive fields. Larger maximum energy products 
(BHmax, unit J/m3) are desirable for hard magnets. The remanent in
duction, BR, is the induction that remains when the field H is removed. 
The coercive field, Hc, is the field required to fully magnetize and 
demagnetize the materials. 

For the HEMs, Gao et al. summarized the literatures reporting the 
magnetic properties, where the study of the magnetic properties of the 
HEAs aiming to reach high saturation magnetization (Ms) and low 
coercivity (Hc) [336]. Meanwhile, Gao et al. also pointed out that many 
functional materials have been studied, which satisfied the HEA defi
nitions [336]. Table 7 summarizes the magnetic properties of the HEAs. 

In Fig. 21, the measured magnetic properties of the selected HEAs 
(Table 7) are overlaid on a map of saturation magnetization versus 
coercivity for major conventional soft and semihard magnetic materials. 
It can be seen from Fig. 21 that compared to the traditional soft magnets, 
the HEAs have lower saturation magnetization and higher coercivity. 

Using ML, Rickman et al. outlined several computational strategies 
to identify useful HEAs, including the HEAs for the magnetic applica
tions [355]. Rickman et al. found that the SRO influenced the physical 
properties of the HEAs. More specifically, SRO dictated the magnetic 
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properties, electronic transport, and deformation mechanics of the 
HEMs [355]. 

For the combinatorial assessment of the HEMs, Borkar et al. exam
ined the composition-microstructure-microhardness-magnetic property 
relationships, using the laser-deposited compositionally-graded AlxCr- 
CuFeNi2 where 0 < x < 1.5 [356]. Specifically, for the FeMnCoCrAl HEA 
system, Marshal et al. developed thin-film libraries for the combinatorial 
evaluation of the phase formation and magnetic properties [138]. 
Marshal et al. systematically investigated using the conventional XRD 
and spatially-resolved atom probe tomography as characterization 
techniques as well as DFT [138]. Marshal et al. found that the BCC 

structure was formed with an addition of Al, exhibiting a soft ferro
magnetic behavior. Further increase in the non-ferromagnetic Al content 
beyond 8 wt. % decreased the overall Ms because of the substitution of 
ferromagnetic species by the paramagnetic Al, which also induced lat
tice distortions. Marshal et al.’s measured the trend of the Al 
concentration-induced reduction in magnetization, which was in 
agreement with their DFT predictions [138]. 

Compared with the traditional commercial magnetic materials, the 
magnetic properties of HEAs are mostly located between semi-hard 
magnetic and soft magnetic regions. As Gao et al. pointed out that the 
magnetic HEMs may possess an enhanced MCE as potential thermo
electric materials [336]. 

With the assistance of ML, there are several new materials with 
better magnetocaloric. Holleis et al. demonstrated the ML-guided design 
of single-molecule magnets for magnetocaloric applications [357]. 
Castro et al. showed the ML-guided discovery of the gigantic MCE in 
HoB2 near the hydrogen-liquefaction temperature [358]. Zhang and Xu 
reported that they tuned the MCE, represented by the maximum mag
netic entropy change (MMEC), in manganites from compositions and 
structural parameters via ML [359]. Zhang and Xu screened more than 
70 lattices, cubic, pseudocubic, orthorhombic, and rhombohedral, with 
the MMEC ranging from 0.65 J-kg− 1 K− 1 to 8.00 J-kg− 1 K− 1 under a field 
change of 5 T [359]. 

For the HEMs, Perrin et al. reported the role of compositional tuning 
of the distributed exchange on the magnetocaloric properties in the 
HEAs [360]. Yuan et al. demonstrated the rare-earth HEAs with giant 
MCE [361]. Law et al. enhanced the MCE by the magneto-structural 
phase transition [362]. Following is an example of the high-entropy 
bulk metallic glasses (HE-BMGs), which maximize large magnetic en
tropy changes (ΔSM). Huo et al. developed the HE-BMGs for their wider 
ΔSM peak, and thus, larger refrigerant capacity [363]. Huo et al. 
demonstrated that the HE-BMGs are the potential candidates for mag
netic refrigerants working in a helium and hydrogen-liquefaction tem
perature range [363]. To characterize the MCE, the ΔSM can be 
estimated as below. 

ΔSM(T,H) =

∫ Hmax

Hmin

(
∂M
∂T

)

HdH (19)  

where Hmin and Hmax represent the initial and final values of the mag
netic field, respectively. Huo et al. set Hmin = 0 and Hmax = 5 T [363]. 

The peak magnetic entropy changes 
(

ΔSpk
M

)
in the HE-BMGs are shown 

in Fig. 22. 

3.2.3. Studies on thermal, electrical, thermoelectric conductivities and 
superconductivity 

Thermal, electrical, thermoelectric conductivities, and supercon
ductivity are the important functional properties. Hence, there are many 
new materials systems developed by coupling the ML and HT methods. 
The electrical resistivity of alloys is principally controlled by electron- 
electron interactions, magnetic effects, and phonon at temperatures in 
the range of 4 ~ 300 K, and solely by phonon at temperatures in 300 ~ 
400 K. The phonon contribution to thermal conductivity actually is 
comparable with the electronic contribution [368]. For thermal con
ductivity, Juneja et al. predicted the lattice thermal conductivity by 
coupling the HT property map and ML [369]. Chen et al. built a 
ML-based model using a benchmark data set of experimentally measured 
100 inorganic materials [370]. Chen et al. considered 61 features, which 
belonged to the three distinct categories, i.e., elemental, structural, and 
pertaining to valence electrons. Chen et al. found that the key features 
governing the thermal-transport behaviors in non-metals are the specific 
bulk modulus and bond length [370]. For the semiconductors, Carrete 
et al. revealed an unprecedented discovery of low-thermal-conductivity 
half-Heusler semiconductors via HT materials modeling [371] in the 
AFLOWLIB.org database [60,202]. For the high-temperature solid 

Table 7 
Measured saturation magnetization (Ms, T) versus coercivity (Hc, A/m) for the 
HEAs reported in the literature [336,338,339].  

Alloy Structure Hc (A/m) Ms (T) 

CoFeNi FCC 121 1.606 
CoFeNi FCC 1,069 1.356 
CoFeNi FCC 189 1.671 
CoCrFeNi FCC 46 0.200 
CoCrFeNi FCC 1,252 0.144 
CoFeMnNi FCC 119 0.188 
Al0.25CoCrFeNi FCC 356 0.151 
Al0.25CoFeNi FCC 216 1.287 
Al0.25CoFeMn0.25Ni FCC 268 0.999 
CoCrFeMnNi FCC 13,980 0.951 
CoCrFeMnNi FCC ~0 0.328 
CoCrFeMnNi FCC 10,804 0.014 
CoCrFeNiTi FCC 11,900 0.220 
CoCrFeNiTi FCC 9,661 0.013 
CoCrCuFeNi FCC 13,210 0.559 
CoFeNiSi0.25 FCC 352 1.216 
CoFeNi(AlSi)0.1 FCC 1,089 1.287 
CoFeNi(AlSi)0.2 FCC 1,401 1.130 
AlCoCrFeNi BCC 4,138 0.546 
Al1.25CoCrFeNi BCC 2,912 0.656 
Al2CoCrFeNi BCC 188 0.267 
AlCoCrFeNb0.1Ni BCC 4,615 0.422 
Al0.5CoCrFeNi FCC + BCC 756 0.143 
Al0.75CoCrFeNi FCC + BCC 363 0.087 
CoFeNi(AlCu)0.8 FCC + BCC 362 0.714 
CoFeNi(AlMn)0.5 FCC + BCC 730 0.482 
CoFeNi(AlMn)0.75 FCC + BCC 445 1.148 
CoFeNi(AlCu)0.8Ga0.02 FCC + BCC 381 0.717 
CoFeNi(AlCu)0.8Ga0.04 FCC + BCC 383 0.722 
CoFeNi(AlCu)0.8Ga0.06 FCC + BCC 464 0.733 
CoFeNi(AlCu)0.8Ga0.08 FCC + BCC 686 0.749 
Al0.5CoFeNi FCC + BCC 343 0.992 
Al0.75CoFeNi FCC + BCC 308 0.985 
AlCoFeNi FCC + BCC 224 0.846 
CoFeNi(AlSi)0.3 FCC + BCC 19,336 0.900 
CoFeNi(AlSi)0.4 FCC + BCC 17,963 0.904 
CoFeNi(AlSi)0.5 FCC + BCC 1,937 0.865 
CoFeNi(AlSi)0.8 FCC + BCC 5952 0.423 
AlCoCrCuFeNi FCC + BCC 3581 0.339 
AlCoCrCuFeNi FCC + BCC 1,194 0.143 
CoFeGaMnNi FCC + BCC 915 0.763 
CoFeNiSi0.5 FCC + Ni3Si 408 0.816 
CoFeNiSi0.75 FCC + Ni3Si 4,532 0.671 
CrFeNiTi FCC1 + FCC2 + σ 13,284 0.118 
CrFeNiTi FCC1 + FCC3 + σ 12,161 0.008 
CrFeMnNiTi FCC1 + FCC4 + σ 17,971 0.020 
CrFeMnNiTi FCC1 + FCC5 + σ 10,430 0.004 
CoFeMnNiSn L21 + BCC 3,431 0.797 
AlCoFeMnNi BCC + B2 629 1.260 
Fe40Co35Ni5Al5Cr5Si10 BCC + B2 80 1.145 
AlCoCrFeNb0.25Ni BCC1 + BCC2 + Laves 7,480 0.298 
AlCoCrFeNb0.5Ni BCC1 + BCC3 + Laves 6,764 0.154 
AlCoCrFeNb0.75Ni BCC1 + BCC4 + Laves 7,480 0.091 
Co26.7Fe26.7Ni26.6Si9B11 Amorphous 2 1.070 
B15Co25Fe25Ni25Si10 Amorphous 2 0.840 
B17.5Co25Fe25Ni25Si7.5 Amorphous 1 0.870 
B8.7Co28.5Fe26.7Ni28.5P3Si4.6 Amorphous 4 1.070 
FeNiGaMnSi BCC 232 0.431 
CoCrFeNiCu FCC 2,627 0.291  
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phases, Roekeghem et al. used finite-temperature phonon calculations 
and ML methods to estimate the mechanical stability of approximately 
400 semiconducting oxides and fluorides with cubic perovskite struc
tures at different temperatures [372]. Roekeghem et al. also screened for 
materials exhibiting negative thermal expansion [372]. 

Schütt et al. demonstrated a ML approach for fast prediction of the 
electronic properties [373]. Schütt et al. employed local spin-density 
approximation calculations as a training set. Schütt et al. focused on 
predicting the value of the density of electronic states at the Fermi en
ergy. Schütt et al. found that conventional representations of the input 
data, such as the Coulomb matrix, is not suitable for the training of 
learning machines in the case of periodic solids [373]. To understand the 
behavior of dielectric insulators experiencing extreme electric fields, 
Kim et al. used advanced statistical or ML schemes to obtain predictive 
phenomenological models of dielectric breakdown and found analytical 
relationships between the breakdown field and material properties, such 
as band gap and phonon-cutoff frequency [374]. For the electrical 
conductivity, Chen et al. developed a small set of ML algorithms [375], 
which was used to investigate the electrical properties of the materials 
for future applications, such as for neuromorphic computing [376]. 
Islam et al. showed that emerging non-volatile memory devices that 
exhibit gradual changes in resistivity are a key enabler of in-memory 
computing, which is a type of neuromorphic computing [376]. 

For the thermal and electrical conductivity, Oliynyk et al. trained a 
ML model to discover the Heusler compounds. Compared to the other 

approaches, Oliynyk et al.’s HT ML-driven synthesis made faster and 
more reliable predictions of the occurrence of Heusler vs. non-Heusler 
compounds for an arbitrary combination of elements with no struc
tural input on over 400,000 candidates [377]. Gaultois et al. employed 
ML to guide an experimentally new compound (Er12Co5Bi/Gd12Co5Bi) 
for thermoelectric materials, which possessed low thermal and high 
electrical conductivities, but modest Seebeck coefficient [377]. Notably, 
the rare-earth family compound is quite distinct from the known ther
moelectrics, but exhibits similar structures with the known thermo
electrics. In addition, a positive temperature dependence of the thermal 
diffusivity is found for these compounds, which was rarely obtained 
before. 

The Wiedemann-Franz law examine the thermal and electrical con
ductivities by comparing the ratio of the electronic contribution of the 
thermal conductivity to the electrical conductivity of a metal as a 
function of temperature, as presented in the following Equation. 

κ = κe + κph = LσT =
(
Le + Lph

)
σT (20)  

where T is the temperature, κ is the thermal conductivity, Le is the 
Lorenz number, and σ is the electrical conductivity. 

A four-point probe method is used to measure the electrical resis
tance. Huxtable et al. demonstrated the thermal conductivity imaging at 
a micrometre-scale resolution for combinatorial studies of materials 
[378]. Thermal diffusivity is determined by means of the laser-flash 
method [379]. Meanwhile, the differential scanning calorimeter (DSC) 
is used to measure the variation of heat capacity with temperature. Thus, 
the thermal conductivity (κ) is calculated, as shown below. 

κ(T) = α(T) × S(T) × ρ(T) (21)  

where T is the temperature; κ(T) is thermal conductivity, α(T) is thermal 
diffusion coefficient, S(T) is the specific heat, and ρ(T) is the density. 

Fig. 23 depicts the thermal conductivity and electrical resistivity for 
different materials, and the dashed line indicates that the HEAs also 
follow the Wiedemann–Franz law. Due to the obvious diffuse reflection 
effect, the HEAs have lower thermal conductivity and electrical con
ductivity than the traditional alloys [380]. 

To apply the HEMs for the applications of thermoelectric technolo
gies, Wei et al. recapped the thermodynamic routes showing the ultra
low thermal conductivity and high thermoelectric performance [383]. 
In search of thermoelectric materials with high conversion efficiency, 
the dimensionless TE figure-of-merit, zT, has been used to estimate the 
performance, defined as follows. 

Fig. 21. Measured saturation magnetization versus coercivity in the HEAs with the structures of FCC, BCC, FCC + BCC, FCC + IM, BCC + IM, and AM, compared with 
major conventional soft (marked in the dashed yellow lines) and hard magnetic materials (marked in the dashed purple lines). (Adapted from [354] with permission 
from MDPI) (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.). 

Fig. 22. Peak magnetic-entropy change, ΔSpk
M (J. kg− 1. K− 1), of the HE-BMGs 

(Data taken from [363–367]). 
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κzT =
S2σ
ktotal

T (22)  

where S is the Seeback coefficient, σ is the electrical conductivity, and 
ktotal is the total thermal conductivity. The temperature dependencies of 
the Seebeck coefficients from the selected HEMs are shown in Fig. 24. 
The results show that by increasing the manganese (Mn) content, there is 
a higher Seebeck coefficient and lower electrical conductivity through 
the cocktail effect in the HEMs. Due to the reason that conventional TE 
device suffer from high cost for fabrication, spin-driven thermoelectric 
(STE) phenomena provides an alternative solution to this problem. 
Unfortunately, the understanding of the fundamental mechanism and 
the material parameters is still lacking. Iwasaki et al. employed the 
combination method of ML and HT experiments to develop a better STE 
material. The obtained Fe0.665Pt0.27Sm0.065 achieved 11.12 μV/K [384]. 

From Yuan et al.’s review on the advances in the HT superconduc
tivity research, the HT computation, synthesis, characterization, and the 
emerging field of ML for materials were presented [387]. For example, 
Stanev et al. developed several ML schemes to model the critical tem
perature (Tc) of the 12,000 + known superconductors available via the 
SuperCon database and investigate the chemical/structural properties of 
materials [388]. Stanev et al. divided superconductivity materials into 
two classes based on their Tc values, above and below 10 K. Stanev et al. 
used materials data from the AFLOW Online Repositories [60,202] and 

searched for the entire Inorganic Crystallographic Structure Database 
(ICSD) for new potential superconductors, in which Stanev et al. iden
tified > 30 non-cuprate and non-iron-based oxides as candidate mate
rials [388]. Matsumoto et al. used the random forest regression model to 
establish a Tc prediction model for searching superconductors with 
higher Tc [389]. The versatility of the model enables to predict well the 
Mg-B-Ti system and Fe-Te-Se system despite the lack of Fe-based su
perconductors in the training data. The Ca-B-C system with the highest 
Tc (36 K) was forecasted by the model. It is suggested that a higher Tc 
superconductor could be found in a quaternary or a five-element system 
as the training model including cuprate and Fe-based superconductors. 

To investigate the superconductivity property of the HEMs, Marik 
et al. prepared a single-phase polycrystalline Nb21Re16Zr20Hf23Ti20 HEA 
material [390]. Quasi-static (DC) magnetization, ac susceptibility, 
electrical, and specific heat measurements were performed, using a 
Magnetic Properties Measurement System (MPMS) and Physical Prop
erty Measurement System (PPMS). The effective Fermi temperature (TF) 
is obtained by the following Equation. 

kBTF =
ℏ2

2
(
3π2)2/3n2/3

m* (23)  

where kB is the Boltzmann constant, TF is the Fermi temperature, ℏ is the 
Dirac constant, n is the quasiparticle number density per unit volume, 
and m* is the effective mass of quasiparticles [391]. 

Fig. 23. Thermal conductivity and electrical resistivity for various materials, the dash line representing the Wiedemann-Franz relationship (Data taken from [322, 
368,381,382]). The data is from the CES EduPack 2018, Granta Design, Limited, Cambridge, UK, 2018. (The data taken from ML is from [377]). 

Fig. 24. Temperature dependencies of the Seebeck coefficients in the HEAs. (Data taken from [385,386]).  
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Fig. 25 depicts the superconducting transition temperature (Tc) vs. 
the effective Fermi temperature (TF). The Nb21Re16Zr20Hf23Ti20 HEA is 
shown as a solid red star with TF of 10,091 K. The results suggest that the 
Nb21Re16Zr20Hf23Ti20 HEA belongs to a type-II superconductor, which 
exhibits an intermediate phase of the mixed ordinary and super
conducting properties at intermediate temperatures [392]. Compared to 
the other systems, the superconducting transition critical temperature of 
HEAs is relatively low. The superconductivity of the HEMs may appear 
only subjected to extreme environments. Most HEMs with supercon
ductivity have transition elements, such as Re and Ta. The critical 
temperatures of these systems are below 10 K as non-traditional su
perconductors [390,391,393]. 

3.3. HT studies on properties depending on both compositions and 
microstructures 

Referring to Miracle and Senkov’s conclusion on the HEAs and 
related concepts of MPEAs [1], the structural properties of HEMs depend 
on both compositions and microstructures [33]. Moreover, the struc
tural properties have dramatic scaling effects [396]. Since the micro
structures and length scales are major barriers for the HT examinations 
on the structural properties, mainly the mechanical behaviors of the 
HEMs, it is not as trivial as the applications of the HT examinations on 
the functional HEMs. Therefore, in this section, we introduced a few 
examples of the HT studies on the mechanical properties in the HEMs. 
Major efforts are to summarize the mechanical behaviors and the asso
ciated microstructures of the HEMs. 

3.3.1. ML and HT studies on mechanical properties of the HEMs 
Although many efforts have been primarily dedicated to the phase 

selection with an informatics-based approach, several researchers have 
applied ML and HT techniques to mechanical-properties predictions, 
particularly hardness and YS. For example, Coury et al. reported an 
“Effective Atomic Radii for Strength” (EARS) methodology, together 
with different semi-empirical and first-principle models, and they pre
dicted the extent of SS strengthening to design new Cr45Ni27.5Co27.5 
HEAs owning a YS over 50 % greater associated with equivalent ductility 
than the strong HEA (Cr33.3Ni33.3Co33.3) from the CrMnFeNiCo family 
[48]. Meanwhile, Cheng et al. propose a machine model to extract 
important features, which influence SS strengthening of the HEAs. 
Cheng et al. propose a new model with feature of electronegativity 
difference that fit the hardness data better than the other models which 
were mainly based on the mismatches of the atomic sizes and the dif
ferences between the moduli. Cheng et al. introduced the mixing 
enthalpy to improve the predictions of the single-phase HEAs hardness 
in an error rate of 13.8 % [397]. Moreover, Coury et al. developed a HT 
nanoidentation for yield-stress estimations of single-phase HEAs within 
an approximately error of 10 %, which was successfully applied to a 

compositionally-graded region of a diffusion multiple [238]. Coury 
et al.’s experimental and complimentary simulation results indicated 
that the strength was maximized when the atomic-size mismatch was 
maximized in their systems, including Cr19Mn20Fe16Co23Ni23, 
Cr27Mn4Fe2Co34Ni33, Cr1Mn24Fe26Co24Ni25, Cr1Mn2Fe1Co47Ni49, 
Cr33.3Fe10Co28.3Ni28.3, Cr25Co37.5Ni37.5, Cr33.3Co33.3Ni33.3, Cr33.3Fe10

Co28.3Ni28.3, Cr33.3Mn10Co28.3Ni28.3, Cr45Co27.5Ni27.5, Cr20Mn20Fe20

Co20Ni20, Mn25Fe25Co25Ni25, and Cr33.3Co33.3Ni33.3, Co50Ni50 [238]. 
To design light and strong HEAs, Menou et al. [132] conducted the 

computational method by a multi-objective optimization genetic algo
rithm combining a data-mining method using (1) phase calculations 
through the CALPHAD method to estimate the probability of forming a 
single SS, (2) physical models to predict the solid solution hardening 
(SSH) contribution and crystal structures of multi-concentrated alloys, 
and (3) a mixture rule for the density estimation to design HEAs with 
high specific strengths. The method led to the design of 3155 compo
sitions, which simultaneously had a higher probability to form a BCC 
single solid solution structure, a higher SSH, and a lower density, 
so-called Pareto-optimal. A new HEA of Al35Cr35Mn8Mo5Ti17 was 
selected and fabricated, reaching an actual composition of 
Al31Cr37Mn7Mo6Ti19. The measurement result of the HEAs is one of the 
hardest (658 HV) metallic alloys ever recorded for such a low density 
(5.5 g/cm3). Moreover, they also proposed the same strategy to explore 
the strong and stable FCC HEA [188]. More than 2000 compositions are 
produced with the optimization strategy. The optimized FCC alloy, 
Al10Co17Fe34Mo5Ni34, is selected to fabricate by vacuum arc melting for 
validation. The experiment results disclosed that the Vickers hardness of 
1.78 GPa, a yield stress of 215 MPa, and an ultimate tensile strength of 
665 MPa in the annealed state are superior to the existing FCC HEAs 
with comparable density. Menou et al.’s data-driven method can be 
further implemented for including more criteria, such as the elastic 
modulus, cost, and melting temperature, etc. 

Similarly, Xiong and coworkers [398] proposed a two-objective 
regression model predicting hardness and compressive yield stress, the 
correlation coefficient of which were both higher than 0.905. These 
studies demonstrated the predictability of ML on different mechanical 
properties. Followed by Rickman’s previous endeavors in materials data 
analytics in conjunction with a visualization strategy, known as parallel 
coordinates [399], they successfully screened and generated virtual 
HEAs having high hardness in excess of 1000 HV via the combination of 
the canonical correlation analysis (CCAA) and GA optimization strategy 
with a CCAA-recommended fitness function [39]. The fitness function 
governed GA in finding candidates that are 5-element alloys from 16 
elements and 16 M compositions per element, in certain regions. Finally, 
the model was validated by seven candidates synthesized and charac
terized, compared with the predictive hardness. In 2020, Rickman et al. 
reviewed several novel ML applications for HEAs on top of his previous 
work [400]. Within the cuckoo search, another nature-inspired 

Fig. 25. The superconducting transition temperature, Tc, vs. the effective Fermi temperature, TF, where the Nb21Re16Zr20Hf23Ti20 HEA is shown as a solid red star. 
Other data points plotted between the blue solid lines are different families of unconventional superconductors. (Data taken from [390,391,393–395]) (For inter
pretation of the references to colour in this figure legend, the reader is referred to the web version of this article.). 

E.-W. Huang et al.                                                                                                                                                                                                                              



Materials Science & Engineering R 147 (2022) 100645

28

algorithm was proposed to deal with optimization problems. It was 
coupled with MD to maximize the ultimate tensile strength in the 
Al-Cr-Co-Fe-Ni quinary alloy system, and the improvement on this al
gorithm accelerating convergence was also discussed. Bhandari et al. 
[401] established the ANN model for the prediction of the Vickers 
hardness of RHEAs. Through the features selection, the predicted 
hardness of 695 HV from the ANN model was consistent with the 
experiment of 601 HV for C0.1Cr3Mo11.9Nb20Re15Ta30W20, which is less 
than 15 % error. Since the training sets include little dataset (128 
samples) and several elements (17 elements), the prediction error is 
diverged and ranged from 0.99 % ~ 49.2 %. As the volume fraction and 
size of precipitate play dominant roles in precipitation strengthening, 
Zheng et al. [402] developed the ANN model to hasten the exploration of 
ultra-strong nanoprecipitated HEAs. The volume fraction of the γ^’ phase 
was selected as the primary target in ANN model, while the YS played an 
assistance factor. Note that the training data only include the 
nickel-based superalloys. The predicted volume fractions are in good 
agreement with target values for the testing database of HEAs. In this 
work, a novel Ni32Co28Fe28Cr3Al3Ti6 (wt. %) aged HEA with volume 
fractions of 50.4 % and yielding strength of 1.03 GPa was obtained by 
ML HT screening among 102,213 compositions. Prestrain aging was 
further performed to enhance the YS, UTS, and elongation to 1.31 GPa, 
1.65 GPa, and 15 %, respectively. 

Besides exploring new compositions with better mechanical prop
erties, the efforts are also put forth in reasoning the relationships among 
the discovery of the property, structure, and composition. Wen et al. 
[180] demonstrated a systematic framework combining ML and design 
of experiments to find the HEAs with high hardness in the 
Al-Co-Cr-Cu-Fe-Ni system. They first trained a surrogate model learning 
the property-composition relationships and predicted nearly 
two-million pseudo compositions in a virtual space. As a utility function 
was used to guide the search for high hardness, some alloys would be 
selected to synthesize and add to the dataset. After seven iterations, the 
active learning with experiments led to several HEAs with hardness 10 % 
higher than the maximum value (775 HV) in the original training data. 
They even found that the two alloys with the highest hardness have 
more Al and little Cu. When combined with Ni, Al tends to form a BCC 
ordered phase (B2). Therefore, when the Al content increases, the solid 
solution would transform from the FCC to BCC, and to B2 phase. Chang 
et al. [21] utilized simulation annealing to search for the 
Al-Co-Cr-Fe-Mn-Ni HEA with high hardness. These efforts reveal the 
importance of Co, Cr, and Al for future HEMs design. Al is considered as 
the main contribution to the hardness. These optimization methods 
accelerate the HEMs discovery and help scientists gain insights from the 
results, which is the key of materials informatics-explainable and 
interpretable ML models. Xiong et al. employed random forest classifier 
to classify the phases as well random forest regression model to predict 
the hardness and UTS in the HEAs [403]. The 5 most related features are 
identified from the 30 selected features for the predictions of phase, 
hardness, and YTS in the HEAs. Shapley additive explanation (SHAP) 
method is adopted to calculate the contribution of features, which 
quantitatively gives a contribution value of features to the mechanical 
properties. Thereby it provides a straightforward assessment in the 
design of HEAs. Roy et al. [79] reviewed the pipeline construction of ML 
and data-driven exploration of the HEAs with emphasis on feature se
lection and role of feature descriptors. Physical quantities such as 
melting temperature and Young’s modulus are suitable for predicting 
the mechanical properties while chemical composition and environ
mental factors are included in the oxidation resistance and corrosion 
rates prediction. Kimenko et al. [404] applied ML approach to forecast 
the YS of the Al-Cr-Nb-Ti-V-Zr system at various temperatures. The 
models showed satisfactory accuracy prediction, particularly with small 
size of training dataset. To uncover the relationship between elements 
and solidification interval characteristics, Qiao et al. [405] applied a 
fuzzy neural network (FNN) model to design novel HEAs in the 
Fe-Cr-Ni-Al system. Finding that the elemental fractions of Cr and Al are 

more sensitive to mechanical performance, compositions with the nar
rowest solidification interval (calculated from CALPHAD) were pre
dicted by FNN model and prepared by experiment. The FeCrNiAl0.8 
exhibits high fracture strength and plastic strain of 2839 MPa and 41 %, 
respectively, with high work hardening capacity. The strategy provides 
an alternative way to design the advanced HEAs with superior me
chanical properties. Li et al. integrated the atomic simulation (MD), the 
physical model (Hall-Petch relationship), and the machine learning 
model (ANN) as an active learning process to find the optimal grain size 
of CrCoFeNi HEAs with heterogeneous grain structures for high strength 
[405]. ML uncovers the grain size of 38.4 nm at a large grain size of 165 
nm in the CrCoFeNi HEAs possessing a highest yield strength. The results 
agree well with those obtained by MD simulation. The design workflow 
can be further applied to explore the other materials with the desired 
performance. More recently, Li et al. [406] employed MD with SNAPs to 
simulate the refractory NbMoTaW with respect to single crystal and 
polycrystalline HEAs. They found that the edge dislocations were more 
important in the HEAs than in the individual pure BCC metal, and Nb 
segregation to grain boundaries enhanced the observed SRO. Nb 
enrichment stabilizes the grain boundaries and leads to higher strength. 
Thereby, tailoring grain boundary composition and SRO is critical to 
designing the HEAs with great mechanical properties. Fig. 26 describes 
the grain size effects on the YS and UTS. There is a clear gap between the 
ML-designed HEA with heterogeneous grain structures [407] and the 
HEAs mainly with mono-dispersed grain size [408–412], which is 
marked as the symbol of ⋆. Such a difference demonstrates that with the 
applications of the hierarchical structure and heterogeneous grain 
structure, the ML approach will open more possibility for the micro
structure design of the HEMs. 

In summary, ML has shown the ability to effectively predict the 
compositions and phase constitutions of the HEAs. While reducing the 
endless number of compositions in the design of HEAs to mere hundreds, 
big data analysis can further improve the process by observing the sta
tistical distributions and trends to obtain an insight of which element 
playing a critical role in the phase constitution. As a result, the process of 
designing HEAs can be accelerated systematically. Moreover, for the 
complicated structures, such as simultaneously tailoring both the hier
archical microstructure and heterogeneous grain structure, ML can shed 
light on possible direction, which is not feasible for the trial-and-error 
process. 

3.3.2. Phase stability in the HEAs 
The importance of the phase in the HEMs is evidenced in Table 8, 

where the phase prediction is the most frequent research topic [44,102, 
115,123,126–137]. The phase formation for the functional properties in 
the HEMs is reviewed in the earlier session. Herein, the review focuses 
on the mechanical properties in terms of the phase formation and phase 
stability. Phase formation and the distribution of the microstructural 
features in the HEMs dramatically change the mechanical properties of 
the HEMs. For example, Wu et al. investigated the mechanisms of 
eutectic formation (FCC/L12 + BCC/B2) in the HEAs [137]. Wu et al. 
discovered that Al is the most critical element while Cr is strongly 
associated with Al in the Al-Co-Cr-Fe-Ni system. This target-oriented 
systematic ML design is useful to develop the eutectic HEAs (EHEAs). 
Wu et al. demonstrated how to untangle the elemental relationships in 
the complex systems and matched with the microstructures. Wu et al.’s 
EHEAs has the UTS of ~ 1300 MPa and total elongation of ~ 20 %. 

Meanwhile, another critical issue for the HEMs is their phase sta
bility. HEMs do not simply inherit the structures and properties of their 
constituent elements, as expected with a “linear effect”. The high 
chemical complexity and packing disorder cause severe local lattice 
distortion, which could further stabilize the HEAs kinetically. Therefore, 
HEMs might exhibit rich tunable behaviors under high pressures [425, 
426]. For example, the structural stability of various HEA systems has 
been explored, using in-situ high-pressure synchrotron radiation-based 
XRD techniques showing a transformation from FCC to HCP phases in 
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the CoCrFeMnNi HEAs [289–291,427]. A similar FCC-to-HCP phase 
transformation was demonstrated in ternary and quaternary equiatomic 
FCC-structured alloys, such as CoCrNi and CoCrFeNi alloys [427]. 
However, some FCC-structured HEAs did not exhibit phase transition 
even under extreme high-pressure compression, such as CoCrFeCuNi, 
NiCoCrFePd, Al0.3CoCrFeNi, and AlCoCrCuFeNi alloys [427–430]. Sur
prisingly, some experiments concluded no phase transformation 
observed in the CoCrFeMnNi HEA even the compression pressure 
increasing up to 49 GPa [428,431]. These results implied that the 
phase-transformation mechanism in these FCC-structured HEAs is not 
yet known in detail while many polymorphic transitions have been 
discovered, as summarized by Zhang et al. [426]. There are three 
possible mechanisms to interpret the differences among these cases 
[289–291,427–431], and Zhang et al. [432] indicated the hydrostaticity 

effects of pressure-transmitting media and grain size effects of the 
inconsistency of the onset pressure-induced phase transformation 
among high pressure studies [1,35,290,427,432,433]. From Huang 
et al.’s results, as shown in Fig. 27, another possibility was that the local 
heterogeneity in the HEMs may induce the temporal shear between the 
transmitting medium and the HEMs, which induced the shear defor
mation during deformation. 

Similar shear-induced phase transformation was also observed by 
Niu et al. where Niu et al.’s tensile experiment and MD simulation 
demonstrated the deformation paths of the stacking faults and twins 
inducing the subsequent FCC-HCP structure transformation in the 
CoCrFeMnNi HEA tensile specimen [147]. These reports implied that 
the phase transformation mechanism in the HEAs and MEAs are strongly 
correlated to the shear deformation. It is also clear that stacking faults 

Fig. 26. Grain size effect on (a) yield strength and (b) ultimate tensile strength in the HEAs. (Data taken from ML-designed HEA, marked as the symbol of , with 
heterogeneous grain structures [407] and the others [408–413]). 

Table 8 
A comparison of elongation and ultimate tensile strength in different types of the as-cast HEAs [137,414–419].   

Yield 
Strength 
(MPa) 

Ultimate Tensile 
Strength (MPa) 

Elongation 
(%) 

Type Phase Ref Remarks: with ML, without ML, 
with ML and verified by 
experiments 

Ni30Co30Fe10Cr10Al18W2 – 1,266 20 EHEA FCC + BCC 

[137] 

With ML and verified by 
experiment 

Ni36Co24Fe10Cr10Al18W2 – 1,316 20 EHEA FCC + BCC With ML and verified by 
experiment 

Ni40Co20Fe10Cr10Al18W2 – 1,344 21 EHEA FCC + BCC 
With ML and verified by 
experiment 

AlCoCrFeNi2.1 – 1,100 18 EHEA FCC + BCC [414] Without ML 
AlCrFe2Ni2 780 1,228 17 EHEA FCC + BCC [415] Without ML 
Fe20Co20Ni41Al19 577 1,103 19 EHEA FCC + BCC [416] Without ML 
CrFeNi2Al 774 1,357 6 Primary BCC + FCC FCC + BCC 

[417] 

Without ML 
CrFeNi2.1Al0.9 610 1,173 9 Primary BCC + FCC FCC + BCC Without ML 
CrFeNi2.2Al0.8 479 956 13 EHEA FCC + BCC Without ML 
CrFeNi2.3Al0.7 461 835 30 Primary FCC + BCC FCC + BCC Without ML 
CrFeNi2.4Al0.6 441 757 45 Primary FCC + BCC FCC + BCC Without ML 
(FeCoNiCrMn)91Al9 332 728 30 Primary FCC + BCC FCC + BCC 

[418] 
Without ML 

(FeCoNiCrMn)90Al10 528 1,000 16 Primary FCC + BCC FCC + BCC Without ML 
(FeCoNiCrMn)89Al11 832 1,174 8 Primary BCC + FCC FCC + BCC Without ML 
CoCrFeNiNb0.103 317 622 19 FCC + Laves FCC + IM 

[419] 

Without ML 
CoCrFeNiNb0.155 321 744 21 FCC + Laves FCC + IM Without ML 
CoCrFeNiNb0.206 402 807 9 FCC + Laves FCC + IM Without ML 
CoCrFeNiNb0.309 478 879 4 FCC + Laves FCC + IM Without ML 
CoCrFeNiNb0.412 637 1,004 1 FCC + Laves FCC + IM Without ML 

Al10Hf25Nb5Sc10Ti25Zr25 500 900 4.2 
Primary BCC +
Orthorhombic 

Primary BCC +
Orthorhombic 

[420] Without ML 

Ni40Fe30Co20Al10 337 670 49.9 FCC FCC [421] Without ML 
Al4Mo4Nb8Ti50Zr34 825 825 11.0 BCC BCC [422] Without ML 
Ti38V15Nb23Hf24 774 792 20.6 Primary BCC + BCT Primary BCC + BCT [423] Without ML 
Ti25V25Nb25Hf25 1004 – 16.1 – –  Without ML 
Ti60AlCrVNb 960 – 28 BCC BCC [423] Without ML 
Fe40.2Ni11.3Mn30Al7.5Cr11 593  22 BCC + FCC/B2 BCC + FCC/B2 [424] Without ML 

Cr45Co27.5Ni27.5 ≈340  x ≈50   FCC + SIGMA [48] 
With theoretical model, and 
verified by experiment  
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play an important role in the phase stability and phase transformation in 
the HEMs. 

3.3.3. Stacking-fault effects on the HEAs 
Due to the complex nature of the HEMs, different principal elements 

have various crystal structures before forming the alloys. The HEMs in 
certain compositions possess a unique combination of high strength and 
high ductility. The unique combination is due to the change in the 
deformation mechanisms from the slip to twinning to transformation- 
induced plasticity. Recent work has demonstrated that the mechanism 
changes, resulting from a lower stacking fault energy (SFE) of alloys. 
Zhang et al. even proposed the negative SFEs and nano-twin formation 
in the FCC HEAs [143]. The SFE is the energy carried by the interruption 
of the normal atomic-stacking sequence, as exemplified for the FCC 
structure [111]. It is known that the SFE determines whether a material 
reveals transformation-induced plasticity (TRIP) or twinning-induced 
plasticity (TWIP). Furthermore, a low SFE is known to suppress dislo
cation climb and cross-slip, thereby modifying the dislocation gliding 
behavior and possibly decreasing the dislocation mobility. The 
(intrinsic) SFE, γSF, for the FCC structure is defined as 

γSF =
ESF − Efcc

Aint
(24)  

where ESF and Efcc represent the energies of the FCC structure with and 

without a stacking fault, respectively. Aint denotes the interface area over 
which the stacking fault extends in the (111) plane [111]. Ikeda et al. 
summarized the Ab initio works on the SFEs of the HEAs with various 
methods of theoretical calculations of SFEs [111]. Table 9 outlines the 
SFEs of the HEMs modified after Ikeda et al. [111]. 

Besides the simulated SFE summarized in Table 9, Lam et al. applied 
the Convolutional Multiple Whole Profile (CMWP) modeling to analyze 
the in-situ neutron-diffraction profiles and [279] found the 
fatigue-induced stacking faults and twinning activities. Woo et al. esti
mated the SFE of the MEAs using in-situ neutron-diffraction experiments 
[443]. The in-situneutron-diffraction was performed to obtain a number 
of faulting-embedded diffraction peaks simultaneously from a set of (h k 
l) grains during deformation. The peak profiles diffracted from the 
imperfect crystal structures were analyzed to correlate the stacking-fault 
probabilities and mean-square lattice strains to the SFEs. The results 
disclosed that the averaged SFE was 15.1 mJ/m2in the CrCoNi alloys. 
Meanwhile, during deformation, the SFE varies from 24 to 11 mJ/m2 

from the initial to stabilized stages. The SFE of atomic configurations 
includes SRO or segregation-based atomic environments. The transient 
SFEs are attributed to the deformation activity changes from dislocation 
slip to twinning as straining. The significant variance of the SFE suggests 
the critical twinning stress as 790 ± 40 MPa for the CrCoNi MEA. 

Gaurav Arora et al. [445] employed the ML-based methodology with 
a calculated dataset to anticipate the SFEs of the Ni-Fe-Cr system. They 
reported that the SFEs of multi-elemental alloys can be accurately 

Fig. 27. Diffraction results of the collected system subjected to hydrostatic compression: (a) ~ (k) and (l) after decompression. (Adapted from [291] with permission 
from Elsevier). 
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predicted by the ML model while relying only on the dataset of binary 
alloys. Once the dataset is produced by the calculation of inter-atomic 
potentials, which may not agree quantitatively with the DFT or experi
ment, the present work serves as a proof-of-concept framework. Due to 
the limitation of calculations, the dataset of the calculated structure did 
not consider the magnetic, elemental segregation, and SRO structure 
effects. Although it remains to be a proof-of-concept, it opens a prom
ising possibility for the design of HEAs owning high strength and high 
ductility if the specific training data can be included in the future. Vilalta 
et al. also applied ML models to predict the relationship between the 
yield stress and the SFE landscape in the HEAs [446]. The data for 
learning in this work were taken from phase-field dislocation dynamics 
simulations of partial dislocations in the FCC metals. Vilalta et al. 
adopted three different ways to describe the variations of the SFE 
landscape as the inputs to the ML models. Vilalta et al.’s best ML model 
can predict the yield stress to approximately 2% error [446]. 

4. Environmental resistance properties for the HEM studies 

Environmental resistance is a major requirement for structural al
loys. Among aqueous corrosion, wear, high-temperature oxidation, and 
stress-corrosion cracking [33], Raabe et al.’s pointed out that the 

corrosion protection is on the top priority for structural alloys [63]. Due 
to the importance of the corrosion applications, there are already suc
cessful ML and HT experiments to develop new materials (such as for the 
metallic glass [240] and alternatives to toxic chromate corrosion in
hibitors [447]) and to predict the corrosion behavior of the existing 
materials. For example, Winkler et al. screened a large library of organic 
compounds using HT experiments to assess 100 small organic molecules 
as the potential inhibitors of corrosion in the aerospace Al alloys of 
AA2024 and AA7075 [447]. Smith et al. designed the computerized 
optical analysis method as a new, rapid, HT corrosion testing method to 
quantify the corrosion data [448]. Using ML, Pei et al. forecasted the 
atmospheric corrosion of a carbon steel [449]. Pei et al.’s results showed 
that the random forest (RF) models have higher accuracy than ANN and 
SVR models for corrosion prediction. Liu et al. applied ML for 
multiple-performance optimization to develop the material with satis
factory resistance to hot-corrosion and oxidation [450]. Liu et al. firstly 
introduced the phase-classification model trained with the CALPHAD 
thermodynamic database to filter the potential composition with γ and γ′

two-phase microstructures. Multi-regression models with bootstrap 
sampling were built to predict the γ′ solvus temperature, solidus, liq
uidus, and density based on an experimental dataset assembled from the 
literature. Multi-performance optimization was adopted to search for 

Table 9 
Collection of experiments and Ab initio works on the SF of the HEMs. SF stands for “stacking fault”. NM indicates that the Stacking Fault Energy (SFE) calculations are 
done under the non-magnetic condition modified after Ikeda et al. [111].  

Year Reference HEAs Specific calculation methods Calculation/ Experiments 

2013 Zaddach et al. 
[139] 

FeNi, CrFeNi, CoCrFeNi, CoCrFeMnNi, and 
variations 

EMTO-CPA VASP-SQS Ab initio elastic constants + experimental SF 
probabilities 

2015 Huang et al. [140] CoCrFeMnNi EMTO-CPA Explicit SF 
2016 Patriarca et al. 

[141] 
CoCrFeMnNi VASP-SQS Explicit SF 

2016 Wang et al. [434] Fe40.4Ni11.3Mn34.8Al7.5Cr6, 
Fe40.4Ni11.3Mn34.8Al7.5Cr6+0.07%C, 
Fe40.4Ni11.3Mn34.8Al7.5Cr6+1.1%C  

Measured via weak-beam imaging of the 
separation of dislocation partials using 
transmission electron microscopy (TEM) 

2017 

Beyramali Kivy 
and Asle Zaeem 
[142] 

CoCrFeNi + additions of Cu, Mn, Al, Ti, Mo) VASP + random supercell Explicit SF 

Zhang et al. [143] CoCrNi, CoCrFeNi VASP-SQS Explicit SF, Negative SFE 
Zhang et al. [143] CoCrNi VASP + random supercell Explicit SF, ANNNI 

Zhao et al. [144] 
CoCrFeMnNi, CoCrFeNiPd, and equiatomic 
subsystems VASP-SQS Explicit SF, ANNNI 

Liu et al. [435] FeCoNiCrAl0.1  In-situ TEM 
Cai et al. [436] FeCoCrNiMo2.3  In-situ neutron diffraction 

2018 
Alkan et al. [145] CoCrFeMnNi VASP-SQS Explicit SF 
Huang et al. [146] CoCrNi, CoCrMnNi, CoCrFeNi, CoCrFeMnNi EMTO-CPA Explicit SF 
Niu et al. [147] CoCrNi, CoCrFeMnNi VASP-SQS Explicit SF  

Wang et al. [437] Al0.6CoCrFeNi 
According to the critical stress theory, SFE of 
the FCC phase is estimated Dynamic impact tests  

Agarwal et al. 
[438] FeMnNi, FeMnNiCo, FeMnNiCoCu CALPHAD Combinatorial approach  

Liu et al. [439] NiCoCr, FeCoNiCr, FeCoNiCrMn, (FeCoNiCr)94Mn6, 
(FeCoNiCr)86Mn14, Fe20Co15Ni25Cr20Mn20  

Experimentally measured by weak-beam 
dark-field using TEM 

2018 Huang et al. [290] CoCrFeMnNi  
In-situ diffraction peak profile evolutions 
showing the SFs formation prior to the phase 
transformation 

2018 Niu et al. CoCrNi 
DFT calculations with the Vienna ab initio 
Simulation Package (VASP), using the 
projector augmented wave (PAW) method 

Scanning transmission electron microscopy 
(STEM), in high-angle annular dark field 
(HAADF) mode 

2019 Huang et al. [291] CoCrFeMnNi  
Resolving in-situ 2D diffraction peak profiles 
showing the deviatoric deformation-induced 
SFs 

2019 Jiang et al. [440] CoFeNi2V0.5Mo0.2  Synchrotron X-ray diffraction, TEM 

2019 Wu et al. [441] CoCrFeNiMo0.15  

Experimentally estimated via measuring the 
widths of the dissociated dislocations using 
TEM 

2019 Gao et al. [442] Cr26Mn20Fe20Co20Ni14  TEM 
2020 Woo et al. [443] CrCoNi  In-situ neutron-diffraction 
2020 Frank et al. [444] Fe40Mn20Cr15Co20Si5  In-situ neutron-diffraction 

2020 Lam et al. [279] CoCrFeMnNi 
Convolutional Multiple Whole Profile 
(CMWP) modeling for analyzing the neutron- 
diffraction profiles 

In-situ neutron-diffraction showing fatigue- 
induced SFs evolutions  
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γ′-strengthened Co-based superalloys. The final optimized 
γ′-strengthened Co-base superalloys were obtained through three rounds 
of experiment validations and fabricating four alloys each round. The 
best performer of new alloys is Co-36Ni-12Al-2Ti-4Ta-1W-2Cr, which 
could be comparable with some advanced Ni-base single-crystal super
alloys [450]. Yan et al. analyzed the effect of various parameters on the 
atmospheric corrosion behavior of low alloy steels and anticipated the 
corrosion rates using ML [451]. Wen et al. used SVR and BPNN (back 
propagation neural network) models for the prediction of corrosion rates 
of a 3C steel under different seawater environments [452]. Kamrunna
har et al. developed supervised BPNN mapping method to forecast the 
polarization curves in the Fe68Ni14-xMoxSi2B16 metallic glass, the 
corrosion rates in the carbon and alloy steels, and the extent of crevice 
corrosion damage in the grade-2 titanium as a function of changing 
environment [453]. The pitting corrosion behavior of 316 L stainless 
steel (SS), in different environment conditions, was studied by 
Jimeneze-come et al. using the model based on KNN and ANNs. 
Jimeneze-come et al.’s results exhibited very good precision, which are 
all above ~93 % [454]. Overall, Fig. 28 presents that ML can be suc
cessfully utilized to predict different corrosion properties. 

With growing interest in the field of multi-component systems viz. 
HEMs, it is imperative to forecast their corrosion behaviors under 
different environmental conditions for their potential applications. Un
fortunately, the studies on predicting the corrosion behaviors in the 
HEMs using ML are scarce. Recently, the U.S. Department of Energy 
(DOE) awarded more than $45.3 million through its Nuclear Energy 
University Program (NEUP) to support university-led nuclear energy 
research and development projects, including “Machine learning on HT 
databases of irradiation response and corrosion properties of selected 
compositionally complex alloys for structural nuclear materials.” led by 
the University of Wisconsin-Madison [456]. 

As the HEAs consist of multiple elements in equiatomic or non- 
equiatomic ratios, the microstructure and resultant corrosion behavior 
will depend upon the synergistic effects of all the constituent elements. 
This trend is in contrast with the conventional alloys, where their 
properties are dictated by one or mostly two dominant elements. Apart 
from the composition and microstructure, processing method and type 
of the electrolyte will also affect the corrosion response of the HEAs. In 
this section, a comprehensive review on the corrosion behavior of the 

HEAs is presented. 
Table 10 lists the corrosion parameters (Ecorr, icorr, and Epit, or Eb: as 

the breakdown potential) for several HEAs and conventional alloys. The 
relatively lower corrosion potential, current density, and higher pitting/ 
breakdown potentials in the HEAs, as compared to the conventional 
alloys, indicate that the HEAs can be good candidates as corrosion- 
resistant alloys in aqueous corrosive media. 

An earlier study on the corrosion characteristics of the HEAs was 
carried out by Chen et al., where the corrosion behaviors of the 
Cu0.5NiAlCoCrFeSi HEA and 304 SS alloy were evaluated and compared 
in an aqueous solution of H2SO4 and NaCl. Anodic polarization sug
gested that the HEA exhibits better corrosion resistance than the 304 SS 
alloy in the range of concentration (0.1–1 M) of aqueous solution. 
However, resistance to pitting corrosion in the Cl− environment of the 
HEA was inferior, as compared to the 304 SS because of the observed 
narrower passive region in the former. The addition of NaCl to 1 N 
H2SO4 solution changes the corrosion characteristics of the HEA. The 
corrosion resistance decreases up to 0.5 M NaCl and then increases, as 
shown in Fig. 29 [457]. 

The effects of Mo on the corrosion behavior of the CoCrFeNi2 HEA in 
3.5 wt. % NaCl were studied by Rodriguez et al. [458]. A higher 
corrosion resistance in the CoCrFeNi2Mo0.25 compared to the CoCrFeNi2 
HEA was attributed to the presence of Mo, which stabilized the pro
tective Cr2O3 passive layer by the precipitation of MoO2 on the surface. 
Using X-ray photoelectron spectroscopy (XPS), Dai et al. [475] 
concluded that the CoCrFeNiMox (x = 0, 0.1, 0.3, and 0.6) HEAs con
sisted of a bilayer-structured surface film. The outer layer contained a 
mixed Cr/Fe hydroxides/oxides and MoO3, whereas the inner layer was 
rich in Cr(III) species with a higher ratio of Cr(ox) and Cr(hyd) along 
with MoO4 and Fe2O3. The addition of Mo was found to increase the Cr 
(ox)/Cr(hyd) and molybdenum oxide in the protective film, thus, 
increasing the Mo content resulted in an improved corrosion resistance 
in the H2SO4 solution. Dai et al. [475] further suggested that the damage 
mechanism changes from pitting in the CoCrFeNi and CoCrFeNiMo0.1 
HEAs to selective dissolution in the CoCrFeNiMox (0.3 and 0.6) HEAs 
due to the change in the microstructure from a single FCC phase to a dual 
phase [FCC + (Cr, Mo)-rich precipitates] as the Mo content is increased. 
Shang et al. [459] varied the content of Mo (x = 0.1 ‒ 0.5) in the 
CoCrFeNiMox HEA and elucidated the corrosion behaviors in 3.5 wt. % 

Fig. 28. Evaluation of corrosion properties using machine learning techniques based on the information of materials and environmental factors [451,453,455]. 
Adapted with permission from Elsevier. 
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Table 10 
Summary of corrosion parameters in the HEAs and conventional alloys from previous studies. The average values of the parameters at room temperature are presented. 
SCE: saturated calomel electrode, MSE: mercurous sulfate electrode, SHE: standard hydrogen electrode. Reference electrode is SCE unless specified.  

HEA System Electrolyte Ecorr (VSCE) icorr (μA/cm2) Epit /Eb (VSCE) Ref. 

Cu0.5NiAlCoCrFeSi 

0.1 M NaCl 0.01 0.178 0.58 

[457] 

1 M NaCl − 0.53 3.16 − 0.25 
0.1 N H2SO4 − 0.06 10.7 0.11 
1 N H2SO4 − 0.41 251 0.09 
1 N H2SO4 + 1 M NaCl − 0.45 141 − 0.28 
1 N H2SO4 + 0.6 M NaCl − 0.47 1620 − 0.23 
1 N H2SO4 + 0.5 M NaCl − 0.48 1950 − 0.21 
1 N H2SO4 + 0.4 M NaCl − 0.46 1710 − 0.215 
1 N H2SO4 + 0.1 M NaCl − 0.44 316 − 0.24 
1 N H2SO4 + 0.01 M NaCl − 0.43 282 − 0.22 

304 SS 

0.1 M NaCl − 0.25 1.59 0.46 
1 M NaCl − 0.59 4.37 0.17 
0.1 N H2SO4 − 0.05 50.1 1.12 
1 N H2SO4 − 0.22 501 1.06 

CoCrFeNi2 

3.5 wt. % NaCl 

− 0.29 0.129 0.32 

[458] 
CoCrFeNi2Mo0.25 − 0.26 0.125 0.91 
Hastelloy C-276 − 0.28 0.128 0.74 
316 L − 0.25 0.111 0.27 
CoCrFeNiMo0.1 

3.5 wt. % NaCl 

− 0.263 0.381 0.949 

[459] 

CoCrFeNiMo0.2 − 0.131 0.072 0.941 
CoCrFeNiMo0.3 − 0.257 0.766 0.955 
CoCrFeNiMo0.4 − 0.261 0.082 0.948 
CoCrFeNiMo0.5 − 0.261 0.738 0.965 
CoCrFeNiMo0.1 

0.5 M H2SO4 (MSE) 

− 0.688 9.666 0.469 
CoCrFeNiMo0.2 − 0.682 2.926 0.460 
CoCrFeNiMo0.3 − 0.694 8.626 0.453 
CoCrFeNiMo0.4 − 0.663 0.712 0.462 
CoCrFeNiMo0.5 − 0.632 1.526 0.450 
Al0.1 CoCrFeNi 

3.5 wt. % NaCl (Ag/AgCl) 
− 0.0223 0.45 0.917 

[460] SS304 − 0.0398 0.76 0.474 
Al0.3CoCrFeNi 

3.5 wt. % NaCl 
− 0.195 0.0835 0.460 

[461] AlC0.5CoCrFeNi − 0.225 0.252 0.385 
Al0.7CoCrFeNi − 0.275 0.429 0.052 
CoCrFeNi 

0.5 M H2SO4 (SHE) 

− 0.081 15.8 0.002 

[462] 
Al0.25CoCrFeNi − 0.095 16.7 0.008 
Al0.50 CoCrFeNi − 0.084 13.4 0.017 
AlCoCrFeNi − 0.094 13.1 0.010 
SS304 − 0.185 45.3 − 0.071 
CrFe1.5MnNi0.5 

0.5 M H2SO4 (SHE) 

− 0.229 686.0 − 0.055 

[463] 

Al0.3CrFe1.5MnNi0.5 − 0.194 ~2390 − 0.012 
Al0.5CrFe1.5MnNi0.5 − 0.206 ~5080 0.047 
304 SS − 0.186 74.5 − 0.022 

CrFe1.5MnNi0.5 

0.5 M H2SO4 (SHE) − 0.221 686.0 1.172 
0.5 M H2SO4 + 0.10 M NaCl (SHE) − 0.242 ~ 2060 1.180 
0.5 M H2SO4 + 0.25 M NaCl (SHE) − 0.238 ~ 4600 0.589 
0.5 M H2SO4 + 0.50 M NaCl (SHE) − 0.240 ~ 9750 0.475 

Al0.3CrFe1.5MnNi0.5 

0.5 M H2SO4 (SHE) − 0.194 ~ 2390 1.164 
0.5 M H2SO4 + 0.10 M NaCl (SHE) − 0.219 ~ 2480 1.156 
0.5 M H2SO4 + 0.25 M NaCl (SHE) − 0.231 ~ 6050 0.250 
0.5 M H2SO4 + 0.50 M NaCl (SHE) − 0.250 ~ 10,400 0.257 

Al0.3CoCrFeNi (As-forged) 

3.5 wt. % NaCl 

− 0.189 0.0632 0.522 

[464] 

Al0.5CoCrFeNi (As-forged) − 0.261 0.187 0.316 
Al0.7CoCrFeNi (As-forged) − 0.292 0.392 0.118 
Al0.3CoCrFeNi (As-equilibrated) − 0.180 0.0289 0.808 
Al0.5CoCrFeNi (As-equilibrated) − 0.228 0.0714 0.496 
Al0.7CoCrFeNi (As-equilibrated) − 0.258 0.267 0.256 
CoCrFeNi 

0.6 M NaCl 

− 0.248 0.108 0.442 

[465] 
Al0.3CoCrFeNi − 0.252 0.238 0.290 
Al0.6CoCrFeNi − 0.179 0.070 0.190 
Al0.9CoCrFeNi − 0.216 0.093 0.164 
Al0.9CoCrFeNiTi0.5 − 0.347 0.310 0.184 
Al2CoCrFeNi 

3.5 wt. % NaCl 

− 0.1934 0.00941 0.1933 

[466] 

Al1.8CoCrFeNiTi0.2 − 0.2602 0.02633 0.1894 
Al1.5CoCrFeNiTi0.5 − 0.2394 0.01644 0.2622 
Al1.2CoCrFeNiTi0.8 − 0.2588 0.02411 0.3486 
AlCoCrFeNiTi − 0.311 0.03273 0.3694 
Al0.8CoCrFeNiTi1.2 − 0.426 0.05600 0.3533 
AlCoCrFeNiTi 

3.5 wt. % NaCl 
− 0.27 0.561 – 

[467] 

Al0.8CoCrFeNiTi0.2 − 0.69 7.96 – 
Al0.5CoCrFeNiTi0.5 − 0.32 0.532 – 
AlCoCrFeNi 

0.5 M H2SO4 (MSE) 
− 0.41 ~ 546 − 0.35 

Al0.8CoCrFeNiTi0.2 − 0.47 ~ 117 − 0.12 
Al0.5CoCrFeNiTi0.5 − 0.40 ~ 320 − 0.21 

(continued on next page) 
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NaCl and 0.5 M H2SO4. The corrosion resistance increased up to x = 0.2 
but decreased with further increase in the Mo content due to the pre
cipitation of a secondary σ phase (Cr-Mo rich) in the interdendritic re
gions [476,477]. 

Kumar et al. [460] investigated the general and pitting corrosion 
resistance in the Al0.1CoCrFeNi HEA whose resistance was found to be 
higher than that in the 304 SS in 3.5 wt. % NaCl. The pit number density 
was higher in the 304 SS rather than in the HEA. However, the depth of 
the pits was almost similar. In addition, the pits were elliptical for the 
304 SS but circular for HEA. The number distributions of pit sizes for the 
HEA and 304 SS are shown in Fig. 30 (a) and (b), respectively. Using the 
lognormal distribution fitting, the average pit size for the HEA and 304 
SS was measured to be 142 and 110 μm, respectively. In the case of the 
HEA, most of the pits were of size less than 100 μm. The better corrosion 
resistance in the HEA was postulated to be due to its single-phase 

microstructure, i.e., no micro-galvanic effect and presence of a passive 
oxide film (Al2O3/Cr2O3). 

The influence of aluminum (Al) content on the pitting-corrosion 
behaviors of the AlxCoCrFeNi (x = 0.3, 0.5, and 0.7) in a 3.5 wt. % 
NaCl solution was also studied by Shi et al. [461]. Increasing the Al 
content changed the microstructure from a single-phase FCC in the 
Al0.3CoCrFeNi to FCC + BCC (both ordered and disordered) phase in the 
Al0.7CoCrFeNi. The increased volume fraction of the (Al, Ni)-rich and 
Cr-depleted BCC phase decreased the corrosion resistance of the HEA 
due to the increased extent of the selective dissolution of the Cr-depleted 
BCC phases in the presence of Cl− ions. Fig. 31(a) shows the formation of 
sporadic pits in a single-phase FCC Al0.3CoCrFeNi. In contrast, localized 
corrosion is severe in the case of the Al0.7CoCrFeNi HEA [Fig. 31(c)], 
where a complete BCC phase is attacked. Using an in-situ visualization 
system, Shi et al. [478] later confirmed that the localized corrosion 
changed from pitting in the Al0.3CoCrFeNi to selective dissolution of 
BCC phases in the HEAs containing a higher content of Al. Similar se
lective dissolution of the BCC phase in the FCC matrix was observed 
when the Al0.5CoCrFeNi [(Fig. 31(b)] was exposed to the 3.5 wt. % NaCl 
solution after aging in a temperature range of 350–950 ◦C [479]. 

Kao et al. [462] evaluated the corrosion behaviors of the AlxCoCr
FeNi HEAs (x = 0, 0.25, 0.50, and 1.0) by immersing them in a corrosive 
solution (0.25 M, 0.5 M and 1.0 M NaCl in the 0.5 M H2SO4 solution) and 
performing polarization tests. Interestingly, increasing the Al content 
did not bring a significant change in the corrosion potential (Ecorr) and 
corrosion current density (icorr) values, and no obvious trend was 
observed in the polarization tests. The passive region was observed be
tween 0–1.2 VSHE in 0.5 M H2SO4, and pitting potential (Epit) of the 
studied alloys decreased with the addition of Cl− ions. Furthermore, the 
corrosion rates, measured from the weight loss in the immersion tests 
(8–15 days), were reported to be much higher in the alloys containing a 
higher Al content (Al0.5CoCrFeNi and AlCoCrFeNi) than in the remain
ing two alloys. This feature was also postulated to be due to the selective 
dissolution of a (Al, Ni)-rich phase in the HEAs with a higher Al content. 

Table 10 (continued ) 

HEA System Electrolyte Ecorr (VSCE) icorr (μA/cm2) Epit /Eb (VSCE) Ref. 

AlCoCuFeNi 

0.5 M H2SO4 

− 0.058 7.93 – 

[468] 
AlCoCuFeNiCr − 0.075 5.09 – 
AlCoCuFeNiTi − 0.253 44.76 – 
AlCoCuFeNiCrTi − 0.256 39.59 – 
AlCoCrFeNiSi0.1 0.5 M H2SO4 

− 0.453 304.20 0.925 [469] 
304 SWS − 0.438 105.12 0.925 
CoCrFeNi 

0.6 M NaCl (Ag/AgCl) 

− 0.257 – 0.556 

[470] 

CoCrFeNiAl − 0.322 – 0.297 
CoCrFeNiCu − 0.180 – − 0.069 
CoCrFeNiSn − 0.252 – 1.099 
SS304 − 0.246 – 0.199 
SS316 − 0.254 – 0.267 
FeCoNiCr 

3.5 wt. % NaCl 

− 0.26 0.0315 0.31 

[471] FeCoNiCrCu0.5 − 0.29 0.723 0.09 
FeCoNiCrCu − 0.33 1.32 0.08 
304 L SS − 0.25 0.601 0.23 
Al0.5CoCrCuFeNiB 

1 N H2SO4 (SHE) 

− 0.115 787 0.233 

[472] 
Al0.5CoCrCuFeNiB0.2 − 0.121 1025 0.215 
Al0.5CoCrCuFeNiB0.6 − 0.148 2626 – 
Al0.5CoCrCuFeNiB − 0.159 2848 – 
AlCoCrCuFe 

0.6 M NaCl 

− 0.264 0.967 − 0.130 

[473] 

(TiAl)0.7V0.15Fe0.1Ni0.05 − 0.388 0.037 0.263 
AlTiVCrSi − 0.498 0.168 0.011 
CoCrFeNiAl0.9 − 0.217 0.093 0.164 
CoCrFeNi (SPS^) − 0.304 0.610 − 0.008 
Ti0.3(CoCrFeNi)0.7 − 0.273 0.036 1.040 
TiZr0.5NbCr0.5 

3.5 wt. % NaCl 
− 0.489 0.00441 1.180 

[474] 

TiZr0.5NbCr0.5V − 0.311 0.00974 1.448 
TiZr0.5NbCr0.5Mo − 0.455 0.0940 1.400 
TiZr0.5NbCr0.5 

0.5 M H2SO4 

− 0.277 0.452 0.968 
TiZr0.5NbCr0.5V − 0.087 0.02039 0.998 
TiZr0.5NbCr0.5Mo − 0.018 0.0526 0.984  

Fig. 29. Variation of corrosion rate, pitting potential, and corrosion potential 
with the concentration of NaCl in 1 N H2SO4. Adapted from [457] with 
permission from Elsevier. 
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Fig. 31. SEM micrographs showing the pits after a potentiodynamic polarization test for (a) Al0.3CoCrFeNi, (b) Al0.5CoCrFeNi, and (c) Al0.7CoCrFeNi. Adapted from 
[461] with permission from Elsevier. 

Fig. 30. Distribution of pit size in the (a) Al0.1CoCrFeNi HEA, and (b) 304 SS. 
Adapted from [460] with permission from Elsevier. 

Fig. 32. Polarization curves in the AlxCoCrFeNi in a 3.5 wt. % NaCl solution for 
(a) as-forged and (b) as-equilibrated conditions. Adapted from [464] with 
permission from Elsevier. 
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In another study, an increase in the Al content was also observed to 
increase the icorr values and decrease the Epit values of the AlxCr
Fe1.5MnNi0.5 (x = 0, 0.3, and 0.5) HEAs in 1 M NaCl and 0.5 M H2SO4 
solutions [463]. Shi et al. [464] further investigated the effect of ho
mogenization at 1250 ◦C on the corrosion response of the AlxCoCrFeNi 
(x = 0.3, 0.5, and 0.7) HEAs in a 3.5 wt. % NaCl solution using a 

potentiodynamic polarization test. The alloys were first forged at 1250 
◦C for 50 % reduction (as-forged condition), followed by annealing at 
1250 ◦C for 1000 h (as-equilibrated condition). Increasing the Al content 
resulted in a change in the microstructure from (Co, Cr, Fe)-rich sin
gle-phase FCC in Al0.3CoCrFeNi to a multi-phase (FCC + BCC) micro
structure in Al0.7CoCrFeNi, where BCC phases were (Al, Ni)-rich and 
(Co, Cr, Fe)-rich. Fig. 32 presents the polarization curves for both 
as-forged and as-equilibrated conditions, where a decrease in the Ecorr 
and an increase in the icorr can be observed with increasing Al content, 
suggesting an improved general corrosion resistance at a lower Al con
centration. Furthermore, a decrease in the Epit with increasing Al con
tent indicated a weakened localized corrosion resistance at higher Al 
contents. The observed trend was again ascribed to the multi-phase 
microstructure at higher Al contents. Nevertheless, homogenization 
resulted in an improved corrosion resistance in all the alloys due to the 
reduced elemental segregation, which resulted in a decreased variation 
of the work function, measured by scanning Kelvin probe force micro
scopy (SKPFM). 

Qui et al. [465] investigated the role of Al along with an addition of 
titanium (Ti) on the corrosion behavior of the as-cast CoCrFeNi HEA in a 
0.6 M NaCl solution. In contrast to the observation made by Shi et al. 
[461], this study concluded an increased general corrosion resistance 
with increasing Al content from 0.3 to 0.9, as icorr values decreased 
(Fig. 33). This trend was supposedly attributed to the increased fraction 
of Al2O3 in the passive film with an increase in the Al content. The 

Fig. 33. Potentiodynamic-polarization curves for the AlxCoCrFeNiTiy HEAs in a 
0.6 M NaCl solution. Adapted from [465] with permission from Elsevier. 

Fig. 34. SEM micrographs before and after corrosion for (a, g) AlCoCuFeNi, (b, h) AlCoCuFeNiCr, (c, i) AlCoCuFeNiTi, (d, j) AlCoCuFeNiCrTi. (e) Potentiodynamic- 
polarization curves and (f) corrosion rates measured from the immersion test in a 0.5 M H2SO4 solution. Adapted from [468] with permission from Elsevier. 
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microstructure changed from a single-phase FCC (0 and 0.3 Al) to FCC +
BCC + B2 (0.6 and 0.9 Al) phase. The addition of Ti (Al0.9CoCrFeNiTi0.5) 
resulted in a dramatic decrease in the corrosion resistance. In fact, the 
icorr value of this HEA was the highest (Fig. 33), which was ascribed to 
the formation of a Fe-Cr-type sigma phase leading to the depletion of Cr 
from the matrix. 

Zhao et al. [466] also elucidated the role of Ti/Al ratio on the 
corrosion-resistance behaviors of the Al2-xCoCrFeNiTix HEAs (x = 0, 0.2, 
0.5, 0.8, 1.0, and 1.2) in a 3.5 wt. % NaCl solution. The microstructure 
changes from BCC1 + B2 and BCC1 + BCC2 + B2 to BCC1 + BCC2 + Laves 
phases with increasing Ti content, where BCC1 is characterized as the 
(Fe-Cr)-rich phase, and BCC2 is the (Al, Ni)-rich phase (similar to the 
B2-NiAl phase). Among all the studied Ti-containing alloys, Al1.5CoCr
FeNiTi0.5 exhibited the best general corrosion properties. The lower 
corrosion resistance at a higher Ti content was due to the negative effect 
of the multi-phase structures and decreased the protection level by the 
passive film. However, it should be noted that all of the Ti-containing 
alloys exhibit higher Epit with a wide passive region, which suggested 
that Ti addition improves pitting corrosion resistance. Jiang et al. [467] 
studied the corrosion behaviour of the AlxCoCrFeNiTi1-x (x = 0.5, 0.8, 
and 1.0) in a 3.5 wt. % NaCl solution. The highest and lowest corrosion 
resistance was observed for Ti-free and Al0.8CoCrFeNiTi0.2 HEAs, 
respectively. The authors mentioned that although Ti itself is resistant to 
Cl− ions, the elemental segregation and dual-phase structure (FCC +

BCC phases) with Ti addition negate its beneficial effect in the case of 
Al0.8CoCrFeNiTi0.2. In the Al0.5CoCrFeNiTi0.5 HEA, a higher content of 
Ti was probably able to counter the aforementioned weakening effect 
and thereby increased the corrosion resistance. 

Xiao et al. [468] carried out both immersion and 
potentiodynamic-polarization tests in 0.5 M H2SO4 and observed that an 
addition of Cr to AlCoCuFeNi improved the corrosion resistance, 
whereas the Ti addition deteriorated the corrosion resistance. Both icorr 
from polarization curves and corrosion rates from immersion tests 
showed the following corrosion-resistance trend: AlCoCuFeNiCr >
AlCoCuFeNi > AlCoCuFeNiCrTi > AlCoCuFeNiTi [Fig. 34 (e, f)]. This 
behavior can be attributed to the distribution of phases in the alloys. All 
four alloys consist of the FCC phase, ordered BCC (B2) phase, and 
disordered BCC (A2) phase, as presented in Fig. 34 (a–d). Increasing the 
Cr content increased the fraction of the BCC (B2/A2) phase while the Ti 
addition increased the fraction of the FCC phase. The authors reported 
that as the FCC phase is more anodic, as compared to the BCC phase, the 
former dissolves, leading to the formation of pits, as shown in Fig. 34 
(g–j). Therefore, since the fraction of the FCC phase increases with the Ti 
addition, the corrosion resistance also decreases with an increase in the 
Ti content. 

The addition of 0.1 Si to the AlCoCrFeNi was not observed to induce 
a significant change in the microstructure of the HEA [469]. In the 
presence of the corrosive medium (3.5 wt. % NaCl), the alloys exhibit 
pseudo-passive behavior, where the pits are formed at the dendrites due 
to their lower Cr content and formation of micro-galvanic coupling with 
interdendrites. In contrast, active-passive behavior was observed in a 0.5 
M H2SO4 solution. The corrosion-resistance behaviors of the CoCrFe
NiWx (x = 0, 0.2, and 0.5) HEAs was evaluated by Niu et al. [480]. The 
medium was seawater, which was prepared by the distilled water and 
artificial sea salt in the ratio of 30:1 (mass ratio). The CoCrFeNiW0.5 
exhibited the highest pitting resistance and easy passivation behavior, 
which was attributed to the increase in the stability of the 
chromium-oxide passive film by the addition of tungsten. Muangtong 
et al. [470] investigated the role of Sn, Cu, and Al additions on the 
corrosion susceptibility of the CoCrFeNi HEA in a 0.6 M NaCl solution. 
Among all the alloys, CoCrFeNiSn performed the best corrosion resis
tance due to the largest passive region and the highest pitting potential, 
indicating that the alloy’s passive film has a good stability for pitting 
corrosion resistance. This behavior was assigned to the presence of both 
Cr2O3 and SnO2 in the surface film, making it resistant to the attack. The 
CoCrFeNiCu was observed to exhibit the lowest corrosion resistance. 

Hsu et al. [471] explored the effect of Cu on the corrosion properties 
of the CoCrFeNiCux (x = 0, 0.5, and 1.0) HEAs in a 0.6 M NaCl solution. 
With increasing Cu content, the corrosion resistance of the HEA was 
observed to decrease, which was ascribed to the dissolution of Cu-rich 
regions. It was postulated that due to the weak binding force with 
other elements, Cu segregates as Cu-rich and Cu-depleted regions. In the 
presence of the corrosive solution, Cu-rich regions preferentially corrode 
due to the micro-galvanic effect. Luo et al. [481] examined the corrosion 
resistance of the CoCrFeNiMn HEA in a 0.1 M H2SO4 solution and 
compared with the 304 L SS. The HEA exhibited lower corrosion resis
tance than the 304 L SS. Although both HEA and 304 L SS had good 
passive layer forming capability, the lower Cr content in the passive 
layer of the HEA and no obvious selective dissolution of other elements 
were the plausible reasons for the observed lower corrosion resistance. 
Later, Sarraf et al. [482] also revealed that the presence of Mn degraded 
the pitting-corrosion resistances of the CoCrFeNi HEA in 0.1 M NaCl and 
in the temperature range of 25 ◦C–75 ◦C. The pits in the CoCrFeNiMn 
HEA were much deeper than that in the CoCrFeNi HEA, the extent of 
which increased with increasing temperature. This trend was attributed 
to the adverse effect of Mn in the matrix, lower concentration of Cr in the 
film, and more defective oxide film in the CoCrFeNiMn HEA, which 
make it easy for the film to breakdown. Similarly, Yang et al. [483] also 
observed that increasing the Mn content increased the susceptibility to 
corrosion of the CoCrFeNiMn in a 0.1 M H2SO4 solution as it suppressed 
the passivation process and increased the dissolution rate of the passive 
film. Sahu et al. investigated the localized corrosion behavior of a series 
of single phase Ni38Fe20CrxMn21-0.5xCo21-0.5x (x = 6, 10, 14, and 22) 
HEAs in a 0.6 M NaCl solution. While Ecorr was observed to be inde
pendent of Cr content, pitting resistance increased with increasing Cr 
content, i.e., Ni38Fe20Cr22Mn10Co10 exhibited the highest resistance to 
pitting. The passivation behavior of Ni38Fe20Cr22Mn10Co10 was further 
explored by Gerard et al., where the passive film was predominantly 
enriched in Cr with a small amount of Fe, Ni, Mn, and Co [484]. 

The effects of boron on the corrosion behavior of the Al0.5CoCrCu
FeNiBx (x = 0, 0.2, 0.6, and 1.0) HEAs in aqueous 1 N H2SO4 were 
studied by Lee et al. [472] and were compared with SS 304 steel. 
Increasing the boron content increased the corrosion potential and 

Fig. 35. Summary of corrosion potential and pitting potential for the listed 
HEAs in the 0.6 M NaCl solution. Adapted from [473] with permission from 
Taylor & Francis Ltd. 
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current density from ‒ 0.115 VSHE to ‒ 0.159 VSHE and 0.787 × 10− 6 

A/cm2 to 2.848 × 10− 6 A/cm2, respectively. This feature suggests that 
the corrosion resistance decreased with the addition of boron, which 
was attributed to the formation of precipitates of Cr, Fe, and Co-borides, 
resulting in the formation of the micro-galvanic effect and preferential 
corrosion of inter-dendritic regions. Nevertheless, the HEAs have better 
corrosion resistant than the SS 304 steel, which exhibited corrosion 
potential and current density of ‒ 0.165 VSHE and 3.318 × 10‒5 A/cm2, 
respectively. 

Other than casting (with and without rolling), the HEAs have been 
also synthesized, using other methods, such as laser melting, ball milling 
followed by sintering, sputtering, etc. Qui et al. [473] performed 
potentiodynamic-polarization testing of about twenty HEAs in a 0.6 M 
NaCl solution. The Ecorr and Epit values of these HEAs along with steels 
and aluminum alloys are listed in Fig. 35. The Ecorr values of the studied 
HEAs are in the range of ~ ‒ 498 mVSCE to ‒ 180 mVSCE and are higher 
than those of the mild steel and aluminum alloys, suggesting that the 
studied HEAs are much nobler than both the mild steel and aluminum 
alloys. Ecorr values for several HEAs lie between ferritic stainless steels 
and austenitic stainless steels, whereas a couple of HEAs (CoCrFeNiAl0.6 
and CoFeMnNi) were even nobler than the austenitic stainless steels. For 
most of the HEAs, Epit values are more positive than those of the ferritic 
stainless steels with some of them exhibiting even higher than the 
austenitic stainless steels, e.g., CoCrFeNi (LM, AM), Ti0.3(CoCrFeNi)0.7, 
etc. From Fig. 35, it is clear that processing methods can lead to the 
changes in the corrosion properties of the same HEA. For example, the 

Epit value of the CoCrFeNi fabricated by arc melting is 442 mVSCE. In 
contrast, the same HEA, fabricated by spark plasma sintering (SPS), 
exhibits lower Epit values of ‒ 28 mVSCE and ‒ 8 mVSCE. 

A HT synthesis of nanocrystalline Alx(CoCrFeNi)100-x (x = 4.5–40 at. 
%) was carried out by Shi et al. [485] using a combinatorial thin-film 
magnetron sputtering technique, followed by the evaluation of their 
corrosion responses in 3.5 wt. % NaCl, using electrochemical tests. With 
an increase in the Al content, the microstructure changed from a 
single-phase FCC to single-phase BCC in the as-deposited thin films, 
relative to the observed transition from a single-phase FCC to 
multi-phase (FCC + BCC) microstructure in the bulk HEAs [461]. The 
polarization curves showed a decrease in both general and pitting 
corrosion resistances with increasing Al content, which was similar to 
the trend observed in the AlxCoCrFeNi bulk HEAs [461]. However, the 
as-deposited HEA disclosed higher corrosion resistance than the bulk 
HEA, as shown in the polarization curves (Fig. 36(a)) of the HEAs con
taining 7 at. % Al in both as-deposited and bulk conditions. Fig. 36(b) 
presents the comparison of corrosion parameters in the conventional 
alloys, thin-film HEAs, and bulk HEAs, which clearly demonstrates that 
the thin-films HEAs exhibit better corrosion resistance than the bulk 
alloys. 

5. Summary of the environmental resistance properties for the 
HEMs 

The corrosion-resistance behaviors of the HEAs have been exten
sively reviewed. Overall, the corrosion behavior of the HEAs predomi
nantly depends on three factors, namely, compositions and 
microstructures of the alloys, type of electrolyte and processing routes 
(parameters). A comparison of the corrosion-resistance behaviors in the 
conventional alloys and HEAs (Table 10) clearly shows that the HEAs, in 
general, could be good candidates for corrosion-resistant alloys in 
aqueous media. Most of the studies on the corrosion behavior of the 
HEAs are limited to the transition metal family, and other families are 
largely still uncovered. In addition, most of the studies have been carried 
out in a particular environment. As the HEAs contain at least four ~ five 
elements (equiatomic or non-equiatomic), synthesizing all HEAs by 
traditional metallurgical process and then evaluating their corrosion 
properties are both expensive and highly time- consuming. Therefore, 
the ML-assisted design and HT studies are needed for the analysis of the 
whole domain in an optimized way. ML can analyze a vast amount of 
data to understand the complex inter-relation between multiple vari
ables and their impacts on the output. Deriving insights from the existing 
corrosion data in the HEAs (Table 10), ML may help predict an opti
mized composition along with the best process conditions and param
eters to synthesize a HEA for the maximum corrosion resistance through 
multi-dimensional optimization. It can also incorporate any potential 
boundary conditions, including limits to a particular elemental compo
sition or a process parameter during the optimization process. 

6. Future work 

Before Jeff Bezos’ Blue Origin’s flight to the space on July 20th and 
Sir Richard Branson reached the edge of space on July 11th, Elon Musk’s 
reusable rocket, designed and manufactured by SpaceX, has transported 
payloads into Earth orbit and beyond. Meanwhile, a Mars rover, 
Perseverance, is traveling across Mars accompanied by a robotic heli
copter, Ingenuity [486]. However, the colony will depend largely on 
self-sufficient, even with the latest Atlas rocket it takes unmanned 
spacecraft around 200 days to Mars [487]. For the space missions, 
Ghidini has outlined the materials properties needed in engineering 
design [64]. With the available sun energy, additive manufacturing is 
the key for the on-planet manufacturing using local Mars resources, such 
as the regolith and the soil [488]. As a result, traveling to and building 
on Mars are not a quaint sci-fi concept as it used to be. Building on Mars 
is actual scientific possible. 

Fig. 36. (a) Potentiodynamic-polarization curves for the thin-film and bulk 
HEAs having approximately the same composition and (b) Comparison of the 
pitting potential and corrosion current among the conventional alloys, bulk and 
thin-film HEAs in the 3.5 wt. % NaCl solution. Adapted from [485] with 
permission from Elsevier. 
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However, choosing the best materials on Mars to build the future of 
humanity are yet not conclusive. Hence, the accumulated knowledge of 
the HEMs, which are beyond traditional metallurgy based on the Earth, 
will play an important role. It would also be important to apply the HT 
examinations to speed up the materials recognition and selections on 
Mars. The applications of ML are expected to optimize the fabrication 
procedures to adapt the manufacturing conditions on Mars. The poten
tial applications of the HEMs for the settlements on Mars bring a 
fundamental change in approach because the atmospheres and the 
abundance of the elements are different from the Earth. It is expected to 
be a new paradigm shift. Although there will be unlimited new possi
bilities for the HEMs on Mars, in this session, only the high-temperature 
applications and the oxidation are selected for discussion as the future 
direction. 

Many different materials are suitable for high-temperature applica
tions. Some conventional materials for thermal protection system (TPC) 

are listed below as benchmark [489,490]. The devices of the TPC can be 
the blanket insulation, tile insulation, ablator, and hot structure for the 
rockets to Mars. These devices are listed in italics in Fig. 37. The 
maximum working temperature is shown in the bottom. The benchmark 
materials of different TPCs are displayed in underlining in Fig. 37. The 
potential HEMs for different temperatures ranging from medium to 
ultra-high temperatures are indicated in Fig. 37, which are the 
light-weight HEAs [491], RHEAs [423,492], High-Entropy Superalloys 
(HESAs) [493,494], HECs [326], and High-Entropy Composites [46]. 

Meanwhile, on the Earth, oxidation is critical for the metals. For 
example, the engines of the flight are exposed to high temperature air 
and when the metals are poured into a mould during the casting process 
[495]. Typically, the engineers consider the operating temperature 
range below the maximum temperature (Tmax) at which the materials 
can reasonably be used without oxidation, chemical change or excessive 
creep. On the other hand, the capability of oxide layer can prevent 

Fig. 37. The materials of different types of TPC and maximum working temperature.  

Fig. 38. The oxidation kinetics curves of different HEAs and few traditional materials during oxidation at 900 ◦C for 100 h and beyond (Data taken from [495, 
497,504–507]). 
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oxidation, such as the chromium oxide as the oxidation resistance layer. 
For the oxide dispersion strengthening, high strength at high tempera
tures can be obtained with fine oxide dispersions in a metal matrix, such 
as the fine dispersions of thoria (ThO2). 

For the HEMs, the oxidation effects on different elements within 
various dimensions and hierarchical microstructures are expected to be 
much more complicated [495–507]. Moreover, the environment of Mars 
is different to that of the Earth, where Mars’ atmosphere is 95 % carbon 
dioxide (CO2), 3 % nitrogen (N2), 1.6 % argon (Ar); and it has traces of 
oxygen (O2), carbon monoxide (CO), water (H2O), methane (Ch4), 
halogen gas (HCl), other gases, and dusts [508]. However, the experi
ences and the approaches on the oxidation research of the HEMs on the 
Earth is critical for similar perspectives to examine how would the HEMs 
be subjected to high-temperature fabrication and operations on Mars. 
Hence, in the end, some HEMs oxidation results are summarized [495, 
497,504–507] in Fig. 38, which could lead the way to mimic the 
high-temperature research on Mars. 

7. Conclusions 

In this manuscript, we review “ML” and “HT examinations” for the 
HEAs discovery. In a HT manner, the integration of computational and 
experimental data becomes a crucial topic. Combinatorial experiments 
can validate theoretical predictions based on modeling, particularly in a 
wide compositional range. On the other hand, experimental data 
generated from the libraries can then be used to augment or optimize the 
theoretical models. Since the HEAs give a vast number of new alloy 
bases, material informatics employing statistical models, ML, computer 
vision, and numerical optimization provides an efficient pathway to 
discover new materials and even reaches the destination for extracting 
PSPP relationships. Up to now, there are still many challenges in data- 
centric approach for the HEAs: 1. Most of the studies still focus on the 
forward prediction model of properties with an optimization strategy to 
inversely discover novel compositions. The development of more effi
cient and advanced generative network models is a challenge and re
mains to be developed. 2. The database of HEMs is still limited to certain 
dimensions; uncertainty quantification is important for revealing the 
bias of prediction. 3. Most of the ML HEAs research centralize in the 
mechanical properties at room temperature and phases with casting 
process. 4. Metadata associated with physical phenomena, such as 
deformation mechanism, the creep mechanism, or the fatigue proper
ties, are not generally taken into account. 

Comparing the numbers of published works between “ML” and “ML 
+ HEAs”, the trends reveal that the rate of using ML on the HEMs 
research catches up with the applications of ML. From the reviews, there 
are already improved computational and ML tools for predicting multi- 
component phase diagrams and transport coefficients of the HEMs. 
There are also improved experimental and theoretical tools to study the 
short-range ordering effects of the HEMs. It is expected that ML can 
accelerate the development of cost-effective HEMs. While using ML can 
optimize and discover new HEMs for better performance, there are still 
some discrepancies to extend the ML results, such as the uncertainty and 
the reproducibility. Hence, complementary HT examinations for 
archival data to final model predictions to be validated and verified are 
important to establish the interpretability and trust for the ML results. As 
demonstrated by AFLOW, it is also important to collect and publish open 
reference data online. Especially, when exploring the huge composition 
and multi-scale spaces of the HEMs, the development and adoption of 
the common benchmark datasets are the key to position the new simu
lation and measurement results. Comparing the performance indicators 
will also enhance the on-the-fly examination to check the methodolog
ical progress. 

As algorithms for automating the HT synthesis, characterization, and 
modeling will become more and more mature, the decision-making and 

organized experimental schemes will be the new tasks for the HEMs 
research using ML and HT methods. This feature means that the ad
vances in autonomous experimental systems with AI are the key for the 
future. It is also necessary for the materials society to reform the higher 
education for this trend. Meanwhile, in the other fields, such as the In
ternational Union of Crystallography and National Institute of Standards 
and Technology, there are calibration standards to assess dataset and 
source bias through round-robin type studies to establish reproducible 
results. It is also important for the HEMs research community to create 
atmosphere in accepting the benchmarks for fusing experimental and 
computational data with uncertainty and applicability propagation 
through the model training, testing, and interpretation pipeline. 

In summary, the HEMs developed with or without ML and HT 
methods are positioned on several property maps. We summarize the 
reports of corrosion research in the HEMs. Among the reviewed ap
proaches in this manuscript, the applications of ML and HT to develop 
the hierarchical microstructure with the heterogeneous grain sizes are 
the most promising directions for better development of the HEMs. 

In view of the future of the HEMs above and beyond the Earths, there 
are still plenty of space. 
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