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A B S T R A C T   

An abundance of defects would be inevitably generated during manufacturing and service in high-entropy alloys 
(HEAs). However, the mechanical properties of the damaged HEAs with nanoscale defects have been rarely 
considered. Meanwhile, an additional challenge is a dearth of the effective reliable method for an in-depth study 
of damaged HEAs, due to the restriction of the complicated experimental measurement. Here, the effect of zero- 
dimensional defect, such as vacancy, on mechanical properties in FeNiCoCrCu HEA is studied through the 
method combining molecular dynamics simulation with machine learning. Atomic simulation results show that 
the existence of vacancy clusters breaks the continuity of stacking faults and dislocations, and the high vacancy 
concentrations reduce the strength due to the increase of stacking fault spacing at room temperature. Compared 
with traditional alloys, HEAs can reduce the property reduction when vacancy exits there. In addition, the 
anisotropy of vacancy effect is found. The effect of vacancy on the yield strength is more obvious under [100] 
loading direction than that under the [110] and [111] loading direction. The discrepancy of the stair-rod partial 
dislocation proportion would be regarded as the primary reason for different yield strengths. The change of 
vacancy concentration has a significant effect on the deformation mechanism in [100] direction, which is 
different from that in the [110] and [111] direction. Meanwhile, the effects of vacancy concentration in com
bination with temperature on the yield strength and dislocation density at yield point of the FeNiCoCrCu HEA are 
predicted by machine learning, which is on the basis of a set of data obtained from molecular dynamics simu
lations. The current work provides valuable guidance for HEA design based on the viewpoint of defect regulation.   

1. Introduction 

High-entropy alloys (HEAs), which follow a characteristic alloying- 
design concept compared to traditional alloys, have been widely stud
ied owing to their excellent mechanical properties, such as synergetic 
strength and ductility, great thermal stability and high corrosion resis
tance [1–5]. In the process of preparation or service, an enormous 
number of defects are produced inevitably. For example, the vacancy is 
always reported in HEAs [6–8], which would affect material properties 
during the process of proliferation and annihilation [9]. 

As well know, the formation, concentration, and distribution of va
cancy play key roles in the microstructures and mechanical properties 
[9–14]. Such as the previous study, due to the collision of high-energy 
particles, vacancies and vacancy clusters are induced, resulting in 
harmful vacancy expansion in HEA [8]. The vacancies introduced by the 
cyclic deformation improve the strength and ductility of Al alloys 

through adjusting the dynamic precipitation of solute cluster [10]. The 
vacancy clusters and vacancy loops are formed by vacancy clustering in 
the irradiated W, which cause the radiation hardening [11]. Due to the 
anisotropy of vacancy diffusion, the prismatic interstitial dislocation 
loop parallel to the base is easier to form in high-purity Zr alloy [12]. 
There are higher concentration vacancy defects in the HEA than that in 
traditional alloy, which is regarded as a typic characteristic of the HEA. 
Thus, the HEA has a strong ability to absorb He atoms and resist irra
diation embrittlement, and the influence of these vacancies are similar 
to oxide in ODS steel [7]. Meanwhile, the existence of vacancy near the 
crack changes the fracture behavior of material by passivating the crack 
tip [13]. In GeSbTe alloy, a huge number of atomic vacancies are 
generated and orderly distributed during the process of rapid crystalli
zation and thermal annealing. However, the vacancy disordering pro
cess is observed due to the electron irradiation, which is accompanied by 
phase transition [14, 15]. Some simulations on the effect of vacancy 
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concentration on mechanical properties are carried out. By studying the 
effects of vacancy concentration and temperature in single crystal 
γ-TiAl, the ultimate stress and elastic modulus decrease nonlinearly with 
the increase of temperature and vacancy concentration [16], but this 
study focuses on traditional metal, and the range vacancy concentration 
and temperature are limited. The time-dependent mechanical behavior 
is found due to the evolution of vacancy concentration and distribution 
through simulation of the vacancy clustering processes [17]. However, 
the effect of vacancy on the mechanical properties of HEAs has not been 
explored at atomic level, which would be affected their industrial 
applications. 

Recently, machine learning has been considered as not only a branch 
of artificial intelligence, but also a pivotal computer technology in the 
era of big data. Now, they have been applied in material science 
[18–23]. Machine learning is used to predict the mechanical properties 
of existing materials. The fretting crack length and corresponding stress 
intensity factor of C-Mn steel are predicted by a neural network model, 
and crack arrest conditions are summarized [19]. The correlation be
tween the process parameters and mechanical properties of industrial 
steel is established by a deep learning model, which can guide the 
production of steel with customized mechanical properties [20]. By 
collecting the data of hundreds of complex concentrated alloys with 
different chemical compositions, three machine learning classification 
models are developed to find the relationship between different micro
structures and mechanical properties [21]. More importantly, machine 
learning has outstanding performance in the synthesis design of new 
material, property prediction, and in-depth characterization of material 
microstructure [22–25]. Using different machine learning algorithms, 
the new design parameters are explored for developing a series of alloys 
out of the FeCrNiZrCu system [22]. A machine learning design system 
has been proposed, which contains a property-composition BP neural 
network (NN) model to design the compositions and a 
composition-property BP NN model to efficiently screen the alloy 
composition design schemes [23]. Thus, a high-performance Cu alloys 
with ultimate tensile strength of 600–950 MPa are designed. By statis
tically analyzing the solidification characteristics of HEAs, the rela
tionship between solidification interval characteristics and element is 
revealed via machine learning, and the FeCrNiAl0.8 HEA is designed, 
which exhibits a high fracture strength and ductility [24]. The data 
mining with machine learning is used to reveal the eutectic formation in 

HEAs, and the critical element of Al is discovered in AlCoCrFeNi system 
[26]. Meanwhile, if the data is scarce and the experiment is uneco
nomical, the MD simulation is used as an auxiliary method to provide 
data sets for machine learning [27, 28]. 

During this investigation, the uniaxial tensile of single crystal HEAs 
with vacancies are applied through the MD method. The effects of va
cancy concentration on mechanics properties of HEA are analyzed. The 
crystal orientation effect for different vacancy concentrations is further 
revealed. Moreover, the MD simulations combined with machine 
learning method are used to predict the effect of the vacancy concen
tration in combination with temperature on yield strength and the 
corresponding dislocation density. 

2. Method 

In this section, we introduce in detail how to use the MD simulation 
method to investigate the mechanical response of uniaxial tension in 
HEA with vacancies at different temperatures. In addition, the specific 
details of machine learning model are presented based on the data ob
tained from MD simulation, in order to explore the relationship between 
vacancy concentrations and mechanical properties. 

2.1. Molecular dynamics 

Figure 1(a) shows the elemental distribution in a single-crystal 
FeNiCoCrCu HEA. Figure 1(b) represents various vacancy concentra
tions, where the corresponding vacancy concentration is shown in 
Table 1. The FeNiCoCrCu HEA samples with and without vacancies are 
built, the sizes of models are 30 × 30 × 30 a3, where a = 3.61 Å is a 
lattice parameter [29]. In order to create the random equal atomic 
FeNiCoCrCu HEA structure, Fe (Co, Cr, Cu) atoms are randomly selected, 
and replace with Ni matrix. To compare with conventional alloys, 
Inconel 718 Ni-based superalloy is selected as the object, which main 
elements are Ni, Cr, and Fe with atom fractions of 51, 30 and 19 [30]. 
The orientations of the x, y, and z axes are [100], [010] and [001], 
respectively. To introduce vacancies in HEA samples, the atoms can be 
removed randomly for obtaining a given vacancy concentration, where 
the vacancy generated includes the single vacancy and double vacancy 
in our model. In addition, a comparative case for the five samples with 
different vacancy distributions at a certain vacancy concentration 

Fig. 1. (a) The uniaxial tensile simulation of FeNiCoCrCu HEA, which atoms are colored by atom type. (b) The vacancy distribution in the FeNiCoCrCu HEA based on 
CNA method, and the vacancy concentration corresponding to the label is shown in Table 1. Here, Fe Ni Cr Co and Cu in (a), and the green atoms represent FCC 
structure and the white atoms represent other structure in (b). 
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suggests that the random vacancy distribution has a little effect on the 
mechanical properties. According to previous studies, vacancies as a 
typical defect of HEAs are distributed in the damaged structure at the 
initial stage of irradiation due to the collision of high-energy particles [6, 
8]. In addition, some studies suggest that the vacancy concentration can 
reach 10% and disorderly distributed in the material, due to the vacancy 
formation generated by the processing and deformation of materials 
[14, 31-33]. For example, when the alloy is irradiated by the electron 
beam ion, the vacancy distribution changes from order to disorder [14]. 
Meanwhile, the equipment vacancy concentration can be expressed by 

Cv = exp
(

ΔSf
R

)

exp
(

− ΔHf
RT

)

, where ΔSf is the formation entropy of the 

vacancy, R is the Boltzmann constant, ΔHf is the formation enthalpy, 
and T is the temperature. The formation enthalpy and formation entropy 
of HEAs are lower than that in traditional metals, impelling the higher 
vacancy in HEAs [34, 35]. Thus, the vacancy concentrations fluctuate 
from 0 to 10%, which be studied with equal intervals of 0.2% for the 
current simulations. 

The deformation of the HEA sample is carried out using LAMMPS 
[36–39]. All dimensions are applied to periodic boundary conditions. To 
study the effect of temperature on the deformation behavior, the tem
peratures of 300 K, 400 K, 500 K, 600 K, 700 K and 800 K are applied in 
HEA. Firstly, the samples are subjected to the energy minimization using 
the conjugate gradient method [40–42]; then, they are heated up to the 
target temperature for a certain time dependent upon the setting tem
perature under the Nose-Hoover isobaric-isothermal (NPT) ensemble, 
for obtaining the equilibrium configurations of the vacancy-containing 
HEAs [38]. After the relaxation, the uniaxial tensile simulation is 
applied at a strain rate of 1 × 108 s− 1 along the x direction. The time step 
of atomic simulation is set to 2 fs. An embedded atom method potential 
(EAM) is adopted for the atom interactions in FeNiCoCrCu HEA and 
Ni-based superalloy [42], which is widely used to study their deforma
tion behaviors and mechanical properties [43–46]. Based on the com
parison of lattice constant, elastic constant and modulus corresponding 
to the minimum cohesive energy of FeNiCoCrCu HEA, it is proved that 
the current EAM potential is sufficient for general research of the me
chanical response of stable face-centered cubic (FCC) solid-solution 
alloy [46]. The database containing temperature, vacancy concentra
tion, yield strength and dislocation density at yield point of the FeNi
CoCrCu HEA can be obtained from the tension simulations. The 
microstructures are analyzed by the common-neighbor analysis (CNA) 
[47], and their evolutions and defect distributions are presented by the 
Open Visualization Tool (OVITO) [48]. According to the value of CNA, 
the green represents FCC atoms, red denotes hexagonal close-packed 
(HCP) atoms, blue is body-centered cubic (BCC) atoms, and gray rep
resents other disordered atoms. 

2.2. Machine learning 

In order to predict the relationship between vacancy concentrations 
and mechanical properties in FeNiCoCrCu HEA, 300 sets of data ob
tained by MD method are used as the input and output of machine 
learning. In the machine learning system, the artificial neural network 
(ANN) is selected. ANN is considered to have sufficient ability to deal 
with the complex and nonlinear relationship between input data and 
output data through optimizing hyper-parameter [49], which is hard to 
be realized by other classical regression algorithms, such as ridge 
regression, support vector regression and linear regression. Meanwhile, 
ANN is widely used to explore the relationship between constituent 

elements, microstructures and mechanical properties of alloy [23, 28]. 
Figure 2 shows the ANN architecture includes three stages of input, 
learning, and output. The data input stage includes the data collection 
and preprocessing. The input dataset is obtained through the tensile 
simulations of FeNiCoCrCu HEA with various vacancy concentrations 
under different temperatures. All the vacancy concentration and tem
perature compose the input data set, and the yield strength and dislo
cation density constitute the target data set. All the data sets include 300 
sets of data, which are divided into training set, test set, and validation 
set according to the ratio of 70%, 15%, and 15%. Subsequently, the 
training and learning stages include the process of selecting the appro
priate algorithm, adjusting the model structure parameter, training, and 
testing. The ANN model is built, which contains six components: the 
number of hidden layers, the number of neurons, the activation func
tion, the optimizer, the training epoch and the learning rate [49, 50]. For 
the certain amount of data, one hidden layer is adopted due to the ac
curacy is not improved by increasing the number of hidden layers. Based 
on the trial-and-error method, the number of neurons is 10 in each layer. 
Adamoptimizer is employed as the optimizer for model compilation, and 
0.01 is used as the learning rate of the adamoptimizer [28]. The un
known data is predicted and analyzed by the optimized model in the 
final output stage. In our work, the optimized ANN model is used to 
predict the yield strength and dislocation density in a wide range of 
vacancy concentration through the dataset obtained by MD simulations. 

3. Results and discussion 

Based on the method of MD simulation and ANN model, three main 
contents are discussed in Section 3: (1) the effect of vacancy concen
tration on tensile properties; (2) the effect of vacancy concentration on 
the different crystal orientation; (3) the prediction of properties under 
various vacancy concentrations. 

3.1. Effect of vacancy concentration 

In this section, the effect of the vacancy concentration in the FeNi
CoCrCu HEA on mechanical properties is explored. 

The tensile stress-strain curves of MD simulations for the different 
vacancy concentrations at 300 K have been exhibited in Fig. 3(a, b). The 
yield strengths extracted from the stress-strain curves are shown in Fig. 3 
(c). The previous results show the yield strength of FeNiCoCrCu HEA is 
about 16 GPa and consistent with 17.2 GPa from our result [51]. The 
elastic modulus can be computed by the equation of σ = Eε, where σ is 
the axial stress, E is the elastic modulus, and ε is the axial strain. From 
stress-strain curves in Fig. 3(a, b), the elastic modulus in models de
creases slightly with the increase of vacancy concentration, which is 
similar to the result in traditional alloy [16]. In addition, the yield 
strength declines tempestuously, and the corresponding strain value also 
decreases, even for the samples with very low vacancy concentration 
(Fig. 3(a)) [16]. This phenomenon is most obvious when the vacancy 
concentration is from 0% to 1%. However, when the vacancy concen
tration from 1% to 10%, the decline rate of yield strength is relatively 
uniform. 

To deeply understand the effect of vacancy concentration on the 
deformation behavior in the FeNiCoCrCu HEA sample and quantita
tively reveal their mechanical response, the distributions of micro
structures are presented in Fig. 4(a–c) [43, 44]. By comparing the 
microstructure distribution of various samples, a large number of 
stacking faults (SFs) composed of HCP atoms are generated at the va
cancy concentration 0% (Fig. 4(a, b)). The deformation twinning with 

Table 1 
The vacancy concentration of each graph in Fig. 1(b).  

Graphic label 1# 2# 3# 4# 5# 6# 7# 8# 9# 

Vacancy concentration (%) 1% 2% 3% 4% 5% 6% 6% 8% 9%  
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very thin thickness is formed in all samples, which induces a weak 
strengthening effect [52, 53]. Fig. 4(b) shows that the number of SFs and 
deformation twin is reduced with the increase of the vacancy concen
tration. Meanwhile, the continuity and thickness of SFs are hindered due 
to that the aggregation of vacancies into vacancy clusters induces short 
and dispersive dislocation. The critical pinning stress of dislocation 
sliding contributed by SFs depends on the SF thickness [54,55]. For the 
parallel spaced SFs, the SF strengthening can be expressed as σSF = k/d 
[56], where k is a material constant, and d is the spacing between SFs. 
The SF strengthening is inversely proportional to the SF spacing, which 
is one reason for the yield stress has the maximum at the free vacancy 
concentration (Fig. 3(c)). Corresponding to the distribution of SFs, the 

number of active slip system is large and a mass of long Shockley partial 
dislocations are formed, composing intensive dislocation networks at 
the free vacancy concentration. However, due to the influence of va
cancies on the continuity of the slip plane, the short Shockley partial 
dislocations are formed and constitute sparse dislocation networks in 
cases with vacancy (Fig. 4(c)). At the intersection of SF planes, more 
1/6<110> stair-rod partial dislocations are formed in the structure 
without vacancies (Fig. 4(c)), and can not slip due to the Burgers vector 
located in the {001} plane but the slip system of {111}. Hence, the 
1/6<110> stair-rod partial dislocations hinder Shockley dislocation slip 
and influence the deformation behavior, which explains a phenomenon 
that the strength of perfect sample is higher than that of the other three 

Fig. 2. Workflow chart of machine learning and an architecture of a multi-layer feed-forward ANN.  

Fig. 3. (a) The tensile stress-strain curve of MD simulations when the vacancy concentrations are lower than 0.1% in the FeNiCoCrCu HEA. (b) The tensile stress- 
strain curve of MD simulations for vacancy concentrations from 1% to 10% in the FeNiCoCrCu HEA. (c) The relationship between yield stress and yield strain for 
different vacancy concentration. 
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cases (Fig. 4(d)). Thus, the dislocation mechanism plays an essential role 
in the hardening mechanism of HEAs [57–59]. 

Figure 4(e) represents the dislocation densities in the yield point, and 
the corresponding strains are 17.7%, 11.2%, 8.6%, and 6.7% for the 

vacancy concentration from 0% to 5%. When the vacancy concentration 
is high, the vacancy and vacancy clusters are more likely to aggregate 
during the loading process. This trend causes the dislocation to move 
violently and the materials enter plastic stage earlier [33]. The 

Fig. 4. (a) The microstructure, and (b) defect structure in FeNiCoCrCu HEA at the vacancy concentration of 0%, 1%, 3%, and 5% at yield point. Here, the green 
atoms represent FCC structure, the red atoms represent HCP structure, the blue atoms represent BCC structure and the white atoms represent other structure. (c) The 
evolution of dislocation type and distribution, where the green line represents the 1/6<112> Shockley dislocation, the pink line is the 1/6<110> stair-rod dislo
cation, the blue line denotes the 1/6<110> perfect dislocation, the sky-blue line is the 1/3<111> frank dislocation, and the red line is other dislocation. The stress- 
strain curve (d), and the dislocation density (e) for various vacancy concentrations. (For interpretation of the references to color in this figure legend, the reader is 
referred to the web version of this article.) 

Fig. 5. The microstructure (a), and defect structures (b) in Inconel 718 Ni-based superalloy at the vacancy concentrations of 0%, 1%, 3%, and 5% at yield point. 
Here, the green atoms represent FCC structure, the red atoms represent HCP structure, the blue atoms represent BCC structure and the white atoms represent other 
structure. (c) The evolution of dislocation type and distribution, where the green line represents the 1/6<112> Shockley dislocation, the pink line is the 1/6<110>
stair-rod dislocation, the blue line denotes the 1/6<110> perfect dislocation, the sky-blue line is the 1/3<111> frank dislocation, and the red line is other dislo
cation. The stress-strain curve (d), and dislocation density (e) for various vacancy concentrations. (For interpretation of the references to color in this figure legend, 
the reader is referred to the web version of this article.) 

J. Peng et al.                                                                                                                                                                                                                                     



International Journal of Mechanical Sciences 218 (2022) 107065

6

dislocation density of the perfect sample has maximum value at yield 
point. As the vacancy concentration increase from 0% to 1%, the 
dislocation density decreases by half. It illustrates the vacancy can 
inhibit dislocation nucleation and evolution. 

In order to study the effect of vacancy on the dislocation density in 
HEA and conventional alloys, Inconel 718 Ni-based superalloys with 
0%, 1%, 3% and 5% vacancy concentration are investigated at 300 K. 
The microstructures and dislocation distribution at the vacancy con
centrations of 0%, 1%, 3%, and 5% are presented in Fig. 5. The change 
trend of the SFs and deformation twinning is similar in FeNiCrCoCu HEA 
and Ni-based superalloy with the increase of vacancy concentration. 
There are higher yield stress and dislocation density in Ni-based su
peralloy compared that in HEA for vacancy concentration of 0%. 
However, with the vacancy concentration from 0% to 1%, the disloca
tion density decreases by about three quarters (Fig. 5(e)), and the yield 
stress decreases from 24 GPa to 14.58 GPa (Fig. 5(d)), which is more 
significant than that for FeNiCrCoCu HEA. The phenomenon reveals that 
compared with traditional alloys, HEAs can weaken the damage effect of 
vacancy [60]. 

3.2. Crystal orientation effect 

In this section, in order to investigate the effect of vacancy distri
bution on different crystal orientations, the results of tensile simulations 
for the FeNiCoCrCu HEA along [100], [110], and [111] directions have 
been compared. 

The stress-strain relations for various crystal orientations at vacancy 
concentration of 0% and 1% have been shown in Fig. 6. The significantly 
anisotropy for the three crystal orientations is revealed. For the perfect 
sample, the yield stress and yield strain are largest on [100] direction. 
The yield stress for [111] direction is twice that for [110] direction, but 
the value of yield strain is similar, which is consistent with previous 
results [51]. In addition, considering the effect of vacancy, the yield 
stress significantly decreases from 17.9 GPa to 11.2 GPa for the samples 
with [100] loading direction at the vacancy concentration of 0% to 1%. 
The elastic modulus decreases slightly [16, 33]. However, the yield 
stresses are basically not affected by vacancy for the HEA with [110] and 
[111] loading direction. As a result, the tensile response and the effect of 
vacancy on tensile property demonstrate the obvious significant 
anisotropy. The phenomenon is very different from γ-TiAl alloys, whose 
orientation selection of vacancy is more feeble [60]. 

The above significant anisotropy is closely related to the micro
structure. Figure 7 exhibits the microstructure and dislocation distri
bution at yield point, revealing the effect of vacancy concentration 

under different crystal orientations. Under the [100], [110], and [111] 
loadings, the number of the equivalent slip systems to participate in the 
plastic deformation is 8, 6, and 4 [61]. For the perfect sample under the 
[100], [110], and [111] loadings, the distribution of slip plane and 
dislocation as shown in Fig. 7(a, c, e) at yield point. The dislocation slip 
resistance caused by dislocation interaction is an important part of 
critical shear stress [57–59]. The more slip systems are actuated, the 
more likely the slip planes to intersect, so that the more immovable 
dislocations are generated. Thus, the density of the immovable dislo
cations (1/6<110> stair-rod partial dislocation) is the highest in Fig. 7 
(a) and the smallest in Fig. 7(c). This phenomenon explains that the 
smallest yield stress under [110] loading direction and the largest yield 
stress under [100] loading direction in the samples without vacancy 
(Fig. 6). Meanwhile, when the vacancy concentration increases from 0% 
to 1%, the number of active slip system and the density of dislocation 
decrease significantly for [100] direction in Fig. 7(a, b), which corre
sponds to the significantly decreased yield stress. Comparatively, the 
change of number and distribution of the slip system and dislocation 
caused by vacancies is weak for [110] direction (Fig. 7(c, d)) and [111] 
direction (Fig. 7(e, f)), resulting in basically unchanged yield stress. In 
addition, the deformation mechanisms are strongly influenced by the 
crystal orientation and vacancy. Under [100] loading direction, the 
deformation mechanisms change from dislocation to dislocation coor
dinated with deformation twinning for the vacancy concentration from 
0% to 1%. The dislocation, SF and deformation twinning are the main 
deformation mechanisms for the [110] loading direction. The disloca
tion and SF are the deformation mechanisms for [111] loading direction. 
The change of vacancy concentration has no significant effect on the 
deformation mechanism for [110] and [111] direction. 

3.3. Predicting properties for various vacancy concentrations 

In order to guide the optimal design of HEA containing the defects, 
the properties in defected HEAs should be predicted. Thus, based on a set 
of data obtained from MD simulation, ANN model is built to predict the 
evolution of the yield strength and dislocation density under different 
vacancy concentration and temperature. The combination of two 
methods can achieve efficient alloy design and performance prediction 
[27, 28]. 

Here, the 300 sets of data consisted by the vacancy concentration, 
yield stress and dislocation density at six different temperatures are 
obtained through the MD simulations, in which the vacancy concen
tration in combination with temperature are used as inputs and the yield 
stress and dislocation density are used as outputs. All the data are 
divided into the training set, validation set, and test set. Through the 
ANN model, the correlation between the target data and the prediction 
data is greater than 0.9 for various data sets, which demonstrates the 
ANN model used in the current work is extremely accurate. 

Figure 8 shows the 3D distribution of the yield stress and dislocation 
density at different vacancy concentrations and temperatures at yield 
point obtained from ANN. The distributions are projected to the top of 
the graphs. When the vacancy concentration is less than 5%, the dislo
cation density first decreases and then increases slightly (Fig. 8(a)). 
When the vacancy concentration is greater than 5%, the dislocation 
density increases sharply at 800 K and reaches a peak. With the vacancy 
increases, the same phenomenon appears in other temperatures. How
ever, the lower the temperature, the larger the vacancy concentration 
when the dislocation density increases. The relationship between the 
yield stress and the vacancy concentration at different temperature ob
tained from ANN are exhibited in Fig. 8(b). It can be found that with the 
increase of temperature, the yield stress decreases when the vacancy 
concentration is less than 6% [38]. After the vacancy concentration is 
greater than 6%, the yield stress increases and then decreases, which 
shows a peak. When the temperature is 800 K, the vacancy concentra
tion corresponding to the increase of yield strength is the smallest 
compared with other temperatures, which is consistent with the 

Fig. 6. The stress-strain relations under the [100], [110] and [111] uniaxial 
loadings at the vacancy concentration of 0% and 1%. 
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evolution law of dislocation density in Fig. 8(a). 
In order to further compare with the test results of ANN model, some 

additional validating data is shown in Table 2, which is supplemented by 
MD simulations and out of the preset dataset. It can be found that the 
new data is in accord with the predict function, the accuracy of the 
model has been further verified. Motivated by above reasons and further 
verifications, the ANN model used in the present work can effectively 

and accurately obtain the vacancy-property relationship in a wide range 
of temperature, to provide guidance for the new defected materials. 

4. Conclusion 

In the present work, the effects of the vacancy concentration, crystal 
orientation and temperature on the tensile properties of FeNiCrCoCu 
HEA have been systematically investigated by the MD simulation. From 
the tensile simulation of FeNiCrCoCu HEA with different vacancy con
centration, it can be found that the continuity of SFs and dislocations is 
broken due to the existence of vacancies, and the high vacancy con
centration reduces the strength due to the increase of the SF spacing. The 
increase of vacancy slightly reduces the strength in HEA compared with 
traditional alloys. In addition, by investigating the effect of vacancy 
distribution on different crystal orientations, it is found that the yield 
stress decreases obviously and the deformation mechanism changes 
from dislocation to dislocation coordinated with deformation twinning 
with the increase of vacancy concentration for [100] direction. How
ever, the vacancy concentration has no significant effect on the tension 
stress and deformation mechanism for [110] and [111] direction. 

Meanwhile, ANN model is built based on a set of data obtained from 
MD simulation, thus, the evolution of the yield strength and dislocation 

Fig. 7. Snapshots represent the evolution of the microstructure, defect structure and dislocation at yield point of the samples. The crystal orientations are [100]x and 
[001]z for the perfect sample (a), and the sample with vacancy concentration of 1% (b). The crystal orientations are [110]x and [001]z for the free vacancy (c), and 
the vacancy concentration of 1% (d). The crystal orientations are [111]x and [11–2]z for the free vacancy (e), and the vacancy concentration of 1% (f). 

Fig. 8. (a) The distribution of the dislocation density gained from ANN predictions, and (b) the distribution of the yield strengths obtained from ANN predictions 
under different vacancy concentrations and temperatures. 

Table 2 
Validating data outside the original data set.  

Sample 300 K, 
0%  
[51] 

400 
K, 
41% 

500 
K, 
53% 

600 
K, 
27% 

700 
K, 
13% 

Validating 
results 

Yield stress 
(GPa) 

15.5 6.9 4.94 6.96 4.39 

Dislocation 
density 
(×1017m− 2)  

2.56 2.58 1.27 2.6 

Predicted 
results 

Yield stress 
(GPa) 

17.2 6.84 5.1 7.15 4.19 

Dislocation 
density 
(×1017m− 2)  

2.49 2.01 1.12 2.4  
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density under different vacancy concentration and temperature in 
FeNiCrCoCu HEA are predicted efficiently. 

These results provide a deep understanding of vacancy effect on 
mechanical properties. Based on the viewpoint of defect regulation, the 
present work provides the guidance for the material design. 
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