
A Framework for Identification and Validation of Affine
Hybrid Automata from Input-Output Traces
XIAODONG YANG, Vanderbilt University, USA
OMAR ALI BEG, The University of Texas Permian Basin, USA

MATTHEW KENIGSBERG, Vanderbilt University, USA
TAYLOR T JOHNSON, Vanderbilt University, USA

Automata-based modeling of hybrid and cyber-physical systems (CPS) is an important formal abstraction

amenable to algorithmic analysis of its dynamic behaviors, such as in verification, fault identification, and

anomaly detection. However, for realistic systems, especially industrial ones, identifying hybrid automata

is challenging, due in part to inferring hybrid interactions, which involves inference of both continuous

behaviors, such as through classical system identification, as well as discrete behaviors, such as through

automata (e.g., L*) learning. In this paper, we propose and evaluate a framework for inferring and validating

models of deterministic hybrid systems with linear ordinary differential equations (ODEs) from input/output

execution traces. The framework contains algorithms for the approximation of continuous dynamics in discrete

modes, estimation of transition conditions, and the inference of automata mode merging. The algorithms are

capable of clustering trace segments and estimating their dynamic parameters, and meanwhile, deriving guard

conditions that are represented by multiple linear inequalities. Finally, the inferred model is automatically

converted to the format of the original system for the validation. We demonstrate the utility of this framework

by evaluating its performance in several case studies as implemented through a publicly available prototype

software framework called HAutLearn and compare it with a membership-based algorithm.

CCS Concepts: • Computing methodologies→Modeling methodologies; Model verification and valida-
tion; • Computer systems organization→ Embedded and cyber-physical systems.

Additional Key Words and Phrases: Hybrid systems, System identification, Automata learning.

ACM Reference Format:
Xiaodong Yang, Omar Ali Beg, Matthew Kenigsberg, and Taylor T Johnson. 2021. A Framework for Identifica-

tion and Validation of Affine Hybrid Automata from Input-Output Traces. ACM Transactions on Cyber-Physical
Systems 0, 0, Article 0 (September 2021), 25 pages.

1 INTRODUCTION
Modeling and learning of systems from traces has a long and storied history, with some original

effective algorithms for finding automata from their traces described by Angluin’s L
∗
algorithm [4]

now instantiated in software packages such as LearnLib [44]. From a software engineering van-

tage point, one can view finding automata from traces as a form of specification inference for

DISTRIBUTION STATEMENT A. Approved for public release, distribution unlimited. Approved, DCN 43-8347-21.

Authors’ addresses: Xiaodong Yang, xiaodong.yang@vanderbilt.edu, Vanderbilt University, Nashville, TN, USA; Omar Ali

Beg, beg_o@utpb.edu, The University of Texas Permian Basin, Odessa, TX, USA; Matthew Kenigsberg, matthew.kenigsberg@

vanderbilt.edu, Vanderbilt University, Nashville, TN, USA; Taylor T Johnson, taylor.johnson@vanderbilt.edu, Vanderbilt

University, Nashville, TN, USA.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2021 Association for Computing Machinery.

XXXX-XXXX/2021/9-ART0 $15.00

https://doi.org/

ACM Transactions on Cyber-Physical Systems, Vol. 0, No. 0, Article 0. Publication date: September 2021.

https://doi.org/


0:2 Yang et al.

 

 
Location 

transition with 
guard conditions 

 Input/output 
traces 

Model 

simulation 
 

Clustered 
trace 

segments 
 

Cluster trace 

Segments  

 

 

 
Location 

traces 
Each location 

contains one ODE 

Estimate 

ODEs for 

each cluster 

 Raw location 

transitions 

Merge locations  

 
Learned 
hybrid 

automation 

Prune 

transitions 

Infer guard 

conditions 

Fig. 1. Overview of the framework proposed in this paper to learn hybrid automata with linear (affine) ODEs,
guards, invariants, and resets from time-series data (traces).

an implementation of a system. Specification inference is an effective technique for automated

documentation, model validation, model repair, and many other tasks, often restricted to subclasses

of possible specifications that may be inferred, such as invariants [14–16, 28, 38]. From the automata

theoretic perspective, one can thus view learning automata from traces as a method to infer classes

of specifications beyond safety and into temporal behaviors, such as liveness.

A hybrid automaton is a formal model that models both continuous and discrete behaviors

through a combination of continuously-evolving real-valued variables and discrete components,

which together exhibit mixed dynamical behaviors [24]. Continuous variables evolve over intervals

of real time with respect to some specified ordinary differential equations (ODEs) or inclusions.

Discrete behaviors are modeled in an automata-theoretic manner, typically defined by some forms

of graphs or state machines. The discrete modes may contain invariant conditions which, once

violated, will induce transitions to different modes. The transitions between discrete modes may

also have guards with conditions including exogenous events and predicates over continuous

variables. One of the canonical examples is the model of a bouncing ball. Released from a specified

height, the ball exhibits different continuous dynamics after impacting the ground. Hybrid automata

provides an expressive and useful abstraction to model different dynamical systems, and have

proven valuable in various areas, such as system simulation, anomaly detection, reachability

analysis, verification, and identification of optimal policies [3, 25]. Realistic systems are often

too complex to be designed purely in a formalism such as hybrid automata, and often rely on

complex software toolchains such as the MathWorks’ Simulink/Stateflow, with a significantly more

expressive modeling framework, but with unclear semantics. As hybrid automata models often are

not the design engineer’s modeling tool of choice, inferring hybrid automata from traces of complex

and black-box systems can provide insight into the behaviors of those systems. Actual physical

environments are usually too complicated to be analyzed using available technologies. Learning

hybrid automata from system behaviors can provide a convenient way for system analysis in the

abstraction layer so that the complexity of hybrid systems can be reduced while safety properties

are still kept in its relevant behavior and the system itself can become accessible to existing analysis

tools. Therefore, it helps engineers develop high-level automata strategies.

The contributions of this paper are that an automata-based framework for the inference and

validation of hybrid systems from execution traces is developed, with restrictions on the continuous

behaviors, guards, invariants, and resets to be described by linear (affine) equations. The inference

framework includes five steps as shown in Figure 1: (1) cluster execution trace segments according

to their dynamics, (2) fit an ordinary differential equation (ODE) to each cluster, (3) estimate guard

ACM Transactions on Cyber-Physical Systems, Vol. 0, No. 0, Article 0. Publication date: September 2021.



A Framework for Identification and Validation of Affine Hybrid Automata from Input-Output Traces 0:3

 

  Matlab H.A. 
Data Structure  

 
SpaceEx 

H.A. 
(xml file) 

 Stateflow 
Model 

 

Matlab 

SpaceaEx to 

Stateflow 

 
 Time Series 

Data Traces 

Simulation  

Generate traces 

 

 Hyst H.A.  

Data structure 

 

Convert data 

structure 

 

Print xml 

file 

 

Automata 

Learning 

Validation 

Compare learned H.A. 

to the original H.A. 

Fig. 2. Overview of the validation of the proposed framework for the method described in this paper. A
given hybrid automaton is specified in the SpaceEx/HyST [7, 20] format, automatically translated to a
Simulink/Stateflow model using HyST [6, 7], simulated to generate time series data (traces). The hybrid
automata learning framework is then applied to these traces, and a learned hybrid automaton is generated in
the SpaceEx/HyST format, and simulated again to generate traces to validate the learned model’s behaviors
against the original model’s behaviors.

conditions for the discontinuities, or changepoints in traces, (4) merge modes and transitions in

terms of a defined compatibility criterion, and (5) prune duplicate and other erroneous transitions

that arise from steps 1 and 3. We approximate the continuous dynamics by fitting linear (affine)

ODEs to segmented traces, which is a classical problem in system identification [32]. To distinguish

different dynamics from traces, we develop a method to calculate their solution spaces within a

pre-specified error bound and cluster them accordingly. For guard conditions, under the assump-

tion that they are described by linear inequalities, a subspace clustering algorithm is applied to

estimate their parameters by clustering changepoints into a low-dimensional line or plane. For

the mode merging, a method based on the prefix tree acceptor (PTA) is applied to merge similar

modes without introducing non-determinism into the model, and then erroneous transitions are

pruned before generating the final hybrid automaton that can recreate the source trace data. The

framework is implemented in a prototype software tool within Matlab relying in part on the HyST

source transformation and translation tool [7] and its integration with Simulink/Stateflow [6].

The framework is evaluated and validated against several standard hybrid systems benchmarks.

These examples were chosen in part so that the validation approach illustrated in Figure 2 could

be illustrated, where both syntactic and semantic similarities could be compared to the learned

automata.

2 RELATED WORK
Significant related works have been developed in the context of automata learning for purely
discrete systems, such as finite state automata [4]. For timed, switched, and hybrid systems, there

has been less investigation, although there are several recently proposed methods [35, 43, 48, 50].

From the control theory, there are more related works for the system identification, including the

identification of piecewise models such as the Switched affine AutoRegressive eXogenous (SARX)

model and the PieceWise affine ARX (PWARX) model. A primary challenge of such identification

includes the inference of the parameters of all potential models, as well as the coefficients of the

hyperplanes that partition the state-input domain. Such approaches have been well studied [21,

31, 42]. The majority of works can be divided into three categories: algebraic based [9, 33, 51–53],

clustering-based [10, 12, 18, 22, 26], and optimization based [8, 27, 29, 36, 41]. The algebraic methods

ACM Transactions on Cyber-Physical Systems, Vol. 0, No. 0, Article 0. Publication date: September 2021.



0:4 Yang et al.

regard the identification of multi-models as one single model. The parameters are estimated with a

polynomial embedding from whose derivatives the original model can be estimated. The clustering-

based methods utilize feature vectors computed from local data sets to cluster the models and then

estimate their parameters. The optimization-based methods convert the estimation of models to

an optimization problem, such as minimization of a predefined loss function. Most of these works

mainly focus on the identification of models, but few of them consider the inference of the overall

automaton and switching policies.

Recent works on identification of hybrid automata are as follows. Summerville et al. propose a

framework for hybrid automaton inference [47], where a cost function with a penalty criterion

based on one set of potential linear model templates is applied to segment the traces and then

select an optimal model with the minimum trace error. Their guard conditions are selected from

predefined predicates using Normalized Pointwise Mutual Information (NPMI). Niggemann et

al. model each segment using linear regression or neural networks [40]. The similarity of states

is tested by checking the probability of staying in the state. States are merged in a bottom-up

fashion. Guard conditions are estimated by a combination of exogenous events, timing constraints,

and transition probabilities. Medhat et al. cluster the observed traces into input/output events

according to predefined features [35], and then apply the linear regression to estimate the clustered

dynamics. They derive an automaton based on a Mealy inference algorithm within LearnLib. Grosu

et al. propose a methodology to estimate cycle-linear hybrid automata for excitable cells from

virtual measurements [23]. The traces of electrical signals are segmented by filtered null points and

inflection points. Then, they apply a modified Prony’s method to fit an exponential function to each

segment within an error bound. The transition guards are estimated from the transitions’ post states.

Sarkar et al. propose an approach to learn a stochastic switched linear model for nonparametric

systems, which is by constructing data with Hankel-like matrices and computing approximations

via singular value decomposition (SVD) truncation [45]. Miriam et al. propose algorithms to apply

membership-based synthesis to learn linear hybrid automata with nondeterministic guards and

invariants [46]. Bernhard et al. combine abstract automata learning, model-based testing, and

machine learning to learn a hybrid system, where the state space is first discretized and then a

testing method is applied to generate sufficient data for the behavioral estimation in the machine-

learning process [2]. Lamrani et al. propose a framework for the learning of hybrid systems [30],

where candidate models are clustered from traces using feature vectors, and guard conditions are

then estimated based on the segmentation of traces. However, such a framework requires a good

prior knowledge of the target system to select features for the clustering.

Even though tremendous related techniques have been developed, the inference of hybrid

automata is still an open and challenging problem. In this paper, we propose a framework for

inferring and validating deterministic hybrid systems from another perspective. We evaluate it with

four benchmarks as well as a comparison with one state-of-the-art membership-based approach,

and show that our framework can identify accurate hybrid automata given trace information and

can be an effective and promising approach.

3 HYBRID AUTOMATA
Hybrid automata are a common formal modelling framework for hybrid systems that combine finite

state machines with a finite set of real-valued continuous state variables described by differential

equations or inclusions. Our work mainly focuses on deterministic and synchronous models, where

all constraints over state variables are specified using linear (affine) equations or inequalities. Given

a set of time series traces that are generated from a hybrid system, a formal inference model, 𝐺ℎ ,

for this hybrid system is inferred as a hybrid automaton. We assume the system dynamics in each

ACM Transactions on Cyber-Physical Systems, Vol. 0, No. 0, Article 0. Publication date: September 2021.



A Framework for Identification and Validation of Affine Hybrid Automata from Input-Output Traces 0:5

mode are characterized by an affine ODE:

¤x = 𝐴𝑞x + 𝐵𝑞u (1)

where 𝐴𝑞 and 𝐵𝑞 are constant system matrix, and x indicates the state variable vector and u
denotes an input vector. In our work, the identification problem of this continuous dynamics is the

determination of 𝐴𝑞 and 𝐵𝑞 from traces that are collected at a constant sampling frequency. With

these traces, its discrete-time representation will be first derived and then be converted back to

Equation 1. Here, the discrete-time representation is defined as

x𝑘+1 = 𝐴x𝑘 + 𝐵u𝑘 (2)

where matrix 𝐴 and 𝐵 will be used for the further mode identification and mode merging in the

framework.

Definition 3.1 (Hybrid System Model). A hybrid automaton 𝐺ℎ is a tuple 𝐺ℎ = ⟨𝑄,𝑋, 𝑓 , 𝐸,Φ,𝑈 ⟩:
• 𝑄 is a finite set of control modes, and 𝑋 ⊆ R𝑛 is the continuous state space, an element of

which is typically denoted as x = [𝑥1, 𝑥2, . . . , 𝑥𝑛]⊤ ∈ 𝑋 . The x is also referred as the variable

vector.

• 𝑓 is a vector field that describes the dynamics of𝑋 with respect to real-time, 𝑓 : 𝑄×𝑋×𝑈 → 𝑋 .

For a mode 𝑞 ∈ 𝑄 , we define 𝑓 as in Equation 1, where 𝐴𝑞 and 𝐵𝑞 are time-invariant within

mode 𝑞:

¤x = 𝑓 (𝑞, x,u) = 𝐴𝑞x + 𝐵𝑞u.
• 𝐸 denotes events or guard conditions that trigger modes switching, where 𝑒 ∈ 𝐸 is an

exogenous event or multiple linear inequalities (predicates) involving continuous variables.

The invariant conditions are the complement.

• Φ denotes the discrete transitions: 𝑄 × 𝐸 → 𝑄 . Here, 𝜙 : ⟨𝑞, 𝑒, 𝑞′⟩ ∈ Φ denotes a mode

transition from source mode 𝑞 to a destination mode 𝑞′ triggered by an event 𝑒 .

• 𝑈 ⊆ R𝑚 denotes a continuous space of inputs, and u = [𝑢𝑜 ;𝑢𝑞]⊤ ∈ 𝑈 is an input consisting

of an exogenous input to the system, 𝑢𝑜 ∈ R𝑚−1, and an internal constant, 𝑢𝑞 ∈ R in each

mode.

Definition 3.2 (Trajectory). A trajectory of𝐺ℎ from a state (𝑞, x) to a state (𝑞′, x′) where 𝑞, 𝑞′ ∈ 𝑄
andx, x′ ∈ 𝑋 is a pair 𝜌 ≜ (𝔔,𝔛).𝔔 and𝔛 are functions that define for each time point in an interval

𝑇 the mode and the values of the continuous state variables. The time points where mode switches

𝜙 ∈ Φ occur are defined as timestamp changepoints (𝜏𝑖 )𝑖=0,1,...,𝑝 ∈ 𝑇 . The timestamp changepoints

𝜏𝑖 must satisfy the following conditions: (1) 𝜏0 = 0, 𝜏𝑖 < 𝜏𝑖+1 and 𝜏𝑝 = 𝑇 , (2) ∀𝑖∀𝑡 ∈ [𝜏𝑖 , 𝜏𝑖+1),
𝔔 (𝑡) = 𝔔 (𝜏𝑖 ), (3) ∀𝑖∀𝑡 ∈ [𝜏𝑖 , 𝜏𝑖+1), the dynamics function 𝑓 at each 𝑡 is the same as at 𝜏𝑖 .

4 IDENTIFYING AND CLUSTERING DYNAMICS FROM TRACES
In this section, we present a method to estimate and cluster ordinary differential equations (ODEs)

from traces. In clustering of trace segments, some works apply clustering methods from the field of

machine learning [35]. However, it is challenging to select effective dynamic features to distinguish

time-series data traces from different dynamics, and meanwhile the selected features may not be

easily generalized to other systems. Instead, we utilize the Linear Matrix Inequality (LMI) method

to detect the dynamic similarity between trace segments under a specified error tolerance.

4.1 Changepoints and Input-output Traces
The dynamics of hybrid systems is reflected in the behaviors of execution traces. One such trace is

one set of a finite sequence of input signals and their corresponding outputs (or state variable values)

with a constant sampling time interval 𝑡𝑠 . From the perspective of the trajectory in Definition 3.2, an

ACM Transactions on Cyber-Physical Systems, Vol. 0, No. 0, Article 0. Publication date: September 2021.



0:6 Yang et al.

output trace over an execution time 𝑇 is a sequence of sampled values of the continuous variables

x in the trajectory over 𝑇 , and it is denoted as X. In segmenting the traces, a changepoint of two
consecutive trace segments is characterized by an abrupt change in value or slope, which also can

reflect a mode switch. Thus we use the timestamp changepoints (𝜏𝑖 )𝑖=0,1,...,𝑝 ∈ 𝑇 from Definition 3.2

to represent the time point where mode switches happen. With such changepoints, an output trace

X ∈ R𝑛×𝑙 with a length 𝑙 will be segmented into [X1,X2, . . . ,X𝑝 ], where X𝑖 = X[𝜏𝑖 ,𝜏𝑖+1 ] and 𝑙𝑖 is

its length. Similarly, let U ∈ R𝑚×𝑙 be an input trace, then [U1,U2, . . . ,U𝑝 ] represent the input
segments whereU𝑖 = U[𝜏𝑖 ,𝜏𝑖+1 ] . A set (X𝑖 ,U𝑖 ) is called a trace segment. This definition of traces

is demonstrated by one example of state traces collected from a buck-converter system, as show

in Figure 3.

In our experiments, all the traces are automatically segmented by applying the peak detection

algorithm on the second-order difference of state traces. A desired trace segment should only

contain a single dynamics. Despite the fact that a perfect segmentation cannot be guaranteed due

to noises in traces, the clustering method based on the LMI in the following section helps filter

out erroneous trace segments that contain multiple dynamics. This is because when a trace spans

multiple dynamics, the solution space for its ODE estimation will have few chances to overlap

with the solution space from the trace that has single dynamics. These erroneous segments can be

detected by checking the number of trace segments in each cluster. Additionally, the changepoints

of these mis-segmented traces do not reflect the true guard condition for mode transitions. In the

estimation of the guard conditions, these changepoints will likely fall in the outlier where they

become invalid. Overall, with our framework, the impact of mis-segmented traces on the inference

of hybrid automata can be reduced.

0 0.005 0.01 0.015
Time/sec

-5

0

5

10

15

1 2 3 4 5 6 7 8

Fig. 3. One set of traces from a buck-converter system. This set of data includes the voltage and current
measurement in a circuit, and here 𝜏 denotes a discontinuity, henceforth referred to as a changepoint.

4.2 Construction of Solution Space
Given a trace segment, A solution space is the space that contains all the possible parameter sets

for Equation 2 under a pre-specified error tolerance. The error here refers to the difference between

the given traces samples for learning and the traces generated from the learned dynamics. The

solution space is represented by a Linear Matrix Inequality (LMI) as defined in Equation 8. Based

on it, we can inspect the similarity between the dynamics of trace segments by checking whether

their solution spaces overlap. The construction of the LMI starts with the dynamics formulation.

To reduce the impact from noise in trace segments, we consider the dynamics in Equation 3 which

is modified from Equation 2:

x𝑘+𝑗 = 𝐴 𝑗x𝑘 +𝐴 𝑗−1𝐵u𝑘 +𝐴 𝑗−2𝐵u𝑘+1 + · · · + 𝐵u𝑘+𝑗 (3)

ACM Transactions on Cyber-Physical Systems, Vol. 0, No. 0, Article 0. Publication date: September 2021.



A Framework for Identification and Validation of Affine Hybrid Automata from Input-Output Traces 0:7

The reason is as follows. Suppose an output 𝑥 = 𝑥 + 𝜀 where 𝑥 denotes the true value and 𝜀 denotes

noise, then Equation 2 can be converted to

x𝑘+1 + 𝜀 = 𝐴(x𝑘 + 𝜀) + 𝐵u𝑘
but the difference of state-variables values after one time step can be so small that the noise 𝜀 may

dominate the dynamics estimation, leading to an inaccurate model. To simplify the analysis in this

equation and further application of LMI, the system is assumed to have a constant input u = u𝑘
over this 𝑗 time steps. Thus, with 𝐸 = 𝐴 𝑗−1𝐵 + 𝐴 𝑗−2𝐵 + · · · + 𝐵 as one matrix, Equation 3 can be

simplified to Equation 4. In this case, ∥x𝑘+𝑗 − x𝑘 ∥ normally increases with 𝑗 , such that a larger 𝑗

can reduce the impact of the noise 𝜖 . For different dynamics and noise bounds, the choice of 𝑗 can

be determined empirically. Our experimental results of the inference of two hybrid automatons

show that when 𝑗=10, accurate hybrid models can be estimated from state traces with uniformly

distributed noise [−0.05, 0.05].
x𝑘+𝑗 = 𝐴 𝑗x𝑘 + 𝐸u𝑘 (4)

Let A = [𝐴 𝑗 , 𝐸], O = (X,U) be the collected traces of the state variables and input signals of

the right part of Equation 4, and O ′ = X be the trace of the state variables of the left part. Given

a trace segment (X𝑖 ,U𝑖 ) with a constant sampling interval 𝜏𝑠 , we can construct Equation 5 from

Equation 4 that

O ′𝑖 − A𝑖O𝑖 = 0 (5)

where O𝑖 = [X;U] [𝜏𝑖 ,𝜏𝑖+1−𝑗𝑡𝑠 ] ∈ R(𝑛+𝑚)×(𝜏𝑖+1−𝜏𝑖−𝑗𝑡𝑠 ) , O ′𝑖 = X[𝜏𝑖+𝑗𝑡𝑠 ,𝜏𝑖+1 ] ∈ R𝑛×(𝜏𝑖+1−𝜏𝑖−𝑗𝑡𝑠 ) , and A𝑖 =

[𝐴 𝑗 , 𝐸] ∈ R𝑛×(𝑛+𝑚) , and 𝜏𝑖 , 𝜏𝑖+1 are timestamps of 𝑐ℎ𝑎𝑛𝑔𝑒𝑝𝑜𝑖𝑛𝑡𝑠 . A typical method to compute the

optimal parameter sets for this trace segment is the least square method. However, empirically it

will be still challenging to measure the similarity between the derived parameter matrix of different

trace segments. Therefore, here we propose the solution-space approach as an alternative to handle

such problems. By adding an error tolerance 𝜎 to Equation 5, we have

∀ℎ ∈ [1, 2, . . . , 𝑛], 1

𝑙𝑖
∥{O ′𝑖 − A𝑖O𝑖 }ℎ ∥2 ≤ 𝜎 (6)

where {∗}ℎ denotes the error trace of the continuous variable 𝑥ℎ , 𝑙𝑖 denotes the trace length, and

the
1

𝑙𝑖
∥ ∗ ∥ indicates the averaged error. The function {∗}ℎ can be realized by right multiplying

a selection matrix 𝐶ℎ ∈ R1×𝑛 where the ℎth element is 1 and the rest of elements are zero. Then

Equation 6 is converted to

1

𝑙𝑖
∥𝐶ℎ (O ′𝑖 − A𝑖O𝑖 )∥2 ≤ 𝜎 (7)

Therefore, it is guaranteed that, for each dimension of output in all the possible models within this

solution space of A, the average error is not greater than 𝜎 . Thus, it can be guaranteed that the

precision of clustered dynamics can be bounded by 𝜎 . According to Theorem 4.1, which has been

proven [55], Equation 7 is equivalent to a non-strict LMI that

𝐹ℎ =

[
𝐼 (O′𝑖 − A𝑖O𝑖 )⊤𝐶⊤ℎ

𝐶ℎ (O
′
𝑖 − A𝑖O𝑖 ) (𝑙𝑖𝜎)2

]
⪰ 0

The multiple LMIs 𝐹1 ⪰ 0, 𝐹2 ⪰ 0,. . . can be merged into a single LMI: diag{𝐹1, 𝐹2, . . .} ⪰ 0, where

diag{} denotes the diagonal matrix of given matrices. Therefore, considering all (𝐹ℎ)ℎ∈[1,2,...,𝑛] , the
solution space S𝑖 of A𝑖 for the trace segment (X𝑖 ,U𝑖 ) can be transformed into an LMI form as

Equation 8 and 𝐹 (A𝑖 ) = diag{𝐹1, 𝐹2, . . . , 𝐹𝑛}.

S𝑖 = {A𝑖 |𝐹 (A𝑖 ) ⪰ 0} (8)

ACM Transactions on Cyber-Physical Systems, Vol. 0, No. 0, Article 0. Publication date: September 2021.



0:8 Yang et al.

Theorem 4.1. SupposeM is a symmetric matrix given by

M =

[
𝐴 𝐵

𝐵⊤ 𝐶

]
and 𝐴 is invertible. Then, sufficient and necessary conditions for positive semidefiniteness of (M ⪰ 0)
in terms of the Schur complement are

M ⪰ 0⇔ 𝐴 ⪰ 0, 𝐶 − 𝐵⊤𝐴−1𝐵 ⪰ 0, (𝐼 −𝐴𝐴−1)𝐵 = 0

4.3 Intersection of Solution Spaces
In this section, methods for linear matrix inequalities are applied to determine the intersection

between two different solution spaces. The existence of an intersection implies that the dynamics

of these two segments can be clustered into one. Given two trace segments (U1,X1) and (U2,X2),
we can construct their solution space 𝐹 (A1) and 𝐹 (A2) as LMIs according to Equation 8. To

determine intersection between these two solution spaces, we can merge them into one LMI

diag{𝐹 (A1), 𝐹 (A2)} ⪰ 0 and compute its feasibility. A true feasibility indicates an intersection

and that these two segments exhibit similar dynamics, and otherwise, not. The LMI approach we

apply is the polynomial-time projective method proposed by Nemirovskii [37], which is one of the

most efficient algorithms among interior-point methods for solving LMI problems.

The clustering method is illustrated in algorithm 1, which recursively searches for the trace

segments belonging to the same cluster by checking their intersection. In the algorithm, the longer

trace segment is assumed to have higher likelihood of encoding more dynamic information. Thus,

trace segments are sorted in decreasing order and the longest segment is used as a reference for the

rest. The function’s output is the clustered index of trace segments. Here, the symbol O𝑗 denotes

the 𝑗 th trace segment and the symbol S𝑗 denotes its solution space in LMIs. The O𝑐 denotes the set
of trace segments that fails to be clustered with the O1, and 𝐼𝑛 denotes the set of index of segments

which belong to the same cluster. The functions in the algorithm are as follows. (1) Function

FnSoluspace returns its solution space expressed in LMIs. (2) Function FnCombine combines two

solution spaces. (3) Function FnInspace calculates the feasibility of two LMIs through the projective

method.

For the computational complexity, let 𝑛 be the total number of traces segments for the framework.

The mode identification takes𝑂 (𝑛2) operations of checking the feasibility of LMIs. After clustering,

all the trace segments in the same cluster will be applied to calculate the A. With the sampling

interval 𝜏𝑠 , the continuous dynamics can subsequently be derived. The clustered ODEs will be

labelled with the symbol 𝑓 , and then the segmented trace is converted into a ODE-label trace.

Suppose a trace X is segmented into [X1,X2,X3], and X1, X3 are clustered together with a label 𝑓1,

and the X2 is with a label 𝑓2, thus, we have a ODE-label trace [𝑓1, 𝑓2, 𝑓1]. Accordingly, we obtain
two preliminary transitions for X1 → X2 and X2 → X3:

⟨𝑓1, changepoint, 𝑓2⟩, ⟨𝑓2, changepoint, 𝑓1⟩ (9)

5 INFERRING GUARD CONDITIONS
As described in Definition 3.1, there are two types of guard conditions: exogenous 𝑒𝑣𝑒𝑛𝑡 and linear

inequalities (LIs). As introduced, the model we consider is synchronous, which indicates that there

is no delay between the input and output. Therefore, the 𝑒𝑣𝑒𝑛𝑡 ’s immediate impact on the system

will be directly reflected in a mode switching and its corresponding changepoint in output traces,

from which the association between the 𝑒𝑣𝑒𝑛𝑡 and its mode switching can be achieved. Here, we

mainly focus on the LIs’ estimation.

ACM Transactions on Cyber-Physical Systems, Vol. 0, No. 0, Article 0. Publication date: September 2021.



A Framework for Identification and Validation of Affine Hybrid Automata from Input-Output Traces 0:9

Algorithm 1: Identification of modes.

O ← 𝑝 sets of sorted trace segments;

Function FnRecursive(O)
O𝑐 , 𝐼𝑛 ← 𝑒𝑚𝑝𝑡𝑦 # 𝐼𝑛 is a set of indices ;

if O ≠ 𝑒𝑚𝑝𝑡𝑦 then
S1 ← FnSoluspace(O1) # construct a solution space;

for 𝑗 = 2 to 𝑝 do
S𝑗 ← FnSoluspace(O𝑗 ) ;
S𝑡𝑒𝑚𝑝 ← FnCombine (S1,S𝑗 ) # combine two solution spaces;

feasibility← FnInspace (S𝑡𝑒𝑚𝑝 ) # check the feasibility of the two solution

spaces;

if feasibility < 0 then
𝑗 add to 𝐼𝑛 # two solution spaces are compatible and their dynamics will are

clustered;

else
O𝑗 add to O𝑐 ;

end
end
FnRecursive (O𝑐 ) add to 𝐼𝑛 # the recursive step for the unclustered trace segments;

return 𝐼𝑛 ;

else
return 𝑒𝑚𝑝𝑡𝑦;

end
end

The LI estimation is conducted for each type of preliminary transition (from (9)) that have

the same source ODE and destination ODE. There generally exist various types of LIs guard

conditions for transitions. Suppose two 𝑒1 and 𝑒2 LIs guard conditions are respectively derived

for the changepoints in the transitions in (9), then we can update those preliminary ODE-labeled

transitions to ⟨𝑓1, 𝑒1, 𝑓2⟩ and ⟨𝑓2, 𝑒2, 𝑓1⟩ which will be utilized for future mode merging.

Given changepoints from one type of transitions, we can estimate the LIs using affine-subspace

clustering method which aims to cluster data into multiple low-dimensional planes. Here, we

utilize the Random Sample Consensus (RANSAC), a statistical method proposed in [19] which is a

learning technique for estimating parameters of a mathematical model by iteratively and randomly

sampling a set of observed data. The observed data contain inliers, points that can be approximated

by fitting to a plane, and also outliers, points that cannot be fit. The plane that are estimated from

the most inliers is selected as the optimal one. In our case, the changepoints are normally close to

the boundary of LIs, so RANSAC can potentially exhibit a very competitive performance compared

with other methods [5]. The original RANSAC estimates one plane for one particular data group. A

guard condition may consist of multiple LIs in conjunction, which means there may exist multiple

planes to estimate. Inspired by the work [49, 54], we choose to apply RANSAC sequentially, to

mine a new subspace from the modified data set, where the points belonging to previously found

planes are removed.

The algorithm is shown in Algorithm 2. The inData and inNum denote the inlier points and their

number, respectively. The plane denotes a candidate in one iteration while the bestPlane, bestData
and bestNum denote information of the current best candidate. During each iteration, the function

ACM Transactions on Cyber-Physical Systems, Vol. 0, No. 0, Article 0. Publication date: September 2021.



0:10 Yang et al.

Algorithm 2: Identification of Multi-planes.

while true do
bestPlane, bestData← 𝑒𝑚𝑝𝑡𝑦 ;

bestNum← 0;

Remove(bestData);
for 𝑛 = 1 to 𝜂 do

plane← FnRandomSample(data) # randomly create a candidate;

inNum, inData← FnValidP(plane) # determine the inliers and outliers;
if inNum > 𝛾 & inNum > bestNum then

bestNum, bestData← inNum, inData # update the current optimal candidate;

bestPlane← plane;
end

end
if bestPlane ≠ 𝑒𝑚𝑝𝑡𝑦 then

Output (bestPlane);
else

break
end

end

FnRandomSample randomly selects a candidate. The function FnValidP finds all its inlier points.
Once a new plane is determined, the corresponding points will be removed before the next iteration.

The process will be terminated after no more planes is found.

Figure 4 demonstrates one sample of LI estimation from changepoints of one same type of

transitions. The points describe the changepoints, from which multiple solid lines that denotes

the LIs can be estimated using the modified RANSAC. The points’ positions, with respect to their

lines, are used to determine the inequality sign. The logical connectivity between multiple linear

inequalities is also taken into consideration. LIs are determined to be conjuncted if all trace segments

ahead of those changepoints do not satisfy them, otherwise, each LI is treated as an individual guard

condition. For the changepoints that are still outliers after the algorithm termination, we use a

label 0 to indicate an invalid estimation. The transition with such guard condition will be removed

from the further automata inference.

Similar to the original RANSAC, the modified one has three parameters to specify: (1) error

tolerance, 𝜆, to check a point’s compatibility with a model candidate, (2) the iteration number, 𝜂,

for each model estimation, and (3) the threshold number of compatible points, 𝛾 , that indicates a

valid estimation. In our work, the error tolerance, 𝜆, is described by the distance between a point

and its corresponding affine hyperplane. There do not exist straightforward methods to determine

these three parameters, but we are able to approximate them by decreasing it from a large value.

Since all the changepoints are near the boundary of their planes, there should be an error tolerance

𝜆, such that most of the points become inliers. Decreasing, iteratively, from a large value candidate

to approach such a 𝜆 helps achieve a robust estimation. For the threshold number, suppose that

the probability of one point being compatible with all the planes is equal, then, the selected 𝛾

should not exceed 𝑛/𝑚, where 𝑛 is the total number of data points and𝑚 is the number of linear

inequalities involved in that transition condition. The iteration number 𝜂 can be approximated

ACM Transactions on Cyber-Physical Systems, Vol. 0, No. 0, Article 0. Publication date: September 2021.



A Framework for Identification and Validation of Affine Hybrid Automata from Input-Output Traces 0:11

 

outlier 
inlier 

Error tolerance �  

Estimated linear inequality � 

� 

Fig. 4. Linear inequality estimation using RANSAC.

with the method in [19], which is based on the assumption of the probability of only inliers being

selected in some iterations and the probability of one single inlier being selected each time.

6 MERGING MODES
In this section, we introduce the concept of the prefix tree acceptor (PTA) to help merge the

ODE-label traces from the previous section and construct the final hybrid model. Each ODE which

represents a type of dynamics will be regarded as a candidate mode. There exist many heuristic

algorithms focusing on inferring automata grammar from a set of labeled strings. To our best

knowledge, the element in the string only represent input events or internal guard conditions that

trigger mode switches, without considering the dynamics in modes. In our proposed framework,

besides the estimated guard condition of each transition, the dynamics in each mode has been

classified before the merging, which can be used for a more robust inference. As shown in Figure 5,

each subtree in a PTA represents one processed mode trace. Each mode is characterized by their

own ODE, 𝑓 , and the guard condition in each mode switching is denoted by 𝑒 . Unlike the work

[13, 40] which shows that the similarity of two modes is associated with the probability of staying

in or transitioning out of a mode, our method evaluates the compatibility of two modes using their

derived ODEs and transition conditions. To avoid creating a non-deterministic system during the

process of merging, modes are compatible under the following two conditions:

• First, the source ODE, destination ODE and guard conditions of two transitions are the same,

and meanwhile, in the subsequent transition where the destination ODE is the next source

ODE, there do not exist different transitions that are triggered by the same guard condition.

Then the modes involved in these two transition are compatible. This situation is illustrated

in Figure 5.

• Second, the first segments in each trace have the same dynamics and represent the same

initial mode.

In the algorithm, merging of modes is associated with the merging of mode transitions. We first

construct a 6-tuple ⟨𝑙𝑎𝑏𝑒𝑙1, 𝑒, 𝑙𝑎𝑏𝑒𝑙2, 𝑖𝑑1, 𝑖𝑑2, 𝑡𝑖𝑚𝑒𝑠⟩ for each mode transitions in traces. 𝑙𝑎𝑏𝑒𝑙1 and

𝑙𝑎𝑏𝑒𝑙2 respectively denotes the labels of the source and destination ODE. Item 𝑒 denotes the guard

condition. Modes with the same ODE are not necessarily compatible, which will be demonstrated

by the navigation system in the case study. Some modes exhibiting the same dynamics are separated

due to different guard conditions. For a clear identification, the modes in all the preliminary traces

ACM Transactions on Cyber-Physical Systems, Vol. 0, No. 0, Article 0. Publication date: September 2021.



0:12 Yang et al.

 

𝑒4 

𝑒4 

𝑒4 

𝑒2 

𝑒2 

𝑒3 

 𝑓3  𝑓1  𝑓2 

 𝑓3  𝑓1  𝑓4 

 𝑓3  𝑓1  𝑓5 

𝑡𝑟𝑎𝑐𝑒1 

𝑡𝑟𝑎𝑐𝑒2 

𝑡𝑟𝑎𝑐𝑒3 

Fig. 5. Illustration of mode merging. According to the compatibility criterion, 𝑓3 and 𝑓1 in 𝑡𝑟𝑎𝑐𝑒1 are respec-
tively compatible with the 𝑓3 and the 𝑓1 in 𝑡𝑟𝑎𝑐𝑒3. However, they are not compatible with the states in 𝑡𝑟𝑎𝑐𝑒2
because in the subsequent transition, the guard condition 𝑒2 triggers different transitions from the 𝑓1 state.

will also be assigned with a unique index 𝑖𝑑 in addition to the ODE label and this index is used to

represent the unicity of a mode. The 𝑖𝑑1 and 𝑖𝑑2 respectively denote the index of the source and

destination. Item 𝑡𝑖𝑚𝑒𝑠 is used to count the number of transitions that are merged to the current

one.

During the merging process, the 6-tuples are checked and merged according to the compatibility

criterion. The algorithm is shown in Algorithm 3. For each pair of tuples 𝑖𝑡𝑢𝑝𝑙𝑒 and 𝑗𝑡𝑢𝑝𝑙𝑒 , we

check their compatibility by the function FnCompatibility which refers to the compatibility

criterion. If they are compatible, 𝑗𝑡𝑢𝑝𝑙𝑒 will be merged to 𝑖𝑡𝑢𝑝𝑙𝑒 , and 𝑖𝑑1, 𝑖𝑑2 of 𝑗𝑡𝑢𝑝𝑙𝑒 are modified

to be consistent with 𝑖𝑡𝑢𝑝𝑙𝑒’s. Meanwhile, the function FnModifyTuple is applied to search the

rest of transitions and modify the modes having the same indices as 𝑗𝑡𝑢𝑝𝑙𝑒’s. Thus the connectivity

between transitions can be maintained. Afterwards, the 𝑗𝑡𝑢𝑝𝑙𝑒 is emptied and the 𝑡𝑖𝑚𝑒𝑠 in 𝑖𝑡𝑢𝑝𝑙𝑒 is

increased by one. For the analysis of the algorithm complexity, let 𝑛 be the number of 𝑡𝑢𝑝𝑙𝑒 . Then

the merging modes takes 𝑂 (𝑛2) operations of checking the compatibility of 𝑡𝑢𝑝𝑙𝑒s.

Algorithm 3:Merging Modes.

for 𝑖 = 1 to num_tuple do
ituple← tuples[𝑖];
if ituple ≠ 𝑒𝑚𝑝𝑡𝑦 then

for 𝑗 = 𝑖 + 1 to num_tuple do
jtuple← tuples[ 𝑗];
if FnCompatibility(ituple, jtuple) then

FnModifyTuple(ituple, jtuple);
tuples[ 𝑗] ← 𝑒𝑚𝑝𝑡𝑦 ;

ituple.times + +;
end

end
end

end
return tuples;

6.1 Parameter Selection
Multiple parameters need to be set in the identification of dynamics and the inference of guard

conditions, and their selection can determine the performance of the framework. The identification

ACM Transactions on Cyber-Physical Systems, Vol. 0, No. 0, Article 0. Publication date: September 2021.



A Framework for Identification and Validation of Affine Hybrid Automata from Input-Output Traces 0:13

of dynamics includes two parameters. One is the parameter 𝑗 in Equation 3 which denotes the

number of steps and is utilized to reduce the impact of the noise. Overlarge values of 𝑗 result in less

impact of the noise. The other one is the error tolerance 𝜀, which is for the solution space of ODE

parameters. An overlarge value of 𝜀 generates a larger solution space, which may result in clustering

together trace segments with different dynamics. Too small a value leads to a smaller solution

space, which may result in classifying segments with similar dynamics into different clusters. In

the guard-conditions, the 𝜆 determines changepoints’ compatibility with a mode candidate. An

overlarge value can misclassify changepoints into a different LI. While too small a 𝜆 will generate

more outliers and thus lose more information. For the 𝜂, a large number will increase the robustness

of the LI estimation but will also increase the computational burden. The threshold number 𝛾 is the

number of changepoints needed to validate an estimation. An overlarge value can cause estimation

failure while too small a value can yield a large amount of LIs and thus cause overfitting issues.

7 CASE STUDIES AND EVALUATION
In this section, we study several case studies to evaluate the proposed hybrid automata learning

framework on different systems, following the validation overview from Figure 2. The chosen

systems are a navigation system, a multi-room heating system [17], and a DC-DC buck converter

system [11, 39]. They all have linear ODEs, guards, and invariants. We also compare our method

with a membership-based algorithm [46] on a simplified heating system. They are designed as

Simulink/Stateflow models that can generate training traces for the hybrid automata inference

framework and testing traces for validation of our methodology. The methodology is implemented

in a prototype software tool in Matlab, building on the HyST software tool [7] and its integration

with Simulink/Stateflow [6].
1
. In the evaluation, we utilize two methods to measure the proximity

between the inferred system and the original. The first one is comparing their reachable states

given an input set. Using the learned hybrid automata that are generated from our framework, we

compute their reachable sets using SpaceEx to compare the original model to the learned model

as a form of equivalence checking. The second evaluation is the conformance degree proposed in

[1, 11]. As defined, it can provide a proximity measure between two output traces in both space and

time (see Table 1). It is noteworthy that the component 𝜏 of the conformance degree relies on the

running time 𝑇 of traces. A longer trace will lead to a larger value 𝜏 . This is because the estimation

error in the model-transition condition as well as in the dynamics equations will be reflected on the

difference of transition time between the original system and the inferred one. Such difference can

be accumulated with each transition. This is also a challenging issue, and to our best knowledge,

there are few effective solutions. Overall, the 𝜏 that represents the worst transition-time difference

is generally related to the last mode transition that occurs in the trace. And a large value of 𝜏 can

be due to many mode transitions

Definition 7.1 (Conformance Degree). Given output traces for time 𝑇 ∈ R>0, a maximum number

of mode switches 𝐽 ∈ N, and parameters 𝜏𝑐 , 𝜖 > 0, two traces 𝑦1 and 𝑦2 are (𝑇, 𝐽 , 𝜏𝑐 , 𝜖)-close, if (1)
for all (𝑡1, 𝑗1) ∈ 𝑦1 such that 𝑡1 < 𝑇 and 𝑗1 < 𝐽 , there exists (𝑡2, 𝑗2) ∈ 𝑦2 such that |𝑡1 − 𝑡2 | ≤ 𝑡𝑐
and ∥𝑦1 (𝑡1, 𝑗1) − 𝑦2 (𝑡2, 𝑗2)∥ ≤ 𝜖 , (2) for all (𝑡2, 𝑗2) ∈ 𝑦2 such that 𝑡2 < 𝑇 and 𝑗2 < 𝐽 , there exists

(𝑡1, 𝑗1) ∈ 𝑦1 such that |𝑡1 − 𝑡2 | ≤ 𝑡𝑐 and ∥𝑦1 (𝑡1, 𝑗1) − 𝑦2 (𝑡2, 𝑗2)∥ ≤ 𝜖 .

7.1 Navigation System
This system deals with dynamics of an object in the R2 plane with𝑚 × 𝑛 grids. In each grid, the

desired velocity along the 𝑥 and 𝑦 axes are respectively set to sin(𝑖 ∗ 𝜋/4) and cos(𝑖 ∗ 𝜋/4), where
1
Code for the prototype HAutLearn tool and examples is available online at: https://github.com/verivital/hautlearn

ACM Transactions on Cyber-Physical Systems, Vol. 0, No. 0, Article 0. Publication date: September 2021.

https://github.com/verivital/hautlearn


0:14 Yang et al.

Table 1. Execution Time and accuracy evaluation.

Case Study Total Time (sec) Trace Segments
Conformance Degree
(𝑇 (𝑠𝑒𝑐), 𝐽 , 𝜏 (𝑠𝑒𝑐), 𝜖)

Navigation System 11157 299 (1.8, 4, 0.21, 0.22)

Multi-room Heating System 8866 691 (40, 8, 1.2, 0.98)

Buck Converter 65 144 (0.02, 13, 0.0015, 0.17)

Cooperative Vehicles 54 80 (10, 2, 0.0000, 0.1265)

𝑖 = 0, 1, . . . , 7, and the length and width of each are set to 1. The system to be learned is shown in

Figure 6. Given the desired velocity v𝑑 , the dynamics of the actual velocity v is described by the

differential equation ¤v = 𝐴(v − v𝑑 ) where 𝐴 = [−1.2, 0.1; 0.1,−1.2].

 
B 

A 2 

4 3 

2 4 

4 

2 

Fig. 6. Navigation system in a 3 × 3 grid. The label 𝑖 refers to the parameter to calculated the desired velocity.
The object needs to reach the grid labelled A and meanwhile avoid the grid labelled B.

The object’s start position can be in any grid except for A and B. Here, we choose to learn one

hybrid automaton for each starting grid. By fixing the initial position in one specified grid and

trying different initial positions and velocities, we can generate sufficient trajectory traces which

are respectively, position in 𝑋 direction, position in 𝑌 direction, velocity in 𝑋 direction and velocity

in 𝑌 direction. Then a hybrid automaton is estimated through our framework to approximate their

dynamics. We estimated one hybrid automaton for the traces starting from the bottom left grid.

For the learning, we set 𝜎 = 10
−4

for clustering the trace segments, 𝜆 = 0.01, 𝜂 = 10
3
and 𝛾 = 10

for estimating the LIs. Here, 81 traces are collected with a sampling time 𝑡𝑠 = 0.01𝑠 . The estimated

state transitions is listed in Table 2, and the details of labels 𝑒 and 𝑓 is in Table 10 in Appendix A.1.

Accordingly, a hybrid automaton is constructed as shown in Figure 3. The comparison of reachable

states with the original system and accuracy evaluation are shown in Figure 7 and Table 1.

7.2 Buck Converter
A buck converter is a DC-DC power converter that steps down voltage from its input to its output.

It exhibits both continuous and discrete behaviors because of the presence of passive elements and

switching components. Here we consider a closed-loop DC-DC buck converter in [11]. It takes a

DC voltage at its input 𝑉𝑖𝑛 and then adjust its output 𝑣𝑐 according to the 𝑉𝑟𝑒 𝑓 by controlling the

operation of the MOSFET switch. It is a time-independent hybrid system where there are two state

variables, voltage across capacitor 𝑣𝑐 and current through the inductor 𝐼 . The switching conditions

of its controller include an upper switching boundary 𝑉𝑟𝑒 𝑓 + 𝛿 and a lower switching boundary

𝑉𝑟𝑒 𝑓 − 𝛿 .
The state traces are collected using Simulink where a uniformly distributed noise with a range

[−0.05, 0.05] was added. The sampling time 𝑡𝑠 was set to 5 × 10−5 seconds and the total running

ACM Transactions on Cyber-Physical Systems, Vol. 0, No. 0, Article 0. Publication date: September 2021.



A Framework for Identification and Validation of Affine Hybrid Automata from Input-Output Traces 0:15

𝑙𝑎𝑏𝑒𝑙1 (𝑓 ) 𝑔𝑢𝑎𝑟𝑑 (𝑒) 𝑙𝑎𝑏𝑒𝑙2 (𝑓 ) 𝑖𝑑1 𝑖𝑑2 𝑡𝑖𝑚𝑒𝑠

2 1 1 1 2 66

1 3 3 2 3 54

3 5 2 3 1 12

2 6 0 1 5 38

1 7 2 2 1 14

3 4 2 3 4 29

2 2 1 4 6 29

1 8 0 6 7 42

3 9 1 3 6 13

Table 2. Inferred transitions of the navigation system.

 

�� 

4 
�� 

6 
�� 

7 

�� 

1 
�� 

2 
�� 

3 

�� 

5 

�� 

�� 

�� 

�� �� 

�� 

�� �� 

�� 

Table 3. Inferred hybrid automaton for the Navi-
gation system. The number indicates each unique
mode. Symbol 𝑓 indicates their dynamics. Symbol
𝑒 indicates the guard conditions.

(a) (b) (c) (d)

Fig. 7. Navigation: Red domain is reachable states of the inferred system while the blue domain is the
reachable area of the original system. The green domain is the initial states, which is [0.5 ≤ 𝑥1 ≤ 0.6 ∧ 0.5 ≤
𝑥2 ≤ 0.6 ∧ 1.4 ≤ 𝑥3 ≤ 1.5 ∧ 1.4 ≤ 𝑥4 ≤ 1.5].

Fig. 8. Circuit of a closed-loop buck converter.

time for each execution was 0.02 seconds. The range of the initial states are set to 𝐼 = [0, 30] and
𝑣𝑐 = [0, 15] from which 11 traces were collected. For the learning, we set 𝜎 = 2 × 10−2 for segments

clustering, and 𝜆 = 0.04, 𝜂 = 10
5
and 𝛾 = 10 for estimating the LIs. The inferred hybrid automaton

is shown in Figure 5 and the dynamics information is shown in Table 11 in the Appendix A.2. The

comparison of reachable states and accuracy evaluation are shown in Figure 9 and Table 1.

7.3 The Multi-room Heating System
The system includes multiple rooms. The temperature in each room is controlled by one heater

and depends on the outside temperature as well as the temperature in the adjacent rooms. Let 𝑥𝑖

ACM Transactions on Cyber-Physical Systems, Vol. 0, No. 0, Article 0. Publication date: September 2021.



0:16 Yang et al.

𝑙𝑎𝑏𝑒𝑙1 (𝑓 ) 𝑔𝑢𝑎𝑟𝑑 (𝑒) 𝑙𝑎𝑏𝑒𝑙2 (𝑓 ) 𝑖𝑑1 𝑖𝑑2 𝑡𝑖𝑚𝑒𝑠

2 1 3 1 2 17

1 3 2 3 1 32

3 2 1 2 3 11

Table 4. Inferred mode transitions for the buck con-
verter.

 
2 
�� 

1 
�� 

3 
�� 

�� �� 

�� 

Table 5. Inferred hybrid automaton of the
buck converter.

(a) (b)

Fig. 9. Buck Converter: red domain denotes reachable states of the inferred system while the blue domain
denotes the reachable area of the original system. The green is the range of initial states which is [−1 ≤ 𝐼 ≤
1 ∧ −1 ≤ 𝑣𝑐 ≤ 1].

denote the temperature in room 𝑖 and 𝑢 denote the outside temperature. The temperature of each

room exhibits linear dynamics with the heaters’ power status, the difference between the room’s

temperature and the outside temperature, and other rooms, which is described by

𝑓 : ¤𝑥𝑖 = 𝑐𝑖ℎ𝑖 + 𝑏𝑖 (𝑢 − 𝑥𝑖 ) +
∑
𝑗≠𝑖

𝑎𝑖, 𝑗 (𝑥 𝑗 − 𝑥𝑖 ), (10)

where 𝑎𝑖, 𝑗 , 𝑏 𝑗 , 𝑐𝑖 are constant and ℎ𝑖 ∈ {0, 1} denotes the heater’s status. ℎ𝑖 = 0 indicates the heater

is not in room 𝑖 or the heater is off. The heater in room 𝑖 is on if 𝑥𝑖 ≤ 𝑜𝑛𝑖 and off 𝑥𝑖 ≥ 𝑜 𝑓 𝑓𝑖 . A heater

will move to room 𝑖 from room 𝑗 if all of the following conditions hold: (1) no heaters in room 𝑖 , (2)

one heater in room 𝑗 , (3) 𝑥𝑖 ≤ 𝑔𝑒𝑡𝑖 , (4) 𝑥 𝑗 − 𝑥𝑖 ≥ 𝑑𝑖 𝑓 𝑖 .

 

𝐬𝟏 

 
ℎ2 = 0 

𝐬𝟐 

 
ℎ2 = 1 

ሺ𝑥2 ≤ 𝑜𝑛2ሻ 

ሺ𝑥2 ≥ 𝑜𝑓𝑓2ሻ 

𝑹𝒐𝒐𝒎 𝟐 

 

𝐬𝟏 

 
ℎ3 = 0 

𝐬𝟐 

 
ℎ3 = 1 

ሺ𝑥3 ≤ 𝑜𝑛3ሻ 

ሺ𝑥3 ≥ 𝑜𝑓𝑓3ሻ 

𝑹𝒐𝒐𝒎 𝟑 

 

𝐬𝟏 

 
ℎ1 = 0 

𝐬𝟐 

 
ℎ1 = 1 

ሺ𝑥1 ≤ 𝑜𝑛1ሻ 

ሺ𝑥1 ≥ 𝑜𝑓𝑓1ሻ 

𝑹𝒐𝒐𝒎 𝟏 

 

ሺ𝑥2 ≤ 𝑔𝑒𝑡2ሻ ∧ ሺ𝑥1 − 𝑥2 ≥ 𝑑𝑖𝑓𝑓2ሻ 

ሺ𝑥1 ≤ 𝑔𝑒𝑡1ሻ ∧ ሺ𝑥3 − 𝑥1 ≥ 𝑑𝑖𝑓𝑓1ሻ ሺ𝑥3 ≤ 𝑔𝑒𝑡3ሻ ∧ ሺ𝑥2 − 𝑥3 ≥ 𝑑𝑖𝑓𝑓3ሻ 

𝑓 𝑓 𝑓 𝑓 

𝑓 𝑓 

Fig. 10. Hybrid automaton model of the multi-room heating system.

ACM Transactions on Cyber-Physical Systems, Vol. 0, No. 0, Article 0. Publication date: September 2021.



A Framework for Identification and Validation of Affine Hybrid Automata from Input-Output Traces 0:17

𝑙𝑎𝑏𝑒𝑙1 (𝑓 ) 𝑔𝑢𝑎𝑟𝑑 (𝑒) 𝑙𝑎𝑏𝑒𝑙2 (𝑓 ) 𝑖𝑑1 𝑖𝑑2 𝑡𝑖𝑚𝑒𝑠

2 2 1 1 2 107

1 3 3 2 3 103

3 4 2 3 1 110

2 5 4 1 4 24

4 6 2 4 1 24

1 7 4 2 5 98

4 8 1 5 2 95

3 9 4 3 6 52

4 10 3 6 3 52

Table 6. Inferred transitions for themulti-room heating
system.

 

�� 

1 
�� 

2 
�� 

3 

�� 

4 

�� 

5 
�� 

6 

�� 

�� �� 

�� �� �� �� ��� �� 

Table 7. Inferred hybrid automaton of the heating
system.

For our experiment, the heating system is set to have three rooms and one heater. Since there

may be multiple transition conditions holding simultaneously and the system may become non-

deterministic, we restrict that there is only one destination room for each source room. Then,

the system can be modelled as shown in Figure 10, which has u and [𝑥1, 𝑥2, 𝑥3] as the input and
output, respectively. The input/output traces are collected by running simulations in Matlab with

a sampling interval of 0.1 seconds. For the learning, we set 𝜎 = 5 × 10−5 for segments clustering,

and 𝜆 = 0.05, 𝜂 = 10
3
and 𝛾 = 10 for estimating the LIs. The state transitions in 6-tuples generated

from the framework is shown in Table 6. The final hybrid automata is shown in Figure 7, which

has 6 discrete mode, 4 distinct ODEs, and 9 mode switches in total. The initial mode is the mode 1.

The parameters of the guard conditions 𝑒 and ODEs 𝑓 are shown in Table 12 in Appendix A.3. The

comparison of reachable states is shown in Figure 11. These reachable domains are approximated

by simulating 1000 traces because SpaceEx does not support the non-convex linear constraints. Its

accuracy evaluation is shown in Table 1.

(a) (b) (c) (d)

Fig. 11. Heater: Red domain denotes reachable states of the inferred system, while the blue domain denotes
the reachable area of the original system. The green denotes the initial states that is [14 ≤ 𝑥1 ≤ 15 ∧ 14 ≤
𝑥2 ≤ 15 ∧ 14 ≤ 𝑥3 ≤ 15].

7.4 Cooperative Vehicles
This benchmark is a platoon of three three autonomously-driven vehicles following a leader [34],

as shown in Figure 12. The difference between the distance 𝑑𝑖 of the vehicle 𝑖 to its predecessor and

a reference distance 𝑑𝑟𝑒 𝑓 ,𝑖 is defined as the space error 𝑒𝑖 . The dynamics of the platoon is as follows:

¤𝑥 = 𝐴𝑥 + 𝐵𝑎𝐿, (11)

ACM Transactions on Cyber-Physical Systems, Vol. 0, No. 0, Article 0. Publication date: September 2021.



0:18 Yang et al.

where the state vector 𝑥 consists of 9 variables and 𝑥 = [𝑒1, ¤𝑒1, 𝑎1, 𝑒2, ¤𝑒2, 𝑎2, 𝑒3, ¤𝑒3, 𝑎3] with 𝑎𝑖 being

the acceleration of vehicle 𝑖 , 𝐴 and 𝐵 are constant system matrix, and 𝑎𝐿 denotes the acceleration

of the leader vehicle. In the case of radio communication, 𝐴 and 𝐵 are given as follows:

𝐴 =

©­­­­«
0 1 0 0 0 0 0 0 0

0 0 −1 0 0 0 0 0 0

1.60 4.86 −3.57 −0.81 0.42 −0.04 −0.19 0.36 −0.09
0 0 0 0 1 0 0 0 0

0 0 1 0 0 −1 0 0 0

0.87 3.81 −0.07 1.19 3.62 −3.23 −0.59 0.12 −0.07
0 0 0 0 0 0 0 1 0

0 0 0 0 0 1 0 0 −1
0.71 3.57 −0.09 0.84 3.25 −0.08 1.27 3.07 −3.13

ª®®®®¬
, 𝐵 =

©­­­­«
0

1

0

0

0

0

0

0

0

ª®®®®¬
While in the case of no communication, 𝐴 and 𝐵 are given as follows:

𝐴 =

©­­­­«
0 1 0 0 0 0 0 0 0

0 0 −1 0 0 0 0 0 0

1.60 4.86 −3.57 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 1 0 0 −1 0 0 0

0 0 0 1.19 3.62 −3.23 0 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 1 0 0 −1
0.71 3.57 −0.09 0.84 3.25 −0.08 1.27 3.07 −3.13

ª®®®®¬
, 𝐵 =

©­­­­«
0

1

0

0

0

0

0

0

0

ª®®®®¬
The platoon is modelled as a hybrid automaton. Every two seconds, the radio communication

breaks down for the following two seconds. The breakdowns trigger discrete switches, where a

timer is reset. For the training data, we collect 16 traces using Simulink with the running time

and sampling time, respectively, set to 10 seconds and 0.05 seconds. The collected traces are also

added with uniformly distributed noise [−0.05, 0.05]. For the learning, we set 𝜎 = 8 × 10
−3

for

segment clustering, and 𝜆 = 0.01, 𝜂 = 10
5
, and 𝛾 = 10 for estimating the LIs. The state transitions

in 6-tuples generated from the framework are shown in Table 4. The final hybrid automaton is

shown in Figure 9, which has 2 discrete modes, 2 distinct ODEs, and 2 mode switches in total. The

initial mode is the mode 1. The parameters of the guard conditions 𝑒 and ODEs 𝑓 are shown in

Table 13 in Appendix A.4. The comparison of reachable states is shown in Figure 11. The accuracy

evaluation is shown in Table 1

3 2 1 Leader

(radiocommunication)

d3

dref,3 e3

d2

dref,2 e2

d1

dref,1 e1

Fig. 12. Cooperative platoon of three vehicles and a leader vehicle.

𝑙𝑎𝑏𝑒𝑙1 (𝑓 ) 𝑔𝑢𝑎𝑟𝑑 (𝑒) 𝑙𝑎𝑏𝑒𝑙2 (𝑓 ) 𝑖𝑑1 𝑖𝑑2 𝑡𝑖𝑚𝑒𝑠

2 1 3 2 1 20

3 2 2 1 2 15

Table 8. Estimated hybrid automaton for the coopera-
tive vehicles. The transition in red with 𝑙𝑎𝑏𝑒𝑙2 being 0
is an erroneous transition.

1
f3

2
f2

e1

e2

Table 9. Inferred hybrid automaton of the cooper-
ative vehicles.

ACM Transactions on Cyber-Physical Systems, Vol. 0, No. 0, Article 0. Publication date: September 2021.



A Framework for Identification and Validation of Affine Hybrid Automata from Input-Output Traces 0:19

7.5 Comparison on A Heating System
We compare our framework with a membership-based algorithm (Hysynth) for learning linear

hybrid system from traces [46]. This methods defines the continuous dynamics of models with

constant different equations which generally suffices to estimate an arbitrary continuous function.

As claimed, this algorithm can learn an automaton with nondeterministic guard conditions and

invariants with piecewise linear functions that are derived from input-output traces. We are not able

to fit multi-variable traces using their source code, although there is no such limitation claimed in

their work. Therefore, we choose to evaluate our framework against this algorithm in a simple case

study. The target hybrid system is a heating system with one heater controlling the temperature 𝑥 ,

which is modelled as shown in Figure 13. For the learning, 5 traces are collected with a time horizon

of 20 seconds, a sampling interval 0.1 second, and different initial conditions. The piecewise linear

functions are created for the membership-based method with an error bound 𝜖 = 0.1.

Fig. 13. Heating system with one heater.

Our framework can successfully learn an automaton with similar dynamics as shown in Figure 14.

The running time is 5 seconds. While the membership-based method derives an automaton with 40

discrete modes and 71 mode switches, where 6 of the discrete modes are unreachable. Its running

time is 2 seconds. Trace samples generated from the learned systems are shown in Figure 15. We

can notice that the system learned with Hysynth terminates early and yields incomplete traces that

are in red. This is mainly because the dynamics violates the invariant of a discrete mode that do not

have successor discrete modes to switch to. So, this inferred automaton fails to recover behaviors

of the original system. The reason of this undesirable performance may be because it can deal with

simple dynamics of the form ¤𝑥 + 𝑐 = 0, but cannot be applied to the more general ODEs allowed by

our method.

Fig. 14. Inferred hybrid automaton from the heating system with one heater.

8 CONCLUSION
This paper presents a framework to mine and learn hybrid automata with linear (affine) constraints

and ODEs from input and output traces. It first clusters and estimates ODEs for the segmented

traces by checking the intersection of their solution space using an LMI method. The obtained

ODEs for segments defined by discontinuities in the traces are learned as potential discrete modes.

Subsequently, a modified subspace-clustering method is applied to estimate the linear inequalities

that describe the transition guard conditions from the collected changepoints. With the potential

ACM Transactions on Cyber-Physical Systems, Vol. 0, No. 0, Article 0. Publication date: September 2021.



0:20 Yang et al.

Fig. 15. Comparison of hybrid automatons learned by our method and the membership-based method. The
black traces are from the original system, the blue traces are from the system learned by our method. While
the red traces are from the system learned by the membership-based method.

modes and classified events, a PTA method is applied to merge the achieved states and generate

the hybrid automaton. The utility of this framework is validated by comparing approximated

traces with the source traces from which the automaton is learned. There are multiple directions

to improve our framework. In future work, we plan to explore improvements in the capability of

data preprocessing, such as noise filtering, so that it can have better scalability. As discussed, a

robust method of trace segmentation is essential for the inference of hybrid automaton, and further

research is needed in that direction. Another potential enhancement is extending this framework to

nonlinear hybrid systems by exploring methods to estimate the nonlinear dynamics of each trace

segment. Further case studies using black-box models and runtime monitoring can be conducted,

but likely will depend on improving scalability as just discussed.

ACKNOWLEDGEMENTS
The material presented in this paper is based upon work supported by the Defense Advanced

Research Projects Agency (DARPA) through contract number FA8750-18-C-0089, the National

Science Foundation (NSF) through grant numbers 1910017, 1918450, and 2028001, and the Office

of Naval Research (ONR) through contract number N00014-18-1-2184. The U.S. government is

authorized to reproduce and distribute reprints for Governmental purposes notwithstanding any

copyright notation thereon. Any opinions, findings, and conclusions or recommendations expressed

in this publication are those of the authors and do not necessarily reflect the views of DARPA,

NSF, or ONR. DISTRIBUTION STATEMENT A. Approved for public release, distribution unlimited.

Approved, DCN 43-8347-21.

REFERENCES
[1] Houssam Abbas, Hans Mittelmann, and Georgios Fainekos. 2014. Formal property verification in a conformance

testing framework. In 2014 Twelfth ACM/IEEE Conference on Formal Methods and Models for Codesign (MEMOCODE).
IEEE, Lausanne, Switzerland, 155–164.

[2] Bernhard K Aichernig, Roderick Bloem, Masoud Ebrahimi, Martin Horn, Franz Pernkopf, Wolfgang Roth, Astrid Rupp,

Martin Tappler, and Markus Tranninger. 2019. Learning a Behavior Model of Hybrid Systems Through Combining

Model-Based Testing and Machine Learning. In IFIP International Conference on Testing Software and Systems. Springer,
Paris, 3–21.

[3] Rajeev Alur, Costas Courcoubetis, Nicolas Halbwachs, Thomas A Henzinger, P-H Ho, Xavier Nicollin, Alfredo Olivero,

Joseph Sifakis, and Sergio Yovine. 1995. The algorithmic analysis of hybrid systems. Theoretical computer science 138, 1
(1995), 3–34.

[4] Dana Angluin. 1987. Learning regular sets from queries and counterexamples. Information and computation 75, 2

(1987), 87–106.

[5] Ery Arias-Castro and Jue Wang. 2017. RANSAC Algorithms for Subspace Recovery and Subspace Clustering. (2017).

arXiv preprint arXiv:1711.11220.

ACM Transactions on Cyber-Physical Systems, Vol. 0, No. 0, Article 0. Publication date: September 2021.



A Framework for Identification and Validation of Affine Hybrid Automata from Input-Output Traces 0:21

[6] Stanley Bak, Omar Ali Beg, Sergiy Bogomolov, Taylor T. Johnson, Luan Viet Nguyen, and Christian Schilling. 2019.

Hybrid automata: from verification to implementation. Software Tools for Technology Transfer (STTT) 21 (September

2019), 87–104.

[7] Stanley Bak, Sergiy Bogomolov, and Taylor T. Johnson. 2015. HyST: A Source Transformation and Translation Tool

for Hybrid Automaton Models. In 18th International Conference on Hybrid Systems: Computation and Control (<a
href="http://2015.hscc-conference.org">HSCC 2015</a>). ACM, Seattle, Washington, 128–133.

[8] Laurent Bako. 2011. Identification of switched linear systems via sparse optimization. Automatica 47, 4 (2011), 668–677.
[9] Laurent Bako and René Vidal. 2008. Algebraic identification of MIMO SARX models. In International Workshop on

Hybrid Systems: Computation and Control. Springer, St Louis, United States, 43–57.

[10] RS Baptista, JY Ishihara, and GA Borges. 2011. Split and merge algorithm for identification of piecewise affine systems.

In Proceedings of the 2011 American Control Conference. IEEE, San Francisco, 2018–2023.

[11] Omar Ali Beg, HoussamAbbas, Taylor T Johnson, and Ali Davoudi. 2017. Model Validation of PWMDC–DC Converters.

IEEE Transactions on Industrial Electronics 64, 9 (2017), 7049–7059.
[12] Khaled Boukharouba, Laurent Bako, and S Lecoeuche. 2009. Identification of piecewise affine systems based on

dempster-shafer theory. IFAC Proceedings Volumes 42, 10 (2009), 1662–1667.
[13] Rafael C Carrasco and Jose Oncina. 1999. Learning deterministic regular grammars from stochastic samples in

polynomial time. RAIRO-Theoretical Informatics and Applications 33, 1 (1999), 1–19.
[14] David R. Cok and Scott C. Johnson. 2014. SPEEDY: An Eclipse-based IDE for invariant inference. In F-IDE. 44–57.

https://doi.org/10.4204/EPTCS.149.5

[15] M.D. Ernst, J. Cockrell, William G. Griswold, and D. Notkin. 2001. Dynamically discovering likely program invariants

to support program evolution. Software Engineering, IEEE Transactions on 27, 2 (2001), 99–123. https://doi.org/10.

1109/32.908957

[16] Michael D. Ernst, Jeff H. Perkins, Philip J. Guo, Stephen McCamant, Carlos Pacheco, Matthew S. Tschantz, and Chen

Xiao. 2007. The Daikon system for dynamic detection of likely invariants. Science of Computer Programming 69, 1–3

(Dec. 2007), 35–45.

[17] Ansgar Fehnker and Franjo Ivančić. 2004. Benchmarks for Hybrid Systems Verification. In Hybrid Systems: Computation
and Control, Rajeev Alur and George J. Pappas (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 326–341.

[18] Giancarlo Ferrari-Trecate, Marco Muselli, Diego Liberati, and Manfred Morari. 2003. A clustering technique for the

identification of piecewise affine systems. Automatica 39, 2 (2003), 205–217.
[19] Martin A Fischler and Robert C Bolles. 1981. Random sample consensus: a paradigm for model fitting with applications

to image analysis and automated cartography. Commun. ACM 24, 6 (1981), 381–395.

[20] Goran Frehse, Colas Le Guernic, Alexandre Donzé, Scott Cotton, Rajarshi Ray, Olivier Lebeltel, Rodolfo Ripado, Antoine

Girard, Thao Dang, and Oded Maler. 2011. SpaceEx: Scalable Verification of Hybrid Systems. In Computer Aided
Verification (CAV) (LNCS). Springer, Berlin, Heidelberg, 379–395.

[21] Andrea Garulli, Simone Paoletti, and Antonio Vicino. 2012. A survey on switched and piecewise affine system

identification. IFAC Proceedings Volumes 45, 16 (2012), 344–355.
[22] ME Gegundez, Javier Aroba, and José Manuel Bravo. 2008. Identification of piecewise affine systems by means of fuzzy

clustering and competitive learning. Engineering Applications of Artificial Intelligence 21, 8 (2008), 1321–1329.
[23] Radu Grosu, Sayan Mitra, Pei Ye, Emilia Entcheva, IV Ramakrishnan, and Scott A Smolka. 2007. Learning cycle-linear

hybrid automata for excitable cells. In International Workshop on Hybrid Systems: Computation and Control. Springer,
Berlin, Heidelberg, 245–258.

[24] Thomas A Henzinger. 2000. The theory of hybrid automata. In Verification of Digital and Hybrid Systems. Springer,
Berlin, Heidelberg, 265–292.

[25] Thomas A Henzinger and Peter W Kopke. 1999. Discrete-time control for rectangular hybrid automata. Theoretical
Computer Science 221, 1-2 (1999), 369–392.

[26] Anca Maria Ivanescu, Thivaharan Albin, Dirk Abel, and Thomas Seidl. 2011. Employing Correlation Clustering for the

Identification of Piecewise Affine Models. In Proceedings of the 2011 Workshop on Knowledge Discovery, Modeling and
Simulation (San Diego, California, USA) (KDMS ’11). Association for Computing Machinery, New York, NY, USA, 7–14.

https://doi.org/10.1145/2023568.2023575

[27] Xing Jin and Biao Huang. 2010. Robust identification of piecewise/switching autoregressive exogenous process. AIChE
journal 56, 7 (2010), 1829–1844.

[28] Taylor T. Johnson, Stanley Bak, and Steven Drager. 2015. Cyber-Physical Specification Mismatch Identification

with Dynamic Analysis. In Proceedings of the ACM/IEEE Sixth International Conference on Cyber-Physical Systems
(Seattle, Washington) (ICCPS ’15). Association for Computing Machinery, New York, NY, USA, 208–217. https:

//doi.org/10.1145/2735960.2735979

[29] Chow Yin Lai, Cheng Xiang, and Tong Heng Lee. 2010. Identification and control of nonlinear systems via piecewise

affine approximation. In 49th IEEE Conference on Decision and Control (CDC). IEEE, Atlanta, 6395–6402.

ACM Transactions on Cyber-Physical Systems, Vol. 0, No. 0, Article 0. Publication date: September 2021.

https://doi.org/10.4204/EPTCS.149.5
https://doi.org/10.1109/32.908957
https://doi.org/10.1109/32.908957
https://doi.org/10.1145/2023568.2023575
https://doi.org/10.1145/2735960.2735979
https://doi.org/10.1145/2735960.2735979


0:22 Yang et al.

[30] Imane Lamrani, Ayan Banerjee, and Sandeep KS Gupta. 2018. HyMn: mining linear hybrid automata from input output

traces of cyber-physical systems. In 2018 IEEE Industrial Cyber-Physical Systems (ICPS). IEEE, St. Petersburg, Russia,
264–269.

[31] Lennart Ljung. 2010. Perspectives on system identification. Annual Reviews in Control 34, 1 (2010), 1–12.
[32] Lenhart Ljung and Svante Gunnarsson. 1990. Adaptation and tracking in system identification—a survey. Automatica

26, 1 (1990), 7–21. https://doi.org/10.1016/0005-1098(90)90154-A

[33] Yi Ma and René Vidal. 2005. Identification of deterministic switched ARX systems via identification of algebraic

varieties. In International Workshop on Hybrid Systems: Computation and Control. Springer, Berlin, Heidelberg, 449–465.
[34] Jan P Maschuw, Günter C Keßler, and Dirk Abel. 2008. LMI-based control of vehicle platoons for robust longitudinal

guidance. IFAC Proceedings Volumes 41, 2 (2008), 12111–12116.
[35] Ramy Medhat, S Ramesh, Borzoo Bonakdarpour, and Sebastian Fischmeister. 2015. A framework for mining hybrid

automata from input/output traces. In Proceedings of the 12th International Conference on Embedded Software. IEEE
Press, Amsterdam, Netherlands, 177–186.

[36] Koji Mikami, Hiroyuki Okuda, Shun Taguchi, Yuichi Tazaki, and Tatsuya Suzuki. 2010. Model predictive assisting

control of vehicle following task based on driver model. In 2010 IEEE International Conference on Control Applications.
IEEE, Yokohama, Japan, 890–895.

[37] Arkadii Nemirovskii and Pascal Gahinet. 1994. The projective method for solving linear matrix inequalities. InAmerican
Control Conference, 1994, Vol. 1. IEEE, Baltimore, USA, 840–844.

[38] Luan V. Nguyen, Khaza Anuarul Hoque, Stanley Bak, Steven Drager, and Taylor T. Johnson. 2018. Cyber-Physical

Specification Mismatches. ACM Trans. Cyber-Phys. Syst. 2, 4, Article 23 (July 2018), 26 pages. https://doi.org/10.1145/

3170500

[39] Luan Viet Nguyen and Taylor T. Johnson. 2014. Benchmark: DC-to-DC Switched-Mode Power Converters (Buck

Converters, Boost Converters, and Buck-Boost Converters). In Applied Verification for Continuous and Hybrid Systems
Workshop (ARCH 2014), Vol. 34. EasyChair, Berlin, Germany, 19–24.

[40] Oliver Niggemann, Benno Stein, Asmir Vodencarevic, Alexander Maier, and Hans Kleine Büning. 2012. Learning

Behavior Models for Hybrid Timed Systems.. In AAAI, Vol. 2. Toronto, Canada, 1083–1090.
[41] Henrik Ohlsson and Lennart Ljung. 2011. Identification of piecewise affine systems using sum-of-norms regularization.

IFAC Proceedings Volumes 44, 1 (2011), 6640–6645.
[42] Simone Paoletti, Aleksandar Lj Juloski, Giancarlo Ferrari-Trecate, and René Vidal. 2007. Identification of hybrid systems

a tutorial. European journal of control 13, 2-3 (2007), 242–260.
[43] Andrea Pferscher, Bernhard Aichernig, and Martin Tappler. 2020. From Passive to Active: Learning Timed Automata

Efficiently. In 12th NASA Formal Methods Symposium. Springer International Publishing, Cham, 1–19.

[44] Harald Raffelt, Bernhard Steffen, and Therese Berg. 2005. Learnlib: A library for automata learning and experimentation.

In Proceedings of the 10th international workshop on Formal methods for industrial critical systems. ACM, Vienna, Austria,

62–71.

[45] Tuhin Sarkar, Alexander Rakhlin, and Munther Dahleh. 2019. Nonparametric System identification of Stochastic

Switched Linear Systems. In 2019 IEEE 58th Conference on Decision and Control (CDC). IEEE, Nice, France, 3623–3628.
https://doi.org/10.1109/CDC40024.2019.9030173

[46] Miriam García Soto, Thomas A Henzinger, Christian Schilling, and Luka Zeleznik. 2019. Membership-Based Synthesis

of Linear Hybrid Automata. In International Conference on Computer Aided Verification. Springer, Cham, 297–314.

[47] Adam Summerville, Joseph Osborn, and Michael Mateas. 2017. Charda: Causal hybrid automata recovery via dynamic

analysis. arXiv preprint arXiv:1707.03336 (2017).
[48] Martin Tappler, Bernhard K. Aichernig, Kim Guldstrand Larsen, and Florian Lorber. 2019. Time to Learn – Learning

Timed Automata from Tests. In Formal Modeling and Analysis of Timed Systems, Étienne André and Mariëlle Stoelinga

(Eds.). Springer International Publishing, Cham, 216–235.

[49] Philip HS Torr. 1998. Geometric motion segmentation and model selection. Philosophical Transactions of the Royal
Society of London A: Mathematical, Physical and Engineering Sciences 356, 1740 (1998), 1321–1340.

[50] Sicco Ewout Verwer. 2010. Efficient identification of timed automata: Theory and practice. Ph.D. Dissertation. Delft
University of Technology.

[51] René Vidal. 2004. Identification of PWARX hybrid models with unknown and possibly different orders. In Proceedings
of the 2004 American Control Conference, Vol. 1. IEEE, Boston, MA, USA, 547–552.

[52] René Vidal. 2008. Recursive identification of switched ARX systems. Automatica 44, 9 (2008), 2274–2287.
[53] René Vidal, Stefano Soatto, Yi Ma, and Shankar Sastry. 2003. An algebraic geometric approach to the identification of a

class of linear hybrid systems. In 42nd IEEE International Conference on Decision and Control (IEEE Cat. No. 03CH37475),
Vol. 1. IEEE, Maui, HI, USA, 167–172.

[54] Etienne Vincent and Robert Laganiére. 2001. Detecting planar homographies in an image pair. In Image and Signal
Processing and Analysis, 2001. ISPA 2001. Proceedings of the 2nd International Symposium on. IEEE, Pula, Croatia, 182–187.

ACM Transactions on Cyber-Physical Systems, Vol. 0, No. 0, Article 0. Publication date: September 2021.

https://doi.org/10.1016/0005-1098(90)90154-A
https://doi.org/10.1145/3170500
https://doi.org/10.1145/3170500
https://doi.org/10.1109/CDC40024.2019.9030173


A Framework for Identification and Validation of Affine Hybrid Automata from Input-Output Traces 0:23

[55] Fuzhen Zhang. 2006. The Schur complement and its applications. Vol. 4. Springer Science & Business Media.

A APPENDIX: ADDITIONAL DETAILS FOR THE CASE STUDIES
A.1 Navigation System

Table 10. Guard conditions 𝑒 and Dynamics 𝑓 of the learned automata for the navigation system.

𝑒1 : 0.0049𝑥 − 0.9980𝑦 − 0.0134𝑣𝑥 + 0.0217𝑣𝑦 + 1 ≤ 0

𝑒2 : −0.4904𝑥 − 0.0049𝑦 + 0.0030𝑣𝑦 + 1 ≤ 0

𝑒3 : −1.0065𝑥 + 0.0031𝑦 + 0.0201𝑣𝑥 − 0.0028𝑣𝑦 + 1 ≤ 0

𝑒4 : −0.0045𝑥 − 0.4971𝑦 + 0.0011𝑣𝑥 + 0.0064𝑣𝑦 + 1 ≤ 0

𝑒 𝑒5 : 0.0083𝑥 − 1.0007𝑦 − 0.0166𝑣𝑥 + 0.0139𝑣𝑦 + 1 ≥ 0

𝑒6 : −0.5018𝑥 + 0.0067𝑣𝑥 − 0.0030𝑣𝑦 + 1 ≤ 0

𝑒7 : 0.0011𝑥 − 1.0070𝑦 + 0.0159𝑣𝑥 + 0.0126𝑣𝑦 + 1 ≥ 0

𝑒8 : 0.0054𝑥 − 0.9710𝑦 − 0.0176𝑣𝑥 + 0.0521𝑣𝑦 + 1 ≥ 0

𝑒9 : −0.4784𝑥 + 0.0019𝑦 − 0.0449𝑣𝑥 + 0.0168𝑣𝑦 + 1 ≤ 0

𝑓1 : 𝐴 =


0.0000 0.0000 0.1000 0.0000

0.0000 0.0000 0.0000 0.1000

0.0000 0.0000 −0.1200 0.0100

0.0000 0.0000 0.0100 −0.1200


, 𝐵 =


0.0000

0.0000

0.0100

−0.1200


𝑓 𝑓2 : 𝐴 =


0.0000 0.0000 0.1000 0.0000

0.0000 0.0000 0.0000 0.1000

0.0000 0.0000 −0.1200 0.0100

0.0000 0.0000 0.0100 −0.1200


, 𝐵 =


0.0000

0.0000

0.1200

−0.0100


𝑓3 : 𝐴 =


0.0000 0.0000 0.1000 0.0000

0.0000 0.0000 0.0000 0.1000

0.0000 0.0000 −0.1200 0.0100

0.0000 0.0000 0.0100 −0.1200


, 𝐵 =


0.0000

0.0000

0.0919

−0.0919


A.2 The Buck-converter System
A.3 The Multi-room Heating System
A.4 Cooperative Vehicles

ACM Transactions on Cyber-Physical Systems, Vol. 0, No. 0, Article 0. Publication date: September 2021.



0:24 Yang et al.

Table 11. Guard conditions 𝑒 and Dynamics 𝑓 of the learned automata for the buck converter system.

𝑒1 : 0.0004𝑥1 − 0.0824𝑥2 + 1.0 ≤ 0

𝑒 𝑒2 : −78.8𝑥1 − 0.0638𝑥2 + 1.0 ≥ 0.0

𝑒3 : 0.0012𝑥1 − 0.0842𝑥2 + 1.0 ≥ 0.0

𝑓1 : 𝐴 =

[
−271.7 −377.4
454.5 −45.45

]
𝐵 =

[
9056.6

0.0000

]
𝑓 𝑓2 : 𝐴 =

[
−195.1 −378.4
454.6 −45.47

]
𝐵 =

[
11.29

0.1235

]
𝑓3 : 𝐴 =

[
−0.1511 0.6177

0.0001 −45.45

]
𝐵 =

[
−9.392
0.0057

]
Table 12. Guard conditions 𝑒 and Dynamics 𝑓 of the learned automata for the multi-room heating system.

𝑒2 : −0.4794𝑥2 + 0.4770𝑥3 + 1 ≤ 0 ∧ 0.0014𝑥1 − 0.0659𝑥3 + 1 ≥ 0

𝑒3 : 0.4884𝑥1 + 0.0013𝑥2 − 0.4901𝑥3 + 1 ≤ 0 ∧ −0.0627𝑥1 + 1 ≥ 0

𝑒4 : −0.3309𝑥1 + 0.3292𝑥2 + 0.0016𝑥3 + 1 ≤ 0 ∧ −0.0641𝑥2 + 1 ≥ 0

𝑒5 : −0.0480𝑥2 + 1 ≤ 0

𝑒 𝑒6 : −0.0527𝑥2 + 1 ≥ 0

𝑒7 : −0.0456𝑥3 + 1 ≤ 0

𝑒8 : −0.0539𝑥3 + 1 ≥ 0

𝑒9 : −0.0475𝑥1 + 1 ≤ 0

𝑒10 : −0.0496𝑥1 + 1 ≥ 0

𝑓1 : 𝐴 =


−0.1001 0.0298 0.0040

0.0299 −0.1001 0.0500

0.0398 0.0497 −0.1400

 𝐵 =


0.0301 0.0036

0.0200 0.0024

0.0501 1.1060


𝑓 𝑓2 : 𝐴 =


−0.0994 0.0302 0.0392

0.0209 −0.1040 0.0530

0.0410 0.0504 −0.1413

 𝐵 =


0.0301 −0.0025
0.0230 0.8405

0.0502 −0.0042


𝑓3 : 𝐴 =


−0.0532 −0.0776 0.0941

0.0299 −0.0999 0.0500

0.0397 0.0502 −0.1399

 𝐵 =


0.0230 0.9161

0.0200 0.0000

0.0501 0.0000


𝑓4 : 𝐴 =


−0.1003 0.0298 0.0397

0.0298 −0.1001 0.0498

0.0395 0.0497 −0.1406

 𝐵 =


0.0303 0.0107

0.0202 0.0071

0.0505 0.0179



ACM Transactions on Cyber-Physical Systems, Vol. 0, No. 0, Article 0. Publication date: September 2021.



A Framework for Identification and Validation of Affine Hybrid Automata from Input-Output Traces 0:25

Table 13. Guard conditions 𝑒 and Dynamics 𝑓 of the learned automata for the multi-room heating system.

𝑒1 − 0.5128𝑡 + 1 ≤ 0; 𝑡 = 0;

𝑒2 − 0.5128𝑡 + 1 ≤ 0; 𝑡 = 0;

𝑓2 : 𝐴 =



−0.2474 0.5568 0.2046 0.0583 −0.2216 −0.0015 −0.0227 −0.1457 0.2183

−0.3591 −1.2851 −0.8297 −0.2218 −0.8613 −0.0163 −0.4111 −0.7054 0.7599

1.3970 3.6241 −2.8374 −0.2900 −0.3110 −0.0552 −0.2818 −0.3502 −0.0988
0.1469 −0.0462 −0.1657 −0.1852 0.8500 0.0151 −0.1603 −0.1636 0.077

−0.1605 −0.7953 0.9879 −0.2192 −0.6950 −1.0086 −0.3207 −0.6155 0.6032

0.1304 −0.3190 −0.1390 0.9189 3.1426 −2.0634 −0.0656 0.3862 −0.5285
−0.0182 −0.4770 −0.0579 −0.2057 −0.3947 −0.0089 −0.2646 0.6382 0.3288

−0.1252 −0.8587 −0.0594 −0.2904 −0.7963 1.0033 −0.3948 −0.7162 −0.3455
0.8712 4.1273 −0.1135 0.9544 3.6687 −0.0814 1.4677 3.4067 −3.5463


𝐵 =



0.0850 −0.0487
1.4159 0.3822

0.3349 0.1665

0.0800 0.2523

0.2593 0.2860

0.8062 2.5326

0.1943 0.3559

0.2998 0.3681

−0.1777 −0.1891



𝑓3 : 𝐴 =



−0.1296 0.8586 0.1423 0.0820 −0.0756 0.0058 0.0435 −0.0323 0.0255

−0.2269 −0.4539 −0.6487 0.1232 −0.1842 −0.0092 0.0259 −0.1155 −0.0028
1.3946 4.4506 −3.1376 −0.6166 0.5344 −0.0472 −0.0463 0.4700 −0.2756
0.1619 0.1622 −0.3123 −0.1775 0.9763 0.0094 −0.1086 −0.0626 0.14073

−0.0717 −0.2104 1.0574 −0.0124 −0.1691 −0.9987 −0.0480 −0.1370 0.1150

0.4699 3.3837 −0.0129 1.2955 3.3234 −2.2285 0.1033 0.2572 −0.7385
0.0000 −0.1019 −0.0034 −0.0422 −0.0908 −0.0166 −0.0618 0.9239 0.0792

0.0113 −0.0746 −0.0686 −0.06537 −0.1245 1.0026 −0.0680 −0.12317 −0.8793
0.6570 3.5501 0.0957 0.9566 3.3547 −0.0977 1.3575 3.1740 −3.2994


𝐵 =



0.0089 −0.0984
1.1166 0.0102

0.0762 −0.0838
−0.0057 0.0822

0.0564 0.0566

0.1114 −0.3391
0.0408 0.0909

0.0325 0.0744

−0.0176 −0.0396



ACM Transactions on Cyber-Physical Systems, Vol. 0, No. 0, Article 0. Publication date: September 2021.


	Abstract
	1 Introduction
	2 Related Work
	3 Hybrid Automata
	4 Identifying and Clustering Dynamics from Traces
	4.1 Changepoints and Input-output Traces 
	4.2 Construction of Solution Space
	4.3 Intersection of Solution Spaces

	5 Inferring Guard Conditions
	6 Merging Modes
	6.1 Parameter Selection

	7 Case Studies and Evaluation
	7.1 Navigation System
	7.2 Buck Converter
	7.3 The Multi-room Heating System
	7.4 Cooperative Vehicles
	7.5 Comparison on A Heating System

	8 Conclusion
	References
	A Appendix: Additional Details for the Case Studies
	A.1 Navigation System
	A.2 The Buck-converter System
	A.3 The Multi-room Heating System
	A.4 Cooperative Vehicles


