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ARTICLE INFO ABSTRACT

Keywords: An abundance of defects would be inevitably generated during manufacturing and service in high-entropy alloys
High entropy alloy (HEAs). However, the mechanical properties of the damaged HEAs with nanoscale defects have been rarely
Vacancy

considered. Meanwhile, an additional challenge is a dearth of the effective reliable method for an in-depth study
of damaged HEAs, due to the restriction of the complicated experimental measurement. Here, the effect of zero-
dimensional defect, such as vacancy, on mechanical properties in FeNiCoCrCu HEA is studied through the
method combining molecular dynamics simulation with machine learning. Atomic simulation results show that
the existence of vacancy clusters breaks the continuity of stacking faults and dislocations, and the high vacancy
concentrations reduce the strength due to the increase of stacking fault spacing at room temperature. Compared
with traditional alloys, HEAs can reduce the property reduction when vacancy exits there. In addition, the
anisotropy of vacancy effect is found. The effect of vacancy on the yield strength is more obvious under [100]
loading direction than that under the [110] and [111] loading direction. The discrepancy of the stair-rod partial
dislocation proportion would be regarded as the primary reason for different yield strengths. The change of
vacancy concentration has a significant effect on the deformation mechanism in [100] direction, which is
different from that in the [110] and [111] direction. Meanwhile, the effects of vacancy concentration in com-
bination with temperature on the yield strength and dislocation density at yield point of the FeNiCoCrCu HEA are
predicted by machine learning, which is on the basis of a set of data obtained from molecular dynamics simu-
lations. The current work provides valuable guidance for HEA design based on the viewpoint of defect regulation.

Mechanical properties
Deformation mechanism
Molecular dynamic
Machine learning

1. Introduction through adjusting the dynamic precipitation of solute cluster [10]. The

vacancy clusters and vacancy loops are formed by vacancy clustering in

High-entropy alloys (HEAs), which follow a characteristic alloying-
design concept compared to traditional alloys, have been widely stud-
ied owing to their excellent mechanical properties, such as synergetic
strength and ductility, great thermal stability and high corrosion resis-
tance [1-5]. In the process of preparation or service, an enormous
number of defects are produced inevitably. For example, the vacancy is
always reported in HEAs [6-8], which would affect material properties
during the process of proliferation and annihilation [9].

As well know, the formation, concentration, and distribution of va-
cancy play key roles in the microstructures and mechanical properties
[9-14]. Such as the previous study, due to the collision of high-energy
particles, vacancies and vacancy clusters are induced, resulting in
harmful vacancy expansion in HEA [8]. The vacancies introduced by the
cyclic deformation improve the strength and ductility of Al alloys
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the irradiated W, which cause the radiation hardening [11]. Due to the
anisotropy of vacancy diffusion, the prismatic interstitial dislocation
loop parallel to the base is easier to form in high-purity Zr alloy [12].
There are higher concentration vacancy defects in the HEA than that in
traditional alloy, which is regarded as a typic characteristic of the HEA.
Thus, the HEA has a strong ability to absorb He atoms and resist irra-
diation embrittlement, and the influence of these vacancies are similar
to oxide in ODS steel [7]. Meanwhile, the existence of vacancy near the
crack changes the fracture behavior of material by passivating the crack
tip [13]. In GeSbTe alloy, a huge number of atomic vacancies are
generated and orderly distributed during the process of rapid crystalli-
zation and thermal annealing. However, the vacancy disordering pro-
cess is observed due to the electron irradiation, which is accompanied by
phase transition [14, 15]. Some simulations on the effect of vacancy
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concentration on mechanical properties are carried out. By studying the
effects of vacancy concentration and temperature in single crystal
v-TiAl, the ultimate stress and elastic modulus decrease nonlinearly with
the increase of temperature and vacancy concentration [16], but this
study focuses on traditional metal, and the range vacancy concentration
and temperature are limited. The time-dependent mechanical behavior
is found due to the evolution of vacancy concentration and distribution
through simulation of the vacancy clustering processes [17]. However,
the effect of vacancy on the mechanical properties of HEAs has not been
explored at atomic level, which would be affected their industrial
applications.

Recently, machine learning has been considered as not only a branch
of artificial intelligence, but also a pivotal computer technology in the
era of big data. Now, they have been applied in material science
[18-23]. Machine learning is used to predict the mechanical properties
of existing materials. The fretting crack length and corresponding stress
intensity factor of C-Mn steel are predicted by a neural network model,
and crack arrest conditions are summarized [19]. The correlation be-
tween the process parameters and mechanical properties of industrial
steel is established by a deep learning model, which can guide the
production of steel with customized mechanical properties [20]. By
collecting the data of hundreds of complex concentrated alloys with
different chemical compositions, three machine learning classification
models are developed to find the relationship between different micro-
structures and mechanical properties [21]. More importantly, machine
learning has outstanding performance in the synthesis design of new
material, property prediction, and in-depth characterization of material
microstructure [22-25]. Using different machine learning algorithms,
the new design parameters are explored for developing a series of alloys
out of the FeCrNiZrCu system [22]. A machine learning design system
has been proposed, which contains a property-composition BP neural
network (NN) model to design the compositions and a
composition-property BP NN model to efficiently screen the alloy
composition design schemes [23]. Thus, a high-performance Cu alloys
with ultimate tensile strength of 600-950 MPa are designed. By statis-
tically analyzing the solidification characteristics of HEAs, the rela-
tionship between solidification interval characteristics and element is
revealed via machine learning, and the FeCrNiAly g HEA is designed,
which exhibits a high fracture strength and ductility [24]. The data
mining with machine learning is used to reveal the eutectic formation in
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HEAs, and the critical element of Al is discovered in AlICoCrFeNi system
[26]. Meanwhile, if the data is scarce and the experiment is uneco-
nomical, the MD simulation is used as an auxiliary method to provide
data sets for machine learning [27, 28].

During this investigation, the uniaxial tensile of single crystal HEAs
with vacancies are applied through the MD method. The effects of va-
cancy concentration on mechanics properties of HEA are analyzed. The
crystal orientation effect for different vacancy concentrations is further
revealed. Moreover, the MD simulations combined with machine
learning method are used to predict the effect of the vacancy concen-
tration in combination with temperature on yield strength and the
corresponding dislocation density.

2. Method

In this section, we introduce in detail how to use the MD simulation
method to investigate the mechanical response of uniaxial tension in
HEA with vacancies at different temperatures. In addition, the specific
details of machine learning model are presented based on the data ob-
tained from MD simulation, in order to explore the relationship between
vacancy concentrations and mechanical properties.

2.1. Molecular dynamics

Figure 1(a) shows the elemental distribution in a single-crystal
FeNiCoCrCu HEA. Figure 1(b) represents various vacancy concentra-
tions, where the corresponding vacancy concentration is shown in
Table 1. The FeNiCoCrCu HEA samples with and without vacancies are
built, the sizes of models are 30 x 30 x 30 a3, where a = 3.61 A is a
lattice parameter [29]. In order to create the random equal atomic
FeNiCoCrCu HEA structure, Fe (Co, Cr, Cu) atoms are randomly selected,
and replace with Ni matrix. To compare with conventional alloys,
Inconel 718 Ni-based superalloy is selected as the object, which main
elements are Ni, Cr, and Fe with atom fractions of 51, 30 and 19 [30].
The orientations of the x, y, and z axes are [100], [010] and [001],
respectively. To introduce vacancies in HEA samples, the atoms can be
removed randomly for obtaining a given vacancy concentration, where
the vacancy generated includes the single vacancy and double vacancy
in our model. In addition, a comparative case for the five samples with
different vacancy distributions at a certain vacancy concentration

Fig. 1. (a) The uniaxial tensile simulation of FeNiCoCrCu HEA, which atoms are colored by atom type. (b) The vacancy distribution in the FeNiCoCrCu HEA based on
CNA method, and the vacancy concentration corresponding to the label is shown in Table 1. Here, Fe Ni Cr Co and Cu in (a), and the green atoms represent FCC

structure and the white atoms represent other structure in (b).
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Table 1

The vacancy concentration of each graph in Fig. 1(b).
Graphic label 1* 2* 3* 4* 5% 6" 7* 8* 9*
Vacancy concentration (%) 1% 2% 3% 4% 5% 6% 6% 8% 9%

suggests that the random vacancy distribution has a little effect on the
mechanical properties. According to previous studies, vacancies as a
typical defect of HEAs are distributed in the damaged structure at the
initial stage of irradiation due to the collision of high-energy particles [6,
8]. In addition, some studies suggest that the vacancy concentration can
reach 10% and disorderly distributed in the material, due to the vacancy
formation generated by the processing and deformation of materials
[14, 31-33]. For example, when the alloy is irradiated by the electron
beam ion, the vacancy distribution changes from order to disorder [14].
Meanwhile, the equipment vacancy concentration can be expressed by

C, =exp (%) exp( - %), where AS; is the formation entropy of the

vacancy, R is the Boltzmann constant, AHs is the formation enthalpy,
and T is the temperature. The formation enthalpy and formation entropy
of HEAs are lower than that in traditional metals, impelling the higher
vacancy in HEAs [34, 35]. Thus, the vacancy concentrations fluctuate
from O to 10%, which be studied with equal intervals of 0.2% for the
current simulations.

The deformation of the HEA sample is carried out using LAMMPS
[36-39]. All dimensions are applied to periodic boundary conditions. To
study the effect of temperature on the deformation behavior, the tem-
peratures of 300 K, 400 K, 500 K, 600 K, 700 K and 800 K are applied in
HEA. Firstly, the samples are subjected to the energy minimization using
the conjugate gradient method [40-42]; then, they are heated up to the
target temperature for a certain time dependent upon the setting tem-
perature under the Nose-Hoover isobaric-isothermal (NPT) ensemble,
for obtaining the equilibrium configurations of the vacancy-containing
HEAs [38]. After the relaxation, the uniaxial tensile simulation is
applied at a strain rate of 1 x 10%s™! along the x direction. The time step
of atomic simulation is set to 2 fs. An embedded atom method potential
(EAM) is adopted for the atom interactions in FeNiCoCrCu HEA and
Ni-based superalloy [42], which is widely used to study their deforma-
tion behaviors and mechanical properties [43-46]. Based on the com-
parison of lattice constant, elastic constant and modulus corresponding
to the minimum cohesive energy of FeNiCoCrCu HEA, it is proved that
the current EAM potential is sufficient for general research of the me-
chanical response of stable face-centered cubic (FCC) solid-solution
alloy [46]. The database containing temperature, vacancy concentra-
tion, yield strength and dislocation density at yield point of the FeNi-
CoCrCu HEA can be obtained from the tension simulations. The
microstructures are analyzed by the common-neighbor analysis (CNA)
[47], and their evolutions and defect distributions are presented by the
Open Visualization Tool (OVITO) [48]. According to the value of CNA,
the green represents FCC atoms, red denotes hexagonal close-packed
(HCP) atoms, blue is body-centered cubic (BCC) atoms, and gray rep-
resents other disordered atoms.

2.2. Machine learning

In order to predict the relationship between vacancy concentrations
and mechanical properties in FeNiCoCrCu HEA, 300 sets of data ob-
tained by MD method are used as the input and output of machine
learning. In the machine learning system, the artificial neural network
(ANN) is selected. ANN is considered to have sufficient ability to deal
with the complex and nonlinear relationship between input data and
output data through optimizing hyper-parameter [49], which is hard to
be realized by other classical regression algorithms, such as ridge
regression, support vector regression and linear regression. Meanwhile,
ANN is widely used to explore the relationship between constituent

elements, microstructures and mechanical properties of alloy [23, 28].
Figure 2 shows the ANN architecture includes three stages of input,
learning, and output. The data input stage includes the data collection
and preprocessing. The input dataset is obtained through the tensile
simulations of FeNiCoCrCu HEA with various vacancy concentrations
under different temperatures. All the vacancy concentration and tem-
perature compose the input data set, and the yield strength and dislo-
cation density constitute the target data set. All the data sets include 300
sets of data, which are divided into training set, test set, and validation
set according to the ratio of 70%, 15%, and 15%. Subsequently, the
training and learning stages include the process of selecting the appro-
priate algorithm, adjusting the model structure parameter, training, and
testing. The ANN model is built, which contains six components: the
number of hidden layers, the number of neurons, the activation func-
tion, the optimizer, the training epoch and the learning rate [49, 50]. For
the certain amount of data, one hidden layer is adopted due to the ac-
curacy is not improved by increasing the number of hidden layers. Based
on the trial-and-error method, the number of neurons is 10 in each layer.
Adamoptimizer is employed as the optimizer for model compilation, and
0.01 is used as the learning rate of the adamoptimizer [28]. The un-
known data is predicted and analyzed by the optimized model in the
final output stage. In our work, the optimized ANN model is used to
predict the yield strength and dislocation density in a wide range of
vacancy concentration through the dataset obtained by MD simulations.

3. Results and discussion

Based on the method of MD simulation and ANN model, three main
contents are discussed in Section 3: (1) the effect of vacancy concen-
tration on tensile properties; (2) the effect of vacancy concentration on
the different crystal orientation; (3) the prediction of properties under
various vacancy concentrations.

3.1. Effect of vacancy concentration

In this section, the effect of the vacancy concentration in the FeNi-
CoCrCu HEA on mechanical properties is explored.

The tensile stress-strain curves of MD simulations for the different
vacancy concentrations at 300 K have been exhibited in Fig. 3(a, b). The
yield strengths extracted from the stress-strain curves are shown in Fig. 3
(c). The previous results show the yield strength of FeNiCoCrCu HEA is
about 16 GPa and consistent with 17.2 GPa from our result [51]. The
elastic modulus can be computed by the equation of ¢ = Ee, where ¢ is
the axial stress, E is the elastic modulus, and ¢ is the axial strain. From
stress-strain curves in Fig. 3(a, b), the elastic modulus in models de-
creases slightly with the increase of vacancy concentration, which is
similar to the result in traditional alloy [16]. In addition, the yield
strength declines tempestuously, and the corresponding strain value also
decreases, even for the samples with very low vacancy concentration
(Fig. 3(a)) [16]. This phenomenon is most obvious when the vacancy
concentration is from 0% to 1%. However, when the vacancy concen-
tration from 1% to 10%, the decline rate of yield strength is relatively
uniform.

To deeply understand the effect of vacancy concentration on the
deformation behavior in the FeNiCoCrCu HEA sample and quantita-
tively reveal their mechanical response, the distributions of micro-
structures are presented in Fig. 4(a—c) [43, 44]. By comparing the
microstructure distribution of various samples, a large number of
stacking faults (SFs) composed of HCP atoms are generated at the va-
cancy concentration 0% (Fig. 4(a, b)). The deformation twinning with
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Fig. 2. Workflow chart of machine learning and an architecture of a multi-layer feed-forward ANN.
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Fig. 3. (a) The tensile stress-strain curve of MD simulations when the vacancy concentrations are lower than 0.1% in the FeNiCoCrCu HEA. (b) The tensile stress-
strain curve of MD simulations for vacancy concentrations from 1% to 10% in the FeNiCoCrCu HEA. (c) The relationship between yield stress and yield strain for

different vacancy concentration.

very thin thickness is formed in all samples, which induces a weak
strengthening effect [52, 53]. Fig. 4(b) shows that the number of SFs and
deformation twin is reduced with the increase of the vacancy concen-
tration. Meanwhile, the continuity and thickness of SFs are hindered due
to that the aggregation of vacancies into vacancy clusters induces short
and dispersive dislocation. The critical pinning stress of dislocation
sliding contributed by SFs depends on the SF thickness [54,55]. For the
parallel spaced SFs, the SF strengthening can be expressed as osp = k/d
[56], where k is a material constant, and d is the spacing between SFs.
The SF strengthening is inversely proportional to the SF spacing, which
is one reason for the yield stress has the maximum at the free vacancy
concentration (Fig. 3(c)). Corresponding to the distribution of SFs, the

number of active slip system is large and a mass of long Shockley partial
dislocations are formed, composing intensive dislocation networks at
the free vacancy concentration. However, due to the influence of va-
cancies on the continuity of the slip plane, the short Shockley partial
dislocations are formed and constitute sparse dislocation networks in
cases with vacancy (Fig. 4(c)). At the intersection of SF planes, more
1/6<110> stair-rod partial dislocations are formed in the structure
without vacancies (Fig. 4(c)), and can not slip due to the Burgers vector
located in the {001} plane but the slip system of {111}. Hence, the
1/6<110> stair-rod partial dislocations hinder Shockley dislocation slip
and influence the deformation behavior, which explains a phenomenon
that the strength of perfect sample is higher than that of the other three
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Fig. 4. (a) The microstructure, and (b) defect structure in FeNiCoCrCu HEA at the vacancy concentration of 0%, 1%, 3%, and 5% at yield point. Here, the green
atoms represent FCC structure, the red atoms represent HCP structure, the blue atoms represent BCC structure and the white atoms represent other structure. (c) The
evolution of dislocation type and distribution, where the green line represents the 1/6<112> Shockley dislocation, the pink line is the 1/6<110> stair-rod dislo-
cation, the blue line denotes the 1/6<110> perfect dislocation, the sky-blue line is the 1/3<111> frank dislocation, and the red line is other dislocation. The stress-

strain curve (d), and the dislocation density (e) for various vacancy concentrations. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

cases (Fig. 4(d)). Thus, the dislocation mechanism plays an essential role vacancy concentration from 0% to 5%. When the vacancy concentration
in the hardening mechanism of HEAs [57-59]. is high, the vacancy and vacancy clusters are more likely to aggregate

Figure 4(e) represents the dislocation densities in the yield point, and during the loading process. This trend causes the dislocation to move
the corresponding strains are 17.7%, 11.2%, 8.6%, and 6.7% for the violently and the materials enter plastic stage earlier [33]. The
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Fig. 5. The microstructure (a), and defect structures (b) in Inconel 718 Ni-based superalloy at the vacancy concentrations of 0%, 1%, 3%, and 5% at yield point.
Here, the green atoms represent FCC structure, the red atoms represent HCP structure, the blue atoms represent BCC structure and the white atoms represent other
structure. (c) The evolution of dislocation type and distribution, where the green line represents the 1/6<112> Shockley dislocation, the pink line is the 1/6<110>
stair-rod dislocation, the blue line denotes the 1/6<110> perfect dislocation, the sky-blue line is the 1/3<111> frank dislocation, and the red line is other dislo-
cation. The stress-strain curve (d), and dislocation density (e) for various vacancy concentrations. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)
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dislocation density of the perfect sample has maximum value at yield
point. As the vacancy concentration increase from 0% to 1%, the
dislocation density decreases by half. It illustrates the vacancy can
inhibit dislocation nucleation and evolution.

In order to study the effect of vacancy on the dislocation density in
HEA and conventional alloys, Inconel 718 Ni-based superalloys with
0%, 1%, 3% and 5% vacancy concentration are investigated at 300 K.
The microstructures and dislocation distribution at the vacancy con-
centrations of 0%, 1%, 3%, and 5% are presented in Fig. 5. The change
trend of the SFs and deformation twinning is similar in FeNiCrCoCu HEA
and Ni-based superalloy with the increase of vacancy concentration.
There are higher yield stress and dislocation density in Ni-based su-
peralloy compared that in HEA for vacancy concentration of 0%.
However, with the vacancy concentration from 0% to 1%, the disloca-
tion density decreases by about three quarters (Fig. 5(e)), and the yield
stress decreases from 24 GPa to 14.58 GPa (Fig. 5(d)), which is more
significant than that for FeNiCrCoCu HEA. The phenomenon reveals that
compared with traditional alloys, HEAs can weaken the damage effect of
vacancy [60].

3.2. Crystal orientation effect

In this section, in order to investigate the effect of vacancy distri-
bution on different crystal orientations, the results of tensile simulations
for the FeNiCoCrCu HEA along [100], [110], and [111] directions have
been compared.

The stress-strain relations for various crystal orientations at vacancy
concentration of 0% and 1% have been shown in Fig. 6. The significantly
anisotropy for the three crystal orientations is revealed. For the perfect
sample, the yield stress and yield strain are largest on [100] direction.
The yield stress for [111] direction is twice that for [110] direction, but
the value of yield strain is similar, which is consistent with previous
results [51]. In addition, considering the effect of vacancy, the yield
stress significantly decreases from 17.9 GPa to 11.2 GPa for the samples
with [100] loading direction at the vacancy concentration of 0% to 1%.
The elastic modulus decreases slightly [16, 33]. However, the yield
stresses are basically not affected by vacancy for the HEA with [110] and
[111] loading direction. As a result, the tensile response and the effect of
vacancy on tensile property demonstrate the obvious significant
anisotropy. The phenomenon is very different from y-TiAl alloys, whose
orientation selection of vacancy is more feeble [60].

The above significant anisotropy is closely related to the micro-
structure. Figure 7 exhibits the microstructure and dislocation distri-
bution at yield point, revealing the effect of vacancy concentration

20

—=®—[100]0% vacancy
—8—[100]1% vacancy
—A—[110]0% vacancy
16 F—¥—[110]1% vacancy
—&—[111]0% vacancy

[111]1% vacadCy
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|38

o]

Stress (GPa)

0 5 10 15 20
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Fig. 6. The stress-strain relations under the [100], [110] and [111] uniaxial
loadings at the vacancy concentration of 0% and 1%.
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under different crystal orientations. Under the [100], [110], and [111]
loadings, the number of the equivalent slip systems to participate in the
plastic deformation is 8, 6, and 4 [61]. For the perfect sample under the
[100], [110], and [111] loadings, the distribution of slip plane and
dislocation as shown in Fig. 7(a, c, e) at yield point. The dislocation slip
resistance caused by dislocation interaction is an important part of
critical shear stress [57-59]. The more slip systems are actuated, the
more likely the slip planes to intersect, so that the more immovable
dislocations are generated. Thus, the density of the immovable dislo-
cations (1/6<110> stair-rod partial dislocation) is the highest in Fig. 7
(a) and the smallest in Fig. 7(c). This phenomenon explains that the
smallest yield stress under [110] loading direction and the largest yield
stress under [100] loading direction in the samples without vacancy
(Fig. 6). Meanwhile, when the vacancy concentration increases from 0%
to 1%, the number of active slip system and the density of dislocation
decrease significantly for [100] direction in Fig. 7(a, b), which corre-
sponds to the significantly decreased yield stress. Comparatively, the
change of number and distribution of the slip system and dislocation
caused by vacancies is weak for [110] direction (Fig. 7(c, d)) and [111]
direction (Fig. 7(e, f)), resulting in basically unchanged yield stress. In
addition, the deformation mechanisms are strongly influenced by the
crystal orientation and vacancy. Under [100] loading direction, the
deformation mechanisms change from dislocation to dislocation coor-
dinated with deformation twinning for the vacancy concentration from
0% to 1%. The dislocation, SF and deformation twinning are the main
deformation mechanisms for the [110] loading direction. The disloca-
tion and SF are the deformation mechanisms for [111] loading direction.
The change of vacancy concentration has no significant effect on the
deformation mechanism for [110] and [111] direction.

3.3. Predicting properties for various vacancy concentrations

In order to guide the optimal design of HEA containing the defects,
the properties in defected HEAs should be predicted. Thus, based on a set
of data obtained from MD simulation, ANN model is built to predict the
evolution of the yield strength and dislocation density under different
vacancy concentration and temperature. The combination of two
methods can achieve efficient alloy design and performance prediction
[27, 28].

Here, the 300 sets of data consisted by the vacancy concentration,
yield stress and dislocation density at six different temperatures are
obtained through the MD simulations, in which the vacancy concen-
tration in combination with temperature are used as inputs and the yield
stress and dislocation density are used as outputs. All the data are
divided into the training set, validation set, and test set. Through the
ANN model, the correlation between the target data and the prediction
data is greater than 0.9 for various data sets, which demonstrates the
ANN model used in the current work is extremely accurate.

Figure 8 shows the 3D distribution of the yield stress and dislocation
density at different vacancy concentrations and temperatures at yield
point obtained from ANN. The distributions are projected to the top of
the graphs. When the vacancy concentration is less than 5%, the dislo-
cation density first decreases and then increases slightly (Fig. 8(a)).
When the vacancy concentration is greater than 5%, the dislocation
density increases sharply at 800 K and reaches a peak. With the vacancy
increases, the same phenomenon appears in other temperatures. How-
ever, the lower the temperature, the larger the vacancy concentration
when the dislocation density increases. The relationship between the
yield stress and the vacancy concentration at different temperature ob-
tained from ANN are exhibited in Fig. 8(b). It can be found that with the
increase of temperature, the yield stress decreases when the vacancy
concentration is less than 6% [38]. After the vacancy concentration is
greater than 6%, the yield stress increases and then decreases, which
shows a peak. When the temperature is 800 K, the vacancy concentra-
tion corresponding to the increase of yield strength is the smallest
compared with other temperatures, which is consistent with the
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Fig. 7. Snapshots represent the evolution of the microstructure, defect structure and dislocation at yield point of the samples. The crystal orientations are [100]x and
[001]z for the perfect sample (a), and the sample with vacancy concentration of 1% (b). The crystal orientations are [110]x and [001]z for the free vacancy (c), and
the vacancy concentration of 1% (d). The crystal orientations are [111]x and [11-2]z for the free vacancy (e), and the vacancy concentration of 1% (f).
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evolution law of dislocation density in Fig. 8(a).

In order to further compare with the test results of ANN model, some
additional validating data is shown in Table 2, which is supplemented by
MD simulations and out of the preset dataset. It can be found that the
new data is in accord with the predict function, the accuracy of the
model has been further verified. Motivated by above reasons and further
verifications, the ANN model used in the present work can effectively

Table 2
Validating data outside the original data set.
Sample 300 K, 400 500 600 700
0% K, K, K, K,
[51] 41% 53% 27% 13%
Validating Yield stress 15.5 6.9 4.94 6.96 4.39
results (GPa)
Dislocation 2.56 2.58 1.27 2.6
density
(x10"7m2)
Predicted Yield stress 17.2 6.84 5.1 7.15 4.19
results (GPa)
Dislocation 2.49 2.01 1.12 2.4
density
(><1017m’2)

and accurately obtain the vacancy-property relationship in a wide range
of temperature, to provide guidance for the new defected materials.

4. Conclusion

In the present work, the effects of the vacancy concentration, crystal
orientation and temperature on the tensile properties of FeNiCrCoCu
HEA have been systematically investigated by the MD simulation. From
the tensile simulation of FeNiCrCoCu HEA with different vacancy con-
centration, it can be found that the continuity of SFs and dislocations is
broken due to the existence of vacancies, and the high vacancy con-
centration reduces the strength due to the increase of the SF spacing. The
increase of vacancy slightly reduces the strength in HEA compared with
traditional alloys. In addition, by investigating the effect of vacancy
distribution on different crystal orientations, it is found that the yield
stress decreases obviously and the deformation mechanism changes
from dislocation to dislocation coordinated with deformation twinning
with the increase of vacancy concentration for [100] direction. How-

ever, the vacancy concentration has no significant effect on the tension
stress and deformation mechanism for [110] and [111] direction.

Meanwhile, ANN model is built based on a set of data obtained from

MD simulation, thus, the evolution of the yield strength and dislocation
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density under different vacancy concentration and temperature in
FeNiCrCoCu HEA are predicted efficiently.

These results provide a deep understanding of vacancy effect on
mechanical properties. Based on the viewpoint of defect regulation, the
present work provides the guidance for the material design.
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