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Abstract: High-entropy alloys (HEAs) prefer to form single-phase solid solutions (body-centered
cubic (BCC), face-centered cubic (FCC), or hexagonal closed-packed (HCP)) due to their high mixing
entropy. In this paper, we systematically review the mechanical behaviors and properties (such as
oxidation and corrosion) of BCC-structured HEAs. The mechanical properties at room temperature
and high temperatures of samples prepared by different processes (including vacuum arc-melting,
powder sintering and additive manufacturing) are compared, and the effect of alloying on the
mechanical properties is analyzed. In addition, the effects of HEA preparation and compositional
regulation on corrosion resistance, and the application of high-throughput techniques in the field of
HEAs, are discussed. To conclude, alloy development for BCC-structured HEAs is summarized.

Keywords: high-entropy alloys; BCC structure; refractory high-entropy alloy

1. Introduction

A new metallurgical strategy was introduced to develop advanced materials with
outstanding performance—high-entropy alloys (HEAs). Today, HEAs contain five or more
multiple principle metallic elements in equal or near-equal atomic percentages [1]. HEAs’
four core effects [2]—high configurational entropy, sluggish diffusion, severe lattice dis-
tortion, and the cock-tail effect—are mainly responsible for their various physical and
mechanical properties. HEAs present promising properties, such as high strength and
fracture toughness at room temperature [3–6] and high temperatures [2,7] and have ex-
cellent wear resistance [4], and corrosion resistance [8–11], along with high-temperature
oxidation [8].

HEAs are more likely to generate a simple solid solution (typically body-centered
cubic (BCC), face-centered cubic (FCC), or hexagonal closed-packed (HCP) phases) despite
containing many components [12–15]. Up to now, the development of HEAs has mainly
gone through three stages: quinary equal-atomic single-phase solid-solution alloys; quater-
nary or quinary non-equal-atomic multiphase alloys; medium-entropy alloys, high-entropy
fibers, high-entropy films and lightweight HEAs (LWHEAs) [16,17]. HEAs mainly include
two categories: refractory elements (such as V, Cr, Ti, Mo, Nb, Ta, W, Zr, and Hf) and
commodity metals (such as Cr, Co, Fe, Ni, Mn, and Cu) [18]. HEAs in the first category
consist of many refractory elements, so-called refractory high-entropy alloys (RHEAs) [13],
and mostly form BCC structures [19,20]. The second category of HEAs mostly forms FCC
structures [21,22], a combination of FCC and BCC structures [23–25] or BCC structures
alone [26,27].

However, FCC structures or “FCC-based” structure HEAs show excellent ductility
high plasticity, but its yield strength is not considerable in a large number of studies reported
so far [28,29]. It needs to be strengthened by a series of thermomechanical treatments before
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industrial application, which requires an additional cost. In contrast to FCC HEAs, BCC
HEAs exhibit relatively high intrinsic yield strengths [30,31]. Besides, RHEA systems
have excellent high-temperature mechanical properties but insufficient toughness at room
temperature [32,33]. Developing BCC HEAs with high strength and good ductility is a key
to making them potential structural materials in technological applications.

However, it is still weak to regulate the plastic deformation behavior of BCC HEAs via
the strengthening methods of FCC HEAs. BCC HEAs can only deal with liquid-solid phase
transformation by some processing technology, such as melt purification, homogenization,
directional solidification (DS), powder metallurgy (PM) and additive manufacturing (AM).

Nowadays, BCC HEAs have typically been fabricated via simple arc-melting and
casting, which has been confirmed to be a highly efficient technique for more than five
metals. For instance, the AlCrFeCoNi HEA with a single-phase BCC solid solution exhibits
excellent compressive properties of yield stress (1250.96 MPa) and plastic strain (32.7%) [27].
VNbMoTa RHEAs exhibit excellent room-temperature ductility with a fracture strain > 25%
and high-temperature strength (compressive yield strength of 811 MPa at 1000 ◦C) [34].
However, the cast product has some drawbacks including many structural defects, such as
voids, porosity, chemical segregation and grain coarsening.

Powder metallurgy (PM), a forming technology that allows significant compositional
accuracy can completely prevent chemical segregation, can obtain a homogeneous mi-
crostructure, can produce nanocrystalline materials and can develop metal matrix com-
posites [35,36]. Lightweight RHEAs of CrNbVMo exhibited superior compressive specific
yield strengths compared to cast RHEAs at 25 ◦C and 1000 ◦C [37]. TiNbTa0.5Zr and
TiNbTa0.5ZrAl0.2 RHEAs were successfully prepared without any cracks or fractures by
PM, and with Al addition, the compressive peak stress increased from 508 MPa to 603 MPa
at 800 ◦C [38]. The PM process is not only suitable for preparing RHEAs but is also suitable
for preparing small and precise components.

In contrast to the conventional process, additive manufacturing (AM) is based on an
incremental layer-by-layer fabrication process [39]. Because local process control can be
realized in the AM process, it has extremely rapid solidification cooling rates, production
with unrivaled design freedom, and shorter production cycles [40,41]. The AM process
can overcome the inherent complexity and achieve the high levels of control required
to produce homogeneous bulk alloys. Due to the immanent advantages of AM, it has
attracted much attention in the last decade. At present, the process for preparing HEAs
mainly includes direct laser deposition (DLD), selective laser melting (SLM) and selective
electron beam melting (SEBM) [42–45]. The phases, crystal features, mechanical properties,
functionalities and potential applications of these products have been discussed. Because
the high density, low ductility at room temperature and poor resistance to oxidation are the
main drawbacks of RHEAs, it is a challenge to prepare powder for the AM process.

A large number of reports on the mechanical behaviors [46,47], oxidation resis-
tance [48,49], corrosion resistance [50,51], compositional gradient films, fibers and applica-
tion of high-throughput techniques [52,53] for various BCC HEAs have been published.
However, few reviews have related to the BCC HEAs. Therefore, this review aimed to
summarize the various discussions around the BCC HEAs mentioned above to provide a
relatively complete reference for BCC HEA researchers’ future work.

The purpose of the present manuscript is to review the BCC HEAs prepared by the
above three preparation processes (arc-melting, PM and AM) in recent years and their static
and dynamic mechanical properties at room and elevated temperatures [46,47]. Meanwhile,
special properties of BCC HEAs, such as high temperature oxidation resistance [48,49],
corrosion resistance [50,51] and radiation resistance [54,55] are reviewed. Then, it briefly
introduces the high-throughput techniques [52,53] for exploring the huge compositional
spaces and more effectively improving the alloy development. This review aimed to
summarize the various discussions around the BCC HEAs mentioned above to provide a
relatively complete reference for BCC HEA researchers’ future work. However, because of
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the limited research reports on BCC HEAs, it is difficult to systematically discuss all aspects
of it in this paper, which is also the limitation of this paper.

2. Mechanical Properties of BCC-Structured HEAs at Various Temperatures
2.1. Static Mechanical Properties
2.1.1. Processing by Vacuum Arc-Melting

To provide a relatively systematic overview of the mechanical properties of BCC-
structured HEAs, their uniaxial deformation behavior is compared with traditional struc-
tural alloys, as shown in Figure 1 [56]. BCC-structured HEAs mostly consist of refractory
elements, which are generally considered suitable for high-temperature applications. The
RHEA systems that have been successfully prepared to date include Nb-Ta-Mo-W [13,57,58],
Nb-Ti-Zr [59–66] and Nb-Ti-V [67–71].
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Figure 1. Room-temperature uniaxial tension test data of HEAs and CCAs with BCC, BCC1 + BCC2,
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permission from ref. [56]. Copyright 2020 Elsevier).

Near-equiatomic WNbMoTa with a single-phase BCC structure was first proposed by
Senkov [13], where the cast sample density and Vickers microhardness were ρ = 13.75 g/cm3

and Hv = 4455 MPa, respectively. The alloy possessed a compressive yielded strength of
1058 MPa [59] failed by splitting at εp = 2.1% at an ambient temperature and decreased in
yielded strength to 561 MPa and 552 MPa when the samples deformed at 600 ◦C and 800 ◦C,
respectively (Figure 2) [57]. Then, single-crystalline HEA pillars on samples’ surfaces were
prepared with high compressive strength (~4–4.5 GPa) and lower size dependence by
Zou et al. (Figure 3) [72], which could have been achieved by higher lattice friction caused
by localized distortion at atomic length scales. Compared with the TaNbMoW HEA [63],
the specific yield strength (SYS = σy/ρ) of TaNbHfZrTi HEA [59] is superior to the SYS
of the TaNbMoW alloy in the temperature range of 296~1073 K (929~535 MPa). When
the test temperature exceeds 1073 k, the yield strength of the TaNbHfZrTi HEA with a
much lower melting temperature decreases rapidly. Yao et al. [68] calculated and designed
NbTaTiV, NbTaVW and NbTaTiVW with a single phase, and the results showed that NbTa-
TiV exhibits exceptional compressive ductility (~50%) at room temperature and a yield
strength of 965 MPa, while NbTaTiVW and NbTaVW show yield strengths of 1420 MPa and
1530 MPa with fracture strains of 20% and 12%, respectively (Figure 4). Work hardening
can be observed in these HEAs.
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The alloying method is also widely used to enhance the mechanical properties of
HEAs. The refractory elements (Nb, V, and Zr), Ti and Al with low density are the most
commonly used alloying elements to improve the specific yield strength. Ti elements and
their alloys possess good ductility and excellent high-temperature properties [73]. For
example, the solid-solution hardening effect of Ti addition is beneficial to the compressive
strength and ductility of NbMoTaW and VNbMoTaW HEAs at room temperature. The yield
strengths of TiNbMoTaW and TiVNbMoTaW are ~586 and ~659 MPa at 1200 ◦C (Figure 5),
respectively [73], so they are expected to be used as materials for high-temperature applica-
tions. At room temperature, the compressive yield strengths of Ti20Zr20Hf20Nb20V20 and
Ti20Zr20Hf20Nb20Cr20 as-cast alloys [65] are 1170 and 1375 MPa, respectively. Compared
with the addition of V, the addition of Cr will form Laves phase precipitation in the BCC
matrix and achieve strengthening. Besides this, the structural and mechanical properties
of two HEAs remained stable after a short period (10 min) of heat treatment at a high
temperature, as shown in Figure 6. Substituting Hf and Cr in the CrMo0.5NbTa0.5TiZr
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and HfNbTaTiZr HEAs can reduce these alloys’ density and improve the RT strength and
ductility [61].

In addition to the RHEAs mentioned above, there are few other HEA systems. For
example, TiAlFeCoNi HEA [73] with the L21-BCC crystal structure was prepared by arc-
melting and further processed by the high-pressure torsion (HPT) method. Moreover,
the alloy exhibited ultrahigh hardness (880 Hv), low elastic modulus (123–129 GPa) and
superior activity for cell proliferation.

Figure 4. Compressive engineering stress-strain curves for HEAs NbTaTiV, NbTaVW, and NbTaTiVW
at room temperature (Reprinted with permission from ref. [68]. Copyright 2016 Elsevier).
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right 2014 Elsevier).

2.1.2. Processing by Powder Metallurgy

These samples in the reports mentioned above were prepared by using the vacuum arc-
melting technique. Mechanical alloying (MA) with spark plasma sintering (SPS) [74–76],
as a typical technology of PM, can readily fabricate bulk high-density HEAs with ul-
trafine grains, excellent microstructural homogeneity, improved strength and hardness.
Nb25Mo25Ta25W25 and Ti8Nb23Mo23Ta23W23 HEAs [77] were successfully prepared by MA
with SPS technology. The compressive yield stress and fracture strain of Nb25Mo25Ta25W25
HEAs with average grain sizes ~0.88 µm are 2460 MPa and 16.8%, which are remarkably
superior to those prepared by casting [57]. However, coarse grain size is conducive to
the improvement of high-temperature strength, which is mainly attributed to the fact
that the grain boundary is the weak area and plays as the flow unit at high tempera-
tures [78]. Besides this, the addition of Ti can facilitate the grain refinement and Ti particles
distributed at grain boundaries can improve the toughness of the Ti8Nb23Mo23Ta23W23
HEA (2377 MPa, 26.3%). The WNbMoTaV HEA [79], when sintered, shows an ultra-high
compressive yield strength of 2612 MPa with a failure strain of 8.8% at room temperature,
respectively. Meanwhile, Long et al. [80] reported that Laves phase precipitated in the
BCC matrix of NbMoTaWVCr HEA and enhanced its mechanical properties by introducing
Cr to the WNbMoTaV HEA. Laves phase formed in the BCC matrix due to the smaller
atomic radius of Cr compared with the other alloy elements in those RHEAs [60,64,81]. The
compressive yield strength (3416 MPa) of the bulk NbMoTaWVCr HEA is dramatically
higher than those of the previously reported refractory HEAs fabricated by casting and
powder metallurgy methods, as shown in Figure 7. The outstanding mechanical prop-
erties of the WNbMoTaV HEA were attributed to fine-grain strengthening, intrinsic and
interstitial solid solution strengthening and Orowan strengthening. The enhancement in
yield strength of the NbMoTaWVCr HEA may result from the combined effects of finer
grain size, a homogeneous microstructure and enhancement of atomic size misfit caused
by the addition of Cr and interstitial solid solution strengthening from O (O was inevitably
introduced into the mechanically alloyed powders).
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In addition to the WNbMoTa HEA, BCC-structured HEA systems prepared by MA
with SPS technology also include AlFeTiCrZnCu [82–84], CrTiVTaW [19,85], TiNbTaZr [38]
and FeCrMnV [17,86,87]. The AlFeTiCrZnCu HEA [84] prepared by MA with SPS technol-
ogy can achieve a 99% density and homogeneous nanostructure (~10 nm) and its hardness
can reach 2 GPa.

The effect of Ti on the phase structure and mechanical properties of TixWTaVCr
HEA [85] was studied: a single BCC solid solution could be formed when the Ti content
was up to 7%. Compared with pure W and several other HEAs, Ti7WTaVCr has higher
room-temperature and high-temperature compressive yield strengths, owing to solid
solution strengthening and the effects of Cr and V.

Cao et al. [38] successfully prepared TiNbTa0.5Zr and TiNbTa0.5ZrAl0.2 HEAs with a
single BCC phase using powder metallurgy technology. The compressive yield strength
and strain for TiNbTa0.5Zr and TiNbTa0.5ZrAl0.2 alloys at room temperature were 1310 MPa,
30% and 1500 MPa, 30%, respectively. Figure 8 compares the compressive properties of
these HEAs with those of available refractory HEAs. TiNbTa0.5Zr and TiNbTa0.5ZrAl0.2
present a good combination of strength and plasticity, while most refractory HEAs still
follow the strength-ductility trade-off. Besides this, TiNbTa0.5Zr and TiNbTa0.5ZrAl0.2
HEAs show a compressed maximum engineering strain of 50% without any cracking or
fractures at 800 ◦C. Moreover, the NbTaTiV HEA exhibits a compressive yield strength of
1.37 GPa and a high fracture strain of 23% at room temperature. When deformation occurs
at 1000 C, it still exhibits a high yield strength of 437 MPa with a compression strain of over
40%. Its outstanding mechanical properties are mainly attributed to the homogeneous and
fine microstructures and solid solution strengthening effect.
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compressive yield strength vs. compressive ductility (Reprinted with permission from ref. [38].
Copyright 2018 Elsevier).

The volume fraction of the BCC2 phase gradually increased with the increase in the Al
concentration in AlxCrFeMoV HEAs [88]. The improvement of compressive yield strength
from 2730 to 3552 MPa can be attributed to the solid solution strengthening of Al caused by
the appearance of the BCC2 phase. The addition of Al dually influenced the properties of
the CrFeMoV alloy by improving its strength and reducing the density of the system. The
yield strength and hardness as a function of density were compared with data for previously
reported HEAs (Figure 9). AlxCrFeMoV HEAs with outstanding mechanical properties, a
low cost and low density, which are better than those of any previously reported HEAs,
suggested a promising future for the HEAs in many structural applications.

In another case, new phases appeared in the BCC matrix, such as the B2 phase, HCP
phase and FCC phase, after SPS processing. As reported [17], AlCuFeMnTiV HEA prepared
by sintering powder containing only the BCC phase has the B2 phase, HCP phase and
Cu-rich FCC phase precipitated at the grain boundary in addition to the BCC matrix.
It exhibits the best comprehensive mechanical properties, with a density of 6.28 g/cm3,
compressive yield strength of 2060 MPa and plastic strain of 15.83%, which are superior to
most LWHEAs and traditional lightweight alloys. The high strength and good plasticity of
AlCuFeMnTiV HEAs are attributed to the strengthening effect of nano twins precipitated
in the FCC phase on grain boundaries.

The above discussion demonstrates that powder metallurgy is a promising way of
preparing ductile RHEAs with outstanding comprehensive mechanical properties.
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Figure 9. (a) Compressive yield strength and (b) hardness as a function of density for the current
alloys and previously reported high-entropy alloys (HEAs) (Reprinted with permission from ref. [88].
Copyright 2018 Elsevier).

2.1.3. Processing by Additive Manufacturing

Recently, several attempts have been made to prepare BCC-structured HEAs (mainly
RHEAs) by laser deposition techniques, and there have been many studies on the prepara-
tion of those HEAs by arc-melting and PM. The attempts to prepare BCC structure HEAs
using AM technology have mainly been based on DLD technology, and few reports have
been published on SLM or SEBM.

The process of DLD may also be known as laser metal deposition (LMD), direct metal
deposition (DMD), laser engineered net shaping (LENS) and laser cladding. The MoNbTaW
RHEA [89] with single-wall structures was the first BCC-structured alloy system to be
prepared by the DLD method. The case indicated that it is feasible to fabricate a RHEA
through in situ alloying of a Mo-Nb-Ta-W elemental mixture even if cracks appear during
processing. The bulk of the crack-free TiZrNbTa RHEAs [90] was successfully produced
by in-situ alloying of elemental powders using the DLD method. It is one of the few alloy
systems with suitable room temperature plasticity among the RHEAs. A well-defined
compositional gradient with good hardness (440 HV0.1) was obtained by optimizing the
DLD method, as shown in Figure 10.
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Figure 10. Compositionally graded material produced from five modified powder blends with
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from ref. [90]. Copyright 2019 Elsevier).

SLM, as a typical AM technology, can three-dimensionally (3D) fabricate components
with intricated shapes and refined resolutions [91–93]. The fabrication of BCC-structured
HEAs through the SLM process has rarely been considered. A MoNbTaW refractory HEA
was prepared via the SLM process using blended elemental powders [45,94]. There was
a deviation between the chemical composition of the prepared sample and that of a pre-
mixed powder. This was likely due to surface evaporation of the lower melting-point
elements which floated to the upper surface of the melt pool during the SLM process.
Composition partitioning was in direct contrast with that reported by Dobbelstein et al. [83]
for MoNbTaW HEAs fabricated via DLD.

The operating principle was similar to that of SLM, but SEBM used an electron beam
instead of a laser beam as the heat source, which meant it has attracted extensive attention
in recent years. SEBM has the unique characteristics of a high energy density of the incident
electron beam, high scan speed, and moderate operation cost and so on. In addition, the
high temperature preheating (up to 1100 ◦C) of the powder bed by the electron beam prior
to scanning and melting is another distinct working condition of SEBM. This working
condition results in low residual stress of the built products, making the SEBM process
suitable to fabricate complex shaped products and reducing the thermal cracking and
distortion of the printed-HEAs [95–97].

Hiroshi et al. [96] investigated the microstructures and mechanical properties of
equiatomic AlCoCrFeNi HEA samples fabricated by SEBM comparing them with those
of samples prepared by arc-melting. The proportion of the FCC phase (precipitated at the
grain boundaries of the B2/BCC grains) for the bottom was much higher than that for the
top. Therefore, the hardness of the SEBM samples gradually decreased with an increased
proportion of the FCC phase, and they exhibited much higher plastic deformability than
the cast specimen, without a significant loss of strength (Figure 11). Wang et al. precipitated
CoCrFeNiMn HEA via EBM, the tensile properties of which (average YS ~205 MPa, elon-
gation ~63%) were almost the same as those of the as-cast form obtained by He et al. [98].
The Al0.5CrMoNbTa0.5 HEAs [43] from elemental powder blends were prepared using
the SEBM technique. By optimizing the process parameters, the porosity was reduced to
replace the post-treatment in the traditional processing technology. However, the simulta-
neous handling of several elemental or pre-alloyed powders brings new challenges to the
deposition process.
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2.1.4. Self-Sharpening

The previous three parts of the article mainly summarized the BCC-structured HEAs
prepared by three forming methods, largely focusing on their tensile or compressive
properties under quasi-static conditions, while it is the dynamic tensile or compressive
properties that affect its self-sharpening.

“Self-sharpening” is the ability of the material to maintain its acute head shape dur-
ing penetration, which is a necessary property of material during armor-piercing [99].
HEAs possess a good combination of strength and ductility, which is the premise of ex-
cellent self-sharpening. Besides this, high susceptibility to adiabatic shear banding (ASB)
is the fundamental cause of self-sharpening behavior that benefits penetration perfor-
mance [100,101]. ASB is the dominant deformation mechanism for materials consisting of
metals or alloys under high-strain-rate loading, which exhibits a narrow band where large
shear deformation occurs in a very short time [102–105].

At present, the research on self-sharpening mainly focuses on W-based alloys [106,107].
W-based alloys are promising candidates for kinetic energy penetrators because of their
high density, strength, and ductility [108,109]. However, the low susceptibility of W-based
alloys to ASB reduces their penetration depth. Thus, it is necessary to develop a new matrix
material to replace W-based alloys. The sluggish diffusion and lattice distortion effect of
HEAs can achieve a balance between strength and toughness and improve the penetration
ability [110]. This means that HEAs can be used as potential materials with excellent
self-sharpening properties. However, only limited success has been achieved in the devel-
opment of new tungsten HEAs. A new chemical-disordered multi-phase tungsten HEA
(WFeNiMo) was developed by Liu et al. [99]. Compared with conventional W-based alloys,
WFeNiMo consists of a BCC dendrite phase and a rhombohedral µ phase embedded in the
continuous FCC matrix, which means it exhibits outstanding self-sharpening capability, as
shown in Figure 12. This is due to the precipitation of the ultra-strong µ phase of WFeNiMo,
which can mediate the shear banding by triggering dynamic recrystallization softening.
Subsequently, Chen et al. [106] conducted experiments with WFeNiMo HEA and W-based
alloy projectiles penetrating medium-carbon steel by using a ballistic gun and a two-stage
light-gas gun. As the impact velocity increased (1330 m/s~1531 m/s.), the penetration
mode of the WFeNiMo HEA projectile changed from self-sharpening to mushrooming.
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Figure 12. (a) Compressive stress-strain curves of alloys under quasi-static and dynamic conditions,
with macroscopic fracture samples in the inset; (b) Depth of penetration of WFeNiMo rod and
93 W rod versus kinetic energy per volume calculated by ρν2/2, with photographs of the retrieved
remnants, respectively; Longitudinal sections of medium carbon steel targets impacted by (c) a
WFeNiMo penetrator and (d) a 93 W penetrator, with SEM micrographs of the remnant in the
corresponding insets, respectively (Reprinted with permission from ref. [99]. Copyright 2020 Elsevier).

In general, BCC structure HEAs can be successfully fabricated by arc-melting and PM
(MA with SPS technology), but the preparation of pre-alloyed powder is still one of the
difficult problems for the attempt of AM technology. BCC structure HEAs have ultrahigh
strength, high hardness and room temperature plasticity, which has been gradually im-
proved in recent studies. It has great potential in aerospace, military (high performance
penetrator materials) and biomedical fields in future applications.

3. Special Properties of BCC-Structured High-Entropy Alloys
3.1. Oxidation

As the main part of BCC-structured HEAs, RHEAs are promising candidates for
new-generation high-temperature materials. Yet, RHEAs have two fatal disadvantages:
room temperature brittleness and unsatisfactory high-temperature oxidation resistance.
Early research [111–113] focused on improving the high-temperature oxidation resistance
of RHEAs by adding elements, such as Al, Cr and Si. However, this tends to promote
the formation of intermetallic compounds, such as Al2O3, Cr2O3 and SiO2, which worsen
the poor room-temperature ductility. In this context, it presents a challenge to enhance
the oxidation resistance and achieve optimal room-temperature ductility at the same time
for RHEAs.

Müller et al. [49] systematically investigated the oxidation behavior of four refrac-
tory HEAs within the system of the Ta-Nb-Mo-Cr-Ti-Al RHEA (including TaMoCrTiAl,
NbMoCrTiAl, NbMoCrAl and TaMoCrAl) at 900 and 1100 ◦C in the air. Because of the
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formation of protective Al2O3, Cr2O3 and CrTaO4 oxide layers, the TaMoCrTiAl RHEA
shows superior oxidation resistance at 1000 ◦C in the air (Figure 13). Moreover, the addition
of Ti can effectively improve the oxidation resistance of the RHEA [48,85,114] which is
attributed to promoting the formation of protective rutile type oxides and reducing the
formation of less favorable oxides. However, the oxidation resistance of the RHEAs is
significantly reduced with V addition [48,114]. It is mainly due to the addition of V that the
oxide scales become porous for the other RHEAs, aggravating the volatility of V2O5 and
leading to disastrous internal oxidation.
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Figure 13. Mean oxide scale thickness (a) and mean depth of internal corrosion (b) for TaMoCrTiAl,
NbMoCrTiAl, TaMoCrAl, and NbMoCrAl during isothermal exposure to air at 1000 ◦C (Reprinted
with permission from ref. [49]. Copyright 2019 Elsevier).

Those results add a crucial perspective to the further development of RHEAs as
novel high-temperature materials, with balanced room-temperature ductility and high-
temperature oxidation resistance.

3.2. Corrosion

To the best of our knowledge, two papers [50,115] have reviewed the corrosion of
HEAs. HEAs exhibit much better corrosion resistance than traditional corrosion-resistant
metal materials, e.g., stainless steel, copper-nickel alloys, and high-nickel alloys, attributed
to the high-entropy and cocktail effects, in particular. Therefore, the corrosion resistance of
HEAs has attracted extensive attention in the field of corrosion research.

Qiu et al. [115] reviewed the influence of metal elements (including aluminum, tita-
nium, chromium, molybdenum and nickel) and processing methods (anodizing and aging)
on the corrosion resistance of HEAs. AlMo0.5NbTa0.5TiZr HEA [51] exhibited extensive
segregation of alloying elements and significant gradients in local chemistry, which lend it
excellent corrosion characteristics, as shown in Figure 14. Fu et al. [50] further reviewed the
corrosion behaviors and mechanisms of HEAs in various aqueous solutions, discussed the
effects of heat treatment, anodizing treatment and preparation methods on the corrosion
behaviors of HEAs, and established correlations between the composition, microstructure
and corrosion resistance of HEAs.
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Figure 14. (a) (Reprinted with permission from ref. [116]. Copyright 2016 Elsevier) SEM micrograph of
an as-cast Al0.3CoCrFeNi showing a single-phase microstructure and (b) (Reprinted with permission
from ref. [51]. Copyright 2016 Elsevier) (b1–b6) XEDS elemental maps of Al, Ti, Zr, Mo, Nb and Ta,
respectively, recorded in STEM using the Super-X™ detector, while (b7) is a STEM-HAADF image
with a white line identifying the location of the EDXS line scan shown in (b8).

The electrochemical behaviors of the AlCoCrFeNi HEA [97] obtained with SEBM were
investigated, which were influenced by the phase morphologies. The pitting potential of
SEBM specimens (0.112 V vs. Ag/AgCl) was lower than that of a cast specimen (0.178 V
vs. Ag/AgCl). Equiatomic TiZrNbTaMo RHEA [117] as cast samples underwent a study
of their corrosion resistance, to investigate whether they met the requirements of ortho-
pedic implants. Compared with Ti6Al4V, 316LSS and CoCrMo alloys, TiZrNbTaMo HEA
exhibited excellent corrosion resistance (Figure 15) in a phosphate buffer solution (PBS) and
potentially excellent biocompatibility, attributed to the surface passivation and high stabil-
ity, regardless of the pitting. It has preliminary advantages in mechanical properties and
corrosion resistance and can offer an opportunity to explore new orthopedic-implant alloys.

3.3. Irradiation

Under the condition of irradiation, structural materials are faced with the interac-
tion between irradiated particles (ions, neutrons, electrons, etc.) and lattice atoms of the
material itself, which leads to the formation of irradiation defects and the evolution of
microstructure and then affects the service performance of the material. Among them,
the most difficult problem is volume swelling [54,55,118]. HEAs have the advantages of
being an irradiation resistant material because of their high-temperature phase structure
stability, high-temperature softening resistance, high-temperature oxidation performance
and corrosion resistance comparable to that of austenitic stainless steel.

As a general rule, BCC alloys exhibit superior resistance to void swelling, primary
defect production and defect evolution behaviors than FCC alloys [119–121]. Compared
with FCC alloys, the peak in BCC alloys swelling is often found at comparatively low
homologous temperatures when they do undergo void swelling and their temperature
dependence of swelling can be quite different [122,123]. Because of higher atomic diffu-
sivities, BCC alloys tend to have a higher speed in the diffusion dependent process [124].
Therefore, BCC structure HEAs have attracted extensive attention because of their unique
high temperature stability and radiation resistance.
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A BCC structure W-based RHEA film with outstanding radiation resistance has been
prepared by O. El-Atwani [125]. In their work, the films with uniform composition have
element segregation at the grain boundary after irradiation, and the precipitation of Cr
rich and V rich phases occurs in the grains. The hardness of the deposited film is about
14 GPa, and the hardness polarization does not change after heat treatment and irradiation,
indicating that the alloy has excellent radiation softening resistance and can maintain the
stability of the microstructure.

Two novel BCC structured Mo0.5NbTiVCr0.25 and Mo0.5NbTiV0.5Zr0.25 HEAs were
fabricated by vacuum arc-melting [126]. Zhang et al. investigated the crystal structure,
hardness, and microstructure evolution by performing on the two HEAs to simulate
neutron irradiation with Helium-ion irradiation. The two HEAs showed slight irradiation
hardening compared with most of the conventional alloys (as shown in Figure 16). The
helium bubbles and dislocation loops with small sizes were observed in the two HEAs
after irradiation. This is the first time to report the formation of a dislocation loop in
BCC structure HEAs after irradiation. Mo0.5NbTiVCr0.25 and Mo0.5NbTiV0.5Zr0.25 HEAs
show outstanding irradiation resistance, which may be promising accident-tolerant fuel
cladding materials.
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ref. [126]. Copyright 2017 Elsevier.).

4. High-Throughput Techniques

Because of the multi-component characteristics of HEAs, the number of HEA com-
positions is increasing rapidly. Traditional methods are impractical to achieve synthesis,
characterization, modeling and optimization of HEAs’ compositions.

To explore the huge compositional spaces and more effectively improve the alloy
development, high-throughput calculation techniques have been put forward, overcoming
the time-consuming and laborious nature of traditional experiments [127]. Bulk samples
of freely chosen compositions can be produced by high-throughput synthesis techniques,
to achieve microstructures closer to industrial demand. At present, high-throughput
technology mainly includes empirical models, first-principle calculations, the calculation of
phase diagrams (CALPHAD) and machine learning.

For example, Melia et al. [56] discussed the implications of high-throughput synthesis
techniques and the coupling of high-throughput characterization and modeling techniques
by preparing MoNbTaW with different numbers of components (i.e., MoNbTa graded to
pure W, MoTaW graded to pure Nb and so on). Michael et al. [52] processed and character-
ized a wide range of compositions based on the MoNbTaW material system, including both
equiatomic and nonequiatomic alloys. They proposed a method for rapid screening of com-
plex, concentrated alloys by a combination of metal additive manufacturing, microscopy
and high-throughput mechanical testing. The samples exhibited a propensity for brittle
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fracture or cracking, likely due to the intrinsically low workability of these alloys, and miti-
gation strategies to avoid cracking were discussed. Light, strong and low-cost AlCrFeMnTi
HEAs for elevated-temperature applications were designed by a CALPHAD-based high-
throughput computational method [128]. Precipitation-strengthened AlCrFeMnTi HEAs,
which were selected from thousands of initial compositions, exhibit enhanced strength
compared to their counterparts at room and elevated temperatures (flowchart is shown in
Figure 17).
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These cases show that high-throughput processing and characterization can enable
rapid screening of complex, concentrated HEAs and their optimization for structural
applications.

5. Summary and Outlook

This paper reviewed all aspects involved in the field of HEAs with a BCC structure.
We compared the mechanical properties of BCC HEAs prepared by vacuum arc-melting,
powder metallurgy (mainly MA with SPS) and additive manufacturing (mainly DLD). At
present, BCC HEAs with high specific strength and reasonable ductility are prepared by
vacuum arc-melting, which is also the most mature and widely used preparation technology.
Moreover, the samples prepared by PM exhibited better properties owing to their ultrafine
grains, excellent microstructural homogeneity, improved strength and hardness. PM is a
promising way to prepare ductile RHEAs with outstanding comprehensive mechanical
properties. The development of AM technology is promoted by new materials exploitation
and structural optimization. The samples with refined microstructure are mainly attributed
to the success of the rapid solidification in the AM preparation process. It is possible
to prepare HEA products with complex geometry that can be used in aerospace, energy,
molding, tooling and other industries by AM. However, relevant studies on AM are limited
at present and the simultaneous handling of several elemental or pre-alloyed powders
brings new challenges to the deposition process of AM. The influence of HEAs property
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(atomic size difference, mixing entropy, mixing enthalpy, valence electron concentration,
electronegativity difference, etc.), processing technique (DED, SLM, EBM, etc.), process
parameters (laser/electron beam power, scanning speed, scanning pitch, layer thickness,
etc.) on mechanical properties (strength, ductility, fatigue life, wear resistance, etc.) of
printed HEA products should be considered simultaneously, rather than just some of them.
It is hoped that more experts will pay attention to BCC high entropy alloys and improve
the relevant research mentioned above, thereby refining their applicability in a broad range
of industries.

As an important part of BCC HEAs, the high-temperature properties of RHEAs have
also attracted extensive attention. In addition to the preparation process, alloying also plays
a great role in the improvement of mechanical properties. For instance, Ti can facilitate grain
refinement, Cr can promote Laves phase precipitated in the BCC matrix and Al can trigger
the appearance of the BCC2 phase. It has been studied that Al, Cr and Si addition can
improve the high-temperature oxidation resistance of RHEAs. However, unfortunately, this
approach worsens room-temperature ductility. How to improve the oxidation resistance of
RHEAs while achieving optimal room temperature ductility seems to be a challenge.

At present, the research on high entropy alloys, especially BCC high entropy alloys,
is still in the initial stage, and the formation mechanism of its single solid solution is
not perfect. In addition, the composition design of high-entropy alloys has great flexi-
bility. The high-throughput method can effectively screen new high-entropy alloys and
rapidly prepare high-entropy alloys with different components, thus improving the de-
velopment speed of high-entropy alloys and overcoming the traditional characteristics of
time-consuming and laborious experiments.

Overall, most BCC-structured HEAs display good mechanical properties, especially
for RHEAs at high temperatures, common systems and applications are listed in Table 1.

Table 1. Common systems and applications.

Alloy System Applications Reference

TiAlFeCoNi Biomedical materials [73]
TiZrNbTaMo Biomedical materials [117]

Mo0.5NbTiV0.5Zr0.25 Radiation resistant material [121]
CrMoNbV Aviation Materials [129]

Zr45Ti31.5Nb13.5Al10 Aviation Materials [130]

In biomedical applications, TiAlFeCoNi HEA exhibited 170~580% higher hardness,
low elastic modulus and 260~1020% better cellular metabolic activity compared to ti-
tanium and Ti-6Al-7Nb biomaterials. The TiZrNbTaMo HEA possesses Young’s mod-
ulus of 153 GPa, Vickers microhardness of 4.9 GPa, excellent compressive properties
(σy = 1390 MPa and εp ≈ 6%). Besides, it exhibited excellent corrosion resistance in PBS
and was remarkably superior to the 316LSS and CoCrMo alloys. Those HEAs confirm the
high potential for future biomedical applications. In nuclear applications, Mo0.5NbTiVCr0.25
shows slight irradiation hardening compared with most of the conventional alloys and
shows outstanding irradiation resistance, which may be promising accident-tolerant fuel
cladding materials. In aviation materials, The CrMoNbV has superior high temperature
strength, attributed to the large atomic-size and elastic-modulus mismatches, the insensitive
temperature dependence of elastic properties, and the dominance of non-screw character
dislocations. Furthermore, Zr45Ti31.5Nb13.5Al10 HEA is a novel ultra-strong (1.2 GPa) and
tough (~25%) alloy with low density. These HEAs have potential as aerospace materials.

However, so far, research on the high temperature fatigue properties, creep properties
and high temperature oxidation properties of BCC HEAs is not extensive. The successful
application of a new alloy in the industry requires a comprehensive performance test and
in-depth evaluation. Therefore, there is still a long way to go in the research of BCC HEAs.
The industrialization of BCC HEAs still faces great challenges.



Metals 2022, 12, 501 19 of 23

Author Contributions: Conceptualization, Y.Z. literature review, F.L., P.K.L., Y.Z.; writing—original
draft preparation, F.L.; supervision, Y.Z. All authors have read and agreed to the published version of
the manuscript.

Funding: The present research was funded by the Guangdong Basic and Applied Basic Research
Foundation (No. 2019B1515120020), the State Key Laboratory for Advanced Metals and Materials in
the University of Science and Technology Beijing (No. 2020Z-08), and the Funds for Creative Research
Groups of China (No. 51921001); P.K.L greatly thanks the supports from (1) the National Science
Foundation (DMR-1611180 and 1809640) and (2) the Army Research Office (W911NF-13-1-0438 and
W911NF-19-2-0049).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All data included in this study are available from the corresponding
author on reasonable request.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Yeh, J.-W. Recent progress in high-entropy alloys. Ann. Chim. Sci. Mat 2006, 31, 633–648. [CrossRef]
2. Chang, Y.-J.; Yeh, A.-C. The evolution of microstructures and high temperature properties of AlxCo1.5CrFeNi1.5Tiy high entropy

alloys. J. Alloys Compd. 2015, 653, 379–385. [CrossRef]
3. Gludovatz, B.; Hohenwarter, A.; Catoor, D.; Chang, E.H.; George, E.P.; Ritchie, R.O. A fracture-resistant high-entropy alloy for

cryogenic applications. Science 2014, 345, 1153–1158. [CrossRef] [PubMed]
4. Chuang, M.-H.; Tsai, M.-H.; Wang, W.-R.; Lin, S.-J.; Yeh, J.-W. Microstructure and wear behavior of AlxCo1.5CrFeNi1.5Tiy

high-entropy alloys. Acta Mater. 2011, 59, 6308–6317. [CrossRef]
5. Chen, J.; Niu, P.; Liu, Y.; Lu, Y.; Wang, X.; Peng, Y.; Liu, J. Effect of Zr content on microstructure and mechanical properties of

AlCoCrFeNi high entropy alloy. Mater. Des. 2016, 94, 39–44. [CrossRef]
6. Cheng, K.-H.; Lai, C.-H.; Lin, S.-J.; Yeh, J.-W. Structural and mechanical properties of multi-element (AlCrMoTaTiZr)Nx coatings

by reactive magnetron sputtering. Thin Solid Films 2011, 519, 3185–3190. [CrossRef]
7. Daoud, H.M.; Manzoni, A.M.; Wanderka, N.; Glatzel, U. High-Temperature Tensile Strength of Al10Co25Cr8Fe15Ni36Ti6 Composi-

tionally Complex Alloy (High-Entropy Alloy). JOM 2015, 67, 2271–2277. [CrossRef]
8. Fu, Z.; Yang, B.; Gan, K.; Yan, D.; Li, Z.; Gou, G.; Chen, H.; Wang, Z. Improving the hydrogen embrittlement resistance of a

selective laser melted high-entropy alloy via modifying the cellular structures. Corros. Sci. 2021, 190, 109695. [CrossRef]
9. Chen, Y.Y.; Duval, T.; Hung, U.D.; Yeh, J.W.; Shih, H.C. Microstructure and electrochemical properties of high entropy alloys—a

comparison with type-304 stainless steel. Corros. Sci. 2005, 47, 2257–2279. [CrossRef]
10. Chen, Y.Y.; Hong, U.T.; Shih, H.C.; Yeh, J.W.; Duval, T. Electrochemical kinetics of the high entropy alloys in aqueous

environments—a comparison with type 304 stainless steel. Corros. Sci. 2005, 47, 2679–2699. [CrossRef]
11. Quiambao, K.F.; McDonnell, S.J.; Schreiber, D.K.; Gerard, A.Y.; Freedy, K.M.; Lu, P.; Saal, J.E.; Frankel, G.S.; Scully, J.R. Passivation

of a corrosion resistant high entropy alloy in non-oxidizing sulfate solutions. Acta Mater. 2019, 164, 362–376. [CrossRef]
12. Cantor, B.; Chang, I.; Knight, P.; Vincent, A. Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng.

A 2004, 375–377, 213–218. [CrossRef]
13. Senkov, O.N.; Wilks, G.B.; Miracle, D.B.; Chuang, C.P.; Liaw, P.K. Refractory high-entropy alloys. Intermetallics 2010, 18, 1758–1765.

[CrossRef]
14. Takeuchi, A.; Amiya, K.; Wada, T.; Yubuta, K.; Zhang, W. High-Entropy Alloys with a Hexagonal Close-Packed Structure

Designed by Equi-Atomic Alloy Strategy and Binary Phase Diagrams. JOM 2014, 66, 1984–1992. [CrossRef]
15. Gao, M.C.; Zhang, B.; Guo, S.M.; Qiao, J.W.; Hawk, J.A. High-Entropy Alloys in Hexagonal Close-Packed Structure. Metall. Mater.

Trans. A 2016, 47, 3322–3332. [CrossRef]
16. Zhang, Y.; Li, R. New Advances in High-Entropy Alloys. Entropy 2020, 22, 1158. [CrossRef]
17. Zhang, Y.; Ai, Y.; Chen, W.; Ouyang, S. Preparation and microstructure and properties of AlCuFeMnTiV lightweight high entropy

alloy. J. Alloys Compd. 2022, 900, 163352. [CrossRef]
18. Fu, X.; Schuh, C.A.; Olivetti, E.A. Materials selection considerations for high entropy alloys. Scr. Mater. 2017, 138, 145–150.

[CrossRef]
19. Waseem, O.A.; Ryu, H.J. Powder Metallurgy Processing of a WxTaTiVCr High-Entropy Alloy and Its Derivative Alloys for Fusion

Material Applications. Sci. Rep. 2017, 7, 1926. [CrossRef]
20. Wu, Y.D.; Cai, Y.H.; Wang, T.; Si, J.J.; Zhu, J.; Wang, Y.D.; Hui, X.D. A refractory Hf25Nb25Ti25Zr25 high-entropy alloy with

excellent structural stability and tensile properties. Mater. Lett. 2014, 130, 277–280. [CrossRef]

http://doi.org/10.3166/acsm.31.633-648
http://doi.org/10.1016/j.jallcom.2015.09.042
http://doi.org/10.1126/science.1254581
http://www.ncbi.nlm.nih.gov/pubmed/25190791
http://doi.org/10.1016/j.actamat.2011.06.041
http://doi.org/10.1016/j.matdes.2016.01.033
http://doi.org/10.1016/j.tsf.2010.11.034
http://doi.org/10.1007/s11837-015-1484-7
http://doi.org/10.1016/j.corsci.2021.109695
http://doi.org/10.1016/j.corsci.2004.11.008
http://doi.org/10.1016/j.corsci.2004.09.026
http://doi.org/10.1016/j.actamat.2018.10.026
http://doi.org/10.1016/j.msea.2003.10.257
http://doi.org/10.1016/j.intermet.2010.05.014
http://doi.org/10.1007/s11837-014-1085-x
http://doi.org/10.1007/s11661-015-3091-1
http://doi.org/10.3390/e22101158
http://doi.org/10.1016/j.jallcom.2021.163352
http://doi.org/10.1016/j.scriptamat.2017.03.014
http://doi.org/10.1038/s41598-017-02168-3
http://doi.org/10.1016/j.matlet.2014.05.134


Metals 2022, 12, 501 20 of 23

21. Yao, H.; Tan, Z.; He, D.; Zhou, Z.; Zhou, Z.; Xue, Y.; Cui, L.; Chen, L.; Wang, G.; Yang, Y. High strength and ductility AlCrFeNiV
high entropy alloy with hierarchically heterogeneous microstructure prepared by selective laser melting. J. Alloys Compd. 2020,
813, 152196. [CrossRef]

22. Son, S.; Kim, S.; Kwak, J.; Gu, G.H.; Hwang, D.S.; Kim, Y.-T.; Kim, H.S. Superior antifouling properties of a CoCrFeMnNi
high-entropy alloy. Mater. Lett. 2021, 300, 130130. [CrossRef]

23. Xia, S.; Xia, Z.; Zhao, D.; Xie, Y.; Liu, X.; Wang, L. Microstructure formation mechanism and corrosion behavior of FeCrCuTiV
two-phase high entropy alloy prepared by different processes. Fusion Eng. Des. 2021, 172, 112792. [CrossRef]

24. Avila-Rubio, M.A.; Carreño-Gallardo, C.; Herrera-Ramirez, J.M.; García-Grajeda, B.A.; Pérez-González, F.A.; Ramirez-Ramirez,
J.H.; Garza-Montes-de-Oca, N.F.; Baldenebro-Lopez, F.J. Microstructure and microhardness of high entropy alloys with Zn
addition: AlCoFeNiZn and AlCoFeNiMoTiZn. Adv. Powder Technol. 2021, 32, 4687–4696. [CrossRef]

25. Ye, Q.; Yang, B.; Yang, G.; Zhao, J.; Gong, Z. Stability prediction of AlCoCrFeMo0.05Ni2 high entropy alloy by Kinetic Monte Carlo
method. Mater. Lett. 2022, 306, 130907. [CrossRef]

26. Daryoush, S.; Mirzadeh, H.; Ataie, A. Amorphization, mechano-crystallization, and crystallization kinetics of mechanically
alloyed AlFeCuZnTi high-entropy alloys. Mater. Lett. 2022, 307, 131098. [CrossRef]

27. Wang, Y.P.; Li, B.S.; Ren, M.X.; Yang, C.; Fu, H.Z. Microstructure and compressive properties of AlCrFeCoNi high entropy alloy.
Mater. Sci. Eng. A 2008, 491, 154–158. [CrossRef]

28. Zhang, L.J.; Jiang, Z.K.; Zhang, M.D.; Fan, J.T.; Liu, D.J.; Yu, P.F.; Liu, R.P. Effect of solid carburization on the surface microstructure
and mechanical properties of the equiatomic CoCrFeNi high-entropy alloy. J. Alloys Compd. 2018, 769, 27–36. [CrossRef]

29. Nishimoto, A.; Fukube, T.; Maruyama, T. Microstructural, mechanical, and corrosion properties of plasma-nitrided CoCrFeMnNi
high-entropy alloys. Surf. Coat. Technol. 2018, 376, 52–58. [CrossRef]

30. Günen, A. Tribocorrosion behavior of boronized Co1.19Cr1.86Fe1.30Mn1.39Ni1.05Al0.17B0.04 high entropy alloy. Surf. Coat. Technol.
2021, 421, 127426. [CrossRef]
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